1
|
Nelson KL, Reil KA, Tsuji S, Parikh AM, Robinson M, House CD, McGuire KL, Giacalone MJ. VAX014 Activates Tumor-Intrinsic STING and RIG-I to Promote the Development of Antitumor Immunity. Mol Cancer Ther 2025; 24:587-604. [PMID: 39868467 PMCID: PMC11962400 DOI: 10.1158/1535-7163.mct-24-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T-cell priming. One class of ISI agents, oncolytic viruses (OV), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I IFN, OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I). Here, using a combination of pharmacologic, genetic, and in vivo approaches, we demonstrate that VAX014, a bacterial minicell-based oncolytic ISI agent, activates both STING and RIG-I and leverages this activity to work best in STING-positive and/or RIG-I-positive tumors. Intratumoral treatment of established syngeneic tumors expressing STING and RIG-I with VAX014 resulted in 100% tumor clearance in two mouse models. Antitumor activity of VAX014 was shown to be dependent on both tumor-intrinsic STING and RIG-I with additive activity stemming from host-intrinsic STING. Analysis of human solid tumor datasets demonstrated STING and RIG-I co-expression is prevalent in solid tumors and associates with clinical benefit in many indications, particularly those most amenable to intratumoral administration. These collective findings differentiate VAX014 from OVs by elucidating the ability of this agent to elicit antitumor activity in STING-positive and/or RIG-I-positive solid tumors and provide evidence that STING/RIG-I agonism is part of VAX014's mechanism of action. Taken together, this work supports the ongoing clinical investigation of VAX014 treatment as an alternative to OV therapy in patients with solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Carrie D. House
- San Diego State University, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | | | | |
Collapse
|
2
|
Kozaeva E, Nieto-Domínguez M, Tang KKY, Stammnitz M, Nikel PI. Leveraging Engineered Pseudomonas putida Minicells for Bioconversion of Organic Acids into Short-Chain Methyl Ketones. ACS Synth Biol 2025; 14:257-272. [PMID: 39748701 PMCID: PMC11744930 DOI: 10.1021/acssynbio.4c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
Methyl ketones, key building blocks widely used in diverse industrial applications, largely depend on oil-derived chemical methods for their production. Here, we investigated biobased production alternatives for short-chain ketones, adapting the solvent-tolerant soil bacterium Pseudomonas putida as a host for ketone biosynthesis either by whole-cell biocatalysis or using engineered minicells, chromosome-free bacterial vesicles. Organic acids (acetate, propanoate and butanoate) were selected as the main carbon substrate to drive the biosynthesis of acetone, butanone and 2-pentanone. Pathway optimization identified efficient enzyme variants from Clostridium acetobutylicum and Escherichia coli, tested with both constitutive and inducible expression of the cognate genes. By implementing these optimized pathways in P. putida minicells, which can be prepared through a simple three-step purification protocol, the feedstock was converted into the target short-chain methyl ketones. These results highlight the value of combining morphology and pathway engineering of noncanonical bacterial hosts to establish alternative bioprocesses for toxic chemicals that are difficult to produce by conventional approaches.
Collapse
Affiliation(s)
- Ekaterina Kozaeva
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Manuel Nieto-Domínguez
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kent Kang Yong Tang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | | | - Pablo Iván Nikel
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
3
|
Giacalone MJ. The promise, progress, and challenges of in situ immunization agents in cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:127-164. [PMID: 39461750 DOI: 10.1016/bs.pmbts.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In situ immunization (ISI) agents are an emerging and diverse class of locally acting cancer immunotherapeutic agents designed to promote innate immune activation in the early steps of the cancer immunity cycle to ultimately support development of a systemic tumor-specific immune response and protective immunologic memory. The aims of this review are to: (i) provide an introduction to ISI; (ii) summarize the history of ISI agents; (iii) expound upon the mechanism(s) and therapeutic objective(s) of ISI; (iv) compare the various approaches and therapeutic modalities developed and investigated to date; and (v) summarize clinical experiences in an effort to highlight the utility as well as the lessons and challenges of this promising approach. A prospective roadmap for future clinical development is provided that focuses on early and late-stage trial design considerations, the rationale and importance of investigating combination treatment, and the prospective use of ISI agents in the neoadjuvant setting.
Collapse
|
4
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
5
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
6
|
Engineered microbial systems for advanced drug delivery. Adv Drug Deliv Rev 2022; 187:114364. [PMID: 35654214 DOI: 10.1016/j.addr.2022.114364] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022]
Abstract
The human body is a natural habitat for a multitude of microorganisms, with bacteria being the major constituent of the microbiota. These bacteria colonize discrete anatomical locations that provide suitable conditions for their survival. Many bacterial species, both symbiotic and pathogenic, interact with the host via biochemical signaling. Based on these attributes, commensal and attenuated pathogenic bacteria have been engineered to deliver therapeutic molecules to target specific diseases. Recent advances in synthetic biology have enabled us to perform complex genetic modifications in live bacteria and bacteria-derived particles, which simulate micron or submicron lipid-based vectors, for the targeted delivery of therapeutic agents. In this review, we highlight various examples of engineered bacteria or bacteria-derived particles that encapsulate, secrete, or surface-display therapeutic molecules for the treatment or prevention of various diseases. The review highlights recent studies on (i) the production of therapeutics by microbial cell factories, (ii) disease-triggered release of therapeutics by sense and respond systems, (iii) bacteria targeting tumor hypoxia, and (iv) bacteria-derived particles as chassis for drug delivery. In addition, we discuss the potential of such drug delivery systems to be translated into clinical therapies.
Collapse
|
7
|
Ni B, Colin R, Sourjik V. Production and Characterization of Motile and Chemotactic Bacterial Minicells. ACS Synth Biol 2021; 10:1284-1291. [PMID: 34081866 PMCID: PMC8218304 DOI: 10.1021/acssynbio.1c00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Minicells are nanosized
membrane vesicles produced by bacteria.
Minicells are chromosome-free but contain cellular biosynthetic and
metabolic machinery, and they are robust due to the protection provided
by the bacterial cell envelope, which makes them potentially highly
attractive in biomedical applications. However, the applicability
of minicells and other nanoparticle-based delivery systems is limited
by their inefficient accumulation at the target. Here we engineered
the minicell-producing Escherichia coli strain to
overexpress flagellar genes, which enables the generation of motile
minicells. We subsequently performed an experimental and theoretical
analysis of the minicell motility and their responses to gradients
of chemoeffectors. Despite important differences between the motility
of minicells and normal bacterial cells, minicells were able to bias
their movement in chemical gradients and to accumulate toward the
sources of chemoattractants. Such motile and chemotactic minicells
may thus be applicable for an active effector delivery and specific
targeting of tissues and cells according to their metabolic profiles.
Collapse
Affiliation(s)
- Bin Ni
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Remy Colin
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg D-35043, Germany
| |
Collapse
|
8
|
Ali MK, Liu Q, Liang K, Li P, Kong Q. Bacteria-derived minicells for cancer therapy. Cancer Lett 2020; 491:11-21. [DOI: 10.1016/j.canlet.2020.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 02/08/2023]
|
9
|
Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M, Huard K, Luthey-Schulten Z, Desfosses A, Stansfeld PJ, Margolin W, Parkinson JS, Gutsche I. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat Commun 2020; 11:743. [PMID: 32029744 PMCID: PMC7005262 DOI: 10.1038/s41467-020-14350-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 12/01/2022] Open
Abstract
Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Megghane Baulard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Karine Huard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - William Margolin
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
10
|
Jivrajani M, Nivsarkar M. Minicell-Based Targeted Delivery of shRNA to Cancer Cells: An Experimental Protocol. Methods Mol Biol 2019; 1974:111-139. [PMID: 31098999 DOI: 10.1007/978-1-4939-9220-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bacterial minicell has emerged as a novel targeted delivery system for RNAi-based therapeutics. In this chapter, we have described the detailed protocol for the preparation of minicell-based targeted delivery system for shRNA. Initially, minicell-producing parent bacterial cells were transformed with plasmid vector containing shRNA. Subsequently, shRNA-packaged minicells were purified from parent bacterial cells. Purified minicells were characterized by fluorescence microscopy and transmission electron microscopy. In the next step, targeting ligand was conjugated on the minicell surface for the active targeting of cancer cell surface receptors. Eventually, target-specific delivery of minicells was explored in vitro in selected cancer cell line and in vivo in mice bearing tumor xenograft.
Collapse
Affiliation(s)
- Mehul Jivrajani
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
- Faculty of Science, NIRMA University, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India.
| |
Collapse
|
11
|
Abstract
Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell’s volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials. Many bacteria produce small, spherical minicells that lack chromosomal DNA and therefore are unable to proliferate. Although minicells have been used extensively by researchers as a molecular tool, nothing is known about why bacteria produce them. Here, we show that minicells help Escherichia coli cells to rid themselves of damaged proteins induced by antibiotic stress. By comparing the survival and growth rates of wild-type strains with the E. coliΔminC mutant, which produces excess minicells, we found that the mutant was more resistant to streptomycin. To determine the effects of producing minicells at the single-cell level, we also tracked the growth of ΔminC lineages by microscopy. We were able to show that the mutant increased the production of minicells in response to a higher level of the antibiotic. When we compared two sister cells, in which one produced minicells and the other did not, the daughters of the former had a shorter doubling time at this higher antibiotic level. Additionally, we found that minicells were more likely produced at the mother’s old pole, which is known to accumulate more aggregates. More importantly, by using a fluorescent IbpA chaperone to tag damage aggregates, we found that polar aggregates were contained by and ejected with the minicells produced by the mother bacterium. These results demonstrate for the first time the benefit to bacteria for producing minicells. IMPORTANCE Bacteria have the ability to produce minicells, or small spherical versions of themselves that lack chromosomal DNA and are unable to replicate. A minicell can constitute as much as 20% of the cell’s volume. Although molecular biology and biotechnology have used minicells as laboratory tools for several decades, it is still puzzling that bacteria should produce such costly but potentially nonfunctional structures. Here, we show that bacteria gain a benefit by producing minicells and using them as a mechanism to eliminate damaged or oxidated proteins. The elimination allows the bacteria to tolerate higher levels of stress, such as increasing levels of streptomycin. If this mechanism extends from streptomycin to other antibiotics, minicell production could be an overlooked pathway that bacteria are using to resist antimicrobials.
Collapse
|
12
|
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a leading technique for three-dimensional visualization of large macromolecular complexes and their conformational changes in their native cellular environment. However, the resolution and potential applications of cryo-ET are fundamentally limited by specimen thickness, preventing high-resolution in situ visualization of macromolecular structures in many bacteria (such as Escherichia coli and Salmonella enterica). Minicells, which were discovered nearly 50 years ago, have recently been exploited as model systems to visualize molecular machines in situ, due to their smaller size and other unique properties. In this review, we discuss strategies for producing minicells and highlight their use in the study of chemotactic signaling, protein secretion, and DNA translocation. In combination with powerful genetic tools and advanced imaging techniques, minicells provide a springboard for in-depth structural studies of bacterial macromolecular complexes in situ and therefore offer a unique approach for gaining novel structural insights into many important processes in microbiology.
Collapse
|
13
|
Preclinical evaluation of VAX-IP, a novel bacterial minicell-based biopharmaceutical for nonmuscle invasive bladder cancer. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16004. [PMID: 27119118 PMCID: PMC4824562 DOI: 10.1038/mto.2016.4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/08/2016] [Indexed: 12/16/2022]
Abstract
The development of new therapies that can prevent recurrence and progression of nonmuscle invasive bladder cancer remains an unmet clinical need. The continued cost of monitoring and treatment of recurrent disease, along with its high prevalence and incidence rate, is a strain on healthcare economics worldwide. The current work describes the characterization and pharmacological evaluation of VAX-IP as a novel bacterial minicell-based biopharmaceutical agent undergoing development for the treatment of nonmuscle invasive bladder cancer and other oncology indications. VAX-IP minicells selectively target two oncology-associated integrin heterodimer subtypes to deliver a unique bacterial cytolysin protein toxin, perfringolysin O, specifically to cancer cells, rapidly killing integrin-expressing murine and human urothelial cell carcinoma cells with a unique tumorlytic mechanism. The in vivo pharmacological evaluation of VAX-IP minicells as a single agent administered intravesically in two clinically relevant variations of a syngeneic orthotopic model of superficial bladder cancer results in a significant survival advantage with 28.6% (P = 0.001) and 16.7% (P = 0.003) of animals surviving after early or late treatment initiation, respectively. The results of these preclinical studies warrant further nonclinical and eventual clinical investigation in underserved nonmuscle invasive bladder cancer patient populations where complete cures are achievable.
Collapse
|
14
|
Engineering the type III secretion system in non-replicating bacterial minicells for antigen delivery. Nat Commun 2013; 4:1590. [PMID: 23481398 PMCID: PMC3693737 DOI: 10.1038/ncomms2594] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/08/2013] [Indexed: 01/28/2023] Open
Abstract
Type III protein secretion systems are being considered for vaccine development as virtually any protein antigen can be engineered for delivery by these nanomachines into the class I antigen presentation pathway to stimulate antigen-specific CD8(+) T cells. A limitation in the use of this system is that it requires live virulence-attenuated bacteria, which may preclude its use in certain populations such as children and the immunocompromised. Here we report the engineering of the Salmonella Typhimurium type III secretion system in achromosomal, non-replicating nanoparticles derived from bacterial minicells. The engineered system is shown to be functional and capable of delivering heterologous antigens to the class I antigen presentation pathway stimulating immune responses both in vitro and in vivo. This antigen delivery platform offers a novel approach for vaccine development and cellular immunotherapy.
Collapse
|
15
|
Jivrajani M, Shrivastava N, Nivsarkar M. A combination approach for rapid and high yielding purification of bacterial minicells. J Microbiol Methods 2012; 92:340-3. [PMID: 23234883 DOI: 10.1016/j.mimet.2012.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
A method for bacterial minicell purification was developed by combining antibiotic (ceftriaxone) lysis and filtration. This method is fast, cost effective and facilitates high yield of purified minicells, with no parent strain contamination as confirmed by fluorescent microscopy, average particle size and polydispersity index.
Collapse
Affiliation(s)
- Mehul Jivrajani
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad, 380 054 Gujarat, India
| | | | | |
Collapse
|
16
|
Haber CL, Allen LN, Zhao S, Hanson RS. Methylotrophic bacteria: biochemical diversity and genetics. Science 2010; 221:1147-53. [PMID: 17811506 DOI: 10.1126/science.221.4616.1147] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria that are able to use methane as a sole carbon and energy source also carry out a broad range of biotransformations, some of which have industrial and environmental significance. Genetic studies on methylotrophs, including the use of recombinant DNA techniques, show promise for the isolation and cloning of genes coding for specific functions.
Collapse
|
17
|
Abstract
A clear imperative exists to generate radically different antibacterial technologies that will reduce the usage of conventional chemical antibiotics. Here we trace one route into this new frontier of drug discovery, a concept that we call the bacterial conjugation-based technologies (BCBT). One of the objectives of the BCBT is to exploit plasmid biology for combating the rising tide of antibiotic-resistant bacteria. Specifically, the concept utilizes conjugationally delivered plasmids as antimicrobial agents, and it builds on the accumulated work of many scientists dating back to the discoveries of conjugation and plasmids themselves. Each of the individual components that comprise the approach has been demonstrated to be feasible. We discuss the properties of bacterial plasmids to be employed in BCBT.
Collapse
|
18
|
Abstract
The positioning of a cytoskeletal element that dictates the division plane is a fundamental problem in biology. The assembly and positioning of this cytoskeletal element has to be coordinated with DNA segregation and cell growth to ensure that equal-sized progeny cells are produced, each with a copy of the chromosome. In most prokaryotes, cytokinesis involves positioning a Z ring assembled from FtsZ, the ancestral homologue of tubulin. The position of the Z ring is determined by a gradient of negative regulators of Z-ring assembly. In Escherichia coli, the Min system consists of three proteins that cooperate to position the Z ring through a fascinating oscillation, which inhibits the formation of the Z ring away from midcell. Additional gradients of negative regulators of FtsZ assembly are used by E. coli and other bacteria to achieve spatial control of Z-ring assembly.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
19
|
Sengupta S, Rutenberg A. Modeling partitioning of Min proteins between daughter cells after septation in Escherichia coli. Phys Biol 2007; 4:145-53. [PMID: 17928653 DOI: 10.1088/1478-3975/4/3/001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ongoing sub-cellular oscillation of Min proteins is required to block minicelling in Escherichia coli. Experimentally, Min oscillations are seen in newly divided cells and no minicells are produced. In model Min systems many daughter cells do not oscillate following septation because of unequal partitioning of Min proteins between the daughter cells. Using the 3D model of Huang et al, we investigate the septation process in detail to determine the cause of the asymmetric partitioning of Min proteins between daughter cells. We find that this partitioning problem arises at certain phases of the MinD and MinE oscillations with respect to septal closure and it persists independently of parameter variation. At most 85% of the daughter cells exhibit Min oscillation following septation. Enhanced MinD binding at the static polar and dynamic septal regions, consistent with cardiolipin domains, does not substantially increase this fraction of oscillating daughters. We believe that this problem will be shared among all existing Min models and discuss possible biological mechanisms that may minimize partitioning errors of Min proteins following septation.
Collapse
Affiliation(s)
- Supratim Sengupta
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada.
| | | |
Collapse
|
20
|
Giacalone MJ, Zapata JC, Berkley NL, Sabbadini RA, Chu YL, Salvato MS, McGuire KL. Immunization with non-replicating E. coli minicells delivering both protein antigen and DNA protects mice from lethal challenge with lymphocytic choriomeningitis virus. Vaccine 2006; 25:2279-87. [PMID: 17258845 PMCID: PMC2384231 DOI: 10.1016/j.vaccine.2006.11.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/20/2006] [Accepted: 11/30/2006] [Indexed: 11/29/2022]
Abstract
In the midst of new investigations into the mechanisms of both delivery and protection of new vaccines and vaccine carriers, it has become clear that immunization with delivery mechanisms that do not involve living, replicating organisms are vastly preferred. In this report, non-replicating bacterial minicells simultaneously co-delivering the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) and the corresponding DNA vaccine were tested for the ability to generate protective cellular immune responses in mice. It was found that good protection (89%) was achieved after intramuscular administration, moderate protection (31%) was achieved after intranasal administration, and less protection (7%) was achieved following gastric immunization. These results provide a solid foundation on which to pursue the use of bacterial minicells as a non-replicating vaccine delivery platform.
Collapse
Affiliation(s)
- Matthew J. Giacalone
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | | | - Roger A. Sabbadini
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Yen-Lin Chu
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
| | - Maria S. Salvato
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD, USA
| | - Kathleen L. McGuire
- Vaxiion Therapeutics, Inc., San Diego, CA, USA
- Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA
- * Corresponding author at: Department of Biology, Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA. Tel.: +1 619 594 7191; fax: +1 619 594 5676. E-mail address: (K.L. McGuire)
| |
Collapse
|
21
|
Giacalone MJ, Gentile AM, Lovitt BT, Xu T, Surber MW, Sabbadini RA. The use of bacterial minicells to transfer plasmid DNA to eukaryotic cells. Cell Microbiol 2006; 8:1624-33. [PMID: 16984417 DOI: 10.1111/j.1462-5822.2006.00737.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The delivery of DNA to mammalian cells is of critical importance to the development of genetic vaccines, gene replacement therapies and gene silencing. For these applications, targeting, effective DNA transfer and vector safety are the major roadblocks in furthering development. In this report, we present a novel DNA delivery vehicle that makes use of protoplasted, achromosomal bacterial minicells. Transfer of plasmid DNA as measured by green fluorescent protein expression was found to occur in as high as 25% of cultured Cos-7 cells when a novel chimeric protein containing the D2-D5 region of invasin was expressed and displayed on the surface of protoplasted minicells. Based on endoplasmic reticulum stress and other responses, protoplasted minicells were non-toxic to recipient eukaryotic cells as a consequence of the transfection process. Taken together, these results suggest that bacterial minicells may represent a novel and promising gene delivery vehicle.
Collapse
|
22
|
Touhami A, Jericho M, Rutenberg AD. Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol 2006; 188:7661-7. [PMID: 16936014 PMCID: PMC1636269 DOI: 10.1128/jb.00911-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed that the oscillation period of MinD within rod-like and filamentous cells of Escherichia coli varied by a factor of 4 in the temperature range from 20 degrees C to 40 degrees C. The detailed dependence was Arrhenius, with a slope similar to the overall temperature-dependent growth curve of E. coli. The detailed pattern of oscillation, including the characteristic wavelength in filamentous cells, remained independent of temperature. A quantitative model of MinDE oscillation exhibited similar behavior, with an activated temperature dependence of the MinE-stimulated MinD-ATPase rate.
Collapse
Affiliation(s)
- Ahmed Touhami
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada
| | | | | |
Collapse
|
23
|
Giacalone MJ, Sabbadini RA, Chambers AL, Pillai S, McGuire KL. Immune responses elicited by bacterial minicells capable of simultaneous DNA and protein antigen delivery. Vaccine 2006; 24:6009-17. [PMID: 16806602 PMCID: PMC7125846 DOI: 10.1016/j.vaccine.2006.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 04/14/2006] [Accepted: 04/20/2006] [Indexed: 11/22/2022]
Abstract
Recent events surrounding emerging infectious diseases, bioterrorism and increasing multidrug antibiotic resistance in bacteria have drastically increased current needs for effective vaccines. Many years of study have shown that live, attenuated pathogens are often more effective at delivering heterologous protein or DNA to induce protective immune responses. However, these vaccine carriers have inherent safety concerns that have limited their development and their use in many patient populations. Studies using nonliving delivery mechanisms have shown that providing both protein antigen and DNA encoding the antigen to an individual induces an improved, more protective immune response but rarely, if ever, are both delivered simultaneously. Here, non-replicating bacterial minicells derived from a commensal E. coli strain are shown to effectively induce antigen-specific immune responses after simultaneous protein and DNA delivery. These data demonstrate the potential use of achromosomal bacterial minicells as a vaccine carrier.
Collapse
Affiliation(s)
| | - Roger A. Sabbadini
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, Center For Microbial Sciences, San Diego State University, San Diego, CA, USA
| | - Amy L. Chambers
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
| | - Sabitha Pillai
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
| | - Kathleen L. McGuire
- The Molecular Biology Institute, San Diego State University, San Diego, CA, USA
- Department of Biology, Center For Microbial Sciences, San Diego State University, San Diego, CA, USA
- Corresponding author at: Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614, USA. Tel.: +1 619 594 7191; fax: +1 619 594 5676.
| |
Collapse
|
24
|
Guindulain T, Vives-Rego J. Involvement of RNA and DNA in the staining of Escherichia coli by SYTO 13. Lett Appl Microbiol 2002; 34:182-8. [PMID: 11874539 DOI: 10.1046/j.1472-765x.2002.01069.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess the extent to which DNA and RNA bacterial content contributes to fluorescent response of SYTO 13. METHODS AND RESULTS RNA and DNA of Escherichia coli 536 cells were extracted and fluorimetrically quantified to compare the different contents, throughout a 24 h culture, with their SYTO 13 fluorescence emission when analysed by the cytometer. SYTO 13 fluorescence varied depending on the stage of bacterial growth and in accordance with both DNA and RNA content. RNA content accounted for at least two-thirds of the total fluorescence of a cell. Escherichia coli cells were treated with chloramphenicol to improve their RNA content. With this treatment, both nucleic acids remained constant but there was a clear improvement in fluorescent emission. SYTO 13 fluorescence was also studied in E. coli X-1488 minicells. CONCLUSIONS Although both nucleic acids are implicated, RNA accounts for a major part of SYTO 13 fluorescence. The fluorescence cannot be considered as a direct reflection of nucleic acid content. Other factors, such as topology or supercoiling, need to be considered. SIGNIFICANCE AND IMPACT OF THE STUDY The results confirm the efficacy of SYTO 13 for labelling bacteria and for assessing the distinct physiological status. A better knowledge of the parameters implicated in its fluorescence emission has been achieved.
Collapse
Affiliation(s)
- T Guindulain
- Departament de Microbiologia, Universitat de Barcelona, Spain
| | | |
Collapse
|
25
|
Abstract
To obtain an estimate for the concentration of free functional RNA polymerase in the bacterial cytoplasm, the content of RNA polymerase beta and beta' subunits in DNA-free minicells from the minicell-producing Escherichia coli strain chi925 was determined. In bacteria grown in Luria-Bertani medium at 2.5 doublings/h, 1.0% of the total protein was RNA polymerase. The concentration of cytoplasmic RNA polymerase beta and beta' subunits in minicells produced by this strain corresponded to about 17% (or 2.5 microM) of the value found in whole cells. Literature data suggest that a similar portion of cytoplasmic RNA polymerase subunits is in RNA polymerase assembly intermediates and imply that free functional RNA polymerase can form a small percentage of the total functional enzyme in the cell. On infection with bacteriophage T7, 20% of the minicells produced progeny phage, whereas infection in 80% of the cells was abortive. RNA polymerase subunits in lysozyme-freeze-thaw lysates of minicells were associated with minicell envelopes and were without detectable activity in an in vitro transcription assay. Together, these results suggest that most functional RNA polymerase is associated with the DNA and that little if any segregates into DNA-free minicells.
Collapse
Affiliation(s)
- N Shepherd
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75083-0688, USA
| | | | | |
Collapse
|
26
|
Reinscheid DJ, Gottschalk B, Schubert A, Eikmanns BJ, Chhatwal GS. Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus. J Bacteriol 2001; 183:1175-83. [PMID: 11157929 PMCID: PMC94990 DOI: 10.1128/jb.183.4.1175-1183.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B streptococcus (GBS) is the leading cause of bacterial sepsis and meningitis in neonates. N-terminal sequencing of major proteins in the culture supernatant of a clinical isolate of GBS identified a protein of about 50 kDa which could be detected in all of 27 clinical isolates tested. The corresponding gene, designated pcsB, was isolated from a GBS cosmid library and subsequently sequenced. The deduced PcsB polypeptide consists of 447 amino acid residues (M(r), 46,754), carries a potential N-terminal signal peptide sequence of 25 amino acids, and shows significant similarity to open reading frames of unknown function from different organisms and to the murein hydrolase P45 from Listeria monocytogenes. Northern blot analysis revealed a monocistronic transcriptional organization for pcsB in GBS. Insertional inactivation of pcsB in the genome of GBS resulted in mutant strain Sep1 exhibiting a drastically reduced growth rate compared to the parental GBS strain and showing an increased susceptibility to osmotic pressure and to various antibiotics. Electron microscopic analysis of GBS mutant Sep1 revealed growth in clumps, cell separation in several planes, and multiple division septa within single cells. These data suggest a pivotal role of PcsB for cell division and antibiotic tolerance of GBS.
Collapse
Affiliation(s)
- D J Reinscheid
- Department of Microbiology and Biotechnology, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Bacterial membrane and nucleoids were stained concurrently by the lipophilic styryl dye FM 4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl) hexatrienyl)pyridinium dibromide] and 4',6-diamidino-2-phenylindole (DAPI), respectively, and studied using fluorescence microscopy imaging. Observation of plasmolysed cells indicated that FM 4-64 stained the inner membrane preferentially. In live Escherichia coli pbpB cells and filaments, prepared on wet agar slabs, an FM 4-64 staining pattern developed in the form of dark bands. In dividing cells, the bands occurred mainly at the constriction sites and, in filaments, between partitioning nucleoids. The FM 4-64 pattern of dark bands in filaments was abolished after inhibiting protein synthesis with chloramphenicol. It is proposed that the staining patterns reflect putative membrane domains formed by DNA-membrane interactions and have functional implications in cell division.
Collapse
Affiliation(s)
- I Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel.
| | | |
Collapse
|
28
|
Kearns LP, Mahanty HK. Antibiotic production by Erwinia herbicola Eh1087: its role in inhibition of Erwinia amylovora and partial characterization of antibiotic biosynthesis genes. Appl Environ Microbiol 1998; 64:1837-44. [PMID: 9572960 PMCID: PMC106239 DOI: 10.1128/aem.64.5.1837-1844.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutants of Erwinia herbicola Eh1087 (Ant-), which did not produce antibiotic activity against Erwinia amylovora, the fire blight pathogen, were selected after TnphoA mutagenesis. In immature pear fruit Ant- mutants grew at the same rate as wild-type strain Eh1087 but did not suppress development of the disease caused by E. amylovora. These results indicated that antibiosis plays an important role in the suppression of disease by strain Eh1087. All of the Ant- mutations obtained were located in a 2.2-kb region on a 200-kb indigenous plasmid. Sequence analysis of the mutated DNA region resulted in identification of six open reading frames, designated ORF1 through ORF6, four of which were essential to antibiotic expression. One gene was identified as a gene which encodes a translocase protein which is probably involved in antibiotic secretion. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasmid proteins produced in Escherichia coli minicells confirmed the presence of proteins whose sizes corresponded to the sizes of the predicted open reading frame products.
Collapse
Affiliation(s)
- L P Kearns
- Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
29
|
Abstract
Escherichia coli K-12 can utilize D-allose, an all-cis hexose, as a sole carbon source. The operon responsible for D-allose metabolism was localized at 92.8 min of the E. coli linkage map. It consists of six genes, alsRBACEK, which are inducible by D-allose and are under the control of the repressor gene alsR. This operon is also subject to catabolite repression. Three genes, alsB, alsA, and alsC, appear to be necessary for transport of D-allose. D-Allose-binding protein, encoded by alsB, is a periplasmic protein that has an affinity for D-allose, with a Kd of 0.33 microM. As was found for other binding-protein-mediated ABC transporters, the allose transport system includes an ATP-binding component (AlsA) and a transmembrane protein (AlsC). It was found that AlsE (a putative D-allulose-6-phosphate 3-epimerase), but not AlsK (a putative D-allose kinase), is necessary for allose metabolism. During this study, we observed that the D-allose transporter is partially responsible for the low-affinity transport of D-ribose and that strain W3110, an E. coli prototroph, has a defect in the transport of D-allose mediated by the allose permease.
Collapse
Affiliation(s)
- C Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon
| | | | | |
Collapse
|
30
|
Abstract
A variety of new methods in DNA biochemistry, molecular biology and genetics have become available for the analysis of microbial determinants of pathogenicity. It has never been easier to focus upon specific genetic determinants and to manipulate them directly to meet experimental goals. Although the principles of genetic manipulation have been used with considerable success in enteric bacteria, it is not always a straightforward matter with other microorganisms. We were unable to cloneBordetella pertussisdeterminants of pathogenicity directly inEscherichia coliK12 by selecting for their protein products. It was possible, however, to develop a genetic transfer system and methods for the identification of specificBordetellavirulence genes. These studies not only provided the basis for the eventual successful genetic cloning ofBordetella pertussisgenes but also provided an example showing that the molecular cloning of virulence genes is not always an easy task, nor even necessarily the best initial approach to take.
Collapse
|
31
|
Yao R, Guerry P. Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production in Campylobacter jejuni. J Bacteriol 1996; 178:3335-8. [PMID: 8655516 PMCID: PMC178088 DOI: 10.1128/jb.178.11.3335-3338.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The arylsulfatase gene from Campylobacter jejuni 81-176 encodes a predicted protein of 69,293 Da which shows no sequence similarity with other known arylsulfatases. The gene hybridizes to other Ast+ strains of C. jejuni and Campylobacter sputorum subsp. bubulus, as well as to many Ast- strains of C. jejuni.
Collapse
Affiliation(s)
- R Yao
- Enterics Program, Naval Medical Research Institute, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
32
|
Progulske-Fox A, Tumwasorn S, Lépine G, Whitlock J, Savett D, Ferretti JJ, Banas JA. The cloning, expression and sequence analysis of a second Porphyromonas gingivalis gene that codes for a protein involved in hemagglutination. ORAL MICROBIOLOGY AND IMMUNOLOGY 1995; 10:311-8. [PMID: 8596675 DOI: 10.1111/j.1399-302x.1995.tb00160.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been suggested that Porphyromonas gingivalis may possess more than one hemagglutinin. We have previously reported the cloning of a gene (hagA) that encodes a hemagglutinin. In this study we report the cloning, characterization, and sequencing of a second gene (hagB) that encodes a protein that also appears to be involved in hemagglutination. Antiserum to the clone (ST 7) was found to inhibit hemagglutination by P. gingivalis 381, and hemagglutinating inhibition activity of anti-P. gingivalis antiserum was reduced by adsorption of the antiserum with cells of clone ST 7. Restriction mapping and Southern analysis indicates there is little or no DNA homology between this cloned 4.8-kb HindIII DNA fragment and a cloned hemagglutinin gene we have previously described. Minicell analysis of the cloned P. gingivalis chromosomal DNA fragment revealed that the major gene product is a 49-kDa protein. Immunoaffinity chromatography using purified rabbit immunoglobulin G against the cloned protein resulted in the purification of a major reactive 49- to 50-kDa protein from a P. gingivalis cell lysate. Nucleotide sequence analysis revealed the hagB open reading frame to be 1053 nucleotides in length with a mol% G+C of 59.9% coding for a protein of 350 residues with a calculated molecular weight of 39.375 kDa. This protein was also determined to be basic and hydrophilic and to contain a potential signal peptide. Comparison of both the nucleotide and derived amino acid sequences with computer-based databases did not reveal any significant homologies between habB and any other previously sequenced genes.
Collapse
Affiliation(s)
- A Progulske-Fox
- Department of Oral biology, College of Dentistry, University of Florida, Gainesville, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Norris V. Hypothesis: chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol Microbiol 1995; 16:1051-7. [PMID: 8577241 DOI: 10.1111/j.1365-2958.1995.tb02330.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To explain how daughter chromosomes are separated into discrete nucleoids and why chromosomes are partitioned with pole preferences, I propose that differential gene expression occurs during DNA replication in Escherichia coli. This differential gene expression means that the daughter chromosomes have different patterns of gene expression and that cell division is not a simple process of binary fission. Differential gene expression arises from autocatalytic gene expression and creates a separate proteolipid domain around each developing chromosome via the coupled transcription-translation-insertion of proteins into membranes (transertion). As these domains are immiscible, daughter chromosomes are simultaneously replicated and separated into discrete nucleoids. I also propose that the partitioning relationship between chromosome age and cell age arises because the poles of cells have a proteolipid composition that favours transertion from one nucleoid rather than from the other. This hypothesis forms part of an ensemble of related hypotheses which attempt to explain cell division, differentiation and wall growth in bacteria in terms of the physical properties and interactions of the principal constituents of cells.
Collapse
Affiliation(s)
- V Norris
- Department of Microbiology and Immunology, School of Medicine, University of Leicester, UK
| |
Collapse
|
34
|
Affiliation(s)
- R J Smith
- Institute of Environmental and Biological Sciences, Lancaster University, UK
| |
Collapse
|
35
|
Becker PS, Akins DR, Radolf JD, Norgard MV. Similarity between the 38-kilodalton lipoprotein of Treponema pallidum and the glucose/galactose-binding (MglB) protein of Escherichia coli. Infect Immun 1994; 62:1381-91. [PMID: 8132345 PMCID: PMC186291 DOI: 10.1128/iai.62.4.1381-1391.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The recent discovery that abundant and immunogenic lipoproteins constitute the integral membrane proteins of Treponema pallidum has prompted efforts to investigate their importance in the physiology and ultrastructure of the organism and in immune responses during infection. Earlier studies identified a 38-kDa lipoprotein of T. pallidum believed to be specific to the pathogen. In the present study, monoclonal antibodies generated against the 38-kDa lipoprotein of T. pallidum reacted with cognate 37-kDa molecules in the nonpathogens Treponema phagedenis, Treponema denticola, and Treponema refringens. Cloning and expression of the 38-kDa-lipoprotein gene of T. pallidum in Escherichia coli revealed that the recombinant product displayed a slightly larger (39-kDa) apparent molecular mass but remained reactive with anti-38-kDa-protein monoclonal antibodies. The recombinant product was processed and acylated in E. coli. DNA and amino acid sequence analyses indicated an open reading frame encoding 403 amino acids, with the first 25 amino acids corresponding to a leader peptide terminated by a signal peptidase II processing site of Val-Val-Gly-Cys. The predicted mature protein is 378 amino acids in length with a deduced molecular weight of 40,422 (excluding acylation). Southern blotting failed to demonstrate in nonpathogenic treponemes genomic sequences homologous with the 38-kDa-lipoprotein gene of T. pallidum. Computer analysis revealed that the 38-kDa lipoprotein of T. pallidum had 34.2% identity and 58.9% similarity with the glucose/galactose-binding protein (MglB) of E. coli and Salmonella typhimurium. Furthermore, of the 19 amino acids of MglB involved in carbohydrate binding, the 38-kDa lipoprotein had identity with 11. These studies have allowed the first putative functional assignment (carbohydrate binding) to a T. pallidum integral membrane protein. Recognition of this potential physiological role for the 38-kDa lipoprotein underscores the possibility that the membrane biology of T. pallidum may more closely resemble that of gram-positive organisms, which also utilize lipoproteins as anchored transporters, than that of gram-negative bacteria to which T. pallidum often is analogized.
Collapse
Affiliation(s)
- P S Becker
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | |
Collapse
|
36
|
Haddad JE, Jackson MP. Identification of the Shiga toxin A-subunit residues required for holotoxin assembly. J Bacteriol 1993; 175:7652-7. [PMID: 8244934 PMCID: PMC206922 DOI: 10.1128/jb.175.23.7652-7657.1993] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent X-ray crystallographic analyses have demonstrated that the receptor-binding (B) subunits of Shiga toxin (STX) are arranged as a doughnut-shaped pentamer. The C terminus of the enzymatic (A) subunit presumably penetrates the nonpolar pore of the STX B pentamer, and the holotoxin is stabilized by noncovalent interactions between the polypeptides. We identified a stretch of nine nonpolar amino acids near the C terminus of StxA which were required for subunit association by using site-directed mutagenesis to introduce progressive C-terminal deletions in the polypeptide and assessing holotoxin formation by a receptor analog enzyme-linked immunosorbent assay, immunoprecipitation, and a cytotoxicity assay. Tryptophan and aspartic acid residues which form the N-terminal boundary, as well as two arginine residues which form the C-terminal boundary of the nine-amino-acid sequence, were implicated as the stabilizers of subunit association. Our model proposes that residues 279 to 287 of the 293-amino-acid STX A subunit penetrate the pore while the tryptophan, aspartic acid, and 2 arginine residues interact with other charged or aromatic amino acids outside the pore on the planar surfaces of the STX B pentamer.
Collapse
Affiliation(s)
- J E Haddad
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
37
|
Haddad JE, al-Jaufy AY, Jackson MP. Minimum domain of the Shiga toxin A subunit required for enzymatic activity. J Bacteriol 1993; 175:4970-8. [PMID: 8349540 PMCID: PMC204961 DOI: 10.1128/jb.175.16.4970-4978.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The minimum sequence of the enzymatic (A) subunit of Shiga toxin (STX) required for activity was investigated by introducing N-terminal and C-terminal deletions in the molecule. Enzymatic activity was assessed by using an in vitro translation system. A 253-amino-acid STX A polypeptide, which is recognized as the enzymatically active portion of the 293-amino-acid A subunit, expressed less than wild-type levels of activity. In addition, alteration of the proposed nicking site between Ala-253 and Ser-254 by site-directed mutagenesis apparently prevented proteolytic processing but had no effect on the enzymatic activity of the molecule. Therefore, deletion analysis was used to identify amino acid residue 271 as the C terminus of the enzymatically active portion of the STX A subunit. STX A polypeptides with N-terminal and C-terminal deletions were released into the periplasmic space of Escherichia coli by fusion to the signal peptide and the first 22 amino acids of Shiga-like toxin type II, a member of the STX family. Although these fusion proteins expressed less than wild-type levels of enzymatic activity, they confirmed the previous finding that Tyr-77 is an active-site residue. Therefore, the minimum domain of the A polypeptide which was required for the expression of enzymatic activity was defined as StxA residues 75 to 268.
Collapse
Affiliation(s)
- J E Haddad
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
38
|
Jagusztyn-Krynicka EK, Hansen JB, Crow VL, Thomas TD, Honeyman AL, Curtiss R. Streptococcus mutans serotype c tagatose 6-phosphate pathway gene cluster. J Bacteriol 1992; 174:6152-8. [PMID: 1328153 PMCID: PMC207682 DOI: 10.1128/jb.174.19.6152-6158.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA cloned into Escherichia coli K-12 from a serotype c strain of Streptococcus mutans encodes three enzyme activities for galactose utilization via the tagatose 6-phosphate pathway: galactose 6-phosphate isomerase, tagatose 6-phosphate kinase, and tagatose-1,6-bisphosphate aldolase. The genes coding for the tagatose 6-phosphate pathway were located on a 3.28-kb HindIII DNA fragment. Analysis of the tagatose proteins expressed by recombinant plasmids in minicells was used to determine the sizes of the various gene products. Mutagenesis of these plasmids with transposon Tn5 was used to determine the order of the tagatose genes. Tagatose 6-phosphate isomerase appears to be composed of 14- and 19-kDa subunits. The sizes of the kinase and aldolase were found to be 34 and 36 kDa, respectively. These values correspond to those reported previously for the tagatose pathway enzymes in Staphylococcus aureus and Lactococcus lactis.
Collapse
|
39
|
Abstract
In Escherichia coli minB mutants, cell division can take place at the cell poles as well as non-polarly in the cell. We have examined growth, division patterns, and nucleoid distribution in individual cells of a minC point mutant and a minB deletion mutant, and compared them to the corresponding wild-type strain and an intR1 strain in which the chromosome is over-replicated. The main findings were as follows. In the minB mutants, polar and non-polar divisions appeared to occur independently of each other. Furthermore, the timing of cell division in the cell cycle was found to be severely affected. In addition, nucleoid conformation and distribution were considerably disturbed. The results obtained call for a re-evaluation of the role of the MinB system in the E. coli cell cycle, and of the concept that limiting quanta of cell division factors are regularly produced during the cell cycle.
Collapse
Affiliation(s)
- T Akerlund
- Department of Microbiology, Uppsala University, Sweden
| | | | | |
Collapse
|
40
|
Gulig PA, Caldwell AL, Chiodo VA. Identification, genetic analysis and DNA sequence of a 7.8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol 1992; 6:1395-411. [PMID: 1322485 DOI: 10.1111/j.1365-2958.1992.tb00860.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 90-kilobase (kb) virulence plasmid of Salmonella typhimurium is responsible for invasion from the intestines to mesenteric lymph nodes and spleens of orally inoculated mice. We used Tn5 and aminoglycoside phosphotransferase (aph) gene insertion mutagenesis and deletion mutagenesis of a previously identified 14-kb virulence region to reduce this virulence region to 7.8kb. The 7.8-kb virulence region subcloned into a low copy-number vector conferred a wild-type level of splenic infection to virulence plasmid-cured S. typhimurium and conferred essentially a wild-type oral LD50. Insertion mutagenesis identified five loci essential for virulence, and DNA sequence analysis of the virulence region identified six open reading frames. Expected protein products were identified from four of the six genes, with three of the proteins identified as doublet bands in Escherichia coli minicells. Three of the five mutated genes were able to be complemented by clones containing only the corresponding wild-type gene. Only one of the five deduced amino acid sequences, that of the positive regulatory element, SpvR, possessed significant homology to other proteins. The codon usage for the virulence genes showed no codon bias, which is consistent with the low levels of expression observed for the corresponding proteins. Consensus promoters for several different sigma factors were identified upstream of several of the genes, whereas only consensus Rho-dependent termination sequences were observed between certain of the genes. The operon structure of this virulence region therefore appears to be complex. The construction of the cloned 7.8-kb virulence region and the determination of the DNA sequence will aid in the further genetic analysis of the five plasmid-encoded virulence genes of S. typhimurium.
Collapse
Affiliation(s)
- P A Gulig
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610-0266
| | | | | |
Collapse
|
41
|
Markiewicz Z, Höltje JV. Failure to trigger the autolytic enzymes in minicells ofEscherichia coli. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05195.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Nieto C, Giraldo R, Fernández-Tresguerres E, Díaz R. Genetic and functional analysis of the basic replicon of pPS10, a plasmid specific for Pseudomonas isolated from Pseudomonas syringae patovar savastanoi. J Mol Biol 1992; 223:415-26. [PMID: 1738155 DOI: 10.1016/0022-2836(92)90661-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sequence of a 1823 base-pair region containing the replication functions of pPS10, a narrow host-range plasmid isolated from a strain of Pseudomonas savastanoi, is reported. The origin of replication, oriV, or pPS10 is contained in a 535 base-pair fragment of this sequence that can replicate in the presence of trans-acting function(s) of the plasmid. oriV contains four iterons of 22 base-pairs that are preceded by G+C-rich and A+T-rich regions. A dnaA box located adjacent to the repeats of the origin is dispensable but required for efficient replication of pPS10; A and T are equivalent bases at the 5' end of the box. repA, the gene of a trans-acting replication protein of 26,700 Mr has been identified by genetic and functional analysis. repA is adjacent to the origin of replication and is preceded by the consensus sequences of a typical sigma 70 promoter of Escherichia coli. The RepA protein has been identified, using the minicell system of E. coli, as a polypeptide with an apparent molecular mass of 26,000. A minimal pPS10 replicon has been defined to a continuous 1267 base-pair region of pPS10 that includes the oriV and repA sequences.
Collapse
Affiliation(s)
- C Nieto
- Centro de Investigaciones Biológicas, C.S.I.C., Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Norris V. Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle: the membrane tectonics model. J Theor Biol 1992; 154:91-107. [PMID: 1573903 DOI: 10.1016/s0022-5193(05)80190-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escherichia coli normally divides at its equator between segregated nucleoids. Such division is inhibited during perturbations of chromosome replication (even in the absence of inducible division inhibitors); eventually, division resumes at sites which are not at this equator. Escherichia coli will also divide at its poles to generate minicells following overproduction of the FtsZ or MinE proteins. The mechanisms underlying the division inhibition and the positioning of the division sites are unknown. In the membrane tectonics model, I propose that the formation of phospholipid domains within the cytoplasmic membrane positions division sites. The particular phospholipid composition of a domain attracts particular proteins and determines their activity; conversely, particular proteins change the composition of domains. Principally via such proteins, the interaction of the chromosome with the membrane creates a chromosomal domain. The development of chromosomal domains during replication and nucleoid formation contributes to the formation and positioning of a septal domain between them. During septation (cell division), this septal domain matures into a polar domain. Each domain attracts and activates different enzymes. The septal domain attracts and activates enzymes necessary for septation. Preventing the formation of the septal domain by preventing chromosome replication prevents normal division. Altering the composition of the polar domain may allow septation enzymes to function there and generate minicells. A corollary of the model explains how the formation of an origin domain by the attachment of hemi-methylated origin DNA to the membrane may underlie the creation and migration of structures within the envelope, the periseptal annuli.
Collapse
Affiliation(s)
- V Norris
- Department of Genetics, University of Leicester, U.K
| |
Collapse
|
44
|
Abstract
The direct visualization of plasmid DNA inside Escherichia coli cells is demonstrated using phase-fluorescence microscopy of DAPI (4',6-diamidino-2-phenylindole)-stained bacteria. Small as well as large plasmids could be detected, both in minicells and in cells of larger size. For large plasmids, even single molecules appeared to be within the detection limit. The fluorescence generated from monomers of small plasmids was probably below this limit, and for these plasmids the observed signals may represent aggregates. The distribution of the fluorescence foci might reflect specific plasmid positioning during partition and/or replication.
Collapse
Affiliation(s)
- A Eliasson
- Department of Microbiology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
45
|
Rivero O, Anguita J, Mateos D, Paniagua C, Naharro G. Cloning and characterization of an extracellular temperature-labile serine protease gene fromAeromonas hydrophila. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04702.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
46
|
Krishnan HB, Pueppke SG. nolC, a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol Microbiol 1991; 5:737-45. [PMID: 1646377 DOI: 10.1111/j.1365-2958.1991.tb00744.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhizobium fredii strain USDA257 does not nodulate soybean (Glycine max (L.) Merr.) cultivar McCall. Mutant 257DH5, which contains a Tn5 insert in the bacterial chromosome, forms nodules on this cultivar, but acetylene-reduction activity is absent. We have sequenced the region corresponding to the site of Tn5 insertion in this mutant and find that it lies within a 1176bp open reading frame that we designate nolC. nolC encodes a protein of deduced molecular weight 43564. Nucleotide sequences homologous to nolC are present in several other Rhizobium strains, as well as Agrobacterium tumefaciens, but not in Pseudomonas syringae pathovar glycinea. nolC lacks significant sequence homology with known genes that function in nodulation, but is 61% homologous to dnaJ, an Escherichia coli gene that encodes a 41 kDa heat-shock protein. Both R. fredii USDA257 and mutant 257DH5 produce heat-shock proteins of 78, 70, 22, and 16kDa. A 4.3kb EcoRI-HindIII subclone containing nolC expresses a single 43kDa polypeptide in mini-cells. A longer, 9.4kb EcoRI fragment expresses both the 43kDa polypeptide and a 78kDa polypeptide that corresponds in size to that of the largest heat-shock protein. Thus, although nolC has strong sequence homology to dnaJ and appears to be linked to another heat-shock gene, it does not directly function in the heat-shock response.
Collapse
Affiliation(s)
- H B Krishnan
- Department of Plant Pathology, University of Missouri, Columbia 65211
| | | |
Collapse
|
47
|
Abstract
We have imaged individual flagellar filaments of Escherichia coli, a motile Streptococcus sp., and Rhizobium meliloti by video-enhanced differential interference-contrast microscopy (Nomarski DIC) and computer-based image processing. This approach has advantages over existing methods in that filaments on living cells can be seen over their entire lengths.
Collapse
|
48
|
Abstract
In Escherichia coli, distinct but similar minicell phenotypes resulting from mutation at the minB locus and increased expression of ftsZ suggested a possible interaction between these genes. A four- to fivefold increase in FtsZ resulting from increased gene dosage was found to suppress the lethality of minCD expressed from the lac promoter. Since increased MinCD did not affect the level of FtsZ, this suggested that MinCD may antagonize FtsZ to inhibit its cell division activity. This possibility was supported by the finding that alleles of ftsZ isolated as resistant to the cell division inhibitor SulA were also resistant to MinCD. Among the ftsZ(Rsa) alleles, two appeared to be completely resistant to MinCD as demonstrated by the lack of an effect of MinCD on cell length and a minicell phenotype observed in the absence of a significant increase in FtsZ. It was shown that SulA inhibits cell division independently of MinCD.
Collapse
Affiliation(s)
- E Bi
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|
49
|
Gulig PA, Chiodo VA. Genetic and DNA sequence analysis of the Salmonella typhimurium virulence plasmid gene encoding the 28,000-molecular-weight protein. Infect Immun 1990; 58:2651-8. [PMID: 2164511 PMCID: PMC258868 DOI: 10.1128/iai.58.8.2651-2658.1990] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have confirmed that the 28,000-molecular-weight (28K) protein encoded by the virA gene of the 90-kilobase Salmonella typhimurium virulence plasmid is a virulence factor. It was previously shown that a Tn5 insertion, vir-22::Tn5, located in the virulence plasmid greatly attenuated virulence for mice and inhibited the production of a 28K protein (P.A. Gulig and R. Curtiss III, Infect. Immun. 56:3262-3271, 1988). Plasmid pYA426 fully complemented vir-22::Tn5 to virulence by increasing splenic infection after oral inoculation and encoded the 28K protein. To identify the virulence gene(s) of pYA426 mutated by vir-22::Tn5, we constructed nested deletions in pYA426 and examined deletion derivatives for their abilities to complement vir-22::Tn5. Only derivatives still producing the 28K protein complemented vir-22::Tn5. Furthermore, the smallest complementing derivative encoded only the 28K protein, as determined by DNA sequence analysis. Therefore, the 28K protein is sufficient for complementation of the attenuating mutation vir-22::Tn5 and must be the virulence factor inhibited by the insertion. We determined the nucleotide sequence of the 1.2-kilobase BamHI-EcoRI fragment encoding the 28K protein and identified the structural gene, virA. A 723-base-pair open reading frame which encodes a peptide with a molecular weight of 27,572 was found.
Collapse
Affiliation(s)
- P A Gulig
- Department of Immunology and Medical Microbiology, University of Florida College of Medicine, Gainesville 32610
| | | |
Collapse
|
50
|
Pepe JC, Miller VL. The Yersinia enterocolitica inv gene product is an outer membrane protein that shares epitopes with Yersinia pseudotuberculosis invasin. J Bacteriol 1990; 172:3780-9. [PMID: 1694524 PMCID: PMC213356 DOI: 10.1128/jb.172.7.3780-3789.1990] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An essential virulence attribute for Yersinia enterocolitica and Yersinia pseudotuberculosis is the ability to invade the intestinal epithelium of mammals. The chromosomal invasin gene (inv) has been cloned from both of these Yersinia species, and the Y. pseudotuberculosis invasin has been well characterized (R. R. Isberg, D. L. Voorhis, and S. Falkow, Cell 50:769-778, 1987). Here we constructed TnphoA translational fusions to the Y. enterocolitica inv gene to identify, characterize, and localize the inv protein product in Escherichia coli. The cloned Y. enterocolitica inv locus encoded a unique protein of ca. 92 kilodaltons when expressed in minicells. A protein of comparable size was detected in immunoblots by using monoclonal antibodies directed against the Y. pseudotuberculosis invasin. This protein, which we also refer to as invasin, promoted both attachment to and invasion of cultured epithelial cells. These two functions were not genetically separable by insertional mutagenesis. We determined that the Y. enterocolitica invasin was localized on the outer membrane and that it was exposed on the bacterial cell surface, which may have implications for how invasin functions to mediate invasion.
Collapse
Affiliation(s)
- J C Pepe
- Department of Microbiology, College of Letters and Science, University of California, Los Angeles 90024
| | | |
Collapse
|