1
|
Hsu CH, Hsu YY, Chang BM, Raffensperger K, Kadden M, Ton HT, Ette EA, Lin S, Brooks J, Burke MW, Lee YJ, Wang PC, Shoykhet M, Tu TW. StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest. Commun Biol 2025; 8:462. [PMID: 40114030 PMCID: PMC11926354 DOI: 10.1038/s42003-025-07926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Microglia, the brain's resident macrophages, participate in development and influence neuroinflammation, which is characteristic of multiple brain pathologies. Diverse insults cause microglia to alter their morphology from "resting" to "activated" shapes, which vary with stimulus type, brain location, and microenvironment. This morphologic diversity commonly restricts microglial analyses to specific regions and manual methods. We introduce StainAI, a deep learning tool that leverages 20x whole-slide immunohistochemistry images for rapid, high-throughput analysis of microglial morphology. StainAI maps microglia to a brain atlas, classifies their morphology, quantifies morphometric features, and computes an activation score for any region of interest. As a proof of principle, StainAI was applied to a rat model of pediatric asphyxial cardiac arrest, accurately classifying millions of microglia across multiple slices, surpassing current methods by orders of magnitude, and identifying both known and novel activation patterns. Extending its application to a non-human primate model of simian immunodeficiency virus infection further demonstrated its generalizability beyond rodent datasets, providing new insights into microglial responses across species. StainAI offers a scalable, high-throughput solution for microglial analysis from routine immunohistochemistry images, accelerating research in microglial biology and neuroinflammation.
Collapse
Affiliation(s)
- Chao-Hsiung Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Yi-Yu Hsu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Miin Wu School of Computing, National Cheng Kung University, Tainan City, Taiwan
| | - Be-Ming Chang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Katherine Raffensperger
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Micah Kadden
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
| | - Hoai T Ton
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
| | - Essiet-Adidiong Ette
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Stephen Lin
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
| | - Janiya Brooks
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Mark W Burke
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | - Yih-Jing Lee
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Paul C Wang
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA
- Department of Physics, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Michael Shoykhet
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, USA
- Pediatric Critical Care Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Tsang-Wei Tu
- Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
2
|
Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-Induced Model of Parkinson's Disease: Beyond Mitochondrial Complex I Inhibition. Mol Neurobiol 2023; 60:1929-1948. [PMID: 36593435 DOI: 10.1007/s12035-022-03193-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is usually diagnosed through motor symptoms that make the patient incapable of carrying out daily activities; however, numerous non-motor symptoms include olfactory disturbances, constipation, depression, excessive daytime sleepiness, and rapid eye movement at sleep; they begin years before motor symptoms. Therefore, several experimental models have been studied to reproduce several PD functional and neurochemical characteristics; however, no model mimics all the PD motor and non-motor symptoms to date, which becomes a limitation for PD study. It has become increasingly relevant to find ways to study the disease from its slowly progressive nature. The experimental models most frequently used to reproduce PD are based on administering toxic chemical compounds, which aim to imitate dopamine deficiency. The most used toxic compounds to model PD have been 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which inhibit the complex I of the electron transport chain but have some limitations. Another toxic compound that has drawn attention recently is rotenone, the classical inhibitor of mitochondrial complex I. Rotenone triggers the progressive death of dopaminergic neurons and α-synuclein inclusions formation in rats; also, rotenone induces microtubule destabilization. This review presents information about the experimental model of PD induced by rotenone, emphasizing its molecular characteristics beyond the inhibition of mitochondrial complex I.
Collapse
Affiliation(s)
- María Teresa Ibarra-Gutiérrez
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
4
|
Lawana V, Um SY, Rochet JC, Turesky RJ, Shannahan JH, Cannon JR. Neuromelanin Modulates Heterocyclic Aromatic Amine-Induced Dopaminergic Neurotoxicity. Toxicol Sci 2021; 173:171-188. [PMID: 31562763 DOI: 10.1093/toxsci/kfz210] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagens and potential human carcinogens. Our group and others have demonstrated that HAAs may also produce selective dopaminergic neurotoxicity, potentially relevant to Parkinson's disease (PD). The goal of this study was to elucidate mechanisms of HAA-induced neurotoxicity through examining a translational biochemical weakness of common PD models. Neuromelanin is a pigmented byproduct of dopamine metabolism that has been debated as being both neurotoxic and neuroprotective in PD. Importantly, neuromelanin is known to bind and potentially release dopaminergic neurotoxicants, including HAAs (eg, β-carbolines such as harmane). Binding of other HAA subclasses (ie, aminoimidazoaazarenes) to neuromelanin has not been investigated, nor has a specific role for neuromelanin in mediating HAA-induced neurotoxicity been examined. Thus, we investigated the role of neuromelanin in modulating HAA-induced neurotoxicity. We characterized melanin from Sepia officinalis and synthetic dopamine melanin, proposed neuromelanin analogs with similar biophysical properties. Using a cell-free assay, we demonstrated strong binding of harmane and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) to neuromelanin analogs. To increase cellular neuromelanin, we transfected SH-SY5Y neuroblastoma cells with tyrosinase. Relative to controls, tyrosinase-expressing cells exhibited increased neuromelanin levels, cellular HAA uptake, cell toxicity, and oxidative damage. Given that typical cellular and rodent PD models form far lower neuromelanin levels than humans, there is a critical translational weakness in assessing HAA-neurotoxicity. The primary impacts of these results are identification of a potential mechanism by which HAAs accumulate in catecholaminergic neurons and support for the need to conduct neurotoxicity studies in systems forming neuromelanin.
Collapse
Affiliation(s)
- Vivek Lawana
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| | | | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience.,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Robert J Turesky
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Jason R Cannon
- School of Health Sciences.,Purdue Institute for Integrative Neuroscience
| |
Collapse
|
5
|
Cell specific quantitative iron mapping on brain slices by immuno-µPIXE in healthy elderly and Parkinson's disease. Acta Neuropathol Commun 2021; 9:47. [PMID: 33752749 PMCID: PMC7986300 DOI: 10.1186/s40478-021-01145-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
Iron is essential for neurons and glial cells, playing key roles in neurotransmitter synthesis, energy production and myelination. In contrast, high concentrations of free iron can be detrimental and contribute to neurodegeneration, through promotion of oxidative stress. Particularly in Parkinson’s disease (PD) changes in iron concentrations in the substantia nigra (SN) was suggested to play a key role in degeneration of dopaminergic neurons in nigrosome 1. However, the cellular iron pathways and the mechanisms of the pathogenic role of iron in PD are not well understood, mainly due to the lack of quantitative analytical techniques for iron quantification with subcellular resolution. Here, we quantified cellular iron concentrations and subcellular iron distributions in dopaminergic neurons and different types of glial cells in the SN both in brains of PD patients and in non-neurodegenerative control brains (Co). To this end, we combined spatially resolved quantitative element mapping using micro particle induced X-ray emission (µPIXE) with nickel-enhanced immunocytochemical detection of cell type-specific antigens allowing to allocate element-related signals to specific cell types. Distinct patterns of iron accumulation were observed across different cell populations. In the control (Co) SNc, oligodendroglial and astroglial cells hold the highest cellular iron concentration whereas in PD, the iron concentration was increased in most cell types in the substantia nigra except for astroglial cells and ferritin-positive oligodendroglial cells. While iron levels in astroglial cells remain unchanged, ferritin in oligodendroglial cells seems to be depleted by almost half in PD. The highest cellular iron levels in neurons were located in the cytoplasm, which might increase the source of non-chelated Fe3+, implicating a critical increase in the labile iron pool. Indeed, neuromelanin is characterised by a significantly higher loading of iron including most probable the occupancy of low-affinity iron binding sites. Quantitative trace element analysis is essential to characterise iron in oxidative processes in PD. The quantification of iron provides deeper insights into changes of cellular iron levels in PD and may contribute to the research in iron-chelating disease-modifying drugs.
Collapse
|
6
|
Lavrin T, Konte T, Kostanjšek R, Sitar S, Sepčič K, Prpar Mihevc S, Žagar E, Župunski V, Lenassi M, Rogelj B, Gunde Cimerman N. The Neurotropic Black Yeast Exophiala dermatitidis Induces Neurocytotoxicity in Neuroblastoma Cells and Progressive Cell Death. Cells 2020; 9:cells9040963. [PMID: 32295162 PMCID: PMC7226985 DOI: 10.3390/cells9040963] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotropic and extremophilic black yeast Exophiala dermatitidis (Herpotrichellaceae) inhabits diverse indoor environments, in particular bathrooms, steam baths, and dishwashers. Here, we show that the selected strain, EXF-10123, is polymorphic, can grow at 37 °C, is able to assimilate aromatic hydrocarbons (toluene, mineral oil, n-hexadecane), and shows abundant growth with selected neurotransmitters (acetylcholine, gamma-aminobutyric acid, glycine, glutamate, and dopamine) as sole carbon sources. We have for the first time demonstrated the effect of E. dermatitidis on neuroblastoma cell model SH-SY5Y. Aqueous and organic extracts of E. dermatitidis biomass reduced SH-SY5Y viability by 51% and 37%, respectively. Melanized extracellular vesicles (EVs) prepared from this strain reduced viability of the SH-SY5Y to 21%, while non-melanized EVs were considerably less neurotoxic (79% viability). We also demonstrated direct interactions of E. dermatitidis with SH-SY5Y by scanning electron and confocal fluorescence microscopy. The observed invasion and penetration of neuroblastoma cells by E. dermatitidis hyphae presumably causes the degradation of most neuroblastoma cells in only three days. This may represent a so far unknown indirect or direct cause for the development of some neurodegenerative diseases such as Alzheimer’s.
Collapse
Affiliation(s)
- Teja Lavrin
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| | - Tilen Konte
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Rok Kostanjšek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | - Simona Sitar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Kristina Sepčič
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
| | | | - Ema Žagar
- Laboratory for Polymer Chemistry and Technology, National Institute of Chemistry, 1000 Ljubljana, Slovenia; (S.S.); (E.Ž.)
| | - Vera Župunski
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
| | - Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.K.); (M.L.)
| | - Boris Rogelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.Ž.); (B.R.)
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Biomedical Research Institute, 1000 Ljubljana, Slovenia
| | - Nina Gunde Cimerman
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (R.K.); (K.S.)
- Correspondence: (T.L.); (N.G.C.); Tel.: +386-(0)1-543-7652 (T.L.); +386-(0)1-320-3400 (N.G.C.)
| |
Collapse
|
7
|
Krupička R, Mareček S, Malá C, Lang M, Klempíř O, Duspivová T, Široká R, Jarošíková T, Keller J, Šonka K, Růžička E, Dušek P. Automatic substantia nigra segmentation in neuromelanin-sensitive MRI by deep neural network in patients with prodromal and manifest synucleinopathy. Physiol Res 2019; 68:S453-S458. [DOI: 10.33549/physiolres.934380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuromelanin (NM) is a black pigment located in the brain in substantia nigra pars compacta (SN) and locus coeruleus. Its loss is directly connected to the loss of nerve cells in this part of the brain, which plays a role in Parkinson’s Disease. Magnetic resonance imaging (MRI) is an ideal tool to monitor the amount of NM in the brain in vivo. The aim of the study was the development of tools and methodology for the quantification of NM in a special neuromelanin-sensitive MRI images. The first approach was done by creating regions of interest, corresponding to the anatomical position of SN based on an anatomical atlas and determining signal intensity threshold. By linking the anatomical and signal intensity information, we were able to segment the SN. As a second approach, the neural network U-Net was used for the segmentation of SN. Subsequently, the volume characterizing the amount of NM in the SN region was calculated. To verify the method and the assumptions, data available from various patient groups were correlated. The main benefit of this approach is the observer-independency of quantification and facilitation of the image processing process and subsequent quantification compared to the manual approach. It is ideal for automatic processing many image sets in one batch.
Collapse
Affiliation(s)
- R. Krupička
- Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response. Front Cell Neurosci 2018; 12:488. [PMID: 30618635 PMCID: PMC6305407 DOI: 10.3389/fncel.2018.00488] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia represent a specialized population of macrophages-like cells in the central nervous system (CNS) considered immune sentinels that are capable of orchestrating a potent inflammatory response. Microglia are also involved in synaptic organization, trophic neuronal support during development, phagocytosis of apoptotic cells in the developing brain, myelin turnover, control of neuronal excitability, phagocytic debris removal as well as brain protection and repair. Microglial response is pathology dependent and affects to immune, metabolic. In this review, we will shed light on microglial activation depending on the disease context and the influence of factors such as aging, environment or cell-to-cell interaction.
Collapse
Affiliation(s)
- Sara Bachiller
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Itzia Jiménez-Ferrer
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Agnes Paulus
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Yiyi Yang
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Pașca SP. The rise of three-dimensional human brain cultures. Nature 2018; 553:437-445. [PMID: 29364288 DOI: 10.1038/nature25032] [Citation(s) in RCA: 343] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022]
Abstract
Pluripotent stem cells show a remarkable ability to self-organize and differentiate in vitro in three-dimensional aggregates, known as organoids or organ spheroids, and to recapitulate aspects of human brain development and function. Region-specific 3D brain cultures can be derived from any individual and assembled to model complex cell-cell interactions and to generate circuits in human brain assembloids. Here I discuss how this approach can be used to understand unique features of the human brain and to gain insights into neuropsychiatric disorders. In addition, I consider the challenges faced by researchers in further improving and developing methods to probe and manipulate patient-derived 3D brain cultures.
Collapse
Affiliation(s)
- Sergiu P Pașca
- 1Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
11
|
Langley J, Huddleston DE, Sedlacik J, Boelmans K, Hu XP. Parkinson's disease–related increase of ‐weighted hypointensity in substantia nigra pars compacta. Mov Disord 2016; 32:441-449. [DOI: 10.1002/mds.26883] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Jason Langley
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia USA
- Center for Advanced NeuroimagingUniversity of California RiversideRiverside CA
| | | | - Jan Sedlacik
- Department of NeuroradiologyUniversity Medical Center Hamburg‐Eppendorf (UKE)Hamburg Germany
| | - Kai Boelmans
- Department of NeurologyJulius‐Maximilians‐UniversityWürzburg Germany
| | - Xiaoping P. Hu
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia USA
- Center for Advanced NeuroimagingUniversity of California RiversideRiverside CA
- Department of BioengineeringUniversity of California RiversideRiverside California USA
| |
Collapse
|
12
|
The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. J Chem Neuroanat 2016; 76:98-107. [PMID: 26859066 DOI: 10.1016/j.jchemneu.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The pathology of Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra parcompacta (A9), which results in the insufficient release of dopamine, and the appearance of motor symptoms. Not all neurons in the A9 subregions degenerate in PD, and the dopaminergic (DA) neurons located in the neighboring ventral tegmental area (A10) are relatively resistant to PD pathogenesis. An increasing number of quantitative studies using human tissue samples of these brain regions have revealed important biological differences. In this review, we first describe current knowledge on the multi-segmental neuromere origin of these DA neurons. We then compare the continued transcription factor and protein expression profile and morphological differences distinguishing subregions within the A9 substantia nigra, and between A9 and A10 DA neurons. We conclude that the expression of three types of factors and proteins contributes to the diversity observed in these DA neurons and potentially to their differential vulnerability to PD. In particular, the specific axonal structure of A9 neurons and the way A9 neurons maintain their DA usage makes them easily exposed to energy deficits, calcium overload and oxidative stress, all contributing to their decreased survival in PD. We highlight knowledge gaps in our understanding of the cellular biomarkers for and their different functions in DA neurons, knowledge which may assist to identify underpinning disease mechansims that could be targeted for the treatment of any subregional dysfunction and loss of these DA neurons.
Collapse
|
13
|
Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett 2015; 612:178-184. [PMID: 26704434 DOI: 10.1016/j.neulet.2015.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neurodegeneration of nigrastriatal dopaminergic neurons leading to clinical motor dysfunctions. Many animal models of PD have been developed using exogenous neurotoxins and pesticides. Evidence strongly indicates that the dopaminergic neurons of the substantia nigra pars compacta (SNpc) are highly susceptible to neurodegeneration due to a number of factors including oxidative stress and mitochondrial dysfunction. Oxidation of DA to a potential endogenous neurotoxin, dopaminochrome (DAC), may be a potential contributor to the vulnerability of the nigrostriatal tract to oxidative insult. In this study, we show that DAC causes slow and progressive degeneration of dopaminergic neurons in contrast to 1-methyl-4-phenylpyridinium (MPP(+)), which induces rapid lesions of the region. The DAC model may be more reflective of early stresses that initiate the progressive neurodegenerative process of PD, and may prove a useful model for future neurodegenerative studies.
Collapse
Affiliation(s)
- Jillienne C Touchette
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Julie M Breckenridge
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Gerald H Wilken
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States.
| |
Collapse
|
14
|
Xu S, Chan P. Interaction between Neuromelanin and Alpha-Synuclein in Parkinson's Disease. Biomolecules 2015; 5:1122-42. [PMID: 26057626 PMCID: PMC4496713 DOI: 10.3390/biom5021122] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/29/2015] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is a very common neurodegenerative disorder characterized by the accumulation of α-synuclein (α-syn) into Lewy body (LB) inclusions and the loss of neuronmelanin (NM) containing dopamine (DA) neurons in the substantia nigra (SN). Pathological α-syn and NM are two prominent hallmarks in this selective and progressive neurodegenerative disease. Pathological α-syn can induce dopaminergic neuron death by various mechanisms, such as inducing oxidative stress and inhibiting protein degradation systems. Therefore, to explore the factors that trigger α-syn to convert from a non-toxic protein to toxic one is a pivotal question to clarify the mechanisms of PD pathogenesis. Many triggers for pathological α-syn aggregation have been identified, including missense mutations in the α-syn gene, higher concentration, and posttranslational modifications of α-Syn. Recently, the role of NM in inducing α-syn expression and aggregation has been suggested as a mechanism for this pigment to modulate neuronal vulnerability in PD. NM may be responsible for PD and age-associated increase and aggregation in α-syn. Here, we reviewed our previous study and other recent findings in the area of interaction between NM and α-syn.
Collapse
Affiliation(s)
- Shengli Xu
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| | - Piu Chan
- Beijing Institute of Geriatrics, Xuanwu Hospital of Capital University of Medical Sciences, No.45 changchun St., Xicheng District, Beijing 100053, China.
- Parkinson's disease Center of Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
15
|
Eschbach J, Danzer KM. α-Synuclein in Parkinson's disease: pathogenic function and translation into animal models. NEURODEGENER DIS 2013; 14:1-17. [PMID: 24080741 DOI: 10.1159/000354615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/22/2013] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease is a common neurodegenerative disease characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the formation of α-synuclein aggregates found in Lewy bodies throughout the brain. Several α-synuclein transgenic mouse models have been generated, as well as viral-mediated overexpression of wild-type and mutated α-synuclein to mimic the disease and to delineate the pathogenic pathway of α-synuclein-mediated toxicity and neurodegeneration. In this review, we will recapitulate what we have learned about the function of α-synuclein and α-synuclein-mediated toxicity through studies of transgenic animal models, inducible animal models and viral-based models.
Collapse
|
16
|
Iron and neurodegeneration: from cellular homeostasis to disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:128647. [PMID: 22701145 PMCID: PMC3369498 DOI: 10.1155/2012/128647] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 01/04/2023]
Abstract
Accumulation of iron (Fe) is often detected in the brains of people suffering from neurodegenerative diseases. High Fe concentrations have been consistently observed in Parkinson's, Alzheimer's, and Huntington's diseases; however, it is not clear whether this Fe contributes to the progression of these diseases. Other conditions, such as Friedreich's ataxia or neuroferritinopathy are associated with genetic factors that cause Fe misregulation. Consequently, excessive intracellular Fe increases oxidative stress, which leads to neuronal dysfunction and death. The characterization of the mechanisms involved in the misregulation of Fe in the brain is crucial to understand the pathology of the neurodegenerative disorders and develop new therapeutic strategies. Saccharomyces cerevisiae, as the best understood eukaryotic organism, has already begun to play a role in the neurological disorders; thus it could perhaps become a valuable tool also to study the metalloneurobiology.
Collapse
|
17
|
|
18
|
Li J, Yang J, Zhao P, Li S, Zhang R, Zhang X, Liu D, Zhang B. Neuromelanin enhances the toxicity of α-synuclein in SK-N-SH cells. J Neural Transm (Vienna) 2011; 119:685-91. [PMID: 22200858 DOI: 10.1007/s00702-011-0753-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
The key pathological feature of Parkinson's disease (PD) is selective degeneration of the neuromelanin (NM)-pigmented dopaminergic neurons in the substantia nigra (SN). NM, like other risk factors, such as oxidative stress (OS) and α-synuclein (α-syn), is involved in the pathogenesis of PD. But whether or not NM synergizes with α-syn or OS in the pathogenesis of PD remains unexplored. In the present study, we examined the effects of NM on cellular viability, apoptosis and free radical production in α-syn over-expressing human neuroblastoma cell line (SK-N-SH) in the presence or absence of the oxidizer Fenton's Reagent (FR). We showed that NM synergized with FR in suppressing cell viability, and in inducing apoptosis and hydroxyl radical production in all SK-N-SH cell lines. α-Syn over-expressing cells exhibited more pronounced effect, especially the A53T mutation. Our findings suggest that NM synergizes with both OS and α-syn in conferring dopaminergic vulnerability, adding to our understanding of the pathogenesis of PD.
Collapse
Affiliation(s)
- Jie Li
- Department of Psychiatry, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bush WD, Garguilo J, Zucca FA, Bellei C, Nemanich RJ, Edwards GS, Zecca L, Simon JD. Neuromelanins isolated from different regions of the human brain exhibit a common surface photoionization threshold. Photochem Photobiol 2008; 85:387-90. [PMID: 19067944 DOI: 10.1111/j.1751-1097.2008.00476.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neuromelanin isolated from the premotor cortex, cerebellum, putamen, globus pallidus and corpus callosum of the human brain is studied by scanning probe and photoelectron emission microscopies and the results are compared with previously published work on neuromelanin from the substantia nigra. Scanning electron microscopy reveals common structure for all neuromelanins. All exhibit spherical entities of diameters between 200 and 400 nm, composed of smaller spherical substructures, approximately 30 nm in diameter. These features are similar to that observed for many melanin systems including Sepia cuttlefish, bovine eye, and human eye and hair melanosomes. Photoelectron microscopy images were collected for all neuromelanins at specific wavelengths of ultraviolet light between 248 and 413 nm, using the spontaneous emission output from the Duke free electron laser. Analysis of the data establishes a common threshold photoionization potential for neuromelanins of 4.7 +/- 0.2 eV, corresponding to an oxidation potential of -0.3 +/- 0.2 V vs the normal hydrogen electrode (NHE). These results are consistent with previously reported potentials for neuromelanin from the substantia nigra of 4.5 +/- 0.2 eV (-0.1 +/- 0.2 V vs NHE). All neuromelanins exhibit a common low surface oxidation potential, reflecting their eumelanic component and their inability to trigger redox processes with neurotoxic effect.
Collapse
Affiliation(s)
- William D Bush
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schmidt E, Seifert M, Baumeister R. Caenorhabditis elegans as a model system for Parkinson's disease. NEURODEGENER DIS 2007; 4:199-217. [PMID: 17596715 DOI: 10.1159/000101845] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common age-related neurodegenerative diseases that is characterized by selective loss of dopaminergic neurons. Despite recent findings from mammalian model systems, molecular mechanisms of the pathophysiology are poorly understood. Given the high conservation of molecular pathways from invertebrates to mammalians, combined with technical advantages, such as high-throughput approaches, Caenorhabditis elegans represents a powerful system for the identification of factors involved in neurodegeneration. In this review we describe that C. elegans can be used to advance our understanding of the genetic mechanisms implicated in these disorders.
Collapse
Affiliation(s)
- Enrico Schmidt
- Bioinformatics and Molecular Genetics (Faculty of Biology), Center for Biochemistry, University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
21
|
Kohler LJ, Carton Y, Mastore M, Nappi AJ. Parasite suppression of the oxidations of eumelanin precursors in Drosophila melanogaster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:64-75. [PMID: 17879234 DOI: 10.1002/arch.20199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In insects, eukaryotic endoparasites encounter a series of innate immune effector responses mediated in large part by circulating blood cells (hemocytes) that rapidly form multilayer capsules around foreign organisms. Critical components of the encapsulation response are chemical and enzyme-catalyzed oxidations involving phenolic and catecholic substrates that lead to synthesis of eumelanin. These responses are initiated immediately upon infection and are very site-specific, provoking no undesirable systemic responses in the host. In this study, we were interested to learn if the principal oxidation pathways leading to the synthesis of eumelanin in larvae of Drosophila melanogaster were targets for inhibition by immune suppressive factors (ISF) derived from a virulent strain of the endoparasitic wasp Leptopilina boulardi. Comparative in vitro assays monitored by sensitive electrochemical detection methods showed that ISF derived from female reproductive tissues significantly diminished the oxidations of the two diphenol eumelanin precursors, dopamine and 5,6-dihydroxyindole (DHI). The oxidations of the monophenol tyrosine, and two other related diphenols, dopa and 5,6-dihydroxyindole-2-carboxylic acid (DHICA), were not significantly inhibited by ISF. The data suggest that melanogenesis represents at least one of the host responses suppressed by L. boulardi ISF, and that the oxidation pathways selectively targeted for inhibition are those synthesizing decarboxylated pigment precursors derived from DHI. These observations, together with previous reports of adverse effects of ISF on the ability of hemocytes to adhere to foreign surfaces, suggest a multifaceted approach by the parasitoid to circumvent the innate immune response of D. melanogaster.
Collapse
Affiliation(s)
- Lara J Kohler
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
22
|
González Orive A, Dip P, Gimeno Y, Díaz P, Carro P, Hernández Creus A, Benítez G, Schilardi PL, Andrini L, Requejo F, Salvarezza RC. Electrocatalytic and Magnetic Properties of Ultrathin Nanostructured Iron–Melanin Films on Au(111). Chemistry 2007; 13:473-82. [PMID: 17009373 DOI: 10.1002/chem.200600492] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have prepared ultrathin, nanostructured melanin films on Au(111) by means of electrochemical self-assembly. These films were characterized by using Auger electron spectroscopy, X-ray absorption near-edge structure spectroscopy, scanning tunneling microscopy, magnetic force microscopy, and electrochemical techniques. Two types of nanostructures are present in the film: melanin nanoparticles and Fe(3)O(4) nanoparticles. The melanin nanoparticles contain Fe bonded to oxygen-containing phenolic groups in an octahedral configuration similar to that found in Fe(2)O(3). The inorganic-organic composite exhibits magnetic properties and catalyzes the electroreduction of hydrogen peroxide in alkaline and neutral electrolyte solutions. The electrocatalytic activity depends on the Fe-bound melanin and appears to be similar to that found for Fe-porphyrins.
Collapse
Affiliation(s)
- Alejandro González Orive
- Departamento de Química Física, Facultad de Química, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bush WD, Garguilo J, Zucca FA, Albertini A, Zecca L, Edwards GS, Nemanich RJ, Simon JD. The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc Natl Acad Sci U S A 2006; 103:14785-9. [PMID: 17001010 PMCID: PMC1595429 DOI: 10.1073/pnas.0604010103] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Indexed: 11/18/2022] Open
Abstract
Neuromelanin (NM) isolated from the substantia nigra region of the human brain was studied by scanning probe and photoelectron emission microscopies. Atomic force microscopy reveals that NM granules are comprised of spherical structures with a diameter of approximately 30 nm, similar to that observed for Sepia cuttlefish, bovine eye, and human eye and hair melanosomes. Photoelectron microscopy images were collected at specific wavelengths of UV light between 248 and 413 nm, using the spontaneous-emission output from the Duke OK-4 free electron laser. Analysis of the data establishes a threshold photoionization potential for NM of 4.5 +/- 0.2 eV, which corresponds to an oxidation potential of -0.1 +/- 0.2 V vs. the normal hydrogen electrode (NHE). The oxidation potential of NM is within experimental error of the oxidation potential measured for human eumelanosomes (-0.2 +/- 0.2 V vs. NHE), despite the presence of a significant fraction of the red pigment, pheomelanin, which is characterized by a higher oxidation potential (+0.5 +/- 0.2 V vs. NHE). Published kinetic studies on the early chemical steps of melanogenesis show that in the case of pigments containing a mixture of pheomelanin and eumelanin, of which NM is an example, pheomelanin formation occurs first with eumelanin formation predominantly occurring only after cysteine levels are depleted. Such a kinetic model would predict a structural motif with pheomelanin at the core and eumelanin at the surface, which is consistent with the measured surface oxidation potential of the approximately 30-nm constituents of NM granules.
Collapse
Affiliation(s)
| | - Jacob Garguilo
- Department of Physics, North Carolina State University, Raleigh, NC 27695
| | - Fabio A. Zucca
- Institute of Biomedical Technologies, Italian National Research Council, 20090 Segrate, Italy; and
| | - Alberto Albertini
- Institute of Biomedical Technologies, Italian National Research Council, 20090 Segrate, Italy; and
| | - Luigi Zecca
- Institute of Biomedical Technologies, Italian National Research Council, 20090 Segrate, Italy; and
| | - Glenn S. Edwards
- Department of Physics and the Free Electron Laser Laboratory, Duke University, Durham, NC 27708
| | - Robert J. Nemanich
- Department of Physics, North Carolina State University, Raleigh, NC 27695
| | - John D. Simon
- *Department of Chemistry, Duke University, Durham, NC 27708
| |
Collapse
|
24
|
Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G. Fungi growing on aromatic hydrocarbons: biotechnology's unexpected encounter with biohazard? FEMS Microbiol Rev 2006; 30:109-30. [PMID: 16438682 DOI: 10.1111/j.1574-6976.2005.00007.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The biodegradation of aromatic hydrocarbons by fungi has traditionally been considered to be of a cometabolic nature. Recently, however, an increasing number of fungi isolated from air biofilters exposed to hydrocarbon-polluted gas streams have been shown to assimilate volatile aromatic hydrocarbons as the sole source of carbon and energy. The biosystematics, ecology, and metabolism of such fungi are reviewed here, based in part on re-evaluation of a collection of published hydrocarbon-degrading isolates obtained from authors around the world. Incorrect or outdated identifications in original publications are corrected by ribosomal DNA sequence analysis. The data show that many volatile-hydrocarbon-degrading strains are closely related to, or in some cases clearly conspecific with, the very restricted number of human-pathogenic fungal species causing severe mycoses, especially neurological infections, in immunocompetent individuals. Neurochemistry features a distinctive array of phenolic and aliphatic compounds that are related to molecules involved in the metabolism of aromatic hydrocarbons. Hence, there may be physiological connections between hydrocarbon assimilation and certain patterns of mammalian infection.
Collapse
|
25
|
Abstract
Normal metabolism is associated with unavoidable mild oxidative stress resulting in biomolecular damage that cannot be totally repaired or removed by cellular degradative systems, including lysosomes, proteasomes, and cytosolic and mitochondrial proteases. Consequently, irreversibly damaged and functionally defective structures (biological 'garbage') accumulate within long-lived postmitotic cells, such as cardiac myocytes and neurons, leading to progressive loss of adaptability and increased probability of death and characterizing a process called aging, or senescence. Intralysosomal 'garbage' is represented by lipofuscin (age pigment), an undegradable autophagocytosed material, while extralysosomal 'garbage' involves oxidatively modified cytosolic proteins, altered biomembranes, defective mitochondria and other organelles. In aged postmitotic cells, heavily lipofuscin-loaded lysosomes perform poorly, resulting in the enhanced accumulation of defective mitochondria, which in turn produce more reactive oxygen species causing additional damage (the mitochondrial-lysosomal axis theory). Potential anti-aging strategies may involve not only overall reduction of oxidative stress, but also the use of intralysosomal iron chelators hampering Fenton-type chemistry as well as the stimulation of cellular degradative systems.
Collapse
Affiliation(s)
- Alexei Terman
- Division of Experimental Pathology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | |
Collapse
|
26
|
Kim ST, Choi JH, Chang JW, Kim SW, Hwang O. Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system. J Neurochem 2005; 95:89-98. [PMID: 16181415 DOI: 10.1111/j.1471-4159.2005.03342.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxidative stress is believed to contribute to the pathophysiology of Parkinson's disease, in which nigrostriatal dopaminergic (DA) neurons undergo degeneration. Identification of endogenous molecules that contribute to generation of oxidative stress and vulnerability of these cells is critical in understanding the etiology of this disease. Exposure to tetrahydrobiopterin (BH4), the obligatory cofactor for DA synthesis, was observed previously to cause oxidative damage in DA cells. To demonstrate the physiological relevance of this observation, we investigated whether an overproduction of BH4 and DA might actually occur in vivo, and, if it did, whether this might lead to oxidative damage to the nigrostriatal system. Immobilization stress (IMO) elevated BH4 and DA and their synthesizing enzymes, tyrosine hydroxylase and GTP cyclohydrolase I. This was accompanied by elevation of lipid peroxidation and protein-bound quinone, and activities of antioxidant enzymes. These increases in the indices of oxidative stress appeared to be due to increased BH4 synthesis because they were abolished following administration of the BH4 synthesis inhibitor, 2,4-diamino-6-hydroxy-pyrimidine. IMO also caused accumulation of neuromelanin and degeneration of the nigrostriatal system. These results demonstrate that a severe stress can increase BH4 and DA and cause oxidative damages to the DA neurons in vivo, suggesting relevance to Parkinson's disease.
Collapse
Affiliation(s)
- Sung Tae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Mastore M, Kohler L, Nappi AJ. Production and utilization of hydrogen peroxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA and dopamine. FEBS J 2005; 272:2407-15. [PMID: 15885091 DOI: 10.1111/j.1742-4658.2005.04661.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and involvement of H(2)O(2) during the early stages of melanogenesis involving the oxidations of DOPA and dopamine (diphenolase activity) were established by two sensitive and specific electrochemical detection systems. Catalase-treated reaction mixtures showed diminished rates of H(2)O(2) production during the autoxidation and tyrosinase-mediated oxidation of both diphenols. Inhibition studies with the radical scavenger resveratrol revealed the involvement in these reactions of additional reactive intermediate of oxygen (ROI), one of which appears to be superoxide anion. There was no evidence to suggest that H(2)O(2) or any other ROI was produced during the tyrosinase-mediated conversion of tyrosine to DOPA (monophenolase activity). Establishing by electrochemical methods the endogenous production H(2)O(2) in real time confirms recent reports, based in large part on the use of exogenous H(2)O(2), that tyrosinase can manifest both catalase and peroxidase activities. The detection of ROI in tyrosinase-mediated in vitro reactions provides evidence for sequential univalent reductions of O(2), most likely occurring at the enzyme active site copper. Collectively, these observations focus attention on the possible involvement of peroxidase-H(2)O(2) systems and related ROI-mediated reactions in promoting melanocytotoxic and melanoprotective processes.
Collapse
Affiliation(s)
- Maristella Mastore
- Università degli Studi dell'Insubria, Dipartimento di Biologia Strutturale e Funzionale, Laboratorio di Immunologia Comparata, Varese, Italy
| | | | | |
Collapse
|
28
|
Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:443-459. [PMID: 15804578 DOI: 10.1016/j.ibmb.2005.01.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 05/24/2023]
Abstract
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
29
|
Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR IN BIOMEDICINE 2004; 17:433-445. [PMID: 15523705 DOI: 10.1002/nbm.922] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The brain has an unusually high concentration of iron, which is distributed in an unusual pattern unlike that in any other organ. The physiological role of this iron and the reasons for this pattern of distribution are not yet understood. There is increasing evidence that several neurodegenerative diseases are associated with altered brain iron metabolism. Understanding these dysmetabolic conditions may provide important information for their diagnosis and treatment. For many years the iron distribution in the human brain could be studied effectively only under postmortem conditions. This situation was changed dramatically by the finding that T2-weighted MR imaging at high field strength (initially 1.5 T) appears to demonstrate the pattern of iron distribution in normal brains and that this imaging technique can detect changes in brain iron concentrations associated with disease states. Up to the present time this imaging capability has been utilized in many research applications but it has not yet been widely applied in the routine diagnosis and management of neurodegenerative disorders. However, recent advances in the basic science of brain iron metabolism, the clinical understanding of neurodegenerative diseases and in MRI technology, particularly in the availability of clinical scanners operating at the higher field strength of 3 T, suggest that iron-dependent MR imaging may soon provide biomarkers capable of characterizing the presence and progression of important neurological disorders. Such biomarkers may be of crucial assistance in the development and utilization of effective new therapies for Alzheimer's and Parkinson's diseases, multiple sclerosis and other iron-related CNS disorders which are difficult to diagnose and treat.
Collapse
Affiliation(s)
- John F Schenck
- General Electric Global Research Center, Schenectady, New York 12309, USA.
| | | |
Collapse
|
30
|
Abstract
Oxidative stress has been implicated in the progression of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxygen is vital for life but is also potentially dangerous, and a complex system of checks and balances exists for utilizing this essential element. Oxidative stress is the result of an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of toxic reactive oxygen species. The systems in place to cope with the biochemistry of oxygen are complex, and many questions about the mechanisms of oxygen regulation remain unanswered. However, this same complexity provides a number of therapeutic targets, and different strategies, including novel metal-protein attenuating compounds, aimed at a variety of targets have shown promise in clinical studies.
Collapse
Affiliation(s)
- Kevin J Barnham
- Department of Pathology, The University of Melbourne, The Mental Health Research Institute of Victoria, Victoria 3010, Australia
| | | | | |
Collapse
|