1
|
Zhang Q, Zhou X, Feng T, Tong H, Wang J, Dai J. The immune function of thioester-containing proteins in typical invertebrate disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 176:104218. [PMID: 39579796 DOI: 10.1016/j.ibmb.2024.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Disease vectors, such as arthropods, primarily rely on innate immunity to counteract pathogen invasions, typically through the recognition and binding of pathogen-associated molecular patterns (PAMPs) by the host's pattern recognition receptors (PRRs). As a conserved immune effector gene family from insects to mammals, the complement system may play an essential role in combating pathogenic microorganisms. In arthropods, the complement proteins are often referred to as thioester-containing proteins (TEPs) because thioester motifs are one of the essential functional domains of the first proteins characterized within the C3 and A2M family. TEPs mainly function as specialized PRRs in sensing and binding to pathogens or their components. This paper presents a comprehensive review of the common domain and functions of TEPs in major disease vectors, in particular the specific decision-making ones expressed by Arthropoda (medical arthropods) and Mollusca (Biomphalaria glabrata) after pathogen infections. The relationship between the structure and antibacterial/antiviral activities of TEPs would further our understandings on the mechanisms governing the initiation of innate immune responses in typical disease vectors.
Collapse
Affiliation(s)
- Qianqian Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xia Zhou
- School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Tingting Feng
- Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 PMCID: PMC12010099 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Liu Y, Liu A, Ye RD. Structural Basis for Chemerin Recognition and Signaling Through Its Receptors. Biomedicines 2024; 12:2470. [PMID: 39595036 PMCID: PMC11592271 DOI: 10.3390/biomedicines12112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chemerin is a chemotactic adipokine that participates in a multitude of physiological processes, including adipogenesis, leukocyte chemotaxis, and neuroinflammation. Chemerin exerts biological functions through binding to one or more of its G protein-coupled receptors (GPCRs), namely chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and CC-motif receptor-like 2 (CCRL2). Of these receptors, CMKLR1 and GPR1 have been confirmed as signaling receptors of chemerin, whereas CCRL2 serves as a chemerin-binding protein without transmembrane signaling. High-resolution structures of two chemerin receptors are now available thanks to recent advancements in structure biology. This review focuses on the structural perspectives of the chemerin receptors with an emphasis on the structure-activity correlation, including key components of the two receptors for ligand recognition and conformational changes induced by chemerin and its derivative peptides for G protein activation. There are also comparisons between the two chemerin receptors and selected GPCRs with peptide ligands for better appreciation of the shared and distinct features of the chemerin receptors in ligand recognition and transmembrane signaling, and in the evolution of this subclass of GPCRs.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523326, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518048, China
| |
Collapse
|
4
|
Wang Z, Kulkarni S, Nong J, Zamora M, Ebrahimimojarad A, Hood E, Shuvaeva T, Zaleski M, Gullipalli D, Wolfe E, Espy C, Arguiri E, Wang Y, Marcos-Contreras OA, Song W, Muzykantov VR, Fu J, Radhakrishnan R, Myerson JW, Brenner JS. A percolation-type criticality threshold controls immune protein coating of surfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618530. [PMID: 39464129 PMCID: PMC11507815 DOI: 10.1101/2024.10.15.618530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
When a material enters the body, it is immediately attacked by hundreds of proteins, organized into complex networks of binding interactions and reactions. How do such complex systems interact with a material, "deciding" whether to attack? We focus on the "complement" system of ∼40 blood proteins that bind microbes, nanoparticles, and medical devices, initiating inflammation. We show a sharp threshold for complement activation upon varying a fundamental material parameter, the surface density of potential complement attachment points. This sharp threshold manifests at scales spanning single nanoparticles to macroscale pathologies, shown here for diverse engineered and living materials. Computational models show these behaviors arise from a minimal subnetwork of complement, manifesting percolation-type critical transitions in the complement response. This criticality switch explains the "decision" of a complex signaling network to interact with a material, and elucidates the evolution and engineering of materials interacting with the body.
Collapse
|
5
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
6
|
Boraschi D, Penton-Rol G, Amodu O, Blomberg MT. Editorial: Women in cytokines and soluble mediators in immunity. Front Immunol 2024; 15:1395165. [PMID: 38550586 PMCID: PMC10973138 DOI: 10.3389/fimmu.2024.1395165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Affiliation(s)
- Diana Boraschi
- Laboratory Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
- Institute of Biomolecular Chemistry, National Research Council (CNR), Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giselle Penton-Rol
- Center for Genetic Engineering and Biotechnology (CIGB), Playa, Cuba
- Department of Physiological Sciences, Professor of Immunology at the Latin American School of Medicine (ELAM), Havana, Cuba
| | - Olukemi Amodu
- Genetics and Molecular Sciences Unit, Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marita Troye Blomberg
- Department Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Veríssimo A, Castro LFC, Muñoz-Mérida A, Almeida T, Gaigher A, Neves F, Flajnik MF, Ohta Y. An Ancestral Major Histocompatibility Complex Organization in Cartilaginous Fish: Reconstructing MHC Origin and Evolution. Mol Biol Evol 2023; 40:msad262. [PMID: 38059517 PMCID: PMC10751288 DOI: 10.1093/molbev/msad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Cartilaginous fish (sharks, rays, and chimeras) comprise the oldest living jawed vertebrates with a mammalian-like adaptive immune system based on immunoglobulins (Ig), T-cell receptors (TCRs), and the major histocompatibility complex (MHC). Here, we show that the cartilaginous fish "adaptive MHC" is highly regimented and compact, containing (i) a classical MHC class Ia (MHC-Ia) region containing antigen processing (antigen peptide transporters and immunoproteasome) and presenting (MHC-Ia) genes, (ii) an MHC class II (MHC-II) region (with alpha and beta genes) with linkage to beta-2-microglobulin (β2m) and bromodomain-containing 2, (iii) nonclassical MHC class Ib (MHC-Ib) regions with 450 million-year-old lineages, and (iv) a complement C4 associated with the MHC-Ia region. No MHC-Ib genes were found outside of the elasmobranch MHC. Our data suggest that both MHC-I and MHC-II genes arose after the second round of whole-genome duplication (2R) on a human chromosome (huchr) 6 precursor. Further analysis of MHC paralogous regions across early branching taxa from all jawed vertebrate lineages revealed that Ig/TCR genes likely arose on a precursor of the huchr9/12/14 MHC paralog. The β2m gene is linked to the Ig/TCR genes in some vertebrates suggesting that it was present at 1R, perhaps as the donor of C1 domain to the primordial MHC gene. In sum, extant cartilaginous fish exhibit a conserved and prototypical MHC genomic organization with features found in various vertebrates, reflecting the ancestral arrangement for the jawed vertebrates.
Collapse
Affiliation(s)
- Ana Veríssimo
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences, University of Porto, Porto 4169-007, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Tereza Almeida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Arnaud Gaigher
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Fabiana Neves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão 4485-661, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Arnaiz-Villena A, Juarez I, Sánchez-Orta A, Martín-Villa JM, Suarez-Trujillo F. Major histocompatibility complex complement (MHC) Bf alleles show trans species evolution between man and chimpanzee. Sci Rep 2023; 13:16711. [PMID: 37794053 PMCID: PMC10550962 DOI: 10.1038/s41598-023-42016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
HLA and disease studies by using single allele statistics have been fruitless during the last 40 years for explaining association pathogenesis of the associated diseases.Other approaches are necessary to untangle this puzzle. We aim to revisit complement alleleism in humans and primates for both studying MHC and disease association to complotypes and extended MHC haplotypes in order to also explain the positive directional selection of maintaining immune response genes (complement, MHC adaptive and MHC non-specific genes) that keeps these three type of genes together in a short chromosome stretch (MHC) for million years. These genes may be linked to conjointly avoid microbes attack and autoimmunity. In the present paper, it is obtained a new Bf chimpanzee allele, provisionaly named Patr-Bf*A:01,that differs from other Bf alleles by having CTG at eleventh codon of exon 2 in order to start the newly suggested methodology and explain functional and evolutionary MHC obscure aspects. Exons 1 to 6 of Ba fragment of Bf gene were obtained from chimpanzee. This new chimpanzee Factor B allele (Patr-Bf*A:01) is to be identical to a infrequent human Bf allele (SNP rs641153); it stresses the strong evolutive pressure upon certain alleles that are trans specific. It also may apply to MHC extended haplotipes which may conjointly act to start an adequate immune response. It is the first time that a complement MHC class III allele is described to undergo trans species evolution,in contrast to class I and class II alleles which had already been reported . Allelism of complement factors are again proposed for studying MHC complement genes, complotypes, and extended MHC haplotypes which may be more informative that single MHC marker studies.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departament of Immunology, School of Medicine, University Complutense of Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense, Avda. Complutense S/N, 28040, Madrid, Spain.
| | - Ignacio Juarez
- Departament of Immunology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alejandro Sánchez-Orta
- Departament of Immunology, School of Medicine, University Complutense of Madrid, Madrid, Spain
| | - José Manuel Martín-Villa
- Departament of Immunology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Fabio Suarez-Trujillo
- Departament of Immunology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
10
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Hallam TM, Sharp SJ, Andreadi A, Kavanagh D. Complement factor I: Regulatory nexus, driver of immunopathology, and therapeutic. Immunobiology 2023; 228:152410. [PMID: 37478687 DOI: 10.1016/j.imbio.2023.152410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/23/2023]
Abstract
Complement factor I (FI) is the nexus for classical, lectin and alternative pathway complement regulation. FI is an 88 kDa plasma protein that circulates in an inactive configuration until it forms a trimolecular complex with its cofactor and substrate whereupon a structural reorganization allows the catalytic triad to cleave its substrates, C3b and C4b. In keeping with its role as the master complement regulatory enzyme, deficiency has been linked to immunopathology. In the setting of complete FI deficiency, a consumptive C3 deficiency results in recurrent infections with encapsulated microorganisms. Aseptic cerebral inflammation and vasculitic presentations are also less commonly observed. Heterozygous mutations in the factor I gene (CFI) have been demonstrated to be enriched in atypical haemolytic uraemic syndrome, albeit with a very low penetrance. Haploinsufficiency of CFI has also been associated with decreased retinal thickness and is a strong risk factor for the development of age-related macular degeneration. Supplementation of FI using plasma purified or recombinant protein has long been postulated, however, technical difficulties prevented progression into clinical trials. It is only using gene therapy that CFI supplementation has reached the clinic with GT005 in phase I/II clinical trials for geographic atrophy.
Collapse
Affiliation(s)
- T M Hallam
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - S J Sharp
- Gyroscope Therapeutics Limited, A Novartis Company, Rolling Stock Yard, London N7 9AS, UK
| | - A Andreadi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK
| | - D Kavanagh
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, UK; NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
12
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Zhou J, Qiao ML, Jahejo AR, Han XY, Wang P, Wang Y, Ren JL, Niu S, Zhao YJ, Zhang D, Bi YH, Wang QH, Si LL, Fan RW, Shang GJ, Tian WX. Effect of Avian Influenza Virus subtype H9N2 on the expression of complement-associated genes in chicken erythrocytes. Br Poult Sci 2023:1-9. [PMID: 36939295 DOI: 10.1080/00071668.2023.2191308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The H9N2 subtype avian influenza virus can infect both chickens and humans. Previous studies have reported a role for erythrocytes in immunity. However, the role of H9N2 against chicken erythrocytes and the presence of complement-related genes in erythrocytes has not been studied. This research investigated the effect of H9N2 on complement-associated gene expression in chicken erythrocytes. The expression of complement-associated genes (C1s, C1q, C2, C3, C3ar1, C4, C4a, C5, C5ar1, C7, CD93 and CFD) was detected by reverse transcription-polymerase chain reaction (RT-PCR). Quantitative Real-Time PCR (qRT-PCR) was used to analyse the differential expression of complement-associated genes in chicken erythrocytes at 0 h, 2 h, 6 h and 10 h after the interaction between H9N2 virus and chicken erythrocytes in vitro and 3, 7 and 14 d after H9N2 virus nasal infection of chicks. Expression levels of C1q, C4, C1s, C2, C3, C5, C7 and CD93 were significantly up-regulated at 2 h and significantly down-regulated at 10 h. Gene expression levels of C1q, C3ar1, C4a, CFD and C5ar1 were seen to be different at each time point. The expression levels of C1q, C4, C1s, C2, C3, C5, C7, CFD, C3ar1, C4a and C5ar1 were significantly up-regulated at 7 d and the gene expression of levels of C3, CD93 and C5ar1 were seen to be different at each time point. The results confirmed that all the complement-associated genes were expressed in chicken erythrocytes and showed the H9N2 virus interaction with chicken erythrocytes and subsequent regulation of chicken erythrocyte complement-associated genes expression. This study reported, for the first time, the relationship between H9N2 and complement system of chicken erythrocytes, which will provide a foundation for further research into the prevention and control of H9N2 infection.
Collapse
Affiliation(s)
- J Zhou
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - M L Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - A R Jahejo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - X Y Han
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - P Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - J L Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - S Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y J Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - D Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Y H Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Q H Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - L L Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - R W Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - G J Shang
- Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - W X Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China.,Shanxi Key Laboratory of protein structure determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
14
|
Smith LC, Crow RS, Franchi N, Schrankel CS. The echinoid complement system inferred from genome sequence searches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104584. [PMID: 36343741 DOI: 10.1016/j.dci.2022.104584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The vertebrate complement cascade is an essential host protection system that functions at the intersection of adaptive and innate immunity. However, it was originally assumed that complement was present only in vertebrates because it was activated by antibodies and functioned with adaptive immunity. Subsequently, the identification of the key component, SpC3, in sea urchins plus a wide range of other invertebrates significantly expanded the concepts of how complement functions. Because there are few reports on the echinoid complement system, an alternative approach to identify complement components in echinoderms is to search the deduced proteins encoded in the genomes. This approach identified known and putative members of the lectin and alternative activation pathways, but members of the terminal pathway are absent. Several types of complement receptors are encoded in the genomes. Complement regulatory proteins composed of complement control protein (CCP) modules are identified that may control the activation pathways and the convertases. Other regulatory proteins without CCP modules are also identified, however regulators of the terminal pathway are absent. The expansion of genes encoding proteins with Macpf domains is noteworthy because this domain is a signature of perforin and proteins in the terminal pathway. The results suggest that the major functions of the echinoid complement system are detection of foreign targets by the proteins that initiate the activation pathways resulting in opsonization by SpC3b fragments to augment phagocytosis and destruction of the foreign targets by the immune cells.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington DC, USA.
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington DC, USA
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, CA, USA
| |
Collapse
|
15
|
Lu J, Zhao Z, Li Q, Pang Y. Review of the unique and dominant lectin pathway of complement activation in agnathans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104593. [PMID: 36442606 DOI: 10.1016/j.dci.2022.104593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
As the most primitive vertebrates, lampreys are significant in understanding the early origin and evolution of the vertebrate innate and adaptive immune systems. The complement system is a biological response system with complex and precise regulatory mechanisms and plays an important role in innate and adaptive immunity. It consists of more than 30 distinct components, including intrinsic components, regulatory factors, and complement receptors. Complement system is the humoral backbone of the innate immune defense and complement-like factors have also been found in cyclostomes. Our knowledge as such in lamprey has dramatically increased in the recent years. The searching for complement components in the reissner lamprey Lethenteron reissneri genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in lamprey. This review, summarizes the key themes and recent updates on the complement system of agnathans and discusses the individual complement components of lampreys, and critically compare their functions to that of mammalian complement components. Interestingly, the adaptive immune system of agnathans differs from that of gnathostomes. Lamprey complement components also display some distinctive features, such as lampreys are characterized by the variable lymphocyte receptors (VLRs)-based alternative adaptive immunity. This review may serve as important literature for deducing the evolution of the immune system from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Jiali Lu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Zhisheng Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
16
|
Ding X, Qamar A, Liu H. The complement system testing in clinical laboratory. Clin Chim Acta 2023; 541:117238. [PMID: 36746263 DOI: 10.1016/j.cca.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023]
Abstract
With the advancement in research in the field of the complement system, a more comprehensive understanding developed about the complement system's role in the life process of an organism. It is a system of innate immune surveillance. This system plays a pivotal role in host defense against pathogens, inflammation, B and T cell homeostasis. Complement system analysis has a significant advantage in the assessment of the immune system status, diagnosis and prognosis of diseases, and medication guidelines. Currently, complement system testing is neither yet widely used across all clinical laboratoriesnor are the testing protocols yet systematic. Based on the current research, it is suggested that the analysis of complement activator-activated complement activity and total complement activity would be comprehensively assessed to evaluate the complement system's immunological function, and combine of the detection of its components to establish a systematic protocol for the complement system testing in the clinical laboratory. This article reviews the complement system's physiological role, disease relevance and the current testing status in clinical laboratories. Further more, some suggestions have also been provided for the preparation of complement standards i.e., the standardized preparation process for complement standards seems to be a feasible option given the easy inactivation of complement.
Collapse
Affiliation(s)
- Xuewei Ding
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Ayub Qamar
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hui Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Abstract
Complement factor D (FD) is a serine protease that plays an essential role in the activation of the alternative pathway (AP) by cleaving complement factor B (FB) and generating the C3 convertases C3(H2 O)Bb and C3bBb. FD is produced mainly from adipose tissue and circulates in an activated form. On the contrary, the other serine proteases of the complement system are mainly synthesized in the liver. The activation mechanism of FD has long been unknown. Recently, a serendipitous discovery in the mechanism of FD activation has been provided by a generation of Masp1 gene knockout mice lacking both the serine protease MASP-1 and its alternative splicing variant MASP-3, designated MASP-1/3-deficient mice. Sera from the MASP-1/3-deficient mice had little-to-no lectin pathway (LP) and AP activity with circulating zymogen or proenzyme FD (pro-FD). Sera from patients with 3MC syndrome carrying mutations in the MASP1 gene also had circulating pro-FD, suggesting that MASP-1 and/or MASP-3 are involved in activation of FD. Here, we summarize the current knowledge of the mechanism of FD activation that was finally elucidated using the sera of mice monospecifically deficient for MASP-1 or MASP-3. Sera of the MASP-1-deficient mice lacked LP activity, but those of the MASP-3-deficient mice lacked AP activity with pro-FD. This review illustrates the pivotal role of MASP-3 in the physiological activation of the AP via activation of FD.
Collapse
Affiliation(s)
- Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
18
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Luzzatto L. Closing remarks. Am J Hematol 2022; 98 Suppl 4:S90-S92. [PMID: 36322103 DOI: 10.1002/ajh.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences Dar‐es‐Salaam Tanzania
- University of Florence Florence Italy
| |
Collapse
|
20
|
Functional and Expressional Analyses Reveal the Distinct Role of Complement Factor I in Regulating Complement System Activation during GCRV Infection in Ctenopharyngodon idella. Int J Mol Sci 2022; 23:ijms231911369. [PMID: 36232671 PMCID: PMC9569754 DOI: 10.3390/ijms231911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Complement factor I (CFI), a complement inhibitor, is well known for regulating the complement system activation by degrading complement component 3b (C3b) in animal serum, thus becoming involved in innate defense. Nevertheless, the functional mechanisms of CFI in the complement system and in host-pathogen interactions are far from being clarified in teleost fish. In the present study, we cloned and characterized the CFI gene, CiCFI, from grass carp (Ctenopharyngodon idella) and analyzed its function in degrading serum C3b and expression changes after grass carp reovirus (GCRV) infection. The open reading frame of CiCFI was found to be 2121 bp, encoding 706 amino acids with a molecular mass of 79.06 kDa. The pairwise alignments showed that CiCFI shared the highest identity (66.9%) with CFI from Carassius gibelio and the highest similarity (78.7%) with CFI from Danio rerio. The CiCFI protein was characterized by a conserved functional core Tryp_SPc domain with the catalytic triad and substrate binding sites. Phylogenetic analysis indicated that CiCFI and the homologs CFIs from other teleost fish formed a distinct evolutionary branch. Similar with the CFIs reported in mammals, the recombinant CiCFI protein could significantly reduce the C3b content in the serum, demonstrating the conserved function of CiCFI in the complement system in the grass carp. CiCFI mRNA and protein showed the highest expression level in the liver. After GCRV infection, the mRNA expressions of CiCFI were first down-regulated, then up-regulated, and then down-regulated to the initial level, while the protein expression levels maintained an overall downward trend to the late stage of infection in the liver of grass carps. Unexpectedly, the protein levels of CiCFI were also continuously down-regulated in the serum of grass carps during GCRV infection, while the content of serum C3b proteins first increases and then returns to the initial level, suggesting a distinct role of CiCFI in regulating complement activation and fish-virus interaction. Combining our previous results that complement factor D, a complement enhancer, shows continuously up-regulated expression levels in grass carps during GCRV infection, and this study may provide the further essential data for the full picture of complex complement regulation mechanism mediated by Df and CFI of the grass carp during pathogen infection.
Collapse
|
21
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
22
|
Peng M, Li Z, Cardoso JCR, Niu D, Liu X, Dong Z, Li J, Power DM. Domain-Dependent Evolution Explains Functional Homology of Protostome and Deuterostome Complement C3-Like Proteins. Front Immunol 2022; 13:840861. [PMID: 35359984 PMCID: PMC8960428 DOI: 10.3389/fimmu.2022.840861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional characterization of three C3-like isoforms in a bivalve representative revealed that in common with vertebrates complement proteins they were cleaved into two subunits, b and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis. Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO domain) explained the functional differentiation of bivalve C3-like. The emergence of domain-related functions early during evolution explains the overlapping functions of bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and indicates that evolutionary pressure acted to conserve protein domain organization rather than the primary sequence.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University (SHOU), Shanghai, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiaojun Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Zhiguo Dong
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University (SHOU), Shanghai, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal.,Shanghai Ocean University International Center for Marine Studies, Shanghai, China
| |
Collapse
|
23
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
24
|
Tereshkina YA, Torkhovskaya TI, Tikhonova EG, Kostryukova LV, Sanzhakov MA, Korotkevich EI, Khudoklinova YY, Orlova NA, Kolesanova EF. Nanoliposomes as drug delivery systems: safety concerns. J Drug Target 2021; 30:313-325. [PMID: 34668814 DOI: 10.1080/1061186x.2021.1992630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The review highlights the safety issues of drug delivery systems based on liposomes. Due to their small sizes (about 80-120 nm, sometimes even smaller), phospholipid nanoparticles interact intensively with living systems during parenteral administration. This interaction significantly affects both their transport role and safety; therefore, special attention is paid to these issues. The review summarises the data on the basic factors affecting the safety of nanoliposomes: composition, size, surface charge, stability, the release of an incorporated drug, penetration into tissues, interaction with the complement system. Attention is paid to the authors' own research of unique phospholipid nanoparticles with a diameter of 20-30 nm. The influence of technological processes of nanoliposome production on their properties is considered. The article also discusses the modern safety assessment criteria contained in the preliminary regulatory documents of the manufacturing countries for new nanoliposome-based drugs being developed or used in the clinic.
Collapse
Affiliation(s)
- Yu A Tereshkina
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - T I Torkhovskaya
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E G Tikhonova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - L V Kostryukova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - M A Sanzhakov
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E I Korotkevich
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Khudoklinova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - N A Orlova
- Laboratory of Phospholipid Nanoparticles and Transport Systems, Institute of Biomedical Chemistry, Moscow, Russia
| | - E F Kolesanova
- Laboratory of Peptide Engineering, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
25
|
Prohászka Z, Frazer-Abel A. Complement multiplex testing: Concept, promises and pitfalls. Mol Immunol 2021; 140:120-126. [PMID: 34688958 DOI: 10.1016/j.molimm.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Complement is a complex system. This complexity becomes more obvious when looking at complement analysis in health and disease, where one presentation can require a number of measurements to understand the full role of this cascade in the disease. The current state of clinical testing requires multiple tests to cover the whole of the complement cascade. There is a clear potential for multiplex testing to help address this need for comprehensive analysis of the state of complement deficiency, activation or inhibition. Fortunately, there are a number of potential methods for multiplex analysis, each with advantages and disadvantages that need to be considered in light of the intricacy of the complement cascade and its interconnection to other systems. Despite the complexities of such methods several groups have started utilizing multiplex analysis for research and even for diagnostic testing. The potential methods, current successes, and the type of testing that needs to be streamlined are reviewed in this text.
Collapse
Affiliation(s)
- Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, and Research Group for Immunology and Haematology, Semmelweis University- EötvösLoránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Ashley Frazer-Abel
- Exsera BioLabs, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
26
|
Padilla S, Nurden AT, Prado R, Nurden P, Anitua E. Healing through the lens of immunothrombosis: Biology-inspired, evolution-tailored, and human-engineered biomimetic therapies. Biomaterials 2021; 279:121205. [PMID: 34710794 DOI: 10.1016/j.biomaterials.2021.121205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Evolution, from invertebrates to mammals, has yielded and shaped immunoclotting as a defense and repair response against trauma and infection. This mosaic of immediate and local wound-sealing and pathogen-killing mechanisms results in survival, restoration of homeostasis, and tissue repair. In mammals, immunoclotting has been complemented with the neuroendocrine system, platelets, and contact system among other embellishments, adding layers of complexity through interconnecting blood-born proteolytic cascades, blood cells, and the neuroendocrine system. In doing so, immunothrombosis endows humans with survival advantages, but entails vulnerabilities in the current unprecedented and increasingly challenging environment. Immunothrombosis and tissue repair appear to go hand in hand with common mechanisms mediating both processes, a fact that is underlined by recent advances that are deciphering the mechanisms of the repair process and of the biochemical pathways that underpins coagulation, hemostasis and thrombosis. This review is intended to frame both the universal aspects of tissue repair and the therapeutic use of autologous fibrin matrix as a biology-as-a-drug approach in the context of the evolutionary changes in coagulation and hemostasis. In addition, we will try to shed some light on the molecular mechanisms underlying the use of the autologous fibrin matrix as a biology-inspired, evolution-tailored, and human-engineered biomimetic therapy.
Collapse
Affiliation(s)
- Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Roberto Prado
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain; BTI-Biotechnology Institute ImasD, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| |
Collapse
|
27
|
Sahu SK, Kulkarni DH, Ozanturk AN, Ma L, Kulkarni HS. Emerging roles of the complement system in host-pathogen interactions. Trends Microbiol 2021; 30:390-402. [PMID: 34600784 DOI: 10.1016/j.tim.2021.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022]
Abstract
The complement system has historically been entertained as a fluid-phase, hepatically derived system which protects the intravascular space from encapsulated bacteria. However, there has been an increasing appreciation for its role in protection against non-encapsulated pathogens. Specifically, we have an improved understanding of how pathogens are recognized by specific complement proteins, as well as how they trigger and evade them. Additionally, we have an improved understanding of locally derived complement proteins, many of which promote host defense. Moreover, intracellular complement proteins have been identified that facilitate local protection and barrier function despite pathogen invasion. Our review aims to summarize these advances in the field as well as provide an insight into the pathophysiological changes occurring when the system is dysregulated in infection.
Collapse
Affiliation(s)
- Sanjaya K Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H Kulkarni
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ayse N Ozanturk
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
A complement factor H homolog, heparan sulfation, and syndecan maintain inversin compartment boundaries in C. elegans cilia. Proc Natl Acad Sci U S A 2021; 118:2016698118. [PMID: 33859044 DOI: 10.1073/pnas.2016698118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly. Canonical disease models suggest that defective interactions between complement factor H (CFH) and cell surface heparan sulfate (HS) result in increased alternative complement pathway activity, cytolytic damage, and tissue inflammation in the retina. Although these factors are thought to contribute to increased disease risk, multiple studies indicate that noncanonical mechanisms that result from defective CFH and HS interaction may contribute to the progression of AMD as well. A total of 60 ciliated sensory neurons in the nematode Caenorhabditis elegans detect chemical, olfactory, mechanical, and thermal cues in the environment. Here, we find that a C. elegans CFH homolog localizes on CEP mechanosensory neuron cilia where it has noncanonical roles in maintaining inversin/NPHP-2 within its namesake proximal compartment and preventing inversin/NPHP-2 accumulation in distal cilia compartments in aging adults. CFH localization and maintenance of inversin/NPHP-2 compartment integrity depend on the HS 3-O sulfotransferase HST-3.1 and the transmembrane proteoglycan syndecan/SDN-1. Defective inversin/NPHP-2 localization in mouse and human photoreceptors with CFH mutations indicates that these functions and interactions may be conserved in vertebrate sensory neurons, suggesting that previously unappreciated defects in cilia structure may contribute to the progressive photoreceptor dysfunction associated with CFH loss-of-function mutations in some AMD patients.
Collapse
|
29
|
Jiang B, Zhang Z, Xu J, Jin H, Tuya, Li Y. Cloning and structural analysis of complement component 3d in wild birds provides insight into its functional evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103979. [PMID: 33338517 DOI: 10.1016/j.dci.2020.103979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Complement component 3 d (C3d) is the final cleavage product of the complement component C3 and serves as a crucial role in link innate and adaptive immunity, and increase B-cell sensitivity to an antigen by 1000-10000 fold. The crystal structure of human C3d revealed there are two distinct surfaces, a convex surface containing the thioester-constituting residues that mediate covalent binding to the target antigen, and a concave surface with an acidic pocket responsible for interaction with CR2. In this study, we cloned and sequenced cDNA fragment encoding C3d region from 15 wild bird species. Then, the C3d sequences from wild birds, chicken and mammals were aligned to construct phylogenetic trees. Phylogenetic tree displayed two main branches, indicating mammals and birds, but the bird C3d branch was divided into two main parts, with five wild birds (Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus) clustering much closer to mammals. In addition, the C3d proteins of Ardeola bacchus, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus contained a Glu163 residue at the position at which Lys163 was found in other birds. However, Glu163 have the same charge polarity as Asp163, which is the key amino acid residue comprising the acidic pocket combined with CR2 found at this position in mammals, and Zoothera also possessed Asp163 at this position. Structure modeling analyses also verified that the C3ds of these five wild bird species exhibited the amino acid sequence and structure comprising the typical acidic pocket found in mammals that is required for combination with B cell surface receptors, which contribute electrostatic forces to interact with CR2. Our investigations indicate that some bird C3ds may already have the ability to bind with CR2 by electrostatic force, like mammals. As Ardeola bacchus, Zoothera, Bubo, Crossoptilon mantchuricum and Caprimulgus europaeus have more typical C3d concave acid pockets and thus a stronger ability to bind CR2, we speculate that these five wild birds may have a solider immunity against pathogens. Our phylogenetic and structural analyses of bird C3ds provide insights on the evolutionary divergence in the function of immune factors of avian and mammalian.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Zhenhua Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China
| | - Tuya
- Beijing Rescue Center for Wild Life Animal, Beijing, 101300, PR China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, PR China.
| |
Collapse
|
30
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
31
|
Miccoli A, Picchietti S, Fausto AM, Scapigliati G. Evolution of immune defence responses as incremental layers among Metazoa. EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1849435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A. Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - S. Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - A. M. Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - G. Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| |
Collapse
|
32
|
Li L, Yang W, Shen Y, Xu X, Li J. Fish complement C8 evolution, functional network analyses, and the theoretical interaction between C8 alpha chain and CD59. Mol Immunol 2020; 128:235-248. [PMID: 33160183 DOI: 10.1016/j.molimm.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Complement C8, as a main component of the membrane attack complex, has only been identified in vertebrates. C8 comprises three subunits encoded by individual genes: C8a (alpha chain), C8b (beta chain), and C8g (gamma chain). However, in fish, there have been limited studies on the evolutionary history and systematic function of C8. In the present study, phylogenetic analysis indicated the complete divergence of C8 genes in different fish species. Codon usage bias analysis revealed the evolutionary complexity of C8 genes. Selective pressure analysis found that C8 genes have been affected by negative selection during evolution. Sequence alignment identified the sites that are under selective pressure. The systematic functions of C8 were revealed by gene co-expression and protein-protein interaction (PPI) network analyses. Notably, gene ontology enrichment analysis suggested that C8 proteins in zebrafish function mainly in the neuroendocrine system. Protein structural comparisons showed that putative functional residues and domains were conserved between the C8 subunits of human and grass carp. A preliminary study on the theoretical interaction between C8a and CD59 was performed according to the simulated protein stereo structure. The first functionally-related site was absent in the simulated conformation of the grass carp (Ctenopharyngodon idella) C8a-CD59 protein complex. We speculated that Tyr63 is involved in the functional loss of CD59 binding. The docking of CD59 to four potential sites (Met390, Ser391, Leu392, and Val405) in grass carp C8a was analyzed. The results of the present study provide a deeper understanding of the evolution and function of fish complement C8.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
33
|
Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy 2020; 75:2818-2828. [PMID: 32446274 DOI: 10.1111/all.14413] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022]
Abstract
The emergence and evolution of the complement system and mast cells (MCs) can be traced back to sea urchins and the ascidian Styela plicata, respectively. Acting as a cascade of enzymatic reactions, complement is activated through the classical (CP), the alternative (AP), and the lectin pathway (LP) based on the recognized molecules. The system's main biological functions include lysis, opsonization, and recruitment of phagocytes. MCs, beyond their classic role as master cells of allergic reactions, play a role in other settings, as well. Thus, MCs are considered as extrahepatic producers of complement proteins. They express various complement receptors, including those for C3a and C5a. C3a and C5a not only activate the C3aR and C5aR expressing MCs but also act as chemoattractants for MCs derived from different anatomic sites, such as from the bone marrow, human umbilical cord blood, or skin in vitro. Cross talk between MCs and complement is facilitated by the production of complement proteins by MCs and their activation by the MC tryptase. The coordinated activity between MCs and the complement system plays a key role, for example, in a number of allergic, cutaneous, and vascular diseases. At a molecular level, MCs and complement system interactions are based on the production of several complement zymogens by MCs and their activation by MC-released proteases. Additionally, at a cellular level, MCs act as potent effector cells of complement activation by expressing receptors for C3a and C5a through which their chemoattraction and activation are mediated by anaphylatoxins in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Shafaghat
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology Immunobiology Research Program University of Helsinki Helsinki Finland
- HUSLAB Helsinki University Central Hospital Helsinki Finland
| |
Collapse
|
34
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
36
|
Merle NS, Singh P, Rahman J, Kemper C. Integrins meet complement: The evolutionary tip of an iceberg orchestrating metabolism and immunity. Br J Pharmacol 2020; 178:2754-2770. [PMID: 32562277 PMCID: PMC8359198 DOI: 10.1111/bph.15168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022] Open
Abstract
Immunologists have recently realized that there is more to the classic innate immune sensor systems than just mere protection against invading pathogens. It is becoming increasingly clear that such sensors, including the inflammasomes, toll-like receptors, and the complement system, are heavily involved in the regulation of basic cell physiological processes and particularly those of metabolic nature. In fact, their "non-canonical" activities make sense as no system directing immune cell activity can perform such task without the need for energy. Further, many of these ancient immune sensors appeared early and concurrently during evolution, particularly during the developmental leap from the single-cell organisms to multicellularity, and therefore crosstalk heavily with each other. Here, we will review the current knowledge about the emerging cooperation between the major inter-cell communicators, integrins, and the cell-autonomous intracellularly and autocrine-active complement, the complosome, during the regulation of single-cell metabolism. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Nicolas S Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Parul Singh
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jubayer Rahman
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
37
|
Anitua E, Nurden P, Nurden AT, Padilla S. More than 500 million years of evolution in a fibrin-based therapeutic scaffold. Regen Med 2020; 15:1493-1498. [PMID: 32441555 DOI: 10.2217/rme-2020-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Eduardo Anitua
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Paquita Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Alan T Nurden
- Institut Hospitalo-Universitaire LIRYC, Hôpital Xavier Arnozan, Pessac, France
| | - Sabino Padilla
- Eduardo Anitua Foundation for Biomedical Research, Vitoria, Spain.,BTI - Biotechnology Institute, Vitoria, Spain.,University Institute for Regenerative Medicine & Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
38
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
39
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
40
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
41
|
Canisso IF, Segabinazzi LG, Fedorka CE. Persistent Breeding-Induced Endometritis in Mares - a Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology. Int J Mol Sci 2020; 21:E1432. [PMID: 32093296 PMCID: PMC7073041 DOI: 10.3390/ijms21041432] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological reaction taking place in the endometrium of mares within 48 hours post-breeding, aimed to clear seminal plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 hours post-breeding. Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient immune response and compromised physical mechanisms of defense against infection. Molecular pathways of the innate immune response known to be involved in PBIE are discussed herein. The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses. Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and non-traditional therapeutic modalities for endometritis are contrasted and described in the context of clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities, alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the development of non-traditional therapies. Novel biological products capable of modulating the endometrial inflammatory response are also discussed here as part of the non-traditional therapies for endometritis.
Collapse
Affiliation(s)
- Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
| | - Lorenzo G.T.M. Segabinazzi
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
- Department of Animal Reproduction and Veterinary Radiology, Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-000, São Paulo, Brazil
| | - Carleigh E. Fedorka
- The Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| |
Collapse
|
42
|
Peng M, Li Z, Niu D, Liu X, Dong Z, Li J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family. FASEB J 2019; 33:13323-13333. [PMID: 31550175 DOI: 10.1096/fj.201901142rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complement factor B/C2 family (Bf/C2F) proteins are core complement system components in vertebrates that are absent in invertebrates and have been lost by numerous species, raising evolutionary questions. At least 3 duplication events have occurred from Cnidaria (ancestor) to mammals. Type II Bf/C2 genes appeared during separation of Proterostomia and Deuterostomes. The second event occurred during separation of vertebrates and invertebrates, yielding type II-2 Bf/C2. The third event occurred when jawed and jawless fish were separated, eventually producing Bf and C2 genes. Herein, we report the second mollusc Sinonovacula constricta Bf/C2-type gene (ScBf). ScBf is similar to Ruditapes decussatus Bf-like because both lack the first complement control protein module at the N terminus present in mammalian Bf/C2 proteins. Uniquely, the Ser protease (SP) module at the C terminus of ScBf is ∼50 aa longer than in other complement factor B/C2-type (Bf/C2T) proteins, and is Glu-rich. Bf/C2T proteins in molluscs lack the catalytic Ser in the SP module. Surprisingly, ScBf regulates rabbit erythrocyte agglutination, during which it is localized on the erythrocyte surface. Thus, ScBf may mediate the agglutination cascade and may be an upstream regulator of this process. Our findings provide new insight into the origin of the Bf/C2F.-Peng, M., Li, Z., Niu, D., Liu, X., Dong, Z., Li, J. Complement factor B/C2 in molluscs regulates agglutination and illuminates evolution of the Bf/C2 family.
Collapse
Affiliation(s)
- Maoxiao Peng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Donghong Niu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Xiaojun Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhiguo Dong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Co-Innovation Centre of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China; and
| |
Collapse
|
43
|
Complement and Coagulation: Cross Talk Through Time. Transfus Med Rev 2019; 33:199-206. [PMID: 31672340 DOI: 10.1016/j.tmrv.2019.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 12/29/2022]
Abstract
Two complex protein defense systems-complement and coagulation-are based on amplifying enzyme cascades triggered by specific local stimuli. Excess systemic activation of either system is pathologic and is normally prevented by a family of regulatory proteins. The 2 systems are ancient biological processes which share a common origin that predates vertebrate evolution. Recent research has uncovered multiple opportunities for cross talk between complement and coagulation including proteins traditionally viewed as coagulation factors that activate and regulate complement, and proteins traditionally seen as part of the complement system that participate in coagulation. Ten examples of cross talk between the 2 systems are described. The mutual engagement of both systems is increasingly recognized to occur in human diseases. Three conditions-paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, and the antiphospholipid syndrome-provide examples of the importance of interactions between complement and coagulation in human biology. A better understanding of the mutual engagement of these 2 ancient defense systems is expected to result in improved diagnostics and new treatments for systemic diseases.
Collapse
|
44
|
Liao Z, Wan Q, Yuan G, Su J. The systematic identification and mRNA expression profiles post viral or bacterial challenge of complement system in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 86:107-115. [PMID: 30447430 DOI: 10.1016/j.fsi.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Complement system is an immemorial and pivotal element in innate immunity, protecting individuals from invading pathogens. Due to the emergence of whole genomes and functional researches, systematic identifications of complement system are feasible in many non-model species. In the present study, BLAST analysis was employed to systematically identify and characterize complement system in grass carp (Ctenopharyngodon idella). The results showed that C. idella complement system consists of 64 members, including the complement system pattern recognition, proteases, complement components, receptors and regulators. In which, most genes were well conserved with those in higher vertebrates over the course of evolution. Phylogenetic and syntenic analyses revealed their homologous relationships with other species. mRNA expression analyses of complement system related genes indicated that many members are sustainably expressed in multiple tissues before and after grass carp reovirus (GCRV) or Aeromonas hydrophila infection, which provide in vivo evidence for the response patterns of complement system after viral or bacterial infection. Meanwhile, this study also explored the evolution of complement system from ancestral protists to mammals and then investigated the changes in gene diversification during the evolution. These results will serve the comparative studies on the complement system in evolution and further functional investigations in C. idella.
Collapse
Affiliation(s)
- Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gailing Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
45
|
Okrój M, Potempa J. Complement Activation as a Helping Hand for Inflammophilic Pathogens and Cancer. Front Immunol 2019; 9:3125. [PMID: 30687327 PMCID: PMC6335266 DOI: 10.3389/fimmu.2018.03125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The complement system, an evolutionarily ancient component of innate immunity, is capable of protecting hosts from invading pathogens, either directly, by lysis of target cells, or indirectly, by mobilization of host immune mechanisms. However, this potentially cytotoxic cascade must be tightly regulated, since improperly controlled complement can damage healthy cells and tissues. The practical importance of this axis is highlighted when impairment of complement regulators or bacterial mechanisms of complement evasion result in pathogenic conditions. Recognition of complement as a "double-edged sword" is widely acknowledged, but another, currently underappreciated aspect of complement function has emerged as an important player in homeostatic balance-the dual outcome of complement-mediated inflammation. In most cases, the proinflammatory properties of complement are beneficial to the host. However, certain pathogens have developed the ability to utilize local inflammation as a source of nutrients and as a way to establish a niche for further colonization. Such a strategy can be illustrated in the example of periodontitis. Interestingly, certain tumors also seem to benefit from complement activation products, which promote a proangiogenic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
46
|
Ma YJ, Garred P. Pentraxins in Complement Activation and Regulation. Front Immunol 2018; 9:3046. [PMID: 30619374 PMCID: PMC6305747 DOI: 10.3389/fimmu.2018.03046] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/10/2018] [Indexed: 01/10/2023] Open
Abstract
The complement is the first line of immune defense system involved in elimination of invading pathogens and dying host cells. Its activation is mainly triggered by immune complexes or pattern recognition molecules (PRMs) upon recognition against non-self or altered self-cells, such as C1q, collectins, ficolins, and properdin. Recent findings have interestingly shown that the pentraxins (C-reactive protein, CRP; serum-amyloid P component, SAP; long pentraxin 3, PTX3) are involved in complement activation and amplification via communication with complement initiation PRMs, but also complement regulation via recruitment of complement regulators, for instance C4b binding protein (C4BP) and factor H (fH). This review addresses the potential roles of the pentraxins in the complement system during infection and inflammation, and emphasizes the underlining implications of the pentraxins in the context of complement activation and regulation both under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Dobrovolskaia M, Neun BW, Szénási G, Szebeni J. Plasma samples from mouse strains and humans demonstrate different susceptibilities to complement activation. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(3).181029.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Complement activation can be evaluated in vitro using plasma or serum from animals and human donors, and in vivo using animal models. Despite many years of research, there is no harmonized approach for the selection of matrix and animal models. Herein, we present an in vitro study investigating intra- and inter-species variability in the complement activation. We used the liposomal formulation of amphotericin, Ambisome, as a model particle to assess the magnitude of the complement activation in plasma derived from various mouse strains and individual human donors. We demonstrated that mouse strains differ in the magnitude of the complement activation by liposomes and cobra venom factor (CVF) in vitro. Inter-individual variability in complement activation by Ambisome and CVF was also observed when plasma from individual human donors was analyzed. Such variability in both mouse and human plasma could not be explained by the levels of complement regulatory factors H and I. Moreover, even though mouse plasma was less sensitive to the complement activation by CVF than human plasma, it was equally sensitive to the activation by Ambisome. Our study demonstrates the importance of mouse strain selection for in vitro complement activation analysis. It also shows that traditional positive controls (e.g., CVF) are not predictive of the degree of complement activation by nanomedicines. The study also suggests that besides complement inhibitory factors, other elements contribute to the inter- and intra-species variability in complement activation by nanomedicines.
Collapse
|
48
|
Abstract
Sepsis was known to ancient Greeks since the time of great physician Hippocrates (460-377 BC) without exact information regarding its pathogenesis. With time and medical advances, it is now considered as a condition associated with organ dysfunction occurring in the presence of systemic infection as a result of dysregulation of the immune response. Still with this advancement, we are struggling for the development of target-based therapeutic approach for the management of sepsis. The advancement in understanding the immune system and its working has led to novel discoveries in the last 50 years, including different pattern recognition receptors. Inflammasomes are also part of these novel discoveries in the field of immunology which are <20 years old in terms of their first identification. They serve as important cytosolic pattern recognition receptors required for recognizing cytosolic pathogens, and their pathogen-associated molecular patterns play an important role in the pathogenesis of sepsis. The activation of both canonical and non-canonical inflammasome signaling pathways is involved in mounting a proinflammatory immune response via regulating the generation of IL-1β, IL-18, IL-33 cytokines and pyroptosis. In addition to pathogens and their pathogen-associated molecular patterns, death/damage-associated molecular patterns and other proinflammatory molecules involved in the pathogenesis of sepsis affect inflammasomes and vice versa. Thus, the present review is mainly focused on the inflammasomes, their role in the regulation of immune response associated with sepsis, and their targeting as a novel therapeutic approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Australia,
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia,
| |
Collapse
|
49
|
Liyanage DS, Omeka WKM, Godahewa GI, Lee S, Nam BH, Lee J. Membrane attack complex-associated molecules from redlip mullet (Liza haematocheila): Molecular characterization and transcriptional evidence of C6, C7, C8β, and C9 in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2018; 81:1-9. [PMID: 29981471 DOI: 10.1016/j.fsi.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
The redlip mullet (Liza haematocheila) is one of the most economically important fish in Korea and other East Asian countries; it is susceptible to infections by pathogens such as Lactococcus garvieae, Argulus spp., Trichodina spp., and Vibrio spp. Learning about the mechanisms of the complement system of the innate immunity of redlip mullet is important for efforts towards eradicating pathogens. Here, we report a comprehensive study of the terminal complement complex (TCC) components that form the membrane attack complex (MAC) through in-silico characterization and comparative spatial and temporal expression profiling. Five conserved domains (TSP1, LDLa, MACPF, CCP, and FIMAC) were detected in the TCC components, but the CCP and FIMAC domains were absent in MuC8β and MuC9. Expression analysis of four TCC genes from healthy redlip mullets showed the highest expression levels in the liver, whereas limited expression was observed in other tissues; immune-induced expression in the head kidney and spleen revealed significant responses against Lactococcus garvieae and poly I:C injection, suggesting their involvement in MAC formation in response to harmful pathogenic infections. Furthermore, the response to poly I:C may suggest the role of TCC components in the breakdown of the membrane of enveloped viruses. These findings may help to elucidate the mechanisms behind the complement system of the teleosts innate immunity.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Seongdo Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
50
|
Papareddy P, Kasetty G, Alyafei S, Smeds E, Salo-Ahen OMH, Hansson SR, Egesten A, Herwald H. An ecoimmunological approach to study evolutionary and ancient links between coagulation, complement and Innate immunity. Virulence 2018; 9:724-737. [PMID: 29473457 PMCID: PMC5955456 DOI: 10.1080/21505594.2018.1441589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coagulation, complement, and innate immunity are tightly interwoven and form an alliance that can be traced back to early eukaryotic evolution. Here we employed an ecoimmunological approach using Tissue Factor Pathway Inhibitor (TFPI)-1-derived peptides from the different classes of vertebrates (i.e. fish, reptile, bird, and mammals) and tested whether they can boost killing of various human bacterial pathogens in plasma. We found signs of species-specific conservation and diversification during evolution in these peptides that significantly impact their antibacterial activity. Though all peptides tested executed bactericidal activity in mammalian plasma (with the exception of rodents), no killing was observed in plasma from birds, reptiles, and fish, pointing to a crucial role for the classical pathway of the complement system. We also observed an interference of these peptides with the human intrinsic pathway of coagulation though, unlike complement activation, this mechanism appears not to be evolutionary conserved.
Collapse
Affiliation(s)
- Praveen Papareddy
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Gopinath Kasetty
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Saud Alyafei
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Emanuel Smeds
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Outi M H Salo-Ahen
- c Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland.,d Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland
| | - Stefan R Hansson
- e Division of Obstetrics and Gynecology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Arne Egesten
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Heiko Herwald
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| |
Collapse
|