1
|
Scully R, Glodzik D, Menghi F, Liu ET, Zhang CZ. Mechanisms of tandem duplication in the cancer genome. DNA Repair (Amst) 2025; 145:103802. [PMID: 39742573 PMCID: PMC11843477 DOI: 10.1016/j.dnarep.2024.103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025]
Abstract
Tandem duplications (TD) are among the most frequent type of structural variant (SV) in the cancer genome. They are characterized by a single breakpoint junction that defines the boundaries and the size of the duplicated segment. Cancer-associated TDs often increase oncogene copy number or disrupt tumor suppressor gene function, and thus have important roles in tumor evolution. TDs in cancer genomes fall into three classes, defined by the size of duplications, and are associated with distinct genetic drivers. In this review, we survey key features of cancer-related TDs and consider possible underlying mechanisms in relation to stressed DNA replication and the 3D organization of the S phase genome.
Collapse
Affiliation(s)
- Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA.
| | - Dominik Glodzik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Liu Q, Jiang Z, Qiu M, Andersen ME, Crabbe MJC, Wang X, Zheng Y, Qu W. Subchronic Exposure to Low-Level Lanthanum, Cerium, and Yttrium Mixtures Altered Cell Cycle and Increased Oxidative Stress Pathways in Human LO-2 Hepatocytes but Did Not Cause Malignant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22002-22013. [PMID: 39629941 DOI: 10.1021/acs.est.4c08150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Human exposures to rare earth elements are increasing with expanded use in aerospace, precision instruments, and new energy batteries, materials, and fertilizers. Individually these elements have low toxicity, although few investigations have examined the health effects of longer-term mixture exposures. We used the LO-2 cell line to examine the effects of graded exposures to lanthanum, cerium, and yttrium (LCY) mixtures at 1-, 100-, and 1000-fold their human background levels (0.31 μg/L La, 0.25 μg/L Ce, and 0.12 μg/L Y) on cell cycle, oxidative stress, and nuclear factor erythroid-2-related factor (NRF2) pathway biomarkers, assessing responses every 10 passages up to 100 passages. Cell migration, concanavalin A, malignant transformation, and tumorigenesis in nude mice were also examined. Mixed LCY exposures activated oxidative stress and the NRF2 pathway by the 30th passage and increased the proportion of cells in the S phase and cell cycle-specific biomarkers by the 40th passage. LCY exposures did not cause malignant transformation of hepatocytes or induced tumorigenesis in nude mice but enhanced cell proliferation, migration, and agglutination. Importantly, LCY mixtures with longer-term exposure activated the NRF2 pathway and altered the hepatocyte cell cycle at doses far below those used in previous toxicological studies. The consequences of LCY mixtures for public health merit further study.
Collapse
Affiliation(s)
- Qinxin Liu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Meiyue Qiu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Melvin E Andersen
- ScitoVation LLC. 6 Davis Drive, Suite 146, Research Triangle Park, North Carolina 27713, United States
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX2 6UD, United Kingdom
| | - Xia Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University No.308 Ningxia Road, Qingdao 266071, China
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Wang C, Fang Y, Zhou Z, Liu Z, Feng F, Wan X, Li Y, Liu S, Ding J, Zhang ZM, Xie H, Lu X. Structure-Based Drug Design of 2-Amino-[1,1'-biphenyl]-3-carboxamide Derivatives as Selective PKMYT1 Inhibitors for the Treatment of CCNE1-Amplified Breast Cancer. J Med Chem 2024; 67:15816-15836. [PMID: 39163619 DOI: 10.1021/acs.jmedchem.4c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
CCNE1 amplification occurs in breast cancer and currently lacks effective therapies. PKMYT1 as a synthetic lethal target for CCNE1 amplification holds promise for the treatment of CCNE1-amplified breast cancer. Herein, we discover a series of 2-amino-[1,1'-biphenyl]-3-carboxamide derivatives as potent and selective PKMYT1 inhibitors using structure-based drug design. The representative compound 8ma exhibited excellent potency against PKMYT1, while sparing WEE1. It also suppressed proliferation of the CCNE1-amplified HCC1569 breast cancer cell line and showed synergistic cytotoxicity in combination with gemcitabine. PKMYT1 X-ray cocrystallography confirmed that introduction of key binding interactions between the inhibitors and residues Asp251 and Tyr121 of PKMYT1 greatly enhanced the potency and selectivity of the compounds.
Collapse
Affiliation(s)
- Chaofan Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yan Fang
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ziqin Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Zhuoheng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Fang Feng
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuan Wan
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yan Li
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510632, China
| | - Jian Ding
- Division of Antitumor Pharmacology & State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Hua Xie
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
- Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Azevedo PL, Maradei S, de Sá Bigni R, Santos Ramires Aragao J, Abdelhay E, Binato R. SLPI overexpression in hMSCs could be implicated in the HSC gene expression profile in AML. Sci Rep 2024; 14:15550. [PMID: 38969699 PMCID: PMC11226598 DOI: 10.1038/s41598-024-66400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Acute myeloid leukaemia (AML) is a severe haematological neoplasm that originates from the transformation of haematopoietic stem cells (HSCs) into leukaemic stem cells (LSCs). The bone marrow (BM) microenvironment, particularly that of mesenchymal stromal cells (hMSCs), plays a crucial role in the maintenance of HSCs. In this context, we explored whether alterations in the secretome of hMSCs derived from AML patients (hMSC-AML) could impact HSC gene expression. Proteomic analysis revealed that the secretome of coculture assays with hMSC-AMLs and HSC from healthy donor is altered, with increased levels of secretory leukocyte protease inhibitor (SLPI), a protein associated with important processes for maintenance of the haematopoietic niche that has already been described to be altered in several tumours. Increased SLPI expression was also observed in the BM plasma of AML patients. Transcriptome analysis of HSCs cocultured with hMSC-AML in comparison with HSCs cocultured with hMSC-HD revealed altered expression of SLPI target genes associated with the cell cycle, proliferation, and apoptosis. Important changes were identified, such as increased expression levels of CCNA2, CCNE2, CCND2, CD133 and CDK1 and decreased levels of CDKN2A and IGFBP3, among others. Overall, these findings suggest that the altered secretome of coculture assays with hMSC-AMLs and HSC from healthy donor, particularly increased SLPI expression, can contribute to gene expression changes in HSCs, potentially influencing important molecular mechanisms related to AML development and progression.
Collapse
Affiliation(s)
- Pedro L Azevedo
- Stem Cell Laboratory, Lab. de Células-Tronco (LCT) Centro, National Cancer Institute (INCA), Praça da Cruz Vermelha 23, 6° andar, Ala C, Rio de Janeiro, RJ, CEP: 20230-130, Brazil.
| | - Simone Maradei
- Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Ricardo de Sá Bigni
- Haematology Service, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | | | - Eliana Abdelhay
- Stem Cell Laboratory, Lab. de Células-Tronco (LCT) Centro, National Cancer Institute (INCA), Praça da Cruz Vermelha 23, 6° andar, Ala C, Rio de Janeiro, RJ, CEP: 20230-130, Brazil
| | - Renata Binato
- Stem Cell Laboratory, Lab. de Células-Tronco (LCT) Centro, National Cancer Institute (INCA), Praça da Cruz Vermelha 23, 6° andar, Ala C, Rio de Janeiro, RJ, CEP: 20230-130, Brazil
| |
Collapse
|
5
|
Li GX, Chen L, Hsiao Y, Mannan R, Zhang Y, Luo J, Petralia F, Cho H, Hosseini N, Leprevost FDV, Calinawan A, Li Y, Anand S, Dagar A, Geffen Y, Kumar-Sinha C, Chugh S, Le A, Ponce S, Guo S, Zhang C, Schnaubelt M, Al Deen NN, Chen F, Caravan W, Houston A, Hopkins A, Newton CJ, Wang X, Polasky DA, Haynes S, Yu F, Jing X, Chen S, Robles AI, Mesri M, Thiagarajan M, An E, Getz GA, Linehan WM, Hostetter G, Jewell SD, Chan DW, Wang P, Omenn GS, Mehra R, Ricketts CJ, Ding L, Chinnaiyan AM, Cieslik MP, Dhanasekaran SM, Zhang H, Nesvizhskii AI. Comprehensive proteogenomic characterization of rare kidney tumors. Cell Rep Med 2024; 5:101547. [PMID: 38703764 PMCID: PMC11148773 DOI: 10.1016/j.xcrm.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/29/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Collapse
Affiliation(s)
- Ginny Xiaohe Li
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yi Hsiao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Luo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanbyul Cho
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sean Ponce
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaoming Wang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | | | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Gad A Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Yadav AK, Polasek-Sedlackova H. Quantity and quality of minichromosome maintenance protein complexes couple replication licensing to genome integrity. Commun Biol 2024; 7:167. [PMID: 38336851 PMCID: PMC10858283 DOI: 10.1038/s42003-024-05855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Accurate and complete replication of genetic information is a fundamental process of every cell division. The replication licensing is the first essential step that lays the foundation for error-free genome duplication. During licensing, minichromosome maintenance protein complexes, the molecular motors of DNA replication, are loaded to genomic sites called replication origins. The correct quantity and functioning of licensed origins are necessary to prevent genome instability associated with severe diseases, including cancer. Here, we delve into recent discoveries that shed light on the novel functions of licensed origins, the pathways necessary for their proper maintenance, and their implications for cancer therapies.
Collapse
Affiliation(s)
- Anoop Kumar Yadav
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Polasek-Sedlackova
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
7
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
8
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
9
|
Wu W, Yu S, Yu X. Transcription-associated cyclin-dependent kinase 12 (CDK12) as a potential target for cancer therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188842. [PMID: 36460141 DOI: 10.1016/j.bbcan.2022.188842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Cyclin-dependent kinase 12 (CDK12), a transcription-related cyclin dependent kinase (CDK), plays a momentous part in multitudinous biological functions, such as replication, transcription initiation to elongation and termination, precursor mRNA (pre-mRNA) splicing, intron polyadenylation (IPA), and translation. CDK12 can act as a tumour suppressor or oncogene in disparate cellular environments, and its dysregulation likely provokes tumorigenesis. A comprehensive understanding of CDK12 will tremendously facilitate the exploitation of novel tactics for the treatment and precaution of cancer. Currently, CDK12 inhibitors are nonspecific and nonselective, which profoundly hinders the pharmacological target validation and drug exploitation process. Herein, we summarize the newly comprehension of the biological functions of CDK12 with a focus on recently emerged advancements of CDK12-associated therapeutic approaches in cancers.
Collapse
Affiliation(s)
- Wence Wu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiying Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P. The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022; 9:526. [PMID: 36288138 PMCID: PMC9610006 DOI: 10.3390/vetsci9100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
Canine mammary tumors (CMTs) are considered a serious clinical problem in older bitches. Due to the high malignancy rate and poor prognosis, an early diagnosis is essential. This article is a summary of novel diagnostic techniques as well as the main biomarkers of CMTs. So far, CMTs are detected only when changes in mammary glands are clinically visible and surgical removal of the mass is the only recommended treatment. Proper diagnostics of CMT is especially important as they represent a very diverse group of tumors and therefore different treatment approaches may be required. Recently, new diagnostic options appeared, like a new cytological grading system of CMTs or B-mode ultrasound, the Doppler technique, contrast-enhanced ultrasound, and real-time elastography, which may be useful in pre-surgical evaluation. However, in order to detect malignancies before macroscopic changes are visible, evaluation of serum and tissue biomarkers should be considered. Among them, we distinguish markers of the cell cycle, proliferation, apoptosis, metastatic potential and prognosis, hormone receptors, inflammatory and more recent: metabolomic, gene expression, miRNA, and transcriptome sequencing markers. The use of a couple of the above-mentioned markers together seems to be the most useful for the early diagnosis of neoplastic diseases as well as to evaluate response to treatment, presence of tumor progression, or further prognosis. Molecular aspects of tumors seem to be crucial for proper understanding of tumorigenesis and the application of individual treatment options.
Collapse
Affiliation(s)
- Ilona Kaszak
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Olga Witkowska-Piłaszewicz
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Kinga Domrazek
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Piotr Jurka
- Laboratory of Small Animal Reproduction, Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| |
Collapse
|
11
|
Szychowski J, Papp R, Dietrich E, Liu B, Vallée F, Leclaire MÈ, Fourtounis J, Martino G, Perryman AL, Pau V, Yun Yin S, Mader P, Roulston A, Truchon JF, Marshall CG, Diallo M, Duffy NM, Stocco R, Godbout C, Bonneau-Fortin A, Kryczka R, Bhaskaran V, Mao D, Orlicky S, Beaulieu P, Turcotte P, Kurinov I, Sicheri F, Mamane Y, Gallant M, Black WC. Discovery of an Orally Bioavailable and Selective PKMYT1 Inhibitor, RP-6306. J Med Chem 2022; 65:10251-10284. [PMID: 35880755 PMCID: PMC9837800 DOI: 10.1021/acs.jmedchem.2c00552] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.
Collapse
Affiliation(s)
- Janek Szychowski
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Robert Papp
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Evelyne Dietrich
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Bingcan Liu
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Frédéric Vallée
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Marie-Ève Leclaire
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Jimmy Fourtounis
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Giovanni Martino
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Alexander L. Perryman
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Shou Yun Yin
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Anne Roulston
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Jean-Francois Truchon
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - C. Gary Marshall
- Repare Therapeutics, 1 Broadway, 15th Floor, Cambridge, MA 02142, USA
| | - Mohamed Diallo
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Nicole M. Duffy
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Rino Stocco
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Claude Godbout
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | | | - Rosie Kryczka
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Vivek Bhaskaran
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Daniel Mao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Patrick Beaulieu
- OmegaChem Inc., 480 Rue Perreault, Saint-Romuald, QC, G6W 7V6, Canada
| | - Pascal Turcotte
- AdMare BioInnovations, 7171 Frederick-Banting, Montréal, QC, H4S 1Z9, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Il 60439, USA
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Yael Mamane
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Michel Gallant
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - W. Cameron Black
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| |
Collapse
|
12
|
Híveš M, Jurečeková J, Kliment J, Grendár M, Kaplán P, Dušenka R, Evin D, Vilčková M, Holečková KH, Sivoňová MK. Role of Genetic Variations in CDK2, CCNE1 and p27KIP1 in Prostate Cancer. Cancer Genomics Proteomics 2022; 19:362-371. [PMID: 35430569 DOI: 10.21873/cgp.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Our aim was to investigate possible influences of genetic variants in genes involved in the G1/S transition [cyclin-dependent kinase-2 (CDK2), cyclin E1 (CCNE1) and cyclin-dependent kinase inhibitor 1B (p27KIP1)] on the expression/activity of their corresponding proteins and to assess the functional impact of these variants on the risk of prostate cancer. MATERIALS AND METHODS We genotyped 530 cases and 562 healthy controls for two relevant single nucleotide polymorphisms (CDK2 rs2069408 and CCNE1 rs997669) by TaqMan genotyping assay. p27KIP1 rs2066827 polymorphisms were studied by polymerase chain reaction-restriction fragment length polymorphism assay. In addition, the expression of CDK2, CCNE1 and p27KIP1 was evaluated by quantitative real-time-polymerase chain reaction and western blotting in 44 prostate cancer tissues and 31 benign prostatic hyperplasia tissues. RESULTS No association was found between CDK2 rs2069408, CCNE1 rs997669 or p27KIP1 rs2066827 polymorphisms and an increased risk of prostate cancer development. Higher CDK2 expression was more prevalent in those with rs2069408 GG genotype than in AA carriers (p>0.05). We also noted reduced p27KIP1 protein expression in those with the p27KIP1 G109 allele. No difference was observed for CCNE1 expression in relation to the risky genotype (CC). A significant association was detected between CCNE1 mRNA overexpression and development of higher-grade carcinomas (Gleason score >7, p<0.05). CONCLUSION Polymorphisms CDK2 rs2069408, CCNE1 rs997669 and p27KIP1 rs2066827 have no significant impact on prostate cancer risk nor on the gene and protein expression of CDK2, CCNE1 and p27KIP1, although high CCNE1 expression was significantly associated with a higher tumour grade in patients with prostate cancer.
Collapse
Affiliation(s)
- Márk Híveš
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Jana Jurečeková
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Ján Kliment
- Department of Urology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Martin, Slovak Republic
| | - Marián Grendár
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Peter Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Róbert Dušenka
- Department of Urology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Martin, Slovak Republic
| | - Daniel Evin
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.,Department of Nuclear Medicine, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Martin, Slovak Republic
| | - Marta Vilčková
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Klaudia Híveš Holečková
- Department of Urology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Martin, Slovak Republic.,Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic;
| |
Collapse
|
13
|
Xu P, Luo A, Xiong C, Ren H, Yan L, Luo Q. SCUBE3 downregulation modulates hepatocellular carcinoma by inhibiting CCNE1 via TGFβ/PI3K/AKT/GSK3β pathway. Cancer Cell Int 2022; 22:1. [PMID: 34980127 PMCID: PMC8725472 DOI: 10.1186/s12935-021-02402-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES We aimed to verify the role of signal peptide-CUB-EGF-like domain-containing protein3 (SCUBE3) in the hepatocellular carcinoma (HCC) progression. METHODS The role of SCUBE3 in HCC cell proliferation, apoptosis, and cell cycle in vitro were detected using MTT assay, colony formation assay, 5-ethynyl-2´-deoxyuridine assay (EDU), Celigo cell counting assay, Caspase3/7 activity assay, and flow cytometry. The effect of SCUBE3 on HCC cell proliferation in vivo was inspected by a xenograft tumour model in nude mice. The related mechanisms were further studied. RESULTS The level of SCUBE3 was upregulated in HCC tissues and cell lines. Knockdown of SCUBE3 inhibited proliferation, promoted apoptosis, and induced cell cycle arrest in HCC cell lines in vitro and in vivo. Screening of cell cycle-related proteins revealed that CCNL2, CDK6, CCNE1, and CCND1 exhibited a significantly different expression profile. We found that SCUBE3 may promote the proliferation of HCC cells by regulating CCNE1 expression. The pathway enrichment analysis showed that the TGFβ signalling pathway and the PI3K/AKT signalling pathway were significantly altered. Co-immunoprecipitation results showed that SCUBE3 binds to the TGFβRII receptor. SCUBE3 knockdown inhibited the PI3K/AKT signalling pathway and the phosphorylation of GSK3β to inhibit its kinase activity. CONCLUSIONS SCUBE3 promotes HCC development by regulating CCNE1 via TGFβ/PI3K/AKT/GSK3β pathway. In addition, SCUBE3 may be a new molecular target for the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Pan Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Aoran Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, People's Republic of China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Liang Yan
- Clinical Laboratory Department, Chongqing Hygeia Cancer Hospital, 200 SiXian Road, Chongqing, 401332, People's Republic of China.
| | - Qiang Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
14
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
15
|
Cryptomphalus aspersa Eggs Extract Potentiates Human Epidermal Stem Cell Regeneration and Amplification. COSMETICS 2021. [DOI: 10.3390/cosmetics9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Modern life and extended life expectancy have prompted the search for natural compounds alleviating skin aging. Evidence supports the beneficial effects on skin integrity and health from the topical administration of preparations of the mollusc Cryptomphalus aspersa eggs extract (IFC-CAF®) and suggests these effects are partly derived from an impact on skin renewal and repair mechanisms. The objective was to dissect in vitro the specific impact of IFC-CAF® on different parameters related to the regenerative potential, differentiation phenotype and exhaustion of skin stem cells. A prominent impact of IFC-CAF® was the induction of stratification and differentiated phenotypes from skin stem cells. IFC-CAF® slowed down the cell cycle at the keratinocyte DNA repair phase and, decelerated proliferation. However, it preserved the proliferative potential of the stem cells. IFC-CAF® reduced the DNA damage marker, γH2AX, and induced the expression of the transcription factor p53. These features correlated with significant protection in telomere shortening upon replicative exhaustion. Thus, IFC-CAF® helps maintain orderly cell cycling and differentiation, thus potentiating DNA repair and integrity. Our observations support the regenerative and repair capacity of IFC-CAF® on skin, through the improved mobilization and ordered differentiation of keratinocyte precursors and the enhancement of genome surveillance and repair mechanisms that counteract aging.
Collapse
|
16
|
Fagundes R, Teixeira LK. Cyclin E/CDK2: DNA Replication, Replication Stress and Genomic Instability. Front Cell Dev Biol 2021; 9:774845. [PMID: 34901021 PMCID: PMC8652076 DOI: 10.3389/fcell.2021.774845] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
DNA replication must be precisely controlled in order to maintain genome stability. Transition through cell cycle phases is regulated by a family of Cyclin-Dependent Kinases (CDKs) in association with respective cyclin regulatory subunits. In normal cell cycles, E-type cyclins (Cyclin E1 and Cyclin E2, CCNE1 and CCNE2 genes) associate with CDK2 to promote G1/S transition. Cyclin E/CDK2 complex mostly controls cell cycle progression and DNA replication through phosphorylation of specific substrates. Oncogenic activation of Cyclin E/CDK2 complex impairs normal DNA replication, causing replication stress and DNA damage. As a consequence, Cyclin E/CDK2-induced replication stress leads to genomic instability and contributes to human carcinogenesis. In this review, we focus on the main functions of Cyclin E/CDK2 complex in normal DNA replication and the molecular mechanisms by which oncogenic activation of Cyclin E/CDK2 causes replication stress and genomic instability in human cancer.
Collapse
Affiliation(s)
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Spurlock B, Parker D, Basu MK, Hjelmeland A, GC S, Liu S, Siegal GP, Gunter A, Moran A, Mitra K. Fine-tuned repression of Drp1-driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation. eLife 2021; 10:e68394. [PMID: 34545812 PMCID: PMC8497058 DOI: 10.7554/elife.68394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Danitra Parker
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Malay Kumar Basu
- Departments of Pathology, University of Alabama at BirminghamBirminghamUnited States
| | - Anita Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Sajina GC
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Shanrun Liu
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gene P Siegal
- Departments of Pathology, Surgery, Genetics and Cell and Developmental Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Alan Gunter
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Aida Moran
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
18
|
Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021; 39:759-778. [PMID: 33891890 PMCID: PMC8206013 DOI: 10.1016/j.ccell.2021.03.010] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Abnormal activity of the core cell-cycle machinery is seen in essentially all tumor types and represents a driving force of tumorigenesis. Recent studies revealed that cell-cycle proteins regulate a wide range of cellular functions, in addition to promoting cell division. With the clinical success of CDK4/6 inhibitors, it is becoming increasingly clear that targeting individual cell-cycle components may represent an effective anti-cancer strategy. Here, we discuss the potential of inhibiting different cell-cycle proteins for cancer therapy.
Collapse
Affiliation(s)
- Jan M Suski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marcin Braun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Vladislav Strmiska
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Wu M, Li X, Huang W, Chen Y, Wang B, Liu X. Ubiquitin-conjugating enzyme E2T(UBE2T) promotes colorectal cancer progression by facilitating ubiquitination and degradation of p53. Clin Res Hepatol Gastroenterol 2021; 45:101493. [PMID: 32736946 DOI: 10.1016/j.clinre.2020.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVES The expression level of Ubiquitin-conjugating enzyme E2T (UBE2T) is upregulated in various types of human tumors. We explored the correlation and regulatory mechanism of UBE2T in the development of colorectal cancer (CRC). METHODS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to examine the expression of UBE2T in the CRC tissues and cell lines. Immunohistochemical staining, spearman correlation analysis, and Kaplan Meier-survival analysis were used to demonstrate the correlation between UBE2T high expression level and the clinical characteristics of malignant patients and the overall survival. The proliferation, apoptosis, migration and invasion of CRC cells were analyzed by cell transfection, MTT, colony formation, scratch assay, transwell, and flow cytometry. Furthermore, the expression of cell proliferation and apoptosis related proteins and ubiquitination of p53 were detected by western blot. RESULTS UBE2T was up-regulated in CRC tissues and cell lines, and high expression level of UBE2T was correlated with the clinical characteristics of malignant of CRC patients (P<0.05), and patients with high expression level of UBE2T had lower overall survival (P=0.0455). In addition, UBE2T could promote the growth, proliferation, invasion and metastasis of CRC cells and inhibit the apoptosis. At the same time, knockdown of UBE2T inhibited the growth of transplanted tumor in mice of subcutaneous CRC model. Moreover, our experimental results proved that UBE2T regulated the expression of downstream related proteins through ubiquitination of p53 protein to promote the occurrence and development of CRC. CONCLUSION Our study elucidated that high expression of UBE2T would enhance the development of CRC, and then further explored its molecular mechanism both in vitro and in vivo. The results indicated that UBE2T facilitated ubiquitination and degradation of p53, which predicts the possibility of UBE2T as one of molecular diagnosis markers, prognostic indicators and therapeutic drug targets of CRC patients.
Collapse
Affiliation(s)
- Mengqiong Wu
- Department of Gynecology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Xianglu Li
- Department of Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, 570311, China
| | - Weiwei Huang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Yiming Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No.19 Xiu Hua Road, Xiuying District, Haikou City, 570311, Hainan Province, China.
| |
Collapse
|
20
|
de Pedro I, Galán-Vidal J, Freije A, de Diego E, Gandarillas A. p21CIP1 controls the squamous differentiation response to replication stress. Oncogene 2020; 40:152-162. [PMID: 33097856 DOI: 10.1038/s41388-020-01520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 11/09/2022]
Abstract
The control of cell fate is critical to homeostasis and cancer. Cell cycle cdk inhibitor p21CIP1 has a central and paradoxical role in the regulatory crossroads leading to senescence, apoptosis, or differentiation. p21 is an essential target of tumor suppressor p53, but it also is regulated independently. In squamous self-renewal epithelia continuously exposed to mutagenesis, p21 controls cell fate by mechanisms still intriguing. We previously identified a novel epidermoid DNA damage-differentiation response. We here show that p21 intervenes in the mitosis block that is required for the squamous differentiation response to cell cycle deregulation and replication stress. The inactivation of endogenous p21 in human primary keratinocytes alleviated the differentiation response to oncogenic loss of p53 or overexpression of the DNA replication major regulator Cyclin E. The bypass of p21-induced mitotic block involving upregulation of Cyclin B allowed DNA damaged cells to escape differentiation and continue to proliferate. In addition, loss of p21 drove keratinocytes from differentiation to apoptosis upon moderate UV irradiation. The results show that p21 is required to drive keratinocytes towards differentiation in response to genomic stress and shed light into its dual and paradoxical role in carcinogenesis.
Collapse
Affiliation(s)
- Isabel de Pedro
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Jesús Galán-Vidal
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ernesto de Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Paediatric Surgery, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,INSERM, Languedoc-Roussillon, 34394, Montpellier, France.
| |
Collapse
|
21
|
Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors. Oncogenesis 2020; 9:88. [PMID: 33028815 PMCID: PMC7542455 DOI: 10.1038/s41389-020-00270-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Oncogene-induced replication stress, for instance as a result of Cyclin E1 overexpression, causes genomic instability and has been linked to tumorigenesis. To survive high levels of replication stress, tumors depend on pathways to deal with these DNA lesions, which represent a therapeutically actionable vulnerability. We aimed to uncover the consequences of Cyclin E1 or Cdc25A overexpression on replication kinetics, mitotic progression, and the sensitivity to inhibitors of the WEE1 and ATR replication checkpoint kinases. We modeled oncogene-induced replication stress using inducible expression of Cyclin E1 or Cdc25A in non-transformed RPE-1 cells, either in a TP53 wild-type or TP53-mutant background. DNA fiber analysis showed Cyclin E1 or Cdc25A overexpression to slow replication speed. The resulting replication-derived DNA lesions were transmitted into mitosis causing chromosome segregation defects. Single cell sequencing revealed that replication stress and mitotic defects upon Cyclin E1 or Cdc25A overexpression resulted in genomic instability. ATR or WEE1 inhibition exacerbated the mitotic aberrancies induced by Cyclin E1 or Cdc25A overexpression, and caused cytotoxicity. Both these phenotypes were exacerbated upon p53 inactivation. Conversely, downregulation of Cyclin E1 rescued both replication kinetics, as well as sensitivity to ATR and WEE1 inhibitors. Taken together, Cyclin E1 or Cdc25A-induced replication stress leads to mitotic segregation defects and genomic instability. These mitotic defects are exacerbated by inhibition of ATR or WEE1 and therefore point to mitotic catastrophe as an underlying mechanism. Importantly, our data suggest that Cyclin E1 overexpression can be used to select patients for treatment with replication checkpoint inhibitors.
Collapse
|
22
|
p50 mono-ubiquitination and interaction with BARD1 regulates cell cycle progression and maintains genome stability. Nat Commun 2020; 11:5007. [PMID: 33024116 PMCID: PMC7538584 DOI: 10.1038/s41467-020-18838-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/15/2020] [Indexed: 01/14/2023] Open
Abstract
p50, the mature product of NFKB1, is constitutively produced from its precursor, p105. Here, we identify BARD1 as a p50-interacting factor. p50 directly associates with the BARD1 BRCT domains via a C-terminal phospho-serine motif. This interaction is induced by ATR and results in mono-ubiquitination of p50 by the BARD1/BRCA1 complex. During the cell cycle, p50 is mono-ubiquitinated in S phase and loss of this post-translational modification increases S phase progression and chromosomal breakage. Genome-wide studies reveal a substantial decrease in p50 chromatin enrichment in S phase and Cycln E is identified as a factor regulated by p50 during the G1 to S transition. Functionally, interaction with BARD1 promotes p50 protein stability and consistent with this, in human cancer specimens, low nuclear BARD1 protein strongly correlates with low nuclear p50. These data indicate that p50 mono-ubiquitination by BARD1/BRCA1 during the cell cycle regulates S phase progression to maintain genome integrity. p50 is a constitutively produced NF-κB subunit that modulates the response to DNA damage. Here, the authors show that activation of ATR during S phase induces p50 interaction with BARD1 resulting in p50 mono-ubiquitination, facilitating cell cycle progression and promoting chromosome integrity.
Collapse
|
23
|
Jang SM, Redon CE, Thakur BL, Bahta MK, Aladjem MI. Regulation of cell cycle drivers by Cullin-RING ubiquitin ligases. Exp Mol Med 2020; 52:1637-1651. [PMID: 33005013 PMCID: PMC8080560 DOI: 10.1038/s12276-020-00508-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
The last decade has revealed new roles for Cullin-RING ubiquitin ligases (CRLs) in a myriad of cellular processes, including cell cycle progression. In addition to CRL1, also named SCF (SKP1-Cullin 1-F box protein), which has been known for decades as an important factor in the regulation of the cell cycle, it is now evident that all eight CRL family members are involved in the intricate cellular pathways driving cell cycle progression. In this review, we summarize the structure of CRLs and their functions in driving the cell cycle. We focus on how CRLs target key proteins for degradation or otherwise alter their functions to control the progression over the various cell cycle phases leading to cell division. We also summarize how CRLs and the anaphase-promoting complex/cyclosome (APC/C) ligase complex closely cooperate to govern efficient cell cycle progression.
Collapse
Affiliation(s)
- Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Meriam K Bahta
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-4255, USA.
| |
Collapse
|
24
|
Zluhan-Martínez E, Pérez-Koldenkova V, Ponce-Castañeda MV, Sánchez MDLP, García-Ponce B, Miguel-Hernández S, Álvarez-Buylla ER, Garay-Arroyo A. Beyond What Your Retina Can See: Similarities of Retinoblastoma Function between Plants and Animals, from Developmental Processes to Epigenetic Regulation. Int J Mol Sci 2020; 21:E4925. [PMID: 32664691 PMCID: PMC7404004 DOI: 10.3390/ijms21144925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
The Retinoblastoma protein (pRb) is a key cell cycle regulator conserved in a wide variety of organisms. Experimental analysis of pRb's functions in animals and plants has revealed that this protein participates in cell proliferation and differentiation processes. In addition, pRb in animals and its orthologs in plants (RBR), are part of highly conserved protein complexes which suggest the possibility that analogies exist not only between functions carried out by pRb orthologs themselves, but also in the structure and roles of the protein networks where these proteins are involved. Here, we present examples of pRb/RBR participation in cell cycle control, cell differentiation, and in the regulation of epigenetic changes and chromatin remodeling machinery, highlighting the similarities that exist between the composition of such networks in plants and animals.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
- Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Mexico
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330. Col. Doctores, Alc. Cuauhtémoc 06720, Mexico;
| | - Martha Verónica Ponce-Castañeda
- Unidad de Investigación Médica en Enfermedades Infecciosas, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Sergio Miguel-Hernández
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Calle Wilfrido Massieu Esquina Cda, Manuel Stampa 07738, Mexico;
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria, UNAM 04510, Mexico; (E.Z.-M.); (M.d.l.P.S.); (B.G.-P.)
| |
Collapse
|
25
|
Chen E, Pei R. BI6727, a polo-like kinase 1 inhibitor with promising efficacy on Burkitt lymphoma cells. J Int Med Res 2020; 48:300060520926093. [PMID: 32468878 PMCID: PMC7263168 DOI: 10.1177/0300060520926093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE BI6727, an ATP-competitive PLK1 inhibitor, has been shown to cause cell death in multi-tumors. This study aimed to investigate the anti-tumor effect and potential molecular mechanism of BI6727 in human Burkitt lymphoma (BL) cell lines. METHODS We assessed polo-like kinase 1 (PLK1) expression in BL patient tissues and cells, also investigated the cytotoxic effect using CCK8 assay and flow cytometry. In addition, western blotting and real-time polymerase chain reaction (RT-PCR) assays were used to explore the molecular mechanisms of BI6727 in human BL cell lines. RESULTS PLK1 was overexpressed in BL cells compared with normal cells. The PLK1 inhibitor BI6727 reduced activated PLK1 expression and caused mitotic arrest in BL cells. Additionally, BI6727 suppressed cellular proliferation and induced apoptosis in BL cell lines. BI6727 treatment also decreased C-MYC protein and mRNA expression, blocked the PI3K/AKT/mTOR signaling pathway, and stabilized the FBXW7 protein. CONCLUSIONS Our findings explained a potential molecular mechanism of BI6727 in BL cells and suggested that BI6727 might be a new therapeutic agent for BL in the future.
Collapse
Affiliation(s)
- Er Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Hematology, Yinzhou People’s Hospital, Ningbo, Zhejiang, P.R. China
| | - Renzhi Pei
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Hematology, Yinzhou People’s Hospital, Ningbo, Zhejiang, P.R. China
| |
Collapse
|
26
|
Wang H, Ge X, Qu H, Wang N, Zhou J, Xu W, Xie J, Zhou Y, Shi L, Qin Z, Jiang Z, Yin W, Xia J. Glycyrrhizic Acid Inhibits Proliferation of Gastric Cancer Cells by Inducing Cell Cycle Arrest and Apoptosis. Cancer Manag Res 2020; 12:2853-2861. [PMID: 32425599 PMCID: PMC7187946 DOI: 10.2147/cmar.s244481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Glycyrrhizic acid (GA) is the main active ingredient extracted from Chinese herb licorice root, and it shows anti-tumor effects in many cancer types, while its role in gastric cancer (GC) is still unknown. In this study, we evaluated the effects of GA on GC cells and explored the underlying mechanisms. METHODS The anti-proliferation effect of GA on GC cells was assessed by CCK-8, colony formation, and EdU assay. The effects of GA on cell cycle and apoptosis were detected by flow cytometer. Western blotting was performed to explore the underlying mechanisms. RESULTS Our results showed that GA had a time- and dose-dependent inhibitory effect on proliferation of GC cells. Flow cytometer analysis demonstrated that GA would lead to G1/S-phase arrest and apoptosis. GA treatment down-regulated the levels of G1 phase-related proteins, including cyclin D1, D2, D3, E1, and E2. In terms of apoptosis, GA treatment up-regulated the levels of Bax, cleaved PARP, and pro-caspase-3, -8, -9, but did not influence their cleavage patterns. The expression of Bcl-2, survivin and p65 was attenuated after treatment. Besides, GA would down-regulate the phosphorylation of PI3K/AKT pathway. CONCLUSION This study focused on inhibitory effect of GA on GC cells by inducing cell cycle arrest and apoptosis. Several important cyclins- and apoptosis-related proteins were involved in the regulation of GA to GC cells, and phosphorylated PI3K and AKT were attenuated. The results of this study indicated that GA is a potential and promising anti-cancer drug for GC.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Xuhui Ge
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing210029, Jiangsu, People’s Republic of China
| | - Huiheng Qu
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Ning Wang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jiawen Zhou
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing211166, Jiangsu, People’s Republic of China
| | - Wenjing Xu
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jingjing Xie
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Yongping Zhou
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Liqing Shi
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Zhongke Qin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Zhuang Jiang
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Wenjie Yin
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi214002, Jiangsu, People’s Republic of China
- Department of General Surgery, Wuxi Clinical College Affiliated to Nantong University, Wuxi214002, Jiangsu, People’s Republic of China
| |
Collapse
|
27
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
28
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
29
|
Primo LMF, Teixeira LK. DNA replication stress: oncogenes in the spotlight. Genet Mol Biol 2019; 43:e20190138. [PMID: 31930281 PMCID: PMC7197996 DOI: 10.1590/1678-4685gmb-2019-0138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M. F. Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| | - Leonardo K. Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor
Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ,
Brazil
| |
Collapse
|
30
|
Abstract
Precise replication of genetic material is essential to maintain genome stability. DNA replication is a tightly regulated process that ensues faithful copies of DNA molecules to daughter cells during each cell cycle. Perturbation of DNA replication may compromise the transmission of genetic information, leading to DNA damage, mutations, and chromosomal rearrangements. DNA replication stress, also referred to as DNA replicative stress, is defined as the slowing or stalling of replication fork progression during DNA synthesis as a result of different insults. Oncogene activation, one hallmark of cancer, is able to disturb numerous cellular processes, including DNA replication. In fact, extensive work has indicated that oncogene-induced replication stress is an important source of genomic instability in human carcinogenesis. In this review, we focus on main oncogenes that induce DNA replication stress, such as RAS, MYC, Cyclin E, MDM2, and BCL-2 among others, and the molecular mechanisms by which these oncogenes interfere with normal DNA replication and promote genomic instability.
Collapse
Affiliation(s)
- Luiza M F Primo
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Leonardo K Teixeira
- Group of Cell Cycle Control, Program of Immunology and Tumor Biology. Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
SAMHD1 Regulates Human Papillomavirus 16-Induced Cell Proliferation and Viral Replication during Differentiation of Keratinocytes. mSphere 2019; 4:4/4/e00448-19. [PMID: 31391281 PMCID: PMC6686230 DOI: 10.1128/msphere.00448-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human papillomaviruses induce a host of anogenital cancers, as well as oropharyngeal cancer (HPV+OPC); human papillomavirus 16 (HPV16) is causative in around 90% of HPV+OPC cases. Using telomerase reverse transcriptase (TERT) immortalized foreskin keratinocytes (N/Tert-1), we have identified significant host gene reprogramming by HPV16 (N/Tert-1+HPV16) and demonstrated that N/Tert-1+HPV16 support late stages of the viral life cycle. Expression of the cellular dNTPase and homologous recombination factor sterile alpha motif and histidine-aspartic domain HD-containing protein 1 (SAMHD1) is transcriptionally regulated by HPV16 in N/Tert-1. CRISPR/Cas9 removal of SAMHD1 from N/Tert-1 and N/Tert-1+HPV16 demonstrates that SAMHD1 controls cell proliferation of N/Tert-1 only in the presence of HPV16; the deletion of SAMHD1 promotes hyperproliferation of N/Tert-1+HPV16 cells in organotypic raft cultures but has no effect on N/Tert-1. Viral replication is also elevated in the absence of SAMHD1. This new system has allowed us to identify a specific interaction between SAMHD1 and HPV16 that regulates host cell proliferation and viral replication; such studies are problematic in nonimmortalized primary keratinocytes due to their limited life span. To confirm the relevance of our results, we repeated the analysis with human tonsil keratinocytes (HTK) immortalized by HPV16 (HTK+HPV16) and observed the same hyperproliferative phenotype following CRISPR/Cas9 editing of SAMHD1. Identical results were obtained with three independent CRISPR/Cas9 guide RNAs. The isogenic pairing of N/Tert-1 with N/Tert-1+HPV16, combined with HTK+HPV16, presents a unique system to identify host genes whose products functionally interact with HPV16 to regulate host cellular growth in keratinocytes.IMPORTANCE HPVs are causative agents in human cancers and are responsible for around of 5% of all cancers. A better understanding of the viral life cycle in keratinocytes will facilitate the development of novel therapeutics to combat HPV-positive cancers. Here, we present a unique keratinocyte model to identify host proteins that specifically interact with HPV16. Using this system, we report that a cellular gene, SAMHD1, is regulated by HPV16 at the RNA and protein levels in keratinocytes. Elimination of SAMHD1 from these cells using CRISPR/Cas9 editing promotes enhanced cellular proliferation by HPV16 in keratinocytes and elevated viral replication but not in keratinocytes that do not have HPV16. Our study demonstrates a specific intricate interplay between HPV16 and SAMHD1 during the viral life cycle and establishes a unique model system to assist exploring host factors critical for HPV pathogenesis.
Collapse
|
32
|
Kettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, Carey JPW, Chen X, Eckols TK, Raghavendra AS, Ibrahim NK, Karuturi MS, Watowich SS, Sahin A, Tweardy DJ, Hunt KK, Tripathy D, Keyomarsi K. Combined Inhibition of STAT3 and DNA Repair in Palbociclib-Resistant ER-Positive Breast Cancer. Clin Cancer Res 2019; 25:3996-4013. [PMID: 30867218 PMCID: PMC6606366 DOI: 10.1158/1078-0432.ccr-18-3274] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are currently used in combination with endocrine therapy to treat advanced hormone receptor-positive, HER2-negative breast cancer. Although this treatment doubles time to progression compared with endocrine therapy alone, about 25%-35% of patients do not respond, and almost all patients eventually acquire resistance. Discerning the mechanisms of resistance to CDK4/6 inhibition is crucial in devising alternative treatment strategies. EXPERIMENTAL DESIGN Palbociclib-resistant cells (MCF-7 and T47D) were generated in a step-wise dose-escalading fashion. Whole-exome sequencing, genome-wide expression analysis, and proteomic analysis were performed in both resistant and parental (sensitive) cells. Pathway alteration was assessed mechanistically and pharmacologically. Biomarkers of altered pathways were examined in tumor samples from patients with palbociclib-treated breast cancer whose disease progressed while on treatment. RESULTS Palbociclib-resistant cells are cross-resistant to other CDK4/6 inhibitors and are also resistant to endocrine therapy (estrogen receptor downregulation). IL6/STAT3 pathway is induced, whereas DNA repair and estrogen receptor pathways are downregulated in the resistant cells. Combined inhibition of STAT3 and PARP significantly increased cell death in the resistant cells. Matched tumor samples from patients with breast cancer who progressed on palbociclib were examined for deregulation of estrogen receptor, DNA repair, and IL6/STAT3 signaling, and results revealed that these pathways are all altered as compared with the pretreatment tumor samples. CONCLUSIONS Palbociclib resistance induces endocrine resistance, estrogen receptor downregulation, and alteration of IL6/STAT3 and DNA damage response pathways in cell lines and patient samples. Targeting IL6/STAT3 activity and DNA repair deficiency using a specific STAT3 inhibitor combined with a PARP inhibitor could effectively treat acquired resistance to palbociclib.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Merih Guray Durak
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mehrnoosh Kohansal
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Human Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Yi
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - T Kris Eckols
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshara S Raghavendra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghan Sri Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
33
|
Abstract
Differentiated neurons can undergo cell cycle re-entry during pathological conditions, but it remains largely accepted that M-phase is prohibited in these cells. Here we show that primary neurons at post-synaptogenesis stages of development can enter M-phase. We induced cell cycle re-entry by overexpressing a truncated Cyclin E isoform fused to Cdk2. Cyclin E/Cdk2 expression elicits canonical cell cycle checkpoints, which arrest cell cycle progression and trigger apoptosis. As in mitotic cells, checkpoint abrogation enables cell cycle progression through S and G2-phases into M-phase. Although most neurons enter M-phase, only a small subset undergo cell division. Alternatively, neurons can exit M-phase without cell division and recover the axon initial segment, a structural determinant of neuronal viability. We conclude that neurons and mitotic cells share S, G2 and M-phase regulation.
Collapse
|