1
|
Gozai-Alghamdi SA, Aljbour SM, Amin SA, Agustí S. Photobiota of the Tropical Red Sea: Fatty Acid Profile Analysis and Nutritional Quality Assessments. Molecules 2025; 30:621. [PMID: 39942724 PMCID: PMC11820627 DOI: 10.3390/molecules30030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Photosynthetic organisms are primary sources of marine-derived molecules, particularly ω3 fatty acids (FAs), which influence the quality of marine foods. It is reported that tropical organisms possess lower FA nutritional quality than those from colder oceans. However, the high biodiversity known for tropical areas may help compensate for this deficiency by producing a high diversity of molecules with nutritional benefits for the ecosystem. Here we addressed this aspect by analyzing the FA profiles of 20 photosynthetic organisms from the salty and warm Red Sea, a biodiversity hot spot, including cyanobacteria, eukaryotic microalgae, macroalgae, mangrove leaves, as well as three selected reef's photosymbiotic zooxanthellate corals and jellyfish. Using direct transesterification, gas chromatography-mass spectrometry, FA absolute quantification, and nutritional indexes, we evaluated their lipid nutritional qualities. We observed interspecific and strain-specific variabilities in qualities, which the unique environmental conditions of the Red Sea may help to explain. Generally, eukaryotic microalgae exhibited the highest nutritional quality. The previously unanalyzed diatoms Leyanella sp. and Minutocellus sp. had the highest eicosapentaenoic acid (EPA) contents. The bioprospected Red Sea photobiota exhibited pharmaceutical and nutraceutical potential. By sourcing and quantifying these bioactive compounds, we highlight the untapped rich biodiversity of the Red Sea and showcase opportunities to harness these potentials.
Collapse
Affiliation(s)
- Sarah A. Gozai-Alghamdi
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biological Sciences, Faculty of Science, University of Jeddah (UJ), Jeddah 21959, Saudi Arabia
| | - Samir M. Aljbour
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University (BAU), Al-Salt 19117, Jordan
| | - Saeed A. Amin
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Susana Agustí
- Biological and Environmental Science and Engineering Division (BESE), Marine Science Program, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.A.); (S.A.A.); (S.A.)
| |
Collapse
|
2
|
Bao Y, Shen Y, Zhao W, Yang B, Zhao X, Tao S, Sun P, Monroig Ó, Zhou Q, Jin M. Evaluation of the Optimum Dietary Arachidonic Acid Level and Its Essentiality for Black Seabream ( Acanthopagrus schlegelii): Based on Growth and Lipid Metabolism. AQUACULTURE NUTRITION 2024; 2024:5589032. [PMID: 39575180 PMCID: PMC11581799 DOI: 10.1155/2024/5589032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/11/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024]
Abstract
The aim of this study was to investigate how dietary arachidonic acid (ARA) level affects growth performance and lipid metabolism in juvenile black seabream (Acanthopagrus schlegelii). A feeding trial was conducted for 8 weeks, during which the fish (0.99 ± 0.10 g) were fed six isonitrogenous and isolipidic diets with varying ARA levels of 0.1%, 0.59%, 1.04%, 1.42%, 1.94%, and 2.42%. Fish fed the diet with 1.42% ARA had significantly higher weight gain (WG) and specific growth rate (SGR) than the other groups (p < 0.05), except for the ARA1.04. As the ARA level increased, the liver and muscle effectively accumulated n-6 polyunsaturated fatty acids (n-6 PUFAs; p < 0.05). However, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and n-3 PUFA contents of liver and muscle significantly decreased by increasing dietary ARA level (p < 0.05). Results of liver histology showed dramatically increased vacuolar fat droplets leading to hepatic fat pathological changes in fish fed diets with ARA levels of 1.94% and 2.42% (p < 0.05). Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities increased with increasing dietary ARA level which was accompanied with elevated liver lipid content (p < 0.05). Consistently, triglyceride (TG) and nonesterified fatty acid (NEFA) concentrations of serum and liver, and serum cholesterol (CHO) concentration increased (p < 0.05). As the level of dietary ARA increased, the indicators of lipid metabolism such as sirtuin 1 (sirt1) and peroxisome proliferator-activated receptor α (pparα) also increased (p < 0.05). However, after reaching their peak in ARA1.04 group, the level of these indicators declined (p < 0.05). The same trend was observed for the expression of genes related to the downstream pathways. While the mRNA levels of sterol regulatory element-binding protein-1 (srebp-1) and its downstream genes were markedly increased with the increase of dietary ARA level (p < 0.05). In conclusion, these data suggested that the optimum dietary ARA requirement of A. schlegelii is 1.03% of diet based on the WG. The study revealed that a diet containing 1.04% ARA can activate the expression levels of sirt1 and pparα leading to promoted lipolysis. However, dietary ARA levels of ≥1.42% induced lipid accumulation in the liver, as they suppressed the mRNA levels of sirt1 and pparα, while elevating the expression level of genes related to lipogenesis.
Collapse
Affiliation(s)
- Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Bingqian Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Xiaoyi Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Shunshun Tao
- Xiangshan Harbor Aquatic Seedling Co. Ltd., Xiangshan County Fisheries Bureau, Ningbo 315702, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, Ribera de Cabanes 12595, Castellon, Spain
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
4
|
Hu G, Zhou Y, Mou D, Qu J, Luo L, Duan L, Xu Z, Zou X. Filtration effect of Cordyceps chanhua mycoderm on bacteria and its transport function on nitrogen. Microbiol Spectr 2024; 12:e0117923. [PMID: 38099615 PMCID: PMC10783027 DOI: 10.1128/spectrum.01179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE During the natural growth of Cordyceps chanhua, it will form a mycoderm structure specialized from hyphae. We found that the bacterial membrane of C. chanhua not only filters environmental bacteria but also absorbs and transports nitrogen elements inside and outside the body of C. chanhua. These findings are of great significance for understanding the stable mechanism of the internal microbial community maintained by C. chanhua and how C. chanhua maintains its own nutritional balance. In addition, this study also enriched our understanding of the differences in bacterial community composition and related bacterial community functions of C. chanhua at different growth stages, which is of great value for understanding the environmental adaptation mechanism, the element distribution network, and the changing process of symbiotic microbial system after Cordyceps fungi infected the host. At the same time, it can also provide a theoretical basis for some important ecological imitation cultivation technology of Cordyceps fungi.
Collapse
Affiliation(s)
- Gongping Hu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Dan Mou
- Department of Humanities, Business College of Guizhou University of Finance and Economics, Qiannan, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Tea College, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Lazo-Andrade J, Guzmán-Rivas FA, Barría P, Urzúa Á. Variability in the energy reserves of swordfish (Xiphias gladius) of the southeastern Pacific Ocean: A temporal and intra-individual perspective. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106081. [PMID: 37433241 DOI: 10.1016/j.marenvres.2023.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
The temporal dynamics of energy reserves are associated with the physiological processes (i.e., reproduction) in marine fishes, in which storage organs play a key role for efficient energy investment. We evaluated the temporal (i.e., seasons) and intra-individual (i.e., organs) dynamics of adult female swordfish (Xiphias gladius) during its feeding period off the Chilean coast in the southeastern Pacific Ocean (SEPO). The biochemical composition (i.e., lipids, proteins, and glucose), energy content and fatty acid profile of the muscle, liver and gonad were evaluated during the austral autumn, winter, and spring. Our results showed principally an intra-individual effect in both the muscle and liver in the autumn and spring. Herein, a trend of higher amounts of lipids and total energy were found in the muscle, while the liver showed greater protein and glucose contents. Consequently, the muscle showed a higher saturated, monounsaturated, and polyunsaturated fatty acid contents than the liver. Although the gonad showed no significant temporal effect in the lipids and proteins contents, an increasing trend of each biochemical constituent, fatty acid group and gonadosomatic index were found from autumn to winter. Consistently, the glucose and total energy content as well Fulton's condition factor were significantly higher in winter. These findings reflect the spatial-temporal physiological dynamic of swordfish based on the storage of energy reserves in different organs during its feeding period. In this way, the products obtained from swordfish could have an added value depending on the season and capture zone, which could benefit the exploitation and regulation measures of this resource under an ecological approach of conservation and sustainability in the SEPO.
Collapse
Affiliation(s)
- Jorge Lazo-Andrade
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Fabián A Guzmán-Rivas
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | | | - Ángel Urzúa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile; Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| |
Collapse
|
7
|
Kaur N, Brraich OS. Detrimental influence of industrial effluents, especially heavy metals, on limnological parameters of water and nutritional profile in addition to enzymatic activities of fish, Sperata seenghala (Sykes, 1839) from diverse Ramsar sites, India (Punjab). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1012. [PMID: 37526774 DOI: 10.1007/s10661-023-11600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
The present research was designed to determine the nutritive value of the liver and intestine of fish, Sperata seenghala, the impact of effluence load on limnological parameters of water and proximate composition of fish organs, especially on fatty acids, liver enzymatic activities, seasonal variations in the nutritional profile of fish, and to check and compare the pollution status of Ramsar sites in Punjab by calculating the water quality index, heavy metal pollution index, and metal index from June 2018 to August 2020. WQI of Harike wetland was found to be 53.95, which depicts that water quality in this region is "poor". At Nangal wetland, water quality index was reported to be "excellent" quality water and fit for the whole ecological unit. Overall heavy metal pollution index for Harike wetland was reported 174.569, whereas for Nangal wetland it was 5.994, depicting massive contaminant loads in a polluted region. MI value was also recorded as being higher (6.9336) in polluted habitat than in control habitat (0.8175). In fish liver, significant (p < 0.05) higher mean total lipids (6.73%), total proteins (3.98%), moisture (77.69%), ash (3.56%), and carbohydrates (3.79%) were observed in the samples from Nangal wetland than Harike wetland. A similar trend was reported in all biochemical contents of the fish intestine. Enzyme activities such as aspartate-aminotransferase and alanine-aminotransferase were significantly elevated (p < 0.05) in the specimens collected from the polluted region. The mean total n-3 (except in spring), n-6 polyunsaturated fatty acids (except in winter), and average monounsaturated and saturated fatty acids diminished significantly (p < 0.05) in the liver of fish from contaminated habitat than control site. In the intestine of fish collected from the polluted region, significant reductions in the mean total n-3 (except in autumn as well as summer), total n-6 PUFAs (in autumn and winter), and total SFAs were reported than control site.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
| | - Onkar Singh Brraich
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
8
|
Fouzai C, Trabelsi W, Bejaoui S, Marengo M, Ghribi F, Chetoui I, Mili S, Soudani N. Dual oxidative stress and fatty acid profile impacts in Paracentrotus lividus exposed to lambda-cyhalothrin: biochemical and histopathological responses. Toxicol Res 2023; 39:429-441. [PMID: 37398571 PMCID: PMC10313587 DOI: 10.1007/s43188-023-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 07/04/2023] Open
Abstract
Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500 µg/L) for 72 h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500 µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids' profiles as a relevant tool in aquatic ecotoxicological studies.
Collapse
Affiliation(s)
- Chaima Fouzai
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wafa Trabelsi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Michel Marengo
- Station de Recherche Sous-marines et Océanographiques (STARESO), Calvi, France
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Imen Chetoui
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Sami Mili
- Higher institute of fishing and aquaculture of Bizerte, Menzel Jemil Bizerte, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of aquatic organisms, Department of Biology, Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
9
|
Zhang J, Huang Z, Li Y, Fu D, Li Q, Pei L, Song Y, Chen L, Zhao H, Kao SJ. Synergistic/antagonistic effects of nitrate/ammonium enrichment on fatty acid biosynthesis and translocation in coral under heat stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162834. [PMID: 36924962 DOI: 10.1016/j.scitotenv.2023.162834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Superimposed on ocean warming, nitrogen enrichment caused by human activity puts corals under even greater pressure. Biosynthesis of fatty acids (FA) is crucial for coral holobiont survival. However, the responses of FA biosynthesis pathways to nitrogen enrichment under heat stress in coral hosts and Symbiodiniaceae remain unknown, as do FA translocation mechanisms in corals. Herein, we used the thermosensitive coral species Acropora hyacinthus to investigate changes in FA biosynthesis pathways and polyunsaturated FA translocation of coral hosts and Symbiodiniaceae with respect to nitrate and ammonium enrichment under heat stress. Heat stress promoted pro-inflammatory FA biosynthesis in coral hosts and inhibited FA biosynthesis in Symbiodiniaceae. Nitrate enrichment inhibited anti-inflammatory FA biosynthesis in Symbiodiniaceae, and promoted pro-inflammatory FA biosynthesis in coral hosts and translocation to Symbiodiniaceae, leading to bleaching after 14 days of culture. Intriguingly, ammonium enrichment promoted anti-inflammatory FA biosynthesis in Symbiodiniaceae and translocation to hosts, allowing corals to better endure heat stress. We constructed schematic diagrams of the shift in FA biosynthesis and translocation in and between A. hyacinthus and its Symbiodiniaceae under heat stress, heat and nitrate co-stress, and heat and ammonium co-stress. The findings provide insight into the mechanisms of coral bleaching under environmental stress from a fatty acid perspective.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zanhui Huang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yuanchao Li
- Hainan Academy of Marine and Fishery Sciences, Haikou 571126, China
| | - Dinghui Fu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Qipei Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Yanwei Song
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Liang Chen
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|
10
|
Teneva I, Belkinova D, Paunova-Krasteva T, Bardarov K, Moten D, Mladenov R, Dzhambazov B. Polyphasic characterisation of Microcoleusautumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013 (Oscillatoriales, Cyanobacteria) using a metabolomic approach as a complementary tool. Biodivers Data J 2023; 11:e100525. [PMID: 38327371 PMCID: PMC10848847 DOI: 10.3897/bdj.11.e100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 02/09/2024] Open
Abstract
As a result of the continuous revision of cyanobacterial taxonomy, Phormidiumautumnale (Agardh) Trevisan ex Gomont, 1892 has been transferred to the genus Microcoleus as Microcoleusautumnalis (Gomont, 1892) Strunecky, Komárek & J.R.Johansen, 2013. This transfer was based on a single strain and literature data. In the present study, we revise the taxonomic position of Microcoleusautumnalis by applying the classical approach of polyphasic taxonomy and additionally using metabolomics. Cyanobacterial strains identified as Phormidiumautumnale and Microcoleusvaginatus (type species of the genus Microcoleus) were used for comparative analyses. In addition, the taxonomic relationship between the species Phormidiumautumnale and Phormidiumuncinatum was determined on the basis of polyphasic characteristics. Monitoring of the morphological variability of Phormidiumautumnale and Microcoleusvaginatus strains showed a difference in the morphology concerning the ends of the trichomes, the shape of the apical cells, as well as the presence/absence of the calyptra and its shape. The performed TEM analysis of the thylakoid arrangement of the studied strains showed parietal arrangement of the thylakoids in the representatives of genus Phormidium and fascicular arrangement in genus Microcoleus. Molecular genetic analyses, based on 16S rDNA, revealed grouping of the investigated P.autumnale strains in a separate clade. This clade is far from the subtree, which is very clearly formed by the representatives of the type species of genus Microcoleus, namely M.vaginatus. The metabolomic analysis involving P.autumnale and M.vaginatus strains identified 39 compounds that could be used as potential biochemical markers to distinguish the two cyanobacterial species. Based on the data obtained, we suggest changing of the current status of Microcoleusautumnalis by restoring its previous appurtenance to the genus Phormidium under the name Phormidiumautumnale (Agardh) Trevisan ex Gomont, 1892 and distinguishing this species from genus Microcoleus.
Collapse
Affiliation(s)
- Ivanka Teneva
- Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, BulgariaFaculty of Biology, Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
| | - Detelina Belkinova
- Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, BulgariaFaculty of Biology, Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, BulgariaInstitute of Biodiversity and Ecosystem Research, Bulgarian Academy of SciencesSofiaBulgaria
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Мicrobiology, Bulgarian Academy of Sciences, Sofia, BulgariaThe Stephan Angeloff Institute of Мicrobiology, Bulgarian Academy of SciencesSofiaBulgaria
| | - Krum Bardarov
- InoBioTech Ltd., Sofia, BulgariaInoBioTech Ltd.SofiaBulgaria
| | - Dzhemal Moten
- Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, BulgariaFaculty of Biology, Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
| | - Rumen Mladenov
- Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, BulgariaFaculty of Biology, Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
| | - Balik Dzhambazov
- Faculty of Biology, Plovdiv University “Paisii Hilendarski”, Plovdiv, BulgariaFaculty of Biology, Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
| |
Collapse
|
11
|
Stipcich P, Beca-Carretero P, Álvarez-Salgado XA, Apostolaki ET, Chartosia N, Efthymiadis PT, Jimenez CE, La Manna G, Pansini A, Principato E, Resaikos V, Stengel DB, Ceccherelli G. Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica? MARINE ENVIRONMENTAL RESEARCH 2023; 184:105854. [PMID: 36577310 DOI: 10.1016/j.marenvres.2022.105854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leaves.
Collapse
Affiliation(s)
- Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, Ireland
| | | | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Niki Chartosia
- Department of Biological Sciences, University of Cyprus, Nicosia, 1678, Cyprus
| | | | - Carlos E Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus; Energy, Environment and Water Research Center (EEWRC) of the Cyprus Institute, Nicosia, Cyprus
| | - Gabriella La Manna
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy; MareTerra Onlus, Environmental Research and Conservation, 07041, Alghero, SS, Italy
| | - Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Elena Principato
- Area Marina Protetta "Isole Pelagie", Via Cameroni, s.n.c., 92031, Lampedusa, Italy
| | - Vasilis Resaikos
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos St. 2, Aglanjia 101, Nicosia, Cyprus
| | - Dagmar B Stengel
- Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche Fisiche Matematiche e Naturali, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| |
Collapse
|
12
|
Lahiri D, Nag M, Dey A, Sarkar T, Pati S, Nirmal NP, Ray RR, Upadhye VJ, Pandit S, Moovendhan M, Kavisri M. Marine bioactive compounds as antibiofilm agent: a metabolomic approach. Arch Microbiol 2023; 205:54. [PMID: 36602609 DOI: 10.1007/s00203-022-03391-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
The ocean is a treasure trove of both living and nonliving creatures, harboring incredibly diverse group of organisms. A plethora of marine sourced bioactive compounds are discovered over the past few decades, many of which are found to show antibiofilm activity. These are of immense clinical significance since the formation of microbial biofilm is associated with the development of high antibiotic resistance. Biofilms are also responsible to bring about problems associated with industries. In fact, the toilets and wash-basins also show degradation due to development of biofilm on their surfaces. Antimicrobial resistance exhibited by the biofilm can be a potent threat not only for the health care unit along with industries and daily utilities. Various recent studies have shown that the marine members of various kingdom are capable of producing antibiofilm compounds. Many such compounds are with unique structural features and metabolomics approaches are essential to study such large sets of metabolites. Associating holobiome metabolomics with analysis of their chemical attribute may bring new insights on their antibiofilm effect and their applicability as a substitute for conventional antibiotics. The application of computer-aided drug design/discovery (CADD) techniques including neural network approaches and structured-based virtual screening, ligand-based virtual screening in combination with experimental validation techniques may help in the identification of these molecules and evaluation of their drug like properties.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Siddhartha Pati
- Nat Nov Bioscience Private Limited, Balasore, 756001, Odisha, India
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, 73170, Nakhon Pathom, Thailand.
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India.
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - M Moovendhan
- Centre for Ocean Research (DST-FIST Sponsored Centre) MoES-Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of Building and Environment, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| |
Collapse
|
13
|
Cultivable bacteria in the supraglacial lake formed after a glacial lake outburst flood in northern Pakistan. Int Microbiol 2022; 26:309-325. [PMID: 36484912 DOI: 10.1007/s10123-022-00306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.
Collapse
|
14
|
Turgeson A, Morley L, Giles D, Harris B. Simulated Docking Predicts Putative Channels for the Transport of Long-Chain Fatty Acids in Vibrio cholerae. Biomolecules 2022; 12:biom12091269. [PMID: 36139109 PMCID: PMC9496633 DOI: 10.3390/biom12091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Fatty acids (FA) play an important role in biological functions, such as membrane homeostasis, metabolism, and as signaling molecules. FadL is the only known protein that uptakes long-chain fatty acids in Gram-negative bacteria, and this uptake has traditionally been thought to be limited to fatty acids up to 18 carbon atoms in length. Recently however, it was found Vibrio cholerae has the ability to uptake fatty acids greater than 18 carbon atoms and this uptake corresponds to bacterial survivability. Using E. coli’s FadL as a template, V. cholerae FadL homologs vc1042, vc1043, and vca0862 have been computationally folded, simulated on an atomistic level using Molecular Dynamics, and docked in silico to analyze the FadL transport channels. For the vc1042 and vc1043 homologs, these transport channels have more structural accommodations for the many rigid unsaturated bonds of long-chain polyunsaturated fatty acids, while the vca0862 homolog was found to lack transport channels within the signature beta barrel of FadL proteins.
Collapse
Affiliation(s)
- Andrew Turgeson
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Lucas Morley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Giles
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Bradley Harris
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Correspondence: ; Tel.: +1-423-425-2209
| |
Collapse
|
15
|
Temperature-mediated developmental plasticity in winter and summer larvae of Palaemon serratus. J Therm Biol 2022; 110:103343. [DOI: 10.1016/j.jtherbio.2022.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
16
|
Popov RS, Ivanchina NV, Dmitrenok PS. Application of MS-Based Metabolomic Approaches in Analysis of Starfish and Sea Cucumber Bioactive Compounds. Mar Drugs 2022; 20:320. [PMID: 35621972 PMCID: PMC9147407 DOI: 10.3390/md20050320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Today, marine natural products are considered one of the main sources of compounds for drug development. Starfish and sea cucumbers are potential sources of natural products of pharmaceutical interest. Among their metabolites, polar steroids, triterpene glycosides, and polar lipids have attracted a great deal of attention; however, studying these compounds by conventional methods is challenging. The application of modern MS-based approaches can help to obtain valuable information about such compounds. This review provides an up-to-date overview of MS-based applications for starfish and sea cucumber bioactive compounds analysis. While describing most characteristic features of MS-based approaches in the context of starfish and sea cucumber metabolites, including sample preparation and MS analysis steps, the present paper mainly focuses on the application of MS-based metabolic profiling of polar steroid compounds, triterpene glycosides, and lipids. The application of MS in metabolomics studies is also outlined.
Collapse
Affiliation(s)
- Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| | | | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia;
| |
Collapse
|
17
|
Koutsouveli V, Balgoma D, Checa A, Hedeland M, Riesgo A, Cárdenas P. Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767). Sci Rep 2022; 12:6317. [PMID: 35428825 PMCID: PMC9012834 DOI: 10.1038/s41598-022-10058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Sponges contain an astounding diversity of lipids that serve in several biological functions, including yolk formation in their oocytes and embryos. The study of lipid metabolism during reproduction can provide information on food-web dynamics and energetic needs of the populations in their habitats, however, there are no studies focusing on the lipid metabolism of sponges during their seasonal reproduction. In this study, we used histology, lipidome profiling (UHPLC-MS), and transcriptomic analysis (RNA-seq) on the deep-sea sponge Phakellia ventilabrum (Demospongiae, Bubarida), a key species of North-Atlantic sponge grounds, with the goal to (i) assess the reproductive strategy and seasonality of this species, (ii) examine the relative changes in the lipidome signal and the gene expression patterns of the enzymes participating in lipid metabolism during oogenesis. Phakellia ventilabrum is an oviparous and most certainly gonochoristic species, reproducing in May and September in the different studied areas. Half of the specimens were reproducing, generating two to five oocytes per mm2. Oocytes accumulated lipid droplets and as oogenesis progressed, the signal of most of the unsaturated and monounsaturated triacylglycerides increased, as well as of a few other phospholipids. In parallel, we detected upregulation of genes in female tissues related to triacylglyceride biosynthesis and others related to fatty acid beta-oxidation. Triacylglycerides are likely the main type of lipid forming the yolk in P. ventilabrum since this lipid category has the most marked changes. In parallel, other lipid categories were engaged in fatty acid beta-oxidation to cover the energy requirements of female individuals during oogenesis. In this study, the reproductive activity of the sponge P. ventilabrum was studied for the first time uncovering their seasonality and revealing 759 lipids, including 155 triacylglycerides. Our study has ecological and evolutionary implications providing essential information for understanding the molecular basis of reproduction and the origins and formation of lipid yolk in early-branching metazoans.
Collapse
Affiliation(s)
- Vasiliki Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK.
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden.
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.
| | - David Balgoma
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
- Unidad de Excelencia, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Mikael Hedeland
- Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, BMC, Husargatan 3, 751 23, Uppsala, Sweden
| | - Ana Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, London, SW7 5BD, UK
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Calle de José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, BMC, Husargatan 3, 751 24, Uppsala, Sweden
| |
Collapse
|
18
|
Soares C, Sousa S, Machado S, Vieira E, Carvalho AP, Ramalhosa MJ, Morais S, Correia M, Oliva-Teles T, Domingues VF, Delerue-Matos C. Bioactive Lipids of Seaweeds from the Portuguese North Coast: Health Benefits versus Potential Contamination. Foods 2021; 10:foods10061366. [PMID: 34204677 PMCID: PMC8231286 DOI: 10.3390/foods10061366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The total lipid content and lipidic profile of seaweeds harvested in the North Coast and purchased in Portugal were determined in this paper. The amount of total lipids in the different species of seaweeds varied between 0.7 ± 0.1% (Chondrus crispus) and 3.8 ± 0.6% (Ulva spp.). Regarding the fatty acid content, polyunsaturated fatty acids (PUFA) ranged between 0–35%, with Ulva spp. presenting the highest amount; monounsaturated fatty acids (MUFA) varied between 19 and 67%; and saturated fatty acids (SFA) were predominant in C. crispus (45–78%) and Gracilaria spp. (36–79%). Concerning the nutritional indices, the atherogenicity index (AI) was between 0.4–3.2, the thrombogenicity index (TI) ranged from 0.04 to 1.95, except for Gracilaria spp., which had a TI of 7.6, and the hypocholesterolemic/hypercholesterolemic ratio (HH) values ranged between 0.88–4.21, except for Gracilaria spp., which exhibited values between 0.22–9.26. The n6/n3 ratio was below 1 for most of the species evaluated, except for Ascophyllum nodosum, which presented a higher value, although below 2. Considering the PUFA/SFA ratio, seaweeds presented values between 0.11–1.02. The polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons (AHCs) contamination of seaweeds under study was also quantified, the values found being much lower than the maximum levels recommended for foodstuff.
Collapse
Affiliation(s)
- Cristina Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Sara Sousa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Susana Machado
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Elsa Vieira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Ana P. Carvalho
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Maria João Ramalhosa
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Manuela Correia
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Teresa Oliva-Teles
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| | - Valentina F. Domingues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
- Correspondence:
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (C.S.); (S.S.); (S.M.); (E.V.); (A.P.C.); (M.J.R.); (S.M.); (M.C.); (T.O.-T.); (C.D.-M.)
| |
Collapse
|
19
|
Coraça-Huber DC, Steixner S, Wurm A, Nogler M. Antibacterial and Anti-Biofilm Activity of Omega-3 Polyunsaturated Fatty Acids against Periprosthetic Joint Infections-Isolated Multi-Drug Resistant Strains. Biomedicines 2021; 9:biomedicines9040334. [PMID: 33810261 PMCID: PMC8065983 DOI: 10.3390/biomedicines9040334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Implantable medical devices, such as prosthetics, catheters, and several other devices, have revolutionized medicine, but they increase the infection risk. In previous decades, commercially available antibiotics lost their activity against coagulase-negative Staphylococci (CoNS) and several other microorganisms. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the two major omega-3 polyunsaturated fatty acids (ω-3 PUFAs) with antimicrobial properties. Materials and Methods: In this study, we tested the EPA and the DHA for its antibacterial and anti-biofilm activity in vitro against Staphylococcus epidermidis, Staphylococcus aureus, and different CoNS as reference strains and isolated from patients undergoing orthopedic treatment for implant infections. The tests were carried out with the strains in planktonic and biofilm form. Cytotoxicity assay was carried out with EPA and DHA using human gingival fibroblasts HGF-1. Results: The highest concentration of EPA and DHA promoted the complete killing of S. epidermidis 1457 and S. aureus ATCC 25923 in planktonic form. The fatty acids showed low activity against P. aeruginosa. EPA and DHA completely killed or significantly reduced the count of planktonic bacteria of the patient isolated strains. When incubated with media enriched with EPA and DHA, the biofilm formation was significantly reduced on S. epidermidis 1457 and not present on S. aureus ATCC 25923. The reduction or complete killing were also observed with the clinical isolates. The pre-formed biofilms showed reduction of the cell counting after treatment with EPA and DHA. Conclusion: In this study, the ω-3 PUFAs EPA and DHA showed antimicrobial and anti-biofilm activity in vitro against S. aureus, S. epidermidis, and P. aeruginosa, as well as against multi-drug resistant S. aureus and CoNS strains isolated from patients undergoing periprosthetic joint infections (PJI) treatment. Higher concentrations of the fatty acids showed killing activity on planktonic cells and inhibitory activity of biofilm formation. Although both substances showed antimicrobial activity, EPA showed better results in comparison with DHA. In addition, when applied on human gingival fibroblasts in vitro, EPA and DHA showed a possible protective effect on cells cultured in medium enriched with ethanol. Further studies are required to confirm the antimicrobial activity of EPA and DHA against multi-drug resistant strains and pan-drug resistant strains.
Collapse
Affiliation(s)
- Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.S.); (M.N.)
- Correspondence: ; Tel.: +43-512-9003-71697; Fax: +43-512-9003-73691
| | - Stephan Steixner
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.S.); (M.N.)
| | - Alexander Wurm
- University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria;
| | - Michael Nogler
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopedics, University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria; (S.S.); (M.N.)
| |
Collapse
|
20
|
de Kluijver A, Nierop KGJ, Morganti TM, Bart MC, Slaby BM, Hanz U, de Goeij JM, Mienis F, Middelburg JJ. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS One 2021; 16:e0241095. [PMID: 33503057 PMCID: PMC7840048 DOI: 10.1371/journal.pone.0241095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.
Collapse
Affiliation(s)
- Anna de Kluijver
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- * E-mail: , (ADK); (KGJN)
| | - Klaas G. J. Nierop
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
- * E-mail: , (ADK); (KGJN)
| | | | - Martijn C. Bart
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Beate M. Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Ulrike Hanz
- NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, Netherlands
| | - Jasper M. de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Furu Mienis
- NIOZ-Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Texel, Netherlands
| | - Jack J. Middelburg
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
21
|
Abd-El-Aziz NA. Preservation of Shellfish Undulate Venus (<i>Paphia undulate</i>) by Canning with Different Treatments. FOOD AND NUTRITION SCIENCES 2021; 12:859-873. [DOI: 10.4236/fns.2021.129064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Zaporozhets TS, Besednova NN. Biologically active compounds from marine organisms in the strategies for combating coronaviruses. AIMS Microbiol 2020; 6:470-494. [PMID: 33364539 PMCID: PMC7755586 DOI: 10.3934/microbiol.2020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Despite the progress made in immunization and drug development, so far there are no prophylactic vaccines and effective therapies for many viral infections, including infections caused by coronaviruses. In this regard, the search for new antiviral substances continues to be relevant, and the enormous potential of marine resources are a stimulus for the study of marine compounds with antiviral activity in experiments and clinical trials. The highly pathogenic human coronaviruses-severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) remain a serious threat to human health. In this review, the authors hope to bring the attention of researchers to the use of biologically active substances of marine origin as potential broad-spectrum antiviral agents targeting common cellular pathways and various stages of the life cycle of different viruses, including coronaviruses. The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to June 2020) and keywords such as 'coronaviruses', 'marine organisms', 'biologically active substances', 'antiviral drugs', 'SARS-CoV', 'MERS-CoV', 'SARS-CoV-2', '3CLpro', 'TMPRSS2', 'ACE2'. After obtaining all reports from the databases, the papers were carefully analysed in order to find data related to the topic of this review (98 references). Biologically active substances of marine origin, such as flavonoids, phlorotannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, lipids and others substances, can affect coronaviruses at the stages of penetration and entry of the viral particle into the cell, replication of the viral nucleic acid and release of the virion from the cell; they also can act on the host's cellular targets. These natural compounds could be a vital resource in the fight against coronaviruses.
Collapse
Affiliation(s)
- Tatyana S. Zaporozhets
- Immunology Laboratory, Somov Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation
| | | |
Collapse
|
23
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
24
|
Chang YC, Chiang CC, Chang YS, Chen JJ, Wang WH, Fang LS, Chung HM, Hwang TL, Sung PJ. Novel Caryophyllane-Related Sesquiterpenoids with Anti-Inflammatory Activity from Rumphella antipathes (Linnaeus, 1758). Mar Drugs 2020; 18:md18110554. [PMID: 33172193 PMCID: PMC7694975 DOI: 10.3390/md18110554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Two previously undescribed caryophyllane-related sesquiterpenoids, antipacids A (1) and B (2), with a novel bicyclo[5.2.0] core skeleton, and known compound clovane-2β,9α-diol (3), along with rumphellolide L (4), an esterified product of 1 and 3, were isolated from the organic extract of octocoral Rumphella antipathes. Their structures, including the absolute configurations were elucidated by spectroscopic and chemical experiments. In vivo anti-inflammatory activity analysis indicated that antipacid B (2) inhibited the generation of superoxide anions and the release of elastase by human neutrophils, with IC50 values of 11.22 and 23.53 μM, respectively, while rumphellolide L (4) suppressed the release of elastase with an IC50 value of 7.63 μM.
Collapse
Affiliation(s)
- Yu-Chia Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112304, Taiwan;
| | - Wei-Hsien Wang
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (W.-H.W.); (L.-S.F.)
| | - Lee-Shing Fang
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (W.-H.W.); (L.-S.F.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Hsu-Ming Chung
- Department of Applied Chemistry, College of Science, National Pingtung University, Pingtung 900393, Taiwan
- Correspondence: (H.-M.C.); (T.-L.H.); (P.-J.S.); Tel.: +886-8-766-3800 (ext. 33253) (H.-M.C.); +886-3-211-8800 (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-723-0305 (H.-M.C.); +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan;
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
- Department of Chemical Engineering, College of Environment and Resources, Ming Chi University of Technology, New Taipei City 243303, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan
- Correspondence: (H.-M.C.); (T.-L.H.); (P.-J.S.); Tel.: +886-8-766-3800 (ext. 33253) (H.-M.C.); +886-3-211-8800 (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-723-0305 (H.-M.C.); +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (W.-H.W.); (L.-S.F.)
- National Museum of Marine Biology and Aquarium, Pingtung 944401, Taiwan
- Graduate Institute of Marine Biology, College of Marine Sciences, National Dong Hwa University, Pingtung 944401, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (H.-M.C.); (T.-L.H.); (P.-J.S.); Tel.: +886-8-766-3800 (ext. 33253) (H.-M.C.); +886-3-211-8800 (T.-L.H.); +886-8-882-5037 (P.-J.S.); Fax: +886-8-723-0305 (H.-M.C.); +886-3-211-8506 (T.-L.H.); +886-8-882-5087 (P.-J.S.)
| |
Collapse
|
25
|
Lanza M, Casili G, Torre GLL, Giuffrida D, Rotondo A, Esposito E, Ardizzone A, Rando R, Bartolomeo G, Albergamo A, Vadalà R, Salvo A. Properties of a New Food Supplement Containing Actinia equina Extract. Antioxidants (Basel) 2020; 9:antiox9100945. [PMID: 33019631 PMCID: PMC7600189 DOI: 10.3390/antiox9100945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
Marine species represent a great source of biologically active substances; Actinia equina (AE), an Anthozoa Cnidaria belonging to the Actinidiae family, have been proposed as original food and have already been included in several cooking recipes in local Mediterranean shores, and endowed with excellent nutraceutical potential. The aim of this study was to investigate some unexplored features of AE, through analytical screening and an in-vitro and in-vivo model. An in-vitro study, made on RAW 264.7 stimulated with H2O2, showed that the pre-treatment with AE exerted an antioxidant action, reducing lipid peroxidation and up-regulating antioxidant enzymes. On the other hand, the in-vivo study over murine model demonstrated that the administration of AE extracts is able to reduce the carrageenan (CAR)-induced paw edema. Furthermore, the histological damage due to the neutrophil infiltration is prevented, and this highlights precious anti-inflammatory features of the interesting food-stuff. Moreover, it was assessed that AE extract modulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and The nuclear factor erythroid 2-related factor 2 (Nrf-2) pathways. In conclusion, our data demonstrated that thanks to the antioxidant and anti-inflammatory properties, AE extract could be used as a new food supplement for inflammatory pathology prevention.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Giovanna Loredana La Torre
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Daniele Giuffrida
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
- Correspondence: (D.G.); (E.E.); Tel.: +39-090-6765496 (D.G.); +39-090-6765212 (E.E.)
| | - Archimede Rotondo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
- Correspondence: (D.G.); (E.E.); Tel.: +39-090-6765496 (D.G.); +39-090-6765212 (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 3, 98166 Messina, Italy; (M.L.); (G.C.); (A.A.)
| | - Rossana Rando
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Giovanni Bartolomeo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Ambrogina Albergamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Rossella Vadalà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy; (G.L.L.T.); (A.R.); (R.R.); (G.B.); (A.A.); (R.V.)
| | - Andrea Salvo
- Department of Chemistry and Drug Technology, University of Roma La Sapienza, via P.le A. Moro 5, 00185 Roma, Italy;
| |
Collapse
|
26
|
Ribeiro-Vidal H, Sánchez MC, Alonso-Español A, Figuero E, Ciudad MJ, Collado L, Herrera D, Sanz M. Antimicrobial Activity of EPA and DHA against Oral Pathogenic Bacteria Using an In Vitro Multi-Species Subgingival Biofilm Model. Nutrients 2020; 12:nu12092812. [PMID: 32937742 PMCID: PMC7551721 DOI: 10.3390/nu12092812] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
In search for natural products with antimicrobial properties for use in the prevention and treatment of periodontitis, the purpose of this investigation was to evaluate the antimicrobial activity of two omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), using an in vitro multi-species subgingival biofilm model including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of EPA and DHA extracts (100 µM) and the respective controls were assessed on 72 h biofilms by their submersion onto discs for 60 s. Antimicrobial activity was evaluated by quantitative polymerase chain reaction (qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). ANOVA with Bonferroni correction was used to evaluate the antimicrobial activity of each of the fatty acids. Both DHA and EPA significantly reduced (p < 0.001 in all cases) the bacterial strains used in this biofilm model. The results with CLSM were consistent with those reported with qPCR. Structural damage was evidenced by SEM in some of the observed bacteria. It was concluded that both DHA and EPA have significant antimicrobial activity against the six bacterial species included in this biofilm model.
Collapse
Affiliation(s)
- Honorato Ribeiro-Vidal
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Andrea Alonso-Español
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Maria José Ciudad
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - Luís Collado
- Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain; (M.J.C.); (L.C.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain; (H.R.-V.); (M.C.S.); (A.A.-E.); (E.F.); (D.H.)
- Correspondence: ; Tel.: +34-913-942-021
| |
Collapse
|
27
|
Lin D, Zhu K, Qian W, Punt AE, Chen X. Fatty acid comparison of four sympatric loliginid squids in the northern South China Sea: Indication for their similar feeding strategy. PLoS One 2020; 15:e0234250. [PMID: 32525959 PMCID: PMC7289379 DOI: 10.1371/journal.pone.0234250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/21/2020] [Indexed: 11/24/2022] Open
Abstract
Feeding strategies of sympatric squid species help to understand their role in marine ecosystems. Four loliginid squids, Uroteuthis duvaucelii, Uroteuthis edulis, Uroteuthis chinensis, and Loliolus uyii are the major cephalopod species in the coastal waters of the northern South China Sea, where they occur together. We investigated their feeding strategies in terms of foraging behavior and habitat use by comparing fatty acid profiles and spatial distributions. There were no significant differences in the proportions of saturated or polyunsaturated fatty acids among species. Similar findings were obtained for most individual fatty acids that made up of an average of more than 84% of total fatty acid content for each species. Substantial overlap and high similarity in the fatty acid composition were observed. However, there were no significant effects of individual size or sampling station on the fatty acid compositions. The spatial overlap analysis demonstrated that there was clear spatial segregation and habitat use among the species. Cumulatively, our results suggest that the four squids are opportunistic carnivores, unselectively foraging on similar prey items, while spatial segregation is likely a major mechanism leading to their coexistence in the northern South China Sea.
Collapse
Affiliation(s)
- Dongming Lin
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Kai Zhu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Weiguo Qian
- School of Fisheries, Zhejiang Ocean University, Zhejiang, China
| | - André E. Punt
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Xinjun Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
28
|
Fatty Acid Signatures in Different Tissues of Mediterranean Yellowtail, Seriola dumerili (Risso, 1810), Fed Diets Containing Different Levels of Vegetable and Fish Oils. Animals (Basel) 2020; 10:ani10020198. [PMID: 31991644 PMCID: PMC7070299 DOI: 10.3390/ani10020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Most of the studies performed to date mainly investigated on the effects of dietary substitution of fish oil with vegetable oils on growth and fatty acid composition of edible muscle tissues. On the other hand, a few assessed how dietary lipids are retained in other tissues, such as brain, liver, and adipose tissue, which would provide further insights into the fatty acid requirements of new farmed marine fish species such as Seriola dumerili. Thus, this study evaluated how the replacement of fish oil with different proportions of vegetable oils in diets affects the tissue-specific fatty acid composition (also known as signature) of brain, muscle, liver, and visceral fat of S. dumerili. The fatty acid composition of the diet had a strong effect on the fatty acid signature of muscle, liver, and visceral fat, whereas the brain signature was less sensitive to dietary changes. These new insights contribute to identify the essential fatty acids requirements of Mediterranean yellowtail and to define the conditions under which the physiological functions in these fish are preserved when they are fed diets with low fish oil levels to guarantee the sustainability of their production and welfare. Abstract The study aimed to evaluate how replacing different proportions of fish oil (FO) with vegetable oils (VO) in the diet of Mediterranean yellowtail, Seriola dumerili (Risso, 1810), affects the fatty acids (FA) signature, i.e.; overall FA profile, in different tissues. A total of 225 Mediterranean yellowtail juveniles (initial live weight: 176 ± 3.62 g) were fed for 109 days with one of three diets: A control diet (FO 100), with FO as the only lipid source, or diets with 75% and 100% of FO replaced with a VO mixture. At the end of the feeding trial, the brains, muscles, livers, and visceral fat were sampled in four fish per tank (12 per treatment), and their fat were extracted and used for FA analysis. The FA signatures of red and white muscle, liver, and visceral fat tissues changed when the dietary FA source changed, whereas FA signatures in the brain were rather robust to such dietary changes. These new insights might help evaluate whether key physiological functions are preserved when fish are fed diets with low FO levels, as well as define the dietary FA requirements of Mediterranean yellowtail to improve the sustainability of the production and welfare of the fish.
Collapse
|
29
|
Pandey AK, Siddiqui MH, Dutta R. Drug-likeness prediction of designed analogues of isoniazid standard targeting FabI enzyme regulation from P. falciparum. Bioinformation 2019; 15:364-368. [PMID: 31249440 PMCID: PMC6589475 DOI: 10.6026/97320630015364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022] Open
Abstract
Fatty acid biosynthesis enzymes (Fab enzyme) are important targets for anti-malarial drug development. The present study describes the toxicity screening of designed novel analogues which inhibit FabI enzyme regulation, a protein with multifunctional property. New analogues were prepared using ChemDraw Ultra 10 Software and converted into 3D PDB structure format for binding studies with FabI (PDB ID: 4IGE). Further Lipinski's rule of FIVE and ADMET profiling for toxicity prediction has been performed on the designed analogues. The result shows that ISN-23 is potential analogue exhibiting inhibition at the active site of FabI enzyme with good binding features.
Collapse
Affiliation(s)
- Anil Kumar Pandey
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow - 226026, India
- Institute of Bio-Sciences and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki - 225003, India
| | - Mohammad Haris Siddiqui
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow - 226026, India
| | - Rajiv Dutta
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow - 226026, India
| |
Collapse
|
30
|
Persia Jothy T, Rajesh Kannan R, Subramoniam T. Lipid and carotenoid metabolism in the developing embryos of the intertidal anomuran crab, Emerita asiatica (Milne Edwards). INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1608325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- T Persia Jothy
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - R Rajesh Kannan
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - T Subramoniam
- Center for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
| |
Collapse
|
31
|
Heidary Jamebozorgi F, Yousefzadi M, Firuzi O, Nazemi M, Jassbi AR. In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea. ACTA ACUST UNITED AC 2019; 27:121-135. [PMID: 30887402 DOI: 10.1007/s40199-019-00253-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE Marine sponges are rich sources of anticancer metabolites. Axinella sinoxea is a less studied sponge, found in the Larak Island's waters, of the Persian Gulf. In the present study, we have explored the cytotoxic properties and chemical constituents of A. sinoxea. METHODS Repeated silica gel flash column chromatography of methanol extract of the Axinella sinoxea sponge, yielded fatty acid and sterol fractions. These fractions were analyzed by GC-MS and their anti-proliferative activities were evaluated by MTT assay against three human cancer cell lines including MOLT-4, MCF-7 and HT-29 as well as NIH/3 T3 fibroblast cells. The sterol-rich fractions were pooled and purified by HPLC and its sub fractions' cytotoxic activities were evaluated by MTT assay against MOLT-4 and NIH/3 T3 cells. RESULTS The GC-MS spectral analysis of a fraction eluted with hexane: diethyl ether (90: 10), resulted in the identification of twelve fatty acids, including five linear chain saturated fatty acids; tetrdecanoic acid (1), pentadecanoic acid (3), hexadecanoic acid (5), heptadecanoic acid (7), and octadecanoic acid (10); one branched chain isoprenoid fatty acid, 4,8,12-trimethyltridecanoic acid (2); four monoenoic fatty acids; 9-hexadecenoic acid (4), 7-methyl-6-hexadecanoic acid (6), 9-octadecenoic acid (8) and 11-octadecenoic acid (9) and two polyunsaturated fatty acids; 5,8,11,14-eicosatetraenoic acid (11) and 4,7,10,13,16,19-docosahexaenoic acid (12). Spectral analysis of a non-polar fraction eluted with hexane: diethyl ether (85: 15), resulted in the identification of eight steroids including: cholesta-5,22-dien-3β-ol (13), cholest-5-en-3β-ol (14), ergosta-5,22-dien-3β-ol (15), ergost-5-en-3β-ol (16), stigmasta-5,22-dien-3β-ol (17), γ-sitosterol (18), 33-norgorgosta-5,24(28)-dien-3β-ol (19) and stigmasta-5,24(28)-dien-3β-ol (20). Fatty acids-containing fraction was active against HT-29 cell line with IC50 26.52 ± 8.19 μg/mL, while the steroids-rich fraction was active against the three above mentioned cell lines with IC50 values of 1.20 ± 0.24, 4.12 ± 0.40 and 2.47 ± 0.31 μg/mL, respectively. All of the above-mentioned fractions and sub-fractions were inactive (IC50s > 50 μg/mL) when assayed against normal fibroblast cells. CONCLUSION The present study suggests A. sinoxea as a potential natural source of cancer chemotherapeutics. Graphical abstract Cytotxic constituents of Axinella sinoxea.
Collapse
Affiliation(s)
- Fatemeh Heidary Jamebozorgi
- Department of Marine Biology, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Zip: 71348-53734, Iran
| | - Morteza Yousefzadi
- Department of Marine Biology, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Zip: 71348-53734, Iran
| | - Meliika Nazemi
- Persian Gulf and Oman Sea Ecological Research, Agricultural Research, Education and Extension Organization, Iranian Fisheries Research Institute, Bandar Abbas, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Zip: 71348-53734, Iran.
| |
Collapse
|
32
|
Costa R, Capillo G, Albergamo A, Li Volsi R, Bartolomeo G, Bua G, Ferracane A, Savoca S, Gervasi T, Rando R, Dugo G, Spanò N. A Multi-screening Evaluation of the Nutritional and Nutraceutical Potential of the Mediterranean Jellyfish Pelagia noctiluca. Mar Drugs 2019; 17:E172. [PMID: 30884901 PMCID: PMC6470882 DOI: 10.3390/md17030172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
The phylum Cnidaria is one of the most important contributors in providing abundance of bio- and chemodiversity. In this study, a comprehensive chemical investigation on the nutritional and nutraceutical properties of Mediterranean jellyfish Pelagia noctiluca was carried out. Also, compositional differences between male and female organisms, as well as between their main anatomical parts, namely bell and oral arms, were explored in an attempt to select the best potential sources of nutrients and/or nutraceuticals from jellyfish. With the exception of higher energy densities and total phenolic contents observed in females than males, no statistically significant differences related to the specimen's sex were highlighted for the other compound classes. Rather, the distribution of the investigated chemical classes varied depending on the jellyfish's body parts. In fact, crude proteins were more abundant in oral arms than bells; saturated fatty acids were more concentrated in bells than oral arms, whereas polyunsaturated fatty acids were distributed in the exact opposite way. On the other hand, major elements and trace elements demonstrated an opposite behavior, being the latter most accumulated in oral arms than bells. Additionally, important nutraceuticals, such as eicosapentaenoic and docosahexaenoic acids, and antioxidant minerals, were determined. Overall, obtained data suggest the potential employment of the Mediterranean P. noctiluca for the development of natural aquafeed and food supplements.
Collapse
Affiliation(s)
- Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Gioele Capillo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Ambrogina Albergamo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Rosalia Li Volsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Giovanni Bartolomeo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Giuseppe Bua
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Antonio Ferracane
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Serena Savoca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali (ChiBioFarAm), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Teresa Gervasi
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Rossana Rando
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| | - Giacomo Dugo
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
- Science4Life s.r.l., a Spin-Off of the University of Messina, 98168 Messina, Italy.
| | - Nunziacarla Spanò
- Dipartimento di Scienze Biomediche, Odontoiatriche, e delle Immagini Morfologiche e Funzionali (Biomorf), University of Messina, Viale Annunziata, 98168 Messina, Italy.
| |
Collapse
|
33
|
Parzanini C, Parrish CC, Hamel JF, Mercier A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS One 2018; 13:e0207395. [PMID: 30419073 PMCID: PMC6231680 DOI: 10.1371/journal.pone.0207395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Lipids are key compounds in marine ecosystems being involved in organism growth, reproduction, and survival. Despite their biological significance and ease of measurement, the use of lipids in deep-sea studies is limited, as is our understanding of energy and nutrient flows in the deep ocean. Here, a comprehensive analysis of total lipid content, and lipid class and fatty acid composition, was used to explore functional diversity and nutritional content within a deep-sea faunal assemblage comprising 139 species from 8 phyla, including the Chordata, Arthropoda, and Cnidaria. A wide range of total lipid content and lipid class composition suggested a diversified set of energy allocation strategies across taxa. Overall, phospholipid was the dominant lipid class. While triacylglycerol was present in most taxa as the main form of energy storage, a few crustaceans, fish, jellyfishes, and corals had higher levels of wax esters/steryl esters instead. Type and amount of energy reserves may reflect dietary sources and environmental conditions for certain deep-sea taxa. Conversely, the composition of fatty acids was less diverse than that of lipid class composition, and large proportions of unsaturated fatty acids were detected, consistent with the growing literature on cold-water species. In addition, levels of unsaturation increased with depth, likely suggesting an adaptive strategy to maintain normal membrane structure and function in species found in deeper waters. Although proportions of n-3 fatty acids were high across all phyla, representatives of the Chordata and Arthropoda were the main reservoirs of these essential nutrients, thus suggesting health benefits to their consumers.
Collapse
Affiliation(s)
- Camilla Parzanini
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | | | - Jean-François Hamel
- Society for Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips, NL, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
34
|
Ochsenkühn MA, Schmitt-Kopplin P, Harir M, Amin SA. Coral metabolite gradients affect microbial community structures and act as a disease cue. Commun Biol 2018; 1:184. [PMID: 30417121 PMCID: PMC6218554 DOI: 10.1038/s42003-018-0189-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
Corals are threatened worldwide due to prevalence of disease and bleaching. Recent studies suggest the ability of corals to resist disease is dependent on maintaining healthy microbiomes that span coral tissues and surfaces, the holobiont. Although our understanding of the role endosymbiotic microbes play in coral health has advanced, the role surface-associated microbes and their chemical signatures play in coral health is limited. Using minimally invasive water sampling, we show that the corals Acropora and Platygyra harbor unique bacteria and metabolites at their surface, distinctly different from surrounding seawater. The surface metabolites released by the holobiont create concentration gradients at 0–5 cm away from the coral surface. These molecules are identified as chemo-attractants, antibacterials, and infochemicals, suggesting they may structure coral surface-associated microbes. Further, we detect surface-associated metabolites characteristic of healthy or white syndrome disease infected corals, a finding which may aid in describing effects of diseases. Michael Ochsenkühn et al. look at the microbial and metabolic composition of coral surfaces and the surrounding seawater. They find that the metabolites found on the surface of the coral create a concentration gradient that influences the surrounding microbiome.
Collapse
Affiliation(s)
- Michael A Ochsenkühn
- Biology Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Lehrstuhl für Analytische Lebensmittelchemie, Technische Universität München, Alte Akademie 10, 85354, Freising, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Shady A Amin
- Biology Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates. .,Chemistry Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, 129188, United Arab Emirates.
| |
Collapse
|
35
|
Vereshchagina K, Kondrateva E, Axenov-Gribanov D, Shatilina Z, Khomich A, Bedulina D, Zadereev E, Timofeyev M. Nonspecific stress response to temperature increase in Gammarus lacustris Sars with respect to oxygen-limited thermal tolerance concept. PeerJ 2018; 6:e5571. [PMID: 30245929 PMCID: PMC6147124 DOI: 10.7717/peerj.5571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
The previously undescribed dynamics of the heat shock protein HSP70 and subsequent lipid peroxidation products have been assessed alongside lactate dehydrogenase activity for Gammarus lacustris Sars, an amphipod species from the saltwater Lake Shira (Republic of Khakassia). Individuals were exposed to a gradual temperature increase of 1 °C/hour (total exposure duration of 26 hours) starting from the mean annual temperature of their habitat (7 °C) up to 33 °C. A complex of biochemical reactions occurred when saltwater G. lactustris was exposed to the gradual changes in temperature. This was characterized by a decrease in lactate dehydrogenase activity and the launching of lipid peroxidation. The HSP70 level did not change significantly during the entire experiment. In agreement with the concept of oxygen-limited thermal tolerance, an accumulation of the most toxic lipid peroxides (triene conjugates and Schiff bases) in phospholipids occurred at the same time and temperature as the accumulation of lactate. The main criterion overriding the temperature threshold was, therefore, the transition to anaerobiosis, confirmed by the elevated lactate levels as observed in our previous associated study, and by the development of cellular stress, which was expressed by an accumulation of lipid peroxidation products. An earlier hypothesis, based on freshwater individuals of the same species, has been confirmed whereby the increased thermotolerance of G. lacustris from the saltwater lake was caused by differences in energy metabolism and energy supply of nonspecific cellular stress-response mechanisms. With the development of global climate change, these reactions could be advantageous for saltwater G. lacustris. The studied biochemical reactions can be used as biomarkers for the stress status of aquatic organisms when their habitat temperature changes.
Collapse
Affiliation(s)
- Kseniya Vereshchagina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | | | - Denis Axenov-Gribanov
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Zhanna Shatilina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Andrey Khomich
- International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus
| | - Daria Bedulina
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| | - Egor Zadereev
- Institute of Biophysics SB RAS, Krasnoyarsk Research Center SB RAS, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, Irkutsk, Russia
| |
Collapse
|
36
|
Zea-Obando C, Tunin-Ley A, Turquet J, Culioli G, Briand JF, Bazire A, Réhel K, Faÿ F, Linossier I. Anti-Bacterial Adhesion Activity of Tropical Microalgae Extracts. Molecules 2018; 23:molecules23092180. [PMID: 30158494 PMCID: PMC6225251 DOI: 10.3390/molecules23092180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
The evolution of regulations concerning biocidal products aimed towards an increased protection of the environment (e.g., EU Regulation No 528/2012) requires the development of new non-toxic anti-fouling (AF) systems. As the marine environment is an important source of inspiration, such AF systems inhibiting the adhesion of organisms without any toxicity could be based on molecules of natural origin. In this context, the antibiofilm potential of tropical microalgal extracts was investigated. The tropics are particularly interesting in terms of solar energy and temperatures which provide a wide marine diversity and a high production of microalgae. Twenty microalgal strains isolated from the Indian Ocean were studied. Their extracts were characterized in terms of global chemical composition by high resolution magic angle spinning (HR-MAS) and nuclear magnetic resonance (NMR) spectroscopy, toxicity against marine bacteria (viability and growth) and anti-adhesion effect. The different observations made by confocal laser scanning microscopy (CLSM) showed a significant activity of three extracts from Dinoflagellate strains against the settlement of selected marine bacteria without any toxicity at a concentration of 50 μg/mL. The Symbiodinium sp. (P-78) extract inhibited the adhesion of Bacillus sp. 4J6 (Atlantic Ocean), Shewanella sp. MVV1 (Indian Ocean) and Pseudoalteromonas lipolytica TC8 (Mediterranean Ocean) at 60, 76 and 52%, respectively. These results underlined the potential of using microalgal extracts to repel fouling organisms.
Collapse
Affiliation(s)
- Claudia Zea-Obando
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Alina Tunin-Ley
- Laboratory c/o CYROL, NEXA, 97490 Sainte Clotilde, Reunion, France.
| | - Jean Turquet
- Laboratory c/o CYROL, NEXA, 97490 Sainte Clotilde, Reunion, France.
| | - Gérald Culioli
- MAPIEM, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, EA 4323, 83041 Toulon, France.
| | - Jean-François Briand
- MAPIEM, Biofouling et Substances Naturelles Marines, Université du Sud Toulon-Var, EA 4323, 83041 Toulon, France.
| | - Alexis Bazire
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Karine Réhel
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Fabienne Faÿ
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| | - Isabelle Linossier
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, F-56100 Lorient, France.
| |
Collapse
|
37
|
Bennett H, Bell JJ, Davy SK, Webster NS, Francis DS. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. GLOBAL CHANGE BIOLOGY 2018; 24:3130-3144. [PMID: 29505691 DOI: 10.1111/gcb.14116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Ocean warming (OW) and ocean acidification (OA) are threatening coral reef ecosystems, with a bleak future forecast for reef-building corals, which are already experiencing global declines in abundance. In contrast, many coral reef sponge species are able to tolerate climate change conditions projected for 2100. To increase our understanding of the mechanisms underpinning this tolerance, we explored the lipid and fatty acid (FA) composition of four sponge species with differing sensitivities to climate change, experimentally exposed to OW and OA levels predicted for 2100, under two CO2 Representative Concentration Pathways. Sponges with greater concentrations of storage lipid, phospholipids, sterols and elevated concentrations of n-3 and n-6 long-chain polyunsaturated FA (LC PUFA), were more resistant to OW. Such biochemical constituents likely contribute to the ability of these sponges to maintain membrane function and cell homeostasis in the face of environmental change. Our results suggest that n-3 and n-6 LC PUFA are important components of the sponge stress response potentially via chain elongation and the eicosanoid stress-signalling pathways. The capacity for sponges to compositionally alter their membrane lipids in response to stress was also explored using a number of specific homeoviscous adaptation (HVA) indicators. This revealed a potential mechanism via which additional CO2 could facilitate the resistance of phototrophic sponges to thermal stress through an increased synthesis of membrane-stabilizing sterols. Finally, OW induced an increase in FA unsaturation in phototrophic sponges but a decrease in heterotrophic species, providing support for a difference in the thermal response pathway between the sponge host and the associated photosymbionts. Here we have shown that sponge lipids and FA are likely to be an important component of the sponge stress response and may play a role in facilitating sponge survival under future climate conditions.
Collapse
Affiliation(s)
- Holly Bennett
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
38
|
Adnan M, Alshammari E, Patel M, Amir Ashraf S, Khan S, Hadi S. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry. PeerJ 2018; 6:e5049. [PMID: 29967730 PMCID: PMC6026461 DOI: 10.7717/peerj.5049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022] Open
Abstract
Natural products from the unique environments of sea water and oceans represent a largely unfamiliar source for isolation of new microbes, which are potent producers of secondary bioactive metabolites. These unique life-forms from the marine ecosphere have served as an important source of drugs since ancient times and still offer a valuable resource for novel findings by providing remedial treatments. Therefore, it can be expected that many naturally bioactive marine microbial compounds with novel structures and bioactivities against those from terrestrial environments may be found among marine metabolites. Biofilms in aquatic environment possess serious problems to naval forces and oceanic industries around the globe. Current anti-biofilm or anti-biofouling technology is based on the use of toxic substances that can be harmful to their surrounding natural locales. Comprehensive research has been done to examine the bioactive potential of marine microbes. Results are remarkably varied and dynamic, but there is an urgent need for bioactive compounds with environmentally friendly or "green" chemical activities. Marine microbes have the potential as upcoming and promising source of non-toxic compounds with sustainable anti-biofouling/anti-biofilm properties as they can produce substances that can inhibit not only the chemical components required for biofilm production but also the attachment, microorganism growth, and/or cell-cell communication.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Eyad Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidhya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Sibte Hadi
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, UK
| |
Collapse
|
39
|
Kaliszewicz A, Jarząbek K, Szymańska J, Karaban K, Sierakowski M. Alpha-Linolenic Acid, but Not Palmitic Acid, Negatively Impacts Survival, Asexual Reproductive Rate, and Clonal Offspring Size in Hydra oligactis. Lipids 2018; 53:447-456. [PMID: 29741213 DOI: 10.1002/lipd.12026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
Abstract
Hydra, as sit-and-wait predators with limited food selectivity, could serve as model organisms for the analysis of the effect of a particular dietary component on growth and reproduction. We investigated the effect of food quality and of diets enriched with palmitic (PAM) or α-linolenic acid (ALA) on the life history traits of two hydra species: Hydra oligactis and Hydra vulgaris. We tested the hypothesis that a diet enriched with polyunsaturated fatty acids (PUFA) can stimulate growth and reproduction in simple metazoans with a sit-and-wait type of predatory strategy. Our results revealed that a diet based on Artemia nauplii, which are not a natural food for freshwater hydra, stimulated growth, asexual reproduction, and survival in hydra. Artemia nauplii were characterized by the highest lipid content of all used food sources. The analysis of the fatty acid content of hydra indicated the domination the n-6 fatty acids over n-3 (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], and ALA). Arachidonic acid appeared to be the dominant PUFA in Hydra, irrespective of diet supplementation with palmitic acid or ALA. The dietary supplementation of ALA negatively affected the survival, asexual reproductive rate, and size of clonal offspring of H. oligactis and had no effect on the life history traits of H. vulgaris. Our results also suggest that the hydras are not able to efficiently convert ALA into other essential fatty acids, such as EPA and DHA. To our knowledge, this is the first report about the adverse effects of n-3 fatty acid supplementation in primitive metazoans such as hydra.
Collapse
Affiliation(s)
- Anita Kaliszewicz
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Karolina Jarząbek
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Justyna Szymańska
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Kamil Karaban
- Institute of Ecology and Bioethics, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| | - Maciej Sierakowski
- Institute of Ecology and Bioethics, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland.,Toxicological Monitoring Station, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938, Warsaw, Poland
| |
Collapse
|
40
|
Pethybridge HR, Choy CA, Polovina JJ, Fulton EA. Improving Marine Ecosystem Models with Biochemical Tracers. ANNUAL REVIEW OF MARINE SCIENCE 2018; 10:199-228. [PMID: 29298140 DOI: 10.1146/annurev-marine-121916-063256] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.
Collapse
Affiliation(s)
- Heidi R Pethybridge
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania 7000, Australia; ,
| | - C Anela Choy
- Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA
- Current affiliation: Integrated Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0227, USA;
| | - Jeffrey J Polovina
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, Hawaii 96818, USA;
| | - Elizabeth A Fulton
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania 7000, Australia; ,
| |
Collapse
|
41
|
Achouri N, Smichi N, Kharrat N, Rmili F, Gargouri Y, Miled N, Fendri A. Characterization of liver oils from three species of sharks collected in Tunisian coasts: In vitro digestibility by pancreatic lipase. J Food Biochem 2017. [DOI: 10.1111/jfbc.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Neila Achouri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| | - Nabil Smichi
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
- Enzymologie Interfaciale et Physiologie de la Lipolyse, Chemin Joseph Aiguier; CNRS, Aix-Marseille Université; Marseille France
| | - Nadia Kharrat
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| | - Fatma Rmili
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| | - Youssef Gargouri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| | - Nabil Miled
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| | - Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS; Route de Soukra; BPW 1173-3038 Sfax Tunisie
| |
Collapse
|
42
|
Conlan JA, Rocker MM, Francis DS. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ 2017; 5:e3645. [PMID: 28785524 PMCID: PMC5544933 DOI: 10.7717/peerj.3645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 01/07/2023] Open
Abstract
Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral’s condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55–69% and 56–64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.
Collapse
Affiliation(s)
- Jessica A Conlan
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Melissa M Rocker
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Warrnambool, Victoria, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
43
|
Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 2017; 12:e0178180. [PMID: 28746396 PMCID: PMC5528264 DOI: 10.1371/journal.pone.0178180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66%) were Gram negative and 17 (34%) Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria) and Flavobacteria. The genus Pseudomonas (51.51%, 17) was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12%) Alcaligenes and 4 (12.12%) Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4) and Arthrobacter (23.52%, 4) were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2) and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11%) were more resistant to heavy metals as compared to Gram negative (78.79%) and showed maximum tolerance against iron and least tolerance against mercury.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Muhammad Hayat
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alexandre M. Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Syed Umair Ullah Jamil
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Noor Hassan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
44
|
|
45
|
Lourenço S, Roura Á, Fernández-Reiriz MJ, Narciso L, González ÁF. Feeding Relationship between Octopus vulgaris (Cuvier, 1797) Early Life-Cycle Stages and Their Prey in the Western Iberian Upwelling System: Correlation of Reciprocal Lipid and Fatty Acid Contents. Front Physiol 2017; 8:467. [PMID: 28769811 PMCID: PMC5515909 DOI: 10.3389/fphys.2017.00467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/19/2017] [Indexed: 01/13/2023] Open
Abstract
Under the influence of the Western Iberian upwelling system, the Iberian Atlantic coast holds important hatcheries and recruitment areas for Octopus vulgaris. Recently identified as an octopus hatchery, the Ría de Vigo harbors an important mesozooplankton community that supports O. vulgaris paralarvae during the first days of their planktonic stage. This study represents a preliminary approach to determine the nutritional link between wild O. vulgaris hatchlings, paralarvae and their zooplankton prey in the Ría de Vigo, by analyzing their lipid class content and fatty acid profiles. The results show that octopus hatchlings are richer in structural lipids as phospholipids and cholesterol, while the zooplankton is richer in reserve lipids like triacylglycerol and waxes. Zooplankton samples are also particularly rich in C18:1n9 and 22:6n3 (DHA), that seem to be successfully incorporated by O. vulgaris paralarvae thus resulting in a distinct fatty acid profile to that of the hatchlings. On the other hand, content in C20:4n6 (ARA) is maintained high through development, even though the zooplankton is apparently poorer in this essential fatty acid, confirming its importance for the development of O. vulgaris paralarvae. The content in monounsaturated fatty acids, particularly C18:1n7, and the DHA: EPA ratio are suggested as trophic markers of the diet of O. vulgaris paralarvae.
Collapse
Affiliation(s)
- Sílvia Lourenço
- Interdisciplinary Centre of Marine and Environmental Research, Cruise Terminal of the Port of LeixõesPorto, Portugal.,Divisão de Serviços de Investigação da Direção Regional das Pescas e Aquacultura da RAM, Centro de Maricultura da CalhetaCalheta, Portugal.,Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e InovaçãoFunchal, Portugal
| | - Álvaro Roura
- Instituto de Investigaciones Marinas (CSIC)Vigo, Spain.,Department of Ecology, Environment and Evolution, La Trobe UniversityMelbourne, VIC, Australia
| | | | - Luís Narciso
- Mare-Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de LisboaLisbon, Portugal
| | | |
Collapse
|
46
|
Pineda MC, Strehlow B, Sternel M, Duckworth A, Jones R, Webster NS. Effects of suspended sediments on the sponge holobiont with implications for dredging management. Sci Rep 2017; 7:4925. [PMID: 28694508 PMCID: PMC5504051 DOI: 10.1038/s41598-017-05241-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/26/2017] [Indexed: 12/25/2022] Open
Abstract
Dredging can cause high suspended sediment concentrations (SSC) in the water column, posing a hazard to filter feeding organisms like sponges as sediment may clog their aquiferous systems and reduce feeding. In order to provide pressure-response values for sponges to SSC and tease apart the cause:effect pathways of dredging pressures, five heterotrophic and phototrophic species were experimentally exposed to a range of dredging-relevant SSC of up to 100 mg L-1, with light compensation across treatments to ensure that SSC was the primary physical parameter. This study shows that some sponge species exposed to high SSC (≥23 mg L-1) for extended periods (28 d) have lower survival, increased necrosis and depletion of energy reserves. In contrast, SSC of ≤10 mg L-1 caused few, if any, negative effects and is thus suggested as a prudent sub-lethal threshold for sponges. Microbial communities did not change significantly among SSC treatments, although a nutritional shift from mixotrophy towards increased phototrophy was detected for some sponge species exposed to high SSC. Importantly however, it is expected that the combined effect of SSC with low light availability and sediment smothering as occurs during dredging operations will increase the negative effects on sponges.
Collapse
Affiliation(s)
- Mari-Carmen Pineda
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia.
- Western Australian Marine Science Institution, Perth, WA, Australia.
| | - Brian Strehlow
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
- Centre for Microscopy Characterisation and Analysis, School of Plant Biology and Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | | | - Alan Duckworth
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
| | - Ross Jones
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
| | - Nicole S Webster
- Australian Institute of Marine Science (AIMS), Townsville, QLD and Perth, WA, Australia
- Western Australian Marine Science Institution, Perth, WA, Australia
| |
Collapse
|
47
|
“Gone with the wind”: Fatty acid biomarkers and chemotaxonomy of stranded pleustonic hydrozoans (Velella velella and Physalia physalis). BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Dagorn F, Couzinet-Mossion A, Kendel M, Beninger PG, Rabesaotra V, Barnathan G, Wielgosz-Collin G. Exploitable Lipids and Fatty Acids in the Invasive Oyster Crassostrea gigas on the French Atlantic Coast. Mar Drugs 2016; 14:md14060104. [PMID: 27231919 PMCID: PMC4926063 DOI: 10.3390/md14060104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
Economic exploitation is one means to offset the cost of controlling invasive species, such as the introduced Pacific oyster (Crassostrea gigas Thunberg) on the French Atlantic coast. Total lipid and phospholipid (PL) fatty acids (FAs) and sterols were examined in an invasive population of C. gigas in Bourgneuf Bay, France, over four successive seasons, with a view to identify possible sources of exploitable substances. The total lipid level (% dry weight) varied from 7.1% (winter) to 8.6% (spring). Of this, PLs accounted for 28.1% (spring) to 50.4% (winter). Phosphatidylcholine was the dominant PL throughout the year (up to 74% of total PLs in winter). Plasmalogens were identified throughout the year as a series of eleven dimethylacetals (DMAs) with chain lengths between C16 and C20 (up to 14.5% of PL FAs + DMAs in winter). Thirty-seven FAs were identified in the PL FAs. Eicosapentaenoic acid (20:5n-3 EPA/7.53% to 14.5%) and docosahexaenoic acid (22:6n-3 DHA/5.51% to 9.5%) were the dominant polyunsaturated FAs in all seasons. Two non-methylene-interrupted dienoic (NMID) FAs were identified in all seasons: 7,13-docosadienoic and 7,15-docosadienoic acids, the latter being present at relatively high levels (up to 9.6% in winter). Twenty free sterols were identified, including cholesterol at 29.9% of the sterol mixture and about 33% of phytosterols. C. gigas tissues thus contained exploitable lipids for health benefits or as a potential source of high-quality commercial lecithin.
Collapse
Affiliation(s)
- Flore Dagorn
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| | - Aurélie Couzinet-Mossion
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| | - Melha Kendel
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| | - Peter G Beninger
- Faculté des Sciences et des Techniques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR34473 CNRS, 2 rue de La Houssinière BP 92208, F-44322 Nantes Cedex 3, France.
| | - Vony Rabesaotra
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| | - Gilles Barnathan
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| | - Gaëtane Wielgosz-Collin
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, Groupe Mer, Molécules, Santé-EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 rue Bias, BP 53508, F-44035 Nantes Cedex 1, France.
| |
Collapse
|
49
|
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar Drugs 2016; 14:md14050101. [PMID: 27213410 PMCID: PMC4882575 DOI: 10.3390/md14050101] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Silva
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Sofia Hoffman Mendonça
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Maria Helena Abreu
- ALGAplus-Produção e Comercialização de Algas e Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
50
|
Hsi HC, Hsu YW, Chang TC, Chien LC. Methylmercury Concentration in Fish and Risk-Benefit Assessment of Fish Intake among Pregnant versus Infertile Women in Taiwan. PLoS One 2016; 11:e0155704. [PMID: 27187161 PMCID: PMC4871344 DOI: 10.1371/journal.pone.0155704] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/14/2016] [Indexed: 12/27/2022] Open
Abstract
This study examined methylmercury (MeHg) concentrations in fish, the daily MeHg exposure dose, and the risk-benefit of MeHg, ω-3 polyunsaturated fatty acid (ω-3 PUFA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) related to fish intake among pregnant and infertile women in Taiwan. The measured MeHg concentrations in fish did not exceed the Codex guideline level of 1 mg/kg. Swordfish (0.28 ± 0.23 mg/kg) and tuna (0.14 ± 0.13 mg/kg) had the highest MeHg concentrations. The MeHg concentration in the hair of infertile women (1.82 ± 0.14 mg/kg) was significantly greater than that of pregnant women (1.24 ± 0.18 mg/kg). In addition, 80% of infertile women and 68% of pregnant women had MeHg concentrations in hair that exceeded the USEPA reference dose (1 mg/kg). The MeHg concentrations in hair were significantly and positively correlated with the estimated daily MeHg exposure dose. Based on the risk-benefit evaluation results, this paper recommends consumption of fish species with a low MeHg concentration and high concentrations of DHA + EPA and ω-3 PUFA (e.g., salmon, mackerel, and greater amberjack).
Collapse
Affiliation(s)
- Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - You-Wen Hsu
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Tien-Chin Chang
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|