1
|
Truskina J, Boeuf S, Renard J, Andersen TG, Geldner N, Ingram G. Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum-middle layer interface. Development 2022; 149:281769. [PMID: 36305487 PMCID: PMC10114112 DOI: 10.1242/dev.200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
During flowering plant reproduction, anthers produce pollen grains, the development of which is supported by the tapetum, a nourishing maternal tissue that also contributes non-cell-autonomously to the pollen wall, the resistant external layer on the pollen surface. How the anther restricts movement of the tapetum-derived pollen wall components, while allowing metabolites such as sugars and amino acids to reach the developing pollen, remains unknown. Here, we show experimentally that in arabidopsis thaliana the tapetum and developing pollen are symplastically isolated from each other, and from other sporophytic tissues, from meiosis onwards. We show that the peritapetal strip, an apoplastic structure, separates the tapetum and the pollen grains from other anther cell layers and can prevent the apoplastic diffusion of fluorescent proteins, again from meiosis onwards. The formation and selective barrier functions of the peritapetal strip require two NADPH oxidases, RBOHE and RBOHC, which play a key role in pollen formation. Our results suggest that, together with symplastic isolation, gating of the apoplast around the tapetum may help generate metabolically distinct anther compartments.
Collapse
Affiliation(s)
- Jekaterina Truskina
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France.,Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany
| | - Sophy Boeuf
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| | - Joan Renard
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France.,Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Camino de Vera, Valencia 46022, Spain
| | - Tonni Grube Andersen
- Department for Plant-microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL, F-69342 Lyon, France
| |
Collapse
|
2
|
Usoltseva RV, Belik AA, Kusaykin MI, Malyarenko OS, Zvyagintsevа TN, Ermakova SP. Laminarans and 1,3-β-D-glucanases. Int J Biol Macromol 2020; 163:1010-1025. [PMID: 32663561 DOI: 10.1016/j.ijbiomac.2020.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
The laminarans are biologically active water-soluble polysaccharide (1,3;1,6-β-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-β-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives. This review is to outline what is currently known about laminarans and enzymes that catalyze of their transformation. We focused on information about sources, structure and properties of laminarans and 1,3-β-D-glucanases, methods of obtaining and structural elucidation of laminarans, and biological activity of laminarans and products of their enzymatic transformation. It has an increased focus on the immunomodulating and anticancer activity of laminarans and their derivatives.
Collapse
Affiliation(s)
- Roza V Usoltseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Aleksei A Belik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Olesya S Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Tatiana N Zvyagintsevа
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation.
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022, 159, 100 Let Vladivostoku prosp., Vladivostok, Russian Federation
| |
Collapse
|
3
|
Liu F, Zou Z, Fernando WGD. Characterization of Callose Deposition and Analysis of the Callose Synthase Gene Family of Brassica napus in Response to Leptosphaeria maculans. Int J Mol Sci 2018; 19:ijms19123769. [PMID: 30486431 PMCID: PMC6320764 DOI: 10.3390/ijms19123769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
Callose plays a critical role in different biological processes including development as well as in the response to multiple biotic and abiotic stresses. In this study, we characterized the callose deposition in cotyledons of different Brassica napus varieties post-inoculated with different Leptosphaeria maculans isolates. Further, members of the callose synthase gene were identified from the whole genome of B. napus using the 12 Arabidopsis thaniana callose synthase protein sequences, and were then classified into three groups based on their phylogenetic relationships. Chromosomal location and duplication patterns indicated uneven distribution and segmental duplication patterns of BnCalS genes in the B. napus genome. Subsequently, gene structures, conserved domains analysis, and protein properties were analyzed for BnCalS genes. In addition, 12 B. napus orthologs of the AtCalS were selected for investigating the tissue expression pattern, indicating diverse expression patterns for these BnCalS genes. Responses of the selected 12 orthologs and all the BnCalS genes were characterized in the different types (AvrLm1-Rlm1, AvrLm4-Rlm4, AvrLepR1-LepR1) of B. napus–L. maculans interactions and B. napus-Leptosphaeria biglobosa interactions, implying their potential roles in response to Leptosphaeria infection.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | |
Collapse
|
4
|
Functional Analysis of a Novel β-(1,3)-Glucanase from Corallococcus sp. Strain EGB Containing a Fascin-Like Module. Appl Environ Microbiol 2017. [PMID: 28625980 DOI: 10.1128/aem.01016-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A novel β-(1,3)-glucanase gene designated lamC, cloned from Corallococcus sp. strain EGB, contains a fascin-like module and a glycoside hydrolase family 16 (GH16) catalytic module. LamC displays broad hydrolytic activity toward various polysaccharides. Analysis of the hydrolytic products revealed that LamC is an exo-acting enzyme on β-(1,3)(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan and xylan substrates. Site-directed mutagenesis of conserved catalytic Glu residues (E304A and E309A) demonstrated that these activities were derived from the same active site. Excision of the fascin-like module resulted in decreased activity toward β-(1,3)(1,3)-linked glucans. The carbohydrate-binding assay showed that the fascin-like module was a novel β-(1,3)-linked glucan-binding module. The functional characterization of the fascin-like module and catalytic module will help us better understand these enzymes and modules.IMPORTANCE In this report of a bacterial β-(1,3)(1,3)-glucanase containing a fascin-like module, we reveal the β-(1,3)(1,3)-glucan-binding function of the fascin-like module present in the N terminus of LamC. LamC displays exo-β-(1,3)/(1,6)-glucanase and endo-β-(1,4)-glucanase/xylanase activities with a single catalytic domain. Thus, LamC was identified as a novel member of the GH16 family.
Collapse
|
5
|
Xu X, Feng Y, Fang S, Xu J, Wang X, Guo W. Genome-wide characterization of the β-1,3-glucanase gene family in Gossypium by comparative analysis. Sci Rep 2016; 6:29044. [PMID: 27353015 PMCID: PMC4926093 DOI: 10.1038/srep29044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/10/2016] [Indexed: 01/10/2023] Open
Abstract
The β-1,3-glucanase gene family is involved in a wide range of plant developmental processes as well as pathogen defense mechanisms. Comprehensive analyses of β-1,3-glucanase genes (GLUs) have not been reported in cotton. Here, we identified 67, 68, 130 and 158 GLUs in four sequenced cotton species, G. raimondii (D5), G. arboreum (A2), G. hirsutum acc. TM-1 (AD1), and G. barbadense acc. 3-79 (AD2), respectively. Cotton GLUs can be classified into the eight subfamilies (A-H), and their protein domain architecture and intron/exon structure are relatively conserved within each subfamily. Sixty-seven GLUs in G. raimondii were anchored onto 13 chromosomes, with 27 genes involved in segmental duplications, and 13 in tandem duplications. Expression patterns showed highly developmental and spatial regulation of GLUs in TM-1. In particular, the expression of individual member of GLUs in subfamily E was limited to roots, leaves, floral organs or fibers. Members of subfamily E also showed more protein evolution and subgenome expression bias compared with members of other subfamilies. We clarified that GLU42 and GLU43 in subfamily E were preferentially expressed in root and leaf tissues and significantly upregulated after Verticillium dahliae inoculation. Silencing of GLU42 and GLU43 significantly increased the susceptibility of cotton to V. dahliae.
Collapse
Affiliation(s)
- Xiaoyang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Wang
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Jopcik M, Matusikova I, Moravcikova J, Durechova D, Libantova J. The expression profile of Arabidopsis thaliana β-1,3-glucanase promoter in tobacco. Mol Biol 2015. [DOI: 10.1134/s0026893315040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Xie YR, Raruang Y, Chen ZY, Brown RL, Cleveland TE. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:271-83. [PMID: 25251325 DOI: 10.1111/jipb.12286] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/20/2014] [Indexed: 05/26/2023]
Abstract
Plant β-1,3-glucanases are members of the pathogenesis-related protein 2 (PR-2) family, which is one of the 17 PR protein families and plays important roles in biotic and abiotic stress responses. One of the differentially expressed proteins (spot 842) identified in a recent proteomic comparison between five pairs of closely related maize (Zea mays L.) lines differing in aflatoxin resistance was further investigated in the present study. Here, the corresponding cDNA was cloned from maize and designated as ZmGns. ZmGns encodes a protein of 338 amino acids containing a potential signal peptide. The expression of ZmGns was detectible in all tissues studied with the highest level in silks. ZmGns was significantly induced by biotic stresses including three bacteria and the fungus Aspergillus flavus. ZmGns was also induced by most abiotic stresses tested and growth hormones including salicylic acid. In vivo, ZmGns showed a significant inhibitory activity against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and fungal pathogen Botrytis cinerea when it overexpressed in Arabidopsis. Its high level of expression in the silk tissue and its induced expression by phytohormone treatment, as well as by bacterial and fungal infections, suggest it plays a complex role in maize growth, development, and defense.
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-Infective Agents/pharmacology
- Antifungal Agents/pharmacology
- Arabidopsis/genetics
- Arabidopsis/microbiology
- Aspergillus/drug effects
- Botrytis/drug effects
- Cloning, Molecular
- Endo-1,3(4)-beta-Glucanase/chemistry
- Endo-1,3(4)-beta-Glucanase/genetics
- Endo-1,3(4)-beta-Glucanase/metabolism
- Escherichia coli/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Organ Specificity/drug effects
- Organ Specificity/genetics
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Growth Regulators/pharmacology
- Plant Leaves/drug effects
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Plants, Genetically Modified
- Recombinant Proteins/metabolism
- Salicylic Acid/pharmacology
- Sequence Alignment
- Sequence Analysis, DNA
- Stress, Physiological/drug effects
- Substrate Specificity/drug effects
- Temperature
- Zea mays/drug effects
- Zea mays/enzymology
- Zea mays/genetics
- Zea mays/microbiology
Collapse
Affiliation(s)
- Yu-Rong Xie
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, 70803, USA
| | | | | | | | | |
Collapse
|
8
|
Current overview of allergens of plant pathogenesis related protein families. ScientificWorldJournal 2014; 2014:543195. [PMID: 24696647 PMCID: PMC3947804 DOI: 10.1155/2014/543195] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.
Collapse
|
9
|
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. PLANT, CELL & ENVIRONMENT 2014; 37:1-18. [PMID: 23731015 PMCID: PMC4280902 DOI: 10.1111/pce.12142] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links, 653, B-9000, Ghent, Belgium
| | | |
Collapse
|
10
|
Mao B, Liu X, Hu D, Li D. Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 2013; 30:1229-38. [PMID: 24197785 DOI: 10.1007/s11274-013-1546-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
Rice sheath blight and blast caused by Rhizoctonia solani Kühn and Magnorpathe oryzae respectively, are the two most destructive fungal diseases in rice. With no genetic natural traits conferring resistance to sheath blight, transgenic manipulation provides an obvious approach. In this study, the rice basic chitinase gene (RCH10) and the alfalfa β-1,3-glucanase gene (AGLU1) were tandemly inserted into transformation vector pBI101 under the control of 35S promoter with its enhancer sequence to generate a double-defense gene expression cassette pZ100. The pZ100 cassette was transformed into rice (cv. Taipei 309) by Agrobacterium-mediated transformation. More than 160 independent transformants were obtained and confirmed by PCR. Northern analysis of inheritable progenies revealed similar levels of both RCH10 and AGLU1 transcripts in the same individuals. Disease resistance to both sheath blight and blast was challenged in open field inoculation. Immunogold detection revealed that RCH10 and AGLU1 proteins were initially located mainly in the chloroplasts and were delivered to the vacuole and cell wall upon infection, suggesting that these subcellular compartments act as the gathering and execution site for these anti-fungal proteins. We also observed that transgenic seeds display lower germination rate and seedling vigor, indicating that defense enhancement might be achieved at the expense of development.
Collapse
Affiliation(s)
- Bizeng Mao
- State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | |
Collapse
|
11
|
SCHRAUWEN JAM, METTENMEYER T, CROES AF, WULLEMS GJ. Tapetum-specific genes: what role do they play in male gametophyte development? ACTA ACUST UNITED AC 2013. [DOI: 10.1111/j.1438-8677.1996.tb00491.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:249-63. [PMID: 23252839 DOI: 10.1111/j.1438-8677.2012.00706.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Pollen grains are surrounded by a sculpted wall, which protects male gametophytes from various environmental stresses and microbial attacks, and also facilitates pollination. Pollen wall development requires lipid and polysaccharide metabolism, and some key genes and proteins that participate in these processes have recently been identified. Here, we summarise the genes and describe their functions during pollen wall development via several metabolic pathways. A working model involving substances and catalytic enzyme reactions that occur during pollen development is also presented. This model provides information on the complete process of pollen wall development with respect to metabolic pathways.
Collapse
Affiliation(s)
- J Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
13
|
Wojtasik W, Kulma A, Dymińska L, Hanuza J, Żebrowski J, Szopa J. Fibres from flax overproducing β-1,3-glucanase show increased accumulation of pectin and phenolics and thus higher antioxidant capacity. BMC Biotechnol 2013; 13:10. [PMID: 23394294 PMCID: PMC3598203 DOI: 10.1186/1472-6750-13-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/04/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, in order to improve the resistance of flax plants to pathogen infection, transgenic flax that overproduces β-1,3-glucanase was created. β-1,3-glucanase is a PR protein that hydrolyses the β-glucans, which are a major component of the cell wall in many groups of fungi. For this study, we used fourth-generation field-cultivated plants of the Fusarium -resistant transgenic line B14 to evaluate how overexpression of the β-1,3-glucanase gene influences the quantity, quality and composition of flax fibres, which are the main product obtained from flax straw. RESULTS Overproduction of β-1,3-glucanase did not affect the quantity of the fibre obtained from the flax straw and did not significantly alter the essential mechanical characteristics of the retted fibres. However, changes in the contents of the major components of the cell wall (cellulose, hemicellulose, pectin and lignin) were revealed. Overexpression of the β-1,3-glucanase gene resulted in higher cellulose, hemicellulose and pectin contents and a lower lignin content in the fibres. Increases in the uronic acid content in particular fractions (with the exception of the 1 M KOH-soluble fraction of hemicelluloses) and changes in the sugar composition of the cell wall were detected in the fibres of the transgenic flax when compared to the contents for the control plants. The callose content was lower in the fibres of the transgenic flax. Additionally, the analysis of phenolic compound contents in five fractions of the cell wall revealed important changes, which were reflected in the antioxidant potential of these fractions. CONCLUSION Overexpression of the β-1,3-glucanase gene has a significant influence on the biochemical composition of flax fibres. The constitutive overproduction of β-1,3-glucanase causes a decrease in the callose content, and the resulting excess glucose serves as a substrate for the production of other polysaccharides. The monosaccharide excess redirects the phenolic compounds to bind with polysaccharides instead of to partake in lignin synthesis. The mechanical properties of the transgenic fibres are strengthened by their improved biochemical composition, and the increased antioxidant potential of the fibres supports the potential use of transgenic flax fibres for biomedical applications.
Collapse
Affiliation(s)
- Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Lucyna Dymińska
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, Komandorska 118/120, 50-345, Wrocław, Poland
| | - Jerzy Hanuza
- Department of Bioorganic Chemistry, Institute of Chemistry and Food Technology, Faculty of Economics and Engineering, University of Economics, Komandorska 118/120, 50-345, Wrocław, Poland
- Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422, Wrocław, Poland
| | - Jacek Żebrowski
- Faculty of Biotechnology, Centre of Applied Biotechnology and Basic Sciences, Rzeszów University, Rzeszów, Poland
| | - Jan Szopa
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
- Linum Fundation, Stabłowicka 149-147, 54-066 Wroclaw, Poland
| |
Collapse
|
14
|
Astafieva AA, Rogozhin EA, Odintsova TI, Khadeeva NV, Grishin EV, Egorov TA. Discovery of novel antimicrobial peptides with unusual cysteine motifs in dandelion Taraxacum officinale Wigg. flowers. Peptides 2012; 36:266-71. [PMID: 22640720 DOI: 10.1016/j.peptides.2012.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.
Collapse
Affiliation(s)
- A A Astafieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
15
|
Zhou Z, Dun X, Xia S, Shi D, Qin M, Yi B, Wen J, Shen J, Ma C, Tu J, Fu T. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2041-58. [PMID: 22174440 PMCID: PMC3295392 DOI: 10.1093/jxb/err405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jinxing Tu
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
16
|
Wan L, Zha W, Cheng X, Liu C, Lv L, Liu C, Wang Z, Du B, Chen R, Zhu L, He G. A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development. PLANTA 2011; 233:309-23. [PMID: 21046148 DOI: 10.1007/s00425-010-1301-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 10/12/2010] [Indexed: 05/06/2023]
Abstract
Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.
Collapse
Affiliation(s)
- Linglin Wan
- Key Laboratory of Ministry of Education for Plant Development Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:939-51. [PMID: 20626649 PMCID: PMC2974755 DOI: 10.1111/j.1365-313x.2010.04294.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize anther ontogeny is complex, with the expression of more than 30,000 genes over 4 days of cell proliferation, cell fate acquisition and the start of meiosis. Although many male-sterile mutants disrupt these key steps, few have been investigated in detail. The terminal phenotypes of Zea mays (maize) male sterile 8 (ms8) are small anthers exhibiting meiotic failure. Here, we document much earlier defects: ms8 epidermal cells are normal in number but fail to elongate, and there are fewer, larger tapetal cells that retain, rather than secrete, their contents. ms8 meiocytes separate early, have extra space between them, occupied by excess callose, and the meiotic dyads abort. Thousands of transcriptome changes occur in ms8, including ectopic activation of genes not expressed in fertile siblings, failure to express some genes, differential expression compared with fertile siblings and about 40% of the differentially expressed transcripts appear precociously. There is a high correlation between mRNA accumulation assessed by microarray hybridization and quantitative real-time reverse transcriptase polymerase chain reaction. Sixty-three differentially expressed proteins were identified after two-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectroscopy, including those involved in metabolism, plasmodesmatal remodeling and cell division. The majority of these were not identified by differential RNA expression, demonstrating the importance of proteomics in defining developmental mutants.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Juan A. Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - John F. Fernandes
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA,94143
| | - Virginia Walbot
- Department of Biology, 385 Serra Mall, Stanford University, Stanford, CA, 94305-5020
| |
Collapse
|
18
|
McNeil KJ, Smith AG. A glycine-rich protein that facilitates exine formation during tomato pollen development. PLANTA 2010; 231:793-808. [PMID: 20033228 DOI: 10.1007/s00425-009-1089-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/12/2009] [Indexed: 05/06/2023]
Abstract
Formation of the unique and highly diverse outer cell wall, or exine, of pollen is essential for normal pollen function and survival. However, little is known about the many contributing proteins and processes involved in the formation of this wall. The tomato gene LeGRP92 encodes for a glycine-rich protein produced specifically in the tapetum. LeGRP92 is found as four major forms that accumulate differentially in protein extracts from stamens at different developmental stages. The three largest molecular weight forms accumulated during early microspore development, while the smallest molecular weight form of LeGRP92 was present in protein extracts from stamens from early microsporogenesis through anther dehiscence, and was the only form present in dehisced pollen. Light microscopy immunolocalization experiments detected LeGRP92 at only two stages, late tetrad and early free microspore. However, we observed accumulation of the LeGRP92 at the early tetrad stage of development by removing the callose wall from tetrads, which allowed LeGRP92 detection. Transmission electron microscopy confirmed the LeGRP92 accumulation from microspore mother cells, tetrads through anther dehiscence. It was observed in the callose surrounding the microspore mother cells and tetrads, the exine of microspores and mature pollen, and orbicules. Plants expressing antisense RNA had reduced levels of LeGRP92 mRNA and protein, which correlated to pollen with altered exine formation and reduced pollen viability and germination. These data suggest that the LeGRP92 has a role in facilitating sporopollenin deposition and uniform exine formation and pollen viability.
Collapse
MESH Headings
- Blotting, Western
- Cell Wall/genetics
- Cell Wall/metabolism
- Cell Wall/ultrastructure
- Gene Expression Regulation, Plant
- Glycine/chemistry
- Solanum lycopersicum/genetics
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/ultrastructure
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/ultrastructure
- Pollen/genetics
- Pollen/metabolism
- Pollen/ultrastructure
- RNA, Antisense/genetics
- RNA, Antisense/physiology
Collapse
Affiliation(s)
- Kenneth J McNeil
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
19
|
Karami O, Saidi A. The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 2009; 37:2493-507. [PMID: 19705297 DOI: 10.1007/s11033-009-9764-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 08/14/2009] [Indexed: 11/24/2022]
Abstract
Somatic embryogenesis (SE) has been studied as a model system for understanding of molecular events in the physiology, biochemistry, and biology areas occurring during plant embryo development. Stresses are also the factors that have been increasingly recognized as having important role in the induction of SE. Plant growth regulators such as 2,4-dichlorophenoxyacetic acid (2,4-D), ABA, ethylene, and high concentrations of 2,4-D are known as stress-related substances for acquisition of embryogenic competence by plant cells. Gene expression analysis in both the proteome and transcriptome levels have led to the identification and characterization of some stress-related genes and proteins associated with SE. This review focuses on the molecular basis for stress-induced acquisition of SE.
Collapse
Affiliation(s)
- Omid Karami
- Department of Biotechnology, Bu-Ali Sina University, Hamadan, Iran.
| | | |
Collapse
|
20
|
Abdeev RM, Abdeeva IA, Bruskin SS, Musiychuk KA, Goldenkova-Pavlova IV, Piruzian ES. Bacterial thermostable beta-glucanases as a tool for plant functional genomics. Gene 2009; 436:81-9. [PMID: 19393166 DOI: 10.1016/j.gene.2009.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/24/2022]
Abstract
A new strategy for creating experimental models for functional genomics has been proposed. It is based on the expression in transgenic plants of genes from thermophilic bacteria encoding functional analogues of plant proteins with high specific activity and thermal stability. We have validated this strategy by comparing physiological, biochemical and molecular properties of control tobacco plants and transgenic plants expressing genes of beta-glucanases with different substrate specificity. We demonstrate that the expression of bacterial beta-1,3-1,4-glucanase gene exerts no significant influence on tobacco plant metabolism, while the expression of bacterial beta-1,3-glucanase affects plant metabolism only at early stages of growth and development. By contrast, the expression of bacterial beta-1,4-glucanase has a significant effect on transgenic tobacco plant metabolism, namely, it affects plant morphology, the thickness of the primary cell wall, phytohormonal status, and the relative sugar content. We propose a hypothesis of beta-glucanase action as an important factor of genetic regulation of metabolic processes in plants.
Collapse
Affiliation(s)
- Rustam M Abdeev
- Center for Theoretical Problems of Physico-Chemical Pharmacology RAS, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:266-77. [PMID: 18397379 DOI: 10.1111/j.1365-313x.2008.03500.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In Arabidopsis, the tapetum plays important roles in anther development by providing enzymes for callose dissolution and materials for pollen-wall formation, and by supplying nutrients for pollen development. Here, we report the identification and characterization of a male-sterile mutant, defective in tapetal development and function 1 (tdf1), that exhibits irregular division and dysfunction of the tapetum. The TDF1 gene was characterized using a map-based cloning strategy, and was confirmed by genetic complementation. It encodes a putative R2R3 MYB transcription factor, and is highly expressed in the tapetum, meiocytes and microspores during anther development. Callose staining and gene expression analysis suggested that TDF1 may be a key component in controlling callose dissolution. Semi-quantitative and quantitative RT-PCR analysis showed that TDF1 acts downstream of DYT1 and upstream of AMS and AtMYB103 in the transcriptional regulatory networks that regulate tapetal development. In conclusion, our results show that TDF1 plays a vital role in tapetal differentiation and function.
Collapse
Affiliation(s)
- Jun Zhu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Grimault V, Helleboid S, Vasseur J, Hilbert JL. Co-Localization of beta-1,3-Glucanases and Callose During Somatic Embryogenesis in Cichorium. PLANT SIGNALING & BEHAVIOR 2007; 2:455-61. [PMID: 19517006 PMCID: PMC2634335 DOI: 10.4161/psb.2.6.4715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/09/2007] [Indexed: 05/12/2023]
Abstract
During direct somatic embryogenesis in leaves of Cichorium hybrid clone '474', 38 kDa beta-1,3-glucanases are accumulated in the culture medium of the embryogenic hybrid to a higher level when compared with a non-embryogenic cultivar. In the same time, embryogenic cells were surrounded by a cell wall that was characterized by the presence of callose. This callosic deposition disappeared as embryos grew. Callose consisted of beta-1,3-glucan linkages and so represented a possible substrate for beta-1,3-glucanases. Using immunolocalization experiments, we demonstrated that from the three types of callose deposits observed during the culturing of Cichorium leaf explants, only the callose present in the walls surrounding reactivated cells seemed specifically related to somatic embryogenesis. Moreover, callose and the 38-kDa beta-1,3-glucanases were co-localized dispersed throughout the thick and swelled walls of reactivated cells and embryo cell walls. This suggests that callose and beta-1,3-glucanases are implicated in the process of somatic embryogenesis since they were always detected in or quite near embryogenic and embryo cell. This also suggested that beta-1,3-glucanases could be involved in the degradation of this callose.
Collapse
Affiliation(s)
- Valérie Grimault
- Université des Sciences et Technologies de Lille; "Stress Abiotiques et Différenciation des Végétaux Cultivés;" Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
23
|
Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:528-38. [PMID: 17727613 DOI: 10.1111/j.1365-313x.2007.03254.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Downregulation of the transcription factor AtMYB103 using transgenic technology results in early tapetal degeneration and pollen aberration during anther development in Arabidopsis thaliana. This paper describes the functional analysis of the AtMYB103 gene in three knock-out mutants. Two male sterile mutants, ms188-1 and ms188-2, were generated by ethyl-methane sulfonate (EMS) mutagenesis. A map-based cloning approach was used, and ms188 was mapped to a 95.8-kb region on chromosome 5 containing an AtMYB103 transcription factor. Sequence analysis revealed that ms188-1 had a pre-mature stop codon in the AtMYB103 coding region, whereas ms188-2 had a CCT-->CTT base-pair change in the first exon of AtMYB103, which resulted in the replacement of a proline by a leucine residue in the R2R3 domain. The third mutant, an AtMYB103 transposon-tagging line, also showed a male sterile phenotype. Allelism tests indicated that MS188 and AtMYB103 belong to the same locus. Cytological observation revealed defective tapetum development and altered callose dissolution in ms188 plants. Additionally, most of the microspores in mature anthers were degraded and surviving microspores lacked exine. AtMYB103 encoded an R2R3 MYB protein that is predominantly located in the nucleus. Real-time RT-PCR analysis indicated that the callase-related gene A6 was regulated by AtMYB103. Expression of the exine formation gene MS2 was not detected in mutant anthers. These results implicate that AtMYB103 plays an important role in tapetum development, callose dissolution and exine formation in A. thaliana anthers.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ma J, Duncan D, Morrow DJ, Fernandes J, Walbot V. Transcriptome profiling of maize anthers using genetic ablation to analyze pre-meiotic and tapetal cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:637-48. [PMID: 17419846 DOI: 10.1111/j.1365-313x.2007.03074.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Oligonucleotide arrays were used to profile gene expression in dissected maize anthers at four stages: after-anther initiation, at the rapid mitotic proliferation stage, pre-meiosis, and meiotic prophase I. Nearly 9200 sense and antisense transcripts were detected, with the most diverse transcriptome present at the pre-meiotic stage. Three male-sterile mutants lacking a range of normal cell types resulting from a temporal progression of anther failure were compared with fertile siblings at equivalent stages by transcription profiles. The msca1 mutant has the earliest visible phenotype, develops none of the normal anther cell types and exhibits the largest deviation from fertile siblings. The mac1 mutant has an excess of archesporial derivative cells and lacks a tapetum and middle layer, resulting in moderate transcriptional deviations. The ms23 mutant lacks a differentiated tapetum and shows the fewest differences from fertile anthers. By combining the data sets from the comparisons between individual sterile and fertile anthers, candidate genes predicted to play important roles during maize anther development were assigned to stages and to likely cell types. Comparative analyses with a data set of anther-specific genes from rice highlight remarkable quantitative similarities in gene expression between these two grasses.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | | | | | |
Collapse
|
25
|
Liu CT, Aono T, Kinoshita M, Miwa H, Iki T, Lee KB, Oyaizu H. Isolation and differential expression of β-1,3-glucanase messenger RNAs, SrGLU3 and SrGLU4, following inoculation of Sesbania rostrata. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:983-990. [PMID: 32689309 DOI: 10.1071/fp06086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 06/27/2006] [Indexed: 06/11/2023]
Abstract
We report here the isolation and characterisation of two new β-1,3-glucanase cDNAs, SrGLU3 and SrGLU4, from a tropical legume Sesbania rostrata Bremek. & Oberm., which form N2-fixing nodules on the stem after infection by Azorhizobium caulinodans. SrGLU3 was characterised as being grouped in a branch with tobacco class I β-1,3-glucanases, where the isoforms were reported to be induced by either pathogen infection or ethylene treatment. SrGLU4 was characterised as separate from other classes, and we propose this new branch as a new class (Class VI). The SrGLU3 gene was constitutively expressed in normal stem nodules induced by the wild type strain of A. caulinodans (ORS571), and also even in immature stem nodules induced by a mutant (ORS571-C1), which could not form mature stem-nodules. In contrast, the transcript accumulation of SrGLU4 was hardly detectable in immature nodules inoculated by the ORS571-C1 mutant. We suggest that S. rostrata makes use of SrGLU4 to discriminate between symbionts and non-symbionts (mutants) in developing nodules. We propose the SrGLU4 gene as a new nodulin during nodulation.
Collapse
Affiliation(s)
- Chi-Te Liu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshihiro Aono
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Misako Kinoshita
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Miwa
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taichiro Iki
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kyung-Bum Lee
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroshi Oyaizu
- Laboratory of Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
26
|
Reduction in vacuolar volume in the tapetal cells coincides with conclusion of the tetrad stage in Arabidopsis thaliana. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Jiang SY, Cai M, Ramachandran S. The Oryza sativa no pollen (Osnop) gene plays a role in male gametophyte development and most likely encodes a C2-GRAM domain-containing protein. PLANT MOLECULAR BIOLOGY 2005; 57:835-53. [PMID: 15952069 DOI: 10.1007/s11103-005-2859-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 02/28/2005] [Indexed: 05/02/2023]
Abstract
Phenotype screens of Ds insertional lines identified a male sterile Orysa sativa no pollen (Osnop) mutant with a pollen-less phenotype at the flowering stage. The mutant phenotype showed linkage to Ds insertion into Osnop gene region. This mutant contained a deletion of 65 kb chromosomal region at the site of Ds insertion containing 14 predicted genes. Out of these deleted genes, Delegen 5-7, 9-10 were redundant, as two or three copies were present with 100% homology in other regions of rice genome. RT-PCR analysis showed that Delegen 5-7 were expressed not only in wild type plants but also in the mutant plants. In addition to this, Delegen 8-10 transcripts could not be detected under normal growth conditions, and Delegen 12 was expressed only in roots, thus deletion of these genes may not affect the pollen development. Our data and analysis also ruled out the possibility of delegen 1-4, 11, and 13 as candidates contributing to the pollen-less phenotype. Further investigation showed that the delegen 14 was expressed only in late stage of pollen development with the highest expression at the stage of pollen release and germination by RT-PCR, Northern blotting, in situ hybridization, and promoter-GUS transgenic plants. Thus, the delegen 14 gene is the best candidate for Osnop, corresponding to the pollen-less phenotype in the mutant. Our data suggest that delegen 14 may play an important role during late stage of pollen development and its germination. Since the delegen 14 gene has both C(2) and GRAM domains, it can be assumed that this gene cross-links both calcium and phosphoinositide signaling pathways. This is the first report to suggest possible functions for this gene in plant development.
Collapse
Affiliation(s)
- Shu Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | |
Collapse
|
28
|
McNeil KJ, Smith AG. An anther-specific cysteine-rich protein of tomato localized to the tapetum and microspores. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:457-64. [PMID: 15900888 DOI: 10.1016/j.jplph.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The tapetum is a nutritive tissue of the stamen that is essential for normal microspore development. While numerous tapetal-specific genes have been identified, little information is available on the localization and function of the proteins produced by these genes. The tapetally produced protein 5B-CRP is cysteine-rich, has a secretory signal sequence and lacks an endoplasmic reticulum retention sequence. The 5B-CRP mRNA is expressed specifically within the tapetum and accumulates from premeiosis to tetrad release. Antibodies generated against an Escherichia coli fusion protein only recognized 5B-CRP in the reduced state. The 5B-CRP was detected as a 6 kDa protein in extracts of stamens from microspore meiosis through anthesis and was also observed in extracts from dehisced pollen. In situ, 5B-CRP was localized in stamens to the tapetum and the developing microspores, from the tetrad through early free microspore stages. Based on similarity to proteins with known functions, 5B-CRP may inhibit proteasome activity within the stamen locule.
Collapse
Affiliation(s)
- Kenneth J McNeil
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall, St. Paul, MN 55108, USA
| | | |
Collapse
|
29
|
Akiyama T, Pillai MA, Sentoku N. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-beta-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. PLANTA 2004; 220:129-39. [PMID: 15278454 DOI: 10.1007/s00425-004-1312-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 05/05/2004] [Indexed: 05/09/2023]
Abstract
We report here the isolation and characterization of a new endo-1,3-beta-glucanase (1,3-beta-GLU) cDNA, OsGLN2, that is expressed both in flowers and in germinating seeds of rice (Oryza sativa L.). The isolated OsGLN2 gene encoded a protein which displayed 72%, 93% and 92% identity at the amino acid level with those encoded by barley GII, rice Gns4 and glu1 1,3-beta-GLU genes, respectively. A GST-OsGLN2 recombinant protein expressed in Escherichia coli preferentially hydrolyzed Laminaria digitata 1,3;1,6-beta-glucan and liberated only oligosaccharides, suggesting that the enzyme can be classified as a 1,3-beta-GLU. Northern analysis with a 3'-UTR gene-specific probe revealed that OsGLN2 is expressed exclusively in the paleae and lemmas during flowering, and no expression of OsGLN2 was detected in other tissues such as leaf blades, leaf sheaths, stems, nodes and roots in mature rice plants. The OsGLN2 gene is also expressed in germinating seeds, where its expression is predominant in endosperms rather than embryos. In de-embryonated rice half-seeds, addition of gibberellin A3 (GA) greatly enhanced expression of the OsGLN2 gene, while the GA-induced gene expression was suppressed strongly by abscisic acid (ABA). This is the first report, to our knowledge, that OsGLN2 encodes a 1,3-beta-GLU and is expressed specifically in paleae and lemmas during flowering and in germinating seeds, where its expression is enhanced by GA and suppressed by ABA.
Collapse
Affiliation(s)
- Takashi Akiyama
- Department of Low-Temperature Science, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo, 062-8555 Hokkaido, Japan.
| | | | | |
Collapse
|
30
|
Guan Y, Nothnagel EA. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. PLANT PHYSIOLOGY 2004; 135:1346-66. [PMID: 15235117 PMCID: PMC519053 DOI: 10.1104/pp.104.039370] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/29/2004] [Accepted: 04/03/2004] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are cell wall proteoglycans and are widely distributed in the plant kingdom. Classical AGPs and some nonclassical AGPs are predicted to have a glycosylphosphatidylinositol lipid anchor and have been suggested to be involved in cell-cell signaling. Yariv phenylglycoside is a synthetic probe that specifically binds to plant AGPs and has been used to study AGP functions. We treated Arabidopsis suspension cell cultures with Yariv phenylglycoside and observed decreased cell viability, increased cell wall apposition and cytoplasmic vesiculation, and induction of callose deposition. The induction of cell wall apposition and callose synthesis led us to hypothesize that Yariv binding of plant surface AGPs triggers wound-like responses. To study the effect of Yariv binding to plant surface AGPs and to further understand AGP functions, an Arabidopsis whole genome array was used to monitor the transcriptional modifications after Yariv treatment. By comparing the genes that are induced by Yariv treatment with genes whose expressions have been previously shown to be induced by other conditions, we conclude that the gene expression profile induced by Yariv phenylglycoside treatment is most similar to that of wound induction. It remains uncertain whether the Yariv phenylglycoside cross-linking of cell surface AGPs induces these genes through a specific AGP-based signaling mechanism or through a general mechanical perturbation of the cell surface.
Collapse
Affiliation(s)
- Yu Guan
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
31
|
Shinya T, Gondo S, Iijima H, Hanai K, Matsuoka H, Saito M. Cell-lytic activity of tobacco BY-2 induced by a fungal elicitor from alternaria alternata attributed to the expression of a class I beta-1,3-glucanase gene. Biosci Biotechnol Biochem 2004; 68:1265-72. [PMID: 15215590 DOI: 10.1271/bbb.68.1265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stress-induced cell-lytic activity was found in tobacco BY-2 cells treated with various stresses. Among 14 stresses, an elicitor fraction isolated from Alternaria alternata showed the highest inducing activity. Cell-lytic activity increased for 72 h even in the control sample, treated with distilled water, and several isozymes of beta-1,3-glucanases and chitinases were found to be involved in it. In contrast, cell-lytic activity in BY-2 cells treated with a fungal elicitor reached a higher level after 60 h. The principal enzymes specifically involved in this stress-induced portion are speculated to be basic beta-1,3-glucanases. A class I beta-1,3-glucanase gene (glu1) was found to be the specific gene for the stress-induced cell-lytic activity. Its expression became observable at 24 h, and the intensity reached a maximum at about 60-72 h. The glu1 was thus assigned as a late gene. Its role in the stress response is discussed in conjunction with earlier genes such as chitinases.
Collapse
Affiliation(s)
- Tomonori Shinya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Bucciaglia PA, Zimmermann E, Smith AG. Functional analysis of a beta-1,3-glucanase gene (Tag1) with anther-specific RNA and protein accumulation using antisense RNA inhibition. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1367-73. [PMID: 14658390 DOI: 10.1078/0176-1617-01207] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A critical stage in pollen development is the dissolution of tetrads into free microspores. Tetrads are surrounded by a wall composed primarily of beta-1,3-glucan. At the completion of meiosis, tetrads are released into the anther locule after hydrolysis of the callose by a beta-1,3-glucanase complex. The cDNA corresponding to a beta-1,3-glucanase cloned from tobacco (Tag 1) represents a gene that is highly similar to other beta-1,3-glucanases and is expressed exclusively in anthers from the tetrad to free microspore stage of pollen development. Tag 1 protein was overexpressed in E. coli, accumulating in insoluble inclusion bodies. Polyclonal antibodies against Tag 1 recombinant protein identify a single 33 kD protein accumulating only in anthers at tetrad and free microspore stages where beta-1,3-glucanase activity is present. Transgenic plants expressing Tag 1 antisense RNA were produced. Although Tag 1 RNA and protein levels were greatly reduced, tetrad dissolution and pollen development were normal. These data indicate that under the conditions these tobacco plants were grown, wild type levels of Tag 1 protein are not necessary for male fertility.
Collapse
Affiliation(s)
- Paul A Bucciaglia
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Av., St. Paul, MN 55113, USA
| | | | | |
Collapse
|
33
|
Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. PLANT PHYSIOLOGY 2002; 129:486-99. [PMID: 12068095 PMCID: PMC161667 DOI: 10.1104/pp.010884] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 11/08/2001] [Accepted: 01/07/2002] [Indexed: 05/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of beta-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
34
|
Hong TY, Cheng CW, Huang JW, Meng M. Isolation and biochemical characterization of an endo-1,3-beta-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-beta-glucan. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1151-1159. [PMID: 11932459 DOI: 10.1099/00221287-148-4-1151] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding 1,3-beta-glucanase was isolated from Streptomyces sioyaensis based on an activity plate assay. Analysis of the deduced amino acid sequence of the gene revealed that the matured 1,3-beta-glucanase has two functional domains separated by a stretch of nine glycine residues. The N-terminal domain shares sequence similarity with bacterial endo-1,3-beta-glucanases classified in glycosyl hydrolase family 16 (GHF 16), while the C-terminal domain is a putative carbohydrate-binding module (CBM) grouped into CBM family 6. To characterize the function of each domain, both the full-length and the CBM-truncated versions of the protein were expressed in Escherichia coli and purified to homogeneity. Biochemical data suggest that the glycosyl hydrolase domain preferentially catalyses the hydrolysis of glucans with 1,3-beta linkage, and has an endolytic mode of action. Binding assay indicated that the C-terminal CBM binds to various insoluble beta-glucans (1,3-, 1,3-1,4- and 1,4- linkages) but not to xylan, a primary binding target for most members of CBM family 6. The full-length and the CBM-truncated proteins had similar specific activity (units per mol of hydrolase domain) on soluble 1,3-beta-glucan, whereas the former had much stronger specific activity on insoluble 1,3-beta-glucans, suggesting that the C-terminal CBM enhances the activity of the S. sioyaensis 1,3-beta-glucanase against insoluble substrates, presumably by increasing the frequency of encounter events between the hydrolase domain and the substrate.
Collapse
Affiliation(s)
- Tang-Yao Hong
- Graduate Institute of Agricultural Biotechnology1, and Department of Plant Pathology2, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, Taiwan40227
| | - Chun-Wei Cheng
- Graduate Institute of Agricultural Biotechnology1, and Department of Plant Pathology2, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, Taiwan40227
| | - Jenn-Wen Huang
- Graduate Institute of Agricultural Biotechnology1, and Department of Plant Pathology2, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, Taiwan40227
| | - Menghsiao Meng
- Graduate Institute of Agricultural Biotechnology1, and Department of Plant Pathology2, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung, Taiwan40227
| |
Collapse
|
35
|
Riggs CD, Zeman K, DeGuzman R, Rzepczyk A, Taylor AA. Antisense inhibition of a tomato meiotic proteinase suggests functional redundancy of proteinases during microsporogenesis. Genome 2001. [DOI: 10.1139/g01-059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anther development in angiosperms culminates in the programmed cell death of specific tissues to facilitate the release of pollen. Despite a wealth of morphological descriptions of this process, there have been few reports on the regulation of dehiscence or the coordination of events between tissues. We have cloned an anther-specific tomato gene encoding a serine proteinase that is expressed during meiosis and late microsporogenesis. The conceptualized tomato meiotic proteinase (TMP) is a member of a family of genes that exhibit characteristics of mammalian proprotein convertases. To examine the role of TMP in microsporogenesis, we generated transgenic plants harboring an antisense construct of the gene. Some of these plants produced little or no detectable TMP, yet no phenotypic abnormalities were observed. Zymogram analyses revealed that multiple proteinases are present in mature anthers and that proteinase activity increases as development proceeds. Taken together, these data indicate that the role of TMP during microsporogenesis, if any, may be compensated for by other proteinases.Key words: anther, development, pollen, proteinase, subtilase, tapetum.
Collapse
|
36
|
Huecas S, Villalba M, Rodríguez R. Ole e 9, a Major Olive Pollen Allergen Is a 1,3-β-Glucanase. J Biol Chem 2001; 276:27959-66. [PMID: 11373288 DOI: 10.1074/jbc.m103041200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Olive pollen allergy is a clinical disorder affecting the human population of Mediterranean areas. A novel major allergen, Ole e 9, has been isolated from olive pollen by gel permeation, hydrophobic affinity, and reverse-phase high performance liquid chromatographies. It is involved in the allergic responses of 65% of patients suffering olive pollinosis. Ole e 9 (molecular mass of 46.4 kDa) displays 1,3-beta-endoglucanase activity (38.9 +/- 5.6 mg of glucose released/min x micromol of protein at pH 4.5-6.0 using laminarin as substrate). It is the first 1,3-beta-glucanase, a member of the "pathogenesis-related" protein family, detected in pollen tissue. Seven tryptic peptides of the allergen were sequenced by Edman degradation and used for designing primers to clone the cDNA codifying the protein. Specific cDNA for Ole e 9 was synthesized from total RNA and amplified using the polymerase chain reaction. The allergen sequence showed an open reading frame of 460 amino acids comprising a putative signal peptide of 26 residues. It shows 39, 33, and 32% sequence identity including the catalytic residues when compared with 1,3-beta-glucanases from wheat, willow, and Arabidopsis thaliana, respectively. Northern blot analysis showed that Ole e 9 transcript is specifically expressed in the pollen tissue, and highly conserved counterparts were only detected in taxonomically related pollens.
Collapse
MESH Headings
- Allergens/chemistry
- Amino Acid Sequence
- Antigens, Plant
- Base Sequence
- Blotting, Northern
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Glucan 1,3-beta-Glucosidase
- Humans
- Hydrogen-Ion Concentration
- Hypersensitivity/metabolism
- Immunoblotting
- Immunoglobulin E/metabolism
- Models, Genetic
- Molecular Sequence Data
- Open Reading Frames
- Plant Proteins/biosynthesis
- Plant Proteins/chemistry
- Plants/metabolism
- Pollen/chemistry
- Pollen/metabolism
- Polymerase Chain Reaction
- Protein Binding
- Protein Sorting Signals
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Trypsin/metabolism
- beta-Glucosidase/biosynthesis
- beta-Glucosidase/chemistry
Collapse
Affiliation(s)
- S Huecas
- Departamento de Bioquimica y Biologia Molecular I, Facultad de Quimica, Universidad Complutense, Avda. Complutense s/n, 28040 Madrid, Spain
| | | | | |
Collapse
|
37
|
Jung HW, Hwang BK. Pepper gene encoding a basic beta-1,3-glucanase is differentially expressed in pepper tissues upon pathogen infection and ethephon or methyl jasmonate treatment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 159:97-106. [PMID: 11011097 DOI: 10.1016/s0168-9452(00)00334-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A basic beta-1,3-glucanase cDNA clone (CABGLU) was isolated from the cDNA library constructed from hypersensitive response lesions of pepper leaves infected with avirulent strain of Xanthomonas campestris pv. vesicatoria. The deduced polypeptide of CABGLU which contains a C-terminal extension N-glycosylated at a single site characterized as typical structure of class I beta-1,3-glucanase has a high level of identity with tobacco basic beta-1,3-glucanase (77.4%), but only a moderate level of identity with tomato acidic beta-1,3-glucanase (42.6%). Genomic DNA gel blot analysis indicates that the pepper genome contains one or two beta-1,3-glucanase copy genes. Transcripts of the CABGLU gene were more induced in incompatible interactions than in compatible interactions, when inoculated with X. campestris pv. vesicatoria or Phytophthora capsici. Accumulation of CABGLU mRNA was strongly induced in pepper leaves by both ethephon and methyl jasmonate. The CABGLU mRNA was constitutively expressed only in the roots of all the plant organs. These data indicate that the basic beta-1,3-glucanase gene may be induced by pathogen attack and abiotic stresses.
Collapse
Affiliation(s)
- HW Jung
- Molecular Plant Pathology Laboratory, Department of Agricultural Biology, Korea University, 136-701, Seoul, South Korea
| | | |
Collapse
|
38
|
Helleboid S, Hendriks T, Bauw G, Inzé D, Vasseur J, Hilbert JL. Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51:1189-1200. [PMID: 10937694 DOI: 10.1093/jexbot/51.348.1189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In Cichorium hybrid clone '474' (C. intybus L., var. sativum x C. endivia L., var. latifolia), the direct somatic embryogenesis process in leaf tissues is accompanied by an overall increase in the amount of proteins secreted into the culture medium. Amongst these, three major protein bands of 38 kDa, 32 kDa and 25 kDa were found in the conditioned media. These extracellular protein bands accumulated in the medium of the embryogenic Cichorium hybrid up to 8-fold compared with those in the medium of a nonembryogenic variety. 32 and 25 kDa proteins were purified from the medium and their identities were determined as already described for 38 kDa beta-1,3-glucanases. To investigate their possible function in somatic embryogenesis, peptide sequences, serological relationships or biochemical properties revealed that there were at least two acidic chitinases of 32 kDa and one glycosylated osmotin-like protein of 25 kDa in the embryogenic culture medium. Comparing the amounts of the 38 kDa glucanases, the 32 kDa chitinases, and the 25 kDa osmotin-like protein present in the conditioned media of the embryogenic '474' hybrid and of a non-embryogenic variety, a 2-8-fold higher accumulation of these proteins was observed in the embryogenic hybrid culture medium. This may suggest that part of the accumulation of these three pathogenesis-related (PR) proteins could be correlated with the somatic embryogenesis process. Their possible involvement in this developmental process is discussed.
Collapse
Affiliation(s)
- S Helleboid
- Laboratoire de Physiologie Cellulaire et Morphogenèse Végétales, USTL/INRA. Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
39
|
Cheong YH, Kim1 CY, Chun HJ, Moon BC, Park HC, Kim JK, Lee S, Han C, Lee SY, Cho MJ. Molecular cloning of a soybean class III beta-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:71-81. [PMID: 10725560 DOI: 10.1016/s0168-9452(00)00187-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We isolated and characterized a soybean gene (SGN1) encoding a basic beta-1,3-glucanase that is a plant class III isoform of beta-1,3-glucanase. The deduced amino acid sequence of the SGN1 gene is similar to that of the PR-Q'b gene, the basic class III beta-1,3-glucanase of tomato. Based on RNA blot hybridization, SGN1 gene expression was detected in all tissues of 4-day old seedlings, but it was present only in root tissue of 30-day old plants. GUS expression analysis carried out in transgenic tobacco plants harboring a SGN1::GUS reporter gene revealed the same expression pattern. Furthermore, the expression of SGN1 was strongly induced by a variety of defense-related signals, such as treatment with H(2)O(2), wounding, or treatment with fungal elicitor prepared from Phytophthora spp as well as inoculation with Pseudomonas syringae. However, the expression level of SGN1 was hardly induced with jasmonate, ethephon and salicylate. Overall the results suggest that the SGN1 may play a role in both plant development and plant defense against pathogen attack.
Collapse
Affiliation(s)
- YH Cheong
- Department of Biochemistry, Gyeongsang National University, Chinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hird DL, Paul W, Hollyoak JS, Scott RJ. The restoration of fertility in male sterile tobacco demonstrates that transgene silencing can be mediated by T-DNA that has no DNA homology to the silenced transgene. Transgenic Res 2000; 9:91-102. [PMID: 10951693 DOI: 10.1023/a:1008992619413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Male sterile tobacco plants expressing a pathogenesis-related (PR) beta-1,3-glucanase gene driven by the Arabidopsis thaliana A3 or A9 tapetum-specific promoter, were partially restored to fertility by retransformation with a range of pA9-driven sense and antisense PR glucanase fragments. The restored plants exhibited improved seed set. PR glucanase protein was undetectable in the anthers of these plants and there was an associated increase in microsporocyte callose, the structural target of the A3 and A9-driven PR glucanase. This phenotype was not solely dependent on interactions between sense and antisense PR glucanase transcripts since a pA9-driven restorer was also capable of down regulating a pA3-GUS construct in the absence of extensive promoter, coding region, or terminator sequence homology. Since the A3 and A9 promoters have similar temporal and spatial expression patterns, it is possible that trans-acting factors common to both promoters become limiting in the PR glucanase double transformants resulting in improved levels of fertility. An alternative hypothesis is that additional sequences present in both the silencing and target T-DNAs can mediate the silencing of adjacent non-homologous transgenes.
Collapse
Affiliation(s)
- D L Hird
- Department of Biology, University of Leicester, UK
| | | | | | | |
Collapse
|
41
|
|
42
|
Jin W, Horner HT, Palmer RG, Shoemaker RC. Analysis and mapping of gene families encoding beta-1,3-glucanases of soybean. Genetics 1999; 153:445-52. [PMID: 10471725 PMCID: PMC1460737 DOI: 10.1093/genetics/153.1.445] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligonucleotide primers designed for conserved sequences from coding regions of beta-1,3-glucanase genes from different species were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing and cross-hybridization of amplification products indicated that at least 12 classes of beta-1,3-glucanase genes exist in the soybean. Members of classes mapped to 34 loci on five different linkage groups using an F(2) population of 56 individuals. beta-1,3-Glucanase genes are clustered onto regions of five linkage groups. Data suggest that more closely related genes are clustered together on one linkage group or on duplicated regions of linkage groups. Northern blot analyses performed on total RNA from root, stem, leaf, pod, flower bud, and hypocotyl using DNA probes for the different classes of beta-1,3-glucanase genes revealed that the mRNA levels of all classes were low in young leaves. SGlu2, SGlu4, SGlu7, and SGlu12 mRNA were highly accumulated in young roots and hypocotyls. SGlu7 mRNA also accumulated in pods and flower buds.
Collapse
Affiliation(s)
- W Jin
- Interdepartmental Plant Physiology Program and Department of Botany, Zoology/Genetics and USDA ARS CICG Research Unit, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
43
|
Rylander R, Fogelmark B, McWilliam A, Currie A. (1-->3)-beta-D-glucan may contribute to pollen sensitivity. Clin Exp Immunol 1999; 115:383-4. [PMID: 10193406 PMCID: PMC1905257 DOI: 10.1046/j.1365-2249.1999.00829.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/1998] [Indexed: 11/20/2022] Open
Abstract
The amount of (1-->3)-beta-D-glucan in pollen from different plants was evaluated using the Limulus assay with a specific lysate. The amount ranged from 79 to 1800 ng/10(6) pollen. A calculation of the inhaled dose suggests that the amount of (1-->3)-beta-D-glucan present during periods with a high pollen content in the air exceeds levels that cause airways inflammation.
Collapse
Affiliation(s)
- R Rylander
- Department of Environmental Medicine, Gothenburg University, Sweden.
| | | | | | | |
Collapse
|
44
|
Rezzonico E, Flury N, Meins F, Beffa R. Transcriptional down-regulation by abscisic acid of pathogenesis-related beta-1,3-glucanase genes in tobacco cell cultures. PLANT PHYSIOLOGY 1998; 117:585-92. [PMID: 9625711 PMCID: PMC34978 DOI: 10.1104/pp.117.2.585] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 03/08/1998] [Indexed: 05/18/2023]
Abstract
Class I isoforms of beta-1,3-glucanases (betaGLU I) and chitinases (CHN I) are antifungal, vacuolar proteins implicated in plant defense. Tobacco (Nicotiana tabacum L.) betaGLU I and CHN I usually exhibit tightly coordinated developmental, hormonal, and pathogenesis-related regulation. Both enzymes are induced in cultured cells and tissues of cultivar Havana 425 tobacco by ethylene and are down-regulated by combinations of the growth hormones auxin and cytokinin. We report a novel pattern of betaGLU I and CHN I regulation in cultivar Havana 425 tobacco pith-cell suspensions and cultured leaf explants. Abscisic acid (ABA) at a concentration of 10 micron markedly inhibited the induction of betaGLU I but not of CHN I. RNA-blot hybridization and immunoblot analysis showed that only class I isoforms of betaGLU and CHN are induced in cell culture and that ABA inhibits steady-state betaGLU I mRNA accumulation. Comparable inhibition of beta-glucuronidase expression by ABA was observed for cells transformed with a tobacco betaGLU I gene promoter/beta-glucuronidase reporter gene fusion. Taken together, the results strongly suggest that ABA down-regulates transcription of betaGLU I genes. This raises the possibility that some of the ABA effects on plant-defense responses might involve betaGLU I.
Collapse
Affiliation(s)
- E Rezzonico
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|
45
|
Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:571-6. [PMID: 9680999 DOI: 10.1046/j.1365-313x.1998.00043.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The development of anthers and pollen involves several stages. In an attempt to identify the transcription factors that are involved in the regulation of gene expression associated with the development of anthers, seven genes for new zinc-finger proteins that are expressed in anthers were detected using RT-PCR. Subsequent cloning and sequence analysis of the full-length cDNA clones revealed that they all encoded zinc-finger proteins of the EPF type. However, the encoded proteins were very different from each other in terms of size, number of zinc fingers (two, three and four) and the spacings between the fingers. Northern blot analysis revealed that the genes were expressed preferentially in anthers. Moreover, it was found that the seven genes were expressed transiently for short periods that corresponded to different developmental stages. It appeared that the genes were activated sequentially during the development of the anther. Considering these observations, a possible mechanism that could account for the autonomous progression of the development of the anther via a regulatory cascade of these transcription factors is discussed.
Collapse
Affiliation(s)
- A Kobayashi
- Laboratory of Developmental Biology, National Institute of Agrobiological Resources, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Dong JZ, Dunstan DI. Endochitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. PLANTA 1997; 201:189-94. [PMID: 9084217 DOI: 10.1007/bf01007703] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two cDNAs isolated from white spruce [Picea glauca (Moench) Voss] somatic embryos, are predicted to encode a basic class IV chitinase and a beta-1,3-glucanase, respectively corresponding to genes PgChi-1 and PgGlu-1. Each represents a multigene family in spruce. Transcripts homologous to PgChi-1 or PgGlu-1 genes were highly abundant in embryogenic tissues and gradually decreased after tissues were placed on abscisic acid-containing maturation medium, with lowest abundance in globular embryos. Transcripts related to PgGlu-1 became highly abundant again in early cotyledonary embryos but decreased thereafter, whereas transcripts related to PgChi-1 were also highly abundant in late cotyledonary embryos and plantlets in vitro; transcripts were either low (PgChi-1) or were not detectable (PgGlu-1) in needles. Wounding, drying and flooding stresses enhanced PgChi-1- and PgGlu-1-related gene expression. Fungal cell wall suspension enhanced PgGlu-1-related transcript accumulation, but reduced PgChi-1-related transcript abundance within 24 h. PgChi-1 and PgGlu-1 and their homologues may have roles in plant defense, and possibly developmental roles during spruce somatic embryo maturation.
Collapse
Affiliation(s)
- J Z Dong
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
47
|
de la Cruz J, Pintor-Toro JA, Benítez T, Llobell A, Romero LC. A novel endo-beta-1,3-glucanase, BGN13.1, involved in the mycoparasitism of Trichoderma harzianum. J Bacteriol 1995; 177:6937-45. [PMID: 7592488 PMCID: PMC177563 DOI: 10.1128/jb.177.23.6937-6945.1995] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular beta-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for beta-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this beta-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell walls.
Collapse
Affiliation(s)
- J de la Cruz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas y Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
48
|
Sessa G, Fluhr R. The expression of an abundant transmitting tract-specific endoglucanase (Sp41) is promoter-dependent and not essential for the reproductive physiology of tobacco. PLANT MOLECULAR BIOLOGY 1995; 29:969-82. [PMID: 8555460 DOI: 10.1007/bf00014970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In angiosperms the interactions between the secretory matrix of the stylar transmitting tract and the growing pollen tubes have central roles in determining a successful fertilization. Sp41 is a major glycosylated component of the soluble proteins of the transmitting tract matrix and exhibits (1-3)-beta-glucanase activity. It is a member of the pathogenesis-related protein superfamily, but shows developmental regulation as opposed to pathogen induction. In order to investigate the mechanisms regulating Sp41 expression, we isolated and characterized genomic clones corresponding to the sp41 alpha gene. Sp41 alpha contains an intervening sequence localized between the sequences encoding for a putative signal peptide and the mature protein. A fragment of 2.5 kb that lies 5' to the coding region of the gene was sufficient to confer transmitting tract specific expression to a beta-glucuronidase reporter gene in transgenic tobacco plants. The sp41 transcripts have unusually long 5'-untranslated sequences. The leader sequences contain small open reading frames, include secondary structures, and may be involved in post-transcriptional regulation. A possible function for Sp41 in reproductive physiology was tested by monitoring tobacco plants transformed with antisense stylar sp41 alpha RNA: Transgenic antisense plants with immunologically and enzymatically undetectable levels of (1-3)-beta-glucanase were obtained and their offspring analyzed. The progeny plants did not show any detectable phenotypic modifications as they had a normal flower morphology and were fully fertile.
Collapse
Affiliation(s)
- G Sessa
- Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|