1
|
Guo S, Zheng Y, Meng D, Zhao X, Sang Z, Tan J, Deng Z, Lang Z, Zhang B, Wang Q, Bouzayen M, Zuo J. DNA and coding/non-coding RNA methylation analysis provide insights into tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:399-413. [PMID: 36004545 DOI: 10.1111/tpj.15951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Collapse
Affiliation(s)
- Susu Guo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhaoze Sang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet-Tolosan, France
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
2
|
Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS One 2021; 16:e0256319. [PMID: 34428253 PMCID: PMC8384167 DOI: 10.1371/journal.pone.0256319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.
Collapse
|
3
|
Hang T, Ling X, He C, Xie S, Jiang H, Ding T. Isolation of the ZmERS4 Gene From Maize and Its Functional Analysis in Transgenic Plants. Front Microbiol 2021; 12:632908. [PMID: 33776962 PMCID: PMC7994261 DOI: 10.3389/fmicb.2021.632908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 11/24/2022] Open
Abstract
A gene encoding a protein similar to ethylene receptor was isolated from maize (Zea mays L.), which was named as ZmERS4.The gene was 1,905 bp in length with an open reading frame that encoded a protein consisting of 634 amino acids. The homologous analysis showed that ZmERS4 shared high similarity with the ethylene receptor protein, OsERS1, from rice (Oryza sativa L.). ZmERS4 grouped into the ETR1 subfamily of ethylene receptors based on its conserved domain and phylogenetic status. Tissue-specific and induced expression analyses indicated that ZmERS4 was differentially expressed in maize tissues, predominantly in the stems and leaves, and was induced by salicylic acid (SA). Overexpression of ZmERS4 in Arabidopsis improved resistance against the bacterial pathogen, PstDC3000, by inducing the expression of SA signaling-related genes. Moreover, treatment with flg22 induced the expression of the defense-related gene, PR1, in maize protoplasts that transiently expressed ZmERS4. Furthermore, the ultra-high-performance liquid chromatography (UPLC) analysis showed that the SA contents in ZmERS4-overexpressing Arabidopsis lines were significantly higher than the control lines. Additionally, the improved resistance of ZmERS4-overexpressing Arabidopsis against PstDC3000 was blocked after pretreatment with the SA biosynthetic inhibitor, ABT. Based on the collective findings, we hypothesize that ZmERS4 plays an important role in disease resistance through SA-mediated signaling pathways.
Collapse
Affiliation(s)
- Tianlu Hang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xuezhi Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Cheng He
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shanshan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Ding
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Xie W, Zhang J, Zhao X, Zhang Z, Wang Y. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC PLANT BIOLOGY 2017; 17:78. [PMID: 28431567 PMCID: PMC5399857 DOI: 10.1186/s12870-017-1026-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/06/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Elymus sibiricus is an important forage grass in semi-arid regions, but it is difficult to grow for commercial seed production due to high seed shattering. To better understand the underlying mechanism and explore the putative genes related to seed shattering, we conducted a combination of morphological, histological, physiochemical and transcriptome analysis on two E. sibiricus genotypes (XH09 and ZhN03) that have contrasting seed shattering. RESULTS The results show that seed shattering is generally caused by a degradation of the abscission layer. Early degradation of abscission layers was associated with the increased seed shattering in high seed shattering genotype XH09. Two cell wall degrading enzymes, cellulase (CE) and polygalacturonase (PG), had different activity in the abscission zone, indicating their roles in differentiation of abscission layer. cDNA libraries from abscission zone tissue of XH09 and ZhN03 at 7 days, 21 days and 28 days after heading were constructed and sequenced. A total of 86,634 unigenes were annotated and 7110 differentially expressed transcripts (DETs) were predicted from "XH09-7 vs ZhN03-7", "XH09-21 vs ZhN03-21" and "XH09-28 vs ZhN03-28", corresponding to 2058 up-regulated and 5052 down-regulated unigenes. The expression profiles of 10 candidate transcripts involved in cell wall-degrading enzymes, lignin biosynthesis and phytohormone activity were validated using quantitative real-time PCR (qRT-PCR), 8 of which were up-regulated in low seed shattering genotype ZhN03, suggesting these genes may be associated with reduction of seed shattering. CONCLUSIONS The expression data generated in this study provides an important resource for future molecular biological research in E. sibiricus.
Collapse
Affiliation(s)
- Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junchao Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuhong Zhao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zongyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
Affiliation(s)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilano, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | | | - M. I. R. Khan
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
6
|
Szymanski J, Levin Y, Savidor A, Breitel D, Chappell-Maor L, Heinig U, Töpfer N, Aharoni A. Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:396-417. [PMID: 28112434 DOI: 10.1111/tpj.13490] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
Current innovations in mass-spectrometry-based technologies allow deep coverage of protein expression. Despite its immense value and in contrast to transcriptomics, only a handful of studies in crop plants engaged with global proteome assays. Here, we present large-scale shotgun proteomics profiling of tomato fruit across two key tissues and five developmental stages. A total of 7738 individual protein groups were identified and reliably measured at least in one of the analyzed tissues or stages. The depth of our assay enabled identification of 61 differentially expressed transcription factors, including renowned ripening-related regulators and elements of ethylene signaling. Significantly, we measured proteins involved in 83% of all predicted enzymatic reactions in the tomato metabolic network. Hence, proteins representing almost the complete set of reactions in major metabolic pathways were identified, including the cytosolic and plastidic isoprenoid and the phenylpropanoid pathways. Furthermore, the data allowed us to discern between protein isoforms according to expression patterns, which is most significant in light of the weak transcript-protein expression correspondence. Finally, visualization of changes in protein abundance associated with a particular process provided us with a unique view of skin and flesh tissues in developing fruit. This study adds a new dimension to the existing genomic, transcriptomic and metabolomic resources. It is therefore likely to promote translational and post-translational research in tomato and additional species, which is presently focused on transcription.
Collapse
Affiliation(s)
- Jedrzej Szymanski
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Alon Savidor
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dario Breitel
- Metabolic Biology Department, John Innes Centre, Norwich, NR4 7UH, UK
| | - Louise Chappell-Maor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nadine Töpfer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
7
|
Kessenbrock M, Klein SM, Müller L, Hunsche M, Noga G, Groth G. Novel Protein-Protein Inhibitor Based Approach to Control Plant Ethylene Responses: Synthetic Peptides for Ripening Control. FRONTIERS IN PLANT SCIENCE 2017; 8:1528. [PMID: 28928762 PMCID: PMC5591945 DOI: 10.3389/fpls.2017.01528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/21/2017] [Indexed: 05/13/2023]
Abstract
Ethylene signaling is decisive for many plant developmental processes. Among these, control of senescence, abscission and fruit ripening are of fundamental relevance for global agriculture. Consequently, detailed knowledge of the signaling network along with the molecular processes of signal perception and transfer are expected to have high impact on future food production and agriculture. Recent advances in ethylene research have demonstrated that signaling of the plant hormone critically depends on the interaction of the ethylene receptor family with the NRAMP-like membrane protein ETHYLENE INSENSITIVE 2 (EIN2) at the ER membrane, phosphorylation-dependent proteolytic processing of ER-localized EIN2 and subsequent translocation of the cleaved EIN2 C-terminal polypeptide (EIN2-CEND) to the nucleus. EIN2 nuclear transport, but also interaction with the receptors sensing the ethylene signal, both, depend on a nuclear localization signal (NLS) located at the EIN2 C-terminus. Loss of the tight interaction between receptors and EIN2 affects ethylene signaling and impairs plant ethylene responses. Synthetic peptides derived from the NLS sequence interfere with the EIN2-receptor interaction and have utility in controlling plant ethylene responses such as ripening. Here, we report that a synthetic peptide (NOP-1) corresponding to the NLS motif of Arabidopsis EIN2 (aa 1262-1269) efficiently binds to tomato ethylene receptors LeETR4 and NR and delays ripening in the post-harvest phase when applied to the surface of sampled green fruits pre-harvest. In particular, degradation of chlorophylls was delayed by several days, as monitored by optical sensors and confirmed by analytical methods. Similarly, accumulation of β-carotene and lycopene in the fruit pulp after NOP-1 application was delayed, without having impact on the total pigment concentration in the completely ripe fruits. Likewise, the peptide had no negative effects on fruit quality. Our molecular and phenotypic studies reveal that peptide biologicals could contribute to the development of a novel family of ripening inhibitors and innovative ripening control in climacteric fruit.
Collapse
Affiliation(s)
- Mareike Kessenbrock
- Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Simone M. Klein
- Institute of Crop Science and Resource Conservation – Horticultural Science, University of BonnBonn, Germany
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Mauricio Hunsche
- Institute of Crop Science and Resource Conservation – Horticultural Science, University of BonnBonn, Germany
- COMPO EXPERT GmbHMünster, Germany
| | - Georg Noga
- Institute of Crop Science and Resource Conservation – Horticultural Science, University of BonnBonn, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University DüsseldorfDüsseldorf, Germany
- Bioeconomy Science Center, Forschungszentrum JülichJülich, Germany
- *Correspondence: Georg Groth, ;
| |
Collapse
|
8
|
Bisson MMA, Kessenbrock M, Müller L, Hofmann A, Schmitz F, Cristescu SM, Groth G. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening. Sci Rep 2016; 6:30634. [PMID: 27477591 PMCID: PMC4967898 DOI: 10.1038/srep30634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Collapse
Affiliation(s)
- Melanie M. A. Bisson
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Mareike Kessenbrock
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Lena Müller
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Alexander Hofmann
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Florian Schmitz
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Simona M. Cristescu
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Georg Groth
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
9
|
Cherian S, Figueroa CR, Nair H. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4705-22. [PMID: 24994760 DOI: 10.1093/jxb/eru280] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
Collapse
Affiliation(s)
- Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Carlos R Figueroa
- Faculty of Forest Sciences and Biotechnology Center, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Helen Nair
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
10
|
Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA. Current understanding on ethylene signaling in plants: the influence of nutrient availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:128-38. [PMID: 24095919 DOI: 10.1016/j.plaphy.2013.09.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/12/2013] [Indexed: 05/18/2023]
Abstract
The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | |
Collapse
|
11
|
B Ttcher C, Harvey KE, Boss PK, Davies C. Ripening of grape berries can be advanced or delayed by reagents that either reduce or increase ethylene levels. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:566-581. [PMID: 32481131 DOI: 10.1071/fp12347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/23/2013] [Indexed: 05/08/2023]
Abstract
Grape (Vitis vinifera L.) berries are considered to be nonclimacteric fruit as they do not exhibit a large rise in ethylene production or respiration rate at the onset of ripening (veraison). However, ethylene may still play a role in berry development and in ripening in particular. (2-Chloroethyl)phosphonic acid (CEPA), an ethylene-releasing reagent, delayed ripening when applied early in berry development. In agreement with a role for ethylene in controlling the timing of ripening, the application of an inhibitor of ethylene biosynthesis, aminoethoxyvinylglycine (AVG), advanced ripening, as did abscisic acid, when applied during the preveraison period. Applications of CEPA nearer to the time of veraison enhanced berry colouration. Changes in the expression of ethylene biosynthesis and receptor genes were observed throughout berry development. Transcript levels of some of these genes were increased by CEPA and decreased by AVG, suggesting changes in ethylene synthesis and perception during the preveraison period that might contribute to the biphasic response to CEPA (ethylene). The significant delay of ripening in field-grown grapes through the application of CEPA also indicates that this may be useful in controlling the timing of veraison, and therefore harvest date, in warmer climates.
Collapse
Affiliation(s)
| | - Katie E Harvey
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | - Paul K Boss
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
12
|
Kamiyoshihara Y, Tieman DM, Huber DJ, Klee HJ. Ligand-induced alterations in the phosphorylation state of ethylene receptors in tomato fruit. PLANT PHYSIOLOGY 2012; 160:488-97. [PMID: 22797658 PMCID: PMC3440222 DOI: 10.1104/pp.112.202820] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/12/2012] [Indexed: 05/18/2023]
Abstract
Perception of the plant hormone ethylene is essential to initiate and advance ripening of climacteric fruits. Since ethylene receptors negatively regulate signaling, the suppression is canceled upon ethylene binding, permitting responses including fruit ripening. Although receptors have autophosphorylation activity, the mechanism whereby signal transduction occurs has not been fully determined. Here we demonstrate that LeETR4, a critical receptor for tomato (Solanum lycopersicum) fruit ripening, is multiply phosphorylated in vivo and the phosphorylation level is dependent on ripening stage and ethylene action. Treatment of preclimacteric fruits with ethylene resulted in accumulation of LeETR4 with reduced phosphorylation whereas treatments of ripening fruits with ethylene antagonists, 1-methylcyclopropene and 2,5-norbornadiene, induced accumulation of the phosphorylated isotypes. A similar phosphorylation pattern was also observed for Never ripe, another ripening-related receptor. Alteration in the phosphorylation state of receptors is likely to be an initial response upon ethylene binding since treatments with ethylene and 1-methylcyclopropene rapidly influenced the LeETR4 phosphorylation state rather than protein abundance. The LeETR4 phosphorylation state closely paralleled ripening progress, suggesting that the phosphorylation state of receptors is implicated in ethylene signal output in tomato fruits. We provide insights into the nature of receptor on and off states.
Collapse
|
13
|
Agarwal G, Choudhary D, Singh VP, Arora A. Role of ethylene receptors during senescence and ripening in horticultural crops. PLANT SIGNALING & BEHAVIOR 2012; 7:827-46. [PMID: 22751331 PMCID: PMC3583974 DOI: 10.4161/psb.20321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity.
Collapse
Affiliation(s)
| | | | - Virendra P. Singh
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology; Indian Agricultural Research Institute; PUSA Campus; New Delhi, India
| |
Collapse
|
14
|
Lin Z, Alexander L, Hackett R, Grierson D. LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:1083-93. [PMID: 18346193 PMCID: PMC2440563 DOI: 10.1111/j.1365-313x.2008.03481.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 05/18/2023]
Abstract
Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein-protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro. Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea, which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.
Collapse
Affiliation(s)
| | | | | | - Don Grierson
- *For Correspondence. (fax +44 115 951 6334; e-mail )
| |
Collapse
|
15
|
Zhong S, Lin Z, Grierson D. Tomato ethylene receptor-CTR interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:965-72. [PMID: 18349053 DOI: 10.1093/jxb/ern021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the model plant Arabidopsis, members of a family of two-component system His kinase-like ethylene receptors have direct protein-protein interactions with a single downstream Ser/Thr kinase CTR1. These components of the ethylene signalling network found in Arabidopsis are conserved in the climacteric fruit tomato, but both the ethylene receptors and CTR1-like proteins (LeCTRs) in tomato are encoded by multigene families. Here, using a yeast two-hybrid interaction assay, it is shown that the tomato receptors LeETR1, LeETR2, and NEVER-RIPE (NR) can interact with multiple LeCTRs. In vivo protein localization studies with fluorescent tagged proteins revealed that the ethylene receptor NR was targeted to the endoplasmic reticulum (ER) when transiently expressed in onion epidermal cells, whereas the four LeCTR proteins were found in the cytoplasm and nucleus. When co-expressed with NR, three LeCTRs (1, 3, and 4), but not LeCTR2, also adopted the same ER localization pattern in an NR receptor-dependent manner but not in the absence of NR. The receptor-CTR interactions were confirmed by biomolecular fluorescence complementation (BiFC) showing that NR could form a protein complex with LeCTR1, 3, and 4. This suggested that ethylene receptors recruit these LeCTR proteins to the ER membrane through direct protein-protein interaction. The receptor-CTR interactions and localization observed in the study reinforce the idea that ethylene receptors transmit the signal to the downstream CTRs and show that a single receptor can interact with multiple CTR proteins. It remains unclear whether the different LeCTRs are functionally redundant or have unique roles in ethylene signalling.
Collapse
Affiliation(s)
- Silin Zhong
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | |
Collapse
|
16
|
McClellan CA, Chang C. The role of protein turnover in ethylene biosynthesis and response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2008; 175:24-31. [PMID: 18650958 PMCID: PMC2293297 DOI: 10.1016/j.plantsci.2008.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant growth and development is controlled by a set of hormones whose responses are tightly regulated in order to direct appropriate responses. In several hormone signaling pathways, protein turnover has emerged as a common regulatory element. Ethylene is a phytohormone that controls a variety of processes, including fruit ripening, senescence, and stress response. This review focuses on the regulation of the ethylene response pathway through protein degradation. Protein turnover has been found to regulate both ethylene biosynthesis and ethylene response. Ethylene production is regulated through the turnover of the biosynthetic enzyme ACS. Recently it was found that ethylene receptors are controlled by protein turnover as well. A third process in the control of ethylene signaling is the targeting of the ethylene response transcription factor ETHYLENE INSENSITIVE3 (EIN3) for degradation by the proteins EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2).
Collapse
Affiliation(s)
- Christopher A. McClellan
- University of Maryland, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, College Park, MD 20742, USA
| | - Caren Chang
- University of Maryland, Department of Cell Biology and Molecular Genetics, Bioscience Research Building, College Park, MD 20742, USA
| |
Collapse
|
17
|
Lin Z, Arciga-Reyes L, Zhong S, Alexander L, Hackett R, Wilson I, Grierson D. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4271-87. [PMID: 19036844 PMCID: PMC2639023 DOI: 10.1093/jxb/ern276] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/24/2008] [Accepted: 10/13/2008] [Indexed: 05/19/2023]
Abstract
The gaseous hormone ethylene is perceived by a family of ethylene receptors which interact with the Raf-like kinase CTR1. SlTPR1 encodes a novel TPR (tetratricopeptide repeat) protein from tomato that interacts with the ethylene receptors NR and LeETR1 in yeast two-hybrid and in vitro protein interaction assays. SlTPR1 protein with a GFP fluorescent tag was localized in the plasmalemma and nuclear membrane in Arabidopsis, and SlTPR1-CFP and NR-YFP fusion proteins were co-localized in the plasmalemma and nuclear membrane following co-bombardment of onion cells. Overexpression of SlTPR1 in tomato resulted in ethylene-related pleiotropic effects including reduced stature, delayed and reduced production of inflorescences, abnormal and infertile flowers with degenerate styles and pollen, epinasty, reduced apical dominance, inhibition of abscission, altered leaf morphology, and parthenocarpic fruit. Similar phenotypes were seen in Arabidopsis overexpressing SlTPR1. SlTPR1 overexpression did not increase ethylene production but caused enhanced accumulation of mRNA from the ethylene responsive gene ChitB and the auxin-responsive gene SlSAUR1-like, and reduced expression of the auxin early responsive gene LeIAA9, which is known to be inhibited by ethylene and to be associated with parthenocarpy. Cuttings from the SlTPR1-overexpressors produced fewer adventitious roots and were less responsive to indole butyric acid. It is suggested that SlTPR1 overexpression enhances a subset of ethylene and auxin responses by interacting with specific ethylene receptors. SlTPR1 shares features with human TTC1, which interacts with heterotrimeric G-proteins and Ras, and competes with Raf-1 for Ras binding. Models for SlTPR1 action are proposed involving modulation of ethylene signalling or receptor levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Don Grierson
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
18
|
Barry CS, Giovannoni JJ. Ethylene and Fruit Ripening. JOURNAL OF PLANT GROWTH REGULATION 2007; 26:143. [PMID: 0 DOI: 10.1007/s00344-007-9002-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 05/19/2023]
|
19
|
De la Torre F, Del Carmen Rodríguez-Gacio M, Matilla AJ. How ethylene works in the reproductive organs of higher plants: a signaling update from the third millennium. PLANT SIGNALING & BEHAVIOR 2006; 1:231-42. [PMID: 19516984 PMCID: PMC2634124 DOI: 10.4161/psb.1.5.3389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 05/15/2023]
Abstract
Ethylene (ET) is a notable signaling molecule in higher plants. In the year 1993 the ET receptor gene, ETR1, was identified; this ETR1 receptor protein being the first plant hormone receptor to be isolated. It is striking that there are six ET receptors in tomato instead of five in Arabidopsis, the two best-known signaling-model systems. Even though over the last few years great progress has been made in elucidating the genes and proteins involved in ET signaling, the complete pathway remains to be established. The present review examines the most representative successive advances that have taken place in this millennium in terms of the signaling pathway of ET, as well as the implications of the signaling in the reproductive organs of plants (i.e., flowers, fruits, seeds and pollen grains). A detailed comparative study is made on the advances in knowledge in the last decade, showing how the characterization of ET signaling provides clues for understanding how higher plants regulate their ET sensitivity. Also, it is indicated that ET signaling is at present sparking interest within phytohormonal molecular physiology and biology, and it is explained why several socio-economic aspects (flowering and fruit ripening) are undoubtedly involved in ET physiology.
Collapse
Affiliation(s)
- Francisco De la Torre
- Department of Plant Physiology; Faculty of Pharmacy; University of Santiago de Compostela; Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|
20
|
Wang ZF, Ying TJ, Zhang Y, Bao BL, Huang XD. Characteristics of transgenic tomatoes antisensed for the ethylene receptor genes LeETR1 [corrected] and LeETR2 [corrected]. J Zhejiang Univ Sci B 2006; 7:591-5. [PMID: 16773735 PMCID: PMC1500884 DOI: 10.1631/jzus.2006.b0591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two stable transformed lines containing antisense LeETR1 [corrected] or LeETR2 [corrected] sequences and their hybridized line were investigated to determine the effect of LeETR1 [corrected] and LeETR2 [corrected] specificity in the ethylene receptor family in tomato (Lycopersicon esculentum Mill.) on ethylene signaling. The transgenic line ale1 containing antisense LeETR1 [corrected] displayed shorter length of seedling grown in the dark and adult plant in the light, severe epinastic petiole, and accelerated abscission of petiole explant and senescence of flower explant, compared with its wild type B1. The transgenic line ale2 containing antisense LeETR2 [corrected] also exhibited shorter hypocotyls and slightly accelerated abscission. The phenotypes of cross line dale of LeETR1 [corrected] and LeETR2 [corrected] were close to ale1 in many aspects. These results suggested that LeETR1 [corrected] probably plays a relatively important role in ethylene signaling of tomato growth and development.
Collapse
Affiliation(s)
- Zhong-feng Wang
- School of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029, China
- Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006, China
| | - Tie-jin Ying
- School of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029, China
- †E-mail:
| | - Ying Zhang
- Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006, China
| | - Bi-li Bao
- School of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029, China
| | - Xiao-dan Huang
- School of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
21
|
Meir S, Hunter DA, Chen JC, Halaly V, Reid MS. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa. PLANT PHYSIOLOGY 2006; 141:1604-16. [PMID: 16778017 PMCID: PMC1533941 DOI: 10.1104/pp.106.079277] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 06/02/2006] [Accepted: 06/05/2006] [Indexed: 05/10/2023]
Abstract
To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a beta-expansin, and a beta-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts.
Collapse
Affiliation(s)
- Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| | | | | | | | | |
Collapse
|
22
|
Anderson JP, Thatcher LF, Singh KB. Plant defence responses: conservation between models and crops. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:21-34. [PMID: 32689108 DOI: 10.1071/fp04136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 06/11/2023]
Abstract
Diseases of plants are a major problem for agriculture world wide. Understanding the mechanisms employed by plants to defend themselves against pathogens may lead to novel strategies to enhance disease resistance in crop plants. Much of the research in this area has been conducted with Arabidopsis as a model system, and this review focuses on how relevant the knowledge generated from this model system will be for increasing resistance in crop plants. In addition, the progress made using other model plant species is discussed. While there appears to be substantial similarity between the defence responses of Arabidopsis and other plants, there are also areas where significant differences are evident. For this reason it is also necessary to increase our understanding of the specific aspects of the defence response that cannot be studied using Arabidopsis as a model.
Collapse
Affiliation(s)
- Jonathan P Anderson
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| | - Louise F Thatcher
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for environment and life sciences, Private bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
23
|
Zhang ZG, Zhou HL, Chen T, Gong Y, Cao WH, Wang YJ, Zhang JS, Chen SY. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. PLANT PHYSIOLOGY 2004; 136:2971-81. [PMID: 15466243 PMCID: PMC523359 DOI: 10.1104/pp.103.034686] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 08/29/2004] [Accepted: 09/09/2004] [Indexed: 05/19/2023]
Abstract
Ethylene plays important roles in plant growth, development, and stress responses. Two ethylene receptors, ETR1 from Arabidopsis and NTHK1 from tobacco (Nicotiana tabacum), have been found to have His kinase (HK) activity and Ser/Thr kinase activity, respectively, although both show similarity to bacterial two-component HK. Here, we report the characterization of another ethylene receptor homolog gene, NTHK2, from tobacco. This gene also encodes a HK-like protein and is induced by dehydration and CaCl(2) but not significantly affected by NaCl and abscisic acid treatments. The biochemical properties of the yeast (Schizosaccharomyces pombe)-expressed NTHK2 domains were further characterized. We found that NTHK2 possessed Ser/Thr kinase activity in the presence of Mn(2+) and had HK activity in the presence of Ca(2+). Several lines of evidence supported this conclusion, including hydrolytic stability, phosphoamino acid analysis, mutation, deletion, and substrate analysis. These properties have implications in elucidation of the complexity of the ethylene signal transduction pathway and understanding of ethylene functions in plants.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S. Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1, in Delphinium during abscission of florets. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004. [PMID: 15474381 DOI: 10.1016/s0981-9428(03)00115-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We are trying to determine the mechanisms responsible for ethylene-induced floret abscission in cut flowers of Delphinium and recently identified an ethylene receptor gene, ERS1, and studied its response to ethylene treatment. In order to identify additional components of the ethylene response network in Delphinium, we performed 3' and 5' rapid amplification of cDNA ends (RACE) using the consensus sequence of the serine/threonine kinase domain of the ethylene signaling regulator gene (CTR1) involved in the constitutive triple response (CTR) to ethylene. The full-length cDNA (2754 nt) encoded a protein of 800 amino acids, which contained the expected serine/threonine kinase domain, the consensus ATP-binding site, and the serine/threonine kinase catalytic site. The protein had quite high (>50%) overall identity to CTR1 from Arabidopsis and tomato, and 70-75% identity in the catalytic site. The amount of mRNA encoding both CTR1 and ERS1 more than doubled within 6 h in cut florets incubated in the presence of exogenous ethylene. Similarly, the amount of ERS1 transcript doubled in florets within 6 d of harvesting, presumably in response to endogenous ethylene, while CTR1 mRNA increased to about 40% over the same period. However, in the presence of silver thiosulfate (STS), an ethylene inhibitor, the level of both transcripts remained essentially unchanged for the first 8 d before declining to very low levels. Florets on the control plants had almost completely abscised by 6 d, but the florets on STS-treated plants had not abscised by 20 d, by which time the flowers were almost dead. The data are consistent with the hypothesis that endogenous ethylene evokes the accumulation of both these transcripts (and their encoded proteins), thereby speeding up abscission and reducing the useful shelf life of the cut flowers.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Laboratory of Molecular Cell Biology, Department of Biological Resources, Faculty of Agriculture, Ehime University, Matsuyama 7908566, Japan
| | | | | | | | | |
Collapse
|
25
|
Xie C, Zhang JS, Zhou HL, Li J, Zhang ZG, Wang DW, Chen SY. Serine/threonine kinase activity in the putative histidine kinase-like ethylene receptor NTHK1 from tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:385-93. [PMID: 12535351 DOI: 10.1046/j.1365-313x.2003.01631.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A histidine kinase-based signaling system has been proposed to function in ethylene signal transduction pathway of plants and one ethylene receptor has been found to possess His kinase activity. Here we demonstrate that a His kinase-like ethylene receptor homologue NTHK1 from tobacco has serine/threonine (Ser/Thr) kinase activity, but no His kinase activity. Evidence obtained by analyzing acid/base stability, phosphoamino acid and substrate specificity of the phosphorylated kinase domain, supports this conclusion. In addition, mutation of the presumptive phosphorylation site His (H378) to Gln did not affect the kinase activity whereas deletion of the ATP-binding domain eliminated it, indicating that the conserved His (H378) is not required for the kinase activity and this activity is intrinsic to the NTHK1-KD. Moreover, confocal analysis of NTHK1 expression in insect cells and plant cells suggested the plasma membrane localization of the NTHK1 protein. Thus, NTHK1 may represent a distinct Ser/Thr kinase-type ethylene receptor and function in an alternative mechanism for ethylene signal transduction.
Collapse
Affiliation(s)
- Can Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, Peoples Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Rasori A, Ruperti B, Bonghi C, Tonutti P, Ramina A. Characterization of two putative ethylene receptor genes expressed during peach fruit development and abscission. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:2333-2339. [PMID: 12432026 DOI: 10.1093/jxb/erf097] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two peach genes homologous to the Arabidopsis ethylene receptor genes ETR1 and ERS1, named Pp-ETR1 and Pp-ERS1 respectively, have been isolated and characterized. Pp-ETR1 and Pp-ERS1 are conserved in terms of exon numbers and intron positions, although the first and fifth introns of Pp-ETR1 have an unusual length. In addition, two putative polyadenylation sites, that may cause an incomplete splicing at the 3' terminus, are present in the fifth intron. A motif of 28 nt, which shows high homology with ethylene responsive elements found in promoters of genes up-regulated by ethylene, is present in the promoter region of Pp-ERS1. Expression analysis, carried out by quantitative RT-PCR, was performed during fruit development and ripening, and leaf and fruitlet abscission. The level of Pp-ETR1 transcripts remained unchanged in all the tissues and developmental stages examined, whereas Pp-ERS1 mRNA abundance increased in ripening mesocarp, in leaf and fruitlet activated abscission zones, and following propylene application. 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, did not affect Pp-ETR1 transcription, while it down-regulated Pp-ERS1. A rise in ethylene evolution, accompanied by an increase of Pp-ERS1 transcript accumulation occurred within 24 h from the end of 1-MCP treatment. These results indicate that Pp-ERS1 might play a role in abscission and ripening.
Collapse
Affiliation(s)
- Angela Rasori
- Department of Environmental Agronomy and Crop Science, University of Padova, Via Romea, 16-Agripolis, Legnaro (Padova), 35020 Italy
| | | | | | | | | |
Collapse
|
27
|
Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latché A, Giovannoni JJ, Pech JC, Bouzayen M. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. PLANT PHYSIOLOGY 2002; 130:1132-42. [PMID: 12427980 PMCID: PMC166634 DOI: 10.1104/pp.009415] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Revised: 07/14/2002] [Accepted: 07/26/2002] [Indexed: 05/18/2023]
Abstract
LeCTR1 was initially isolated by both differential display reverse transcriptase-polymerase chain reaction screening for tomato (Lycopersicon esculentum) fruit ethylene-inducible genes and through homology with the Arabidopsis CTR1 cDNA. LeCTR1 shares strong nucleotide sequence homology with Arabidopsis CTR1, a gene acting downstream of the ethylene receptor and showing similarity to the Raf family of serine/threonine protein kinases. The length of the LeCTR1 transcribed region from ATG to stop codon (12,000 bp) is more than twice that of Arabidopsis CTR1 (4,700 bp). Structural analysis reveals perfect conservation of both the number and position of introns and exons in LeCTR1 and Arabidopsis CTR1. The introns in LeCTR1 are much longer, however. To address whether this structural conservation is indicative of functional conservation of the corresponding proteins, we expressed LeCTR1 in the Arabidopsis ctr1-1 (constitutive triple response 1) mutant under the direction of the 35S promoter. Our data clearly show that ectopic expression of LeCTR1 in the Arabidopsis ctr1-1 mutant can restore normal ethylene signaling. The recovery of normal ethylene sensitivity upon heterologous expression of LeCTR1 was also confirmed by restored glucose sensitivity absent in the Arabidopsis ctr1-1 mutant. Expression studies confirm ethylene responsiveness of LeCTR1 in various tissues, including ripening fruit, and may suggest the evolution of alternate regulatory mechanisms in tomato versus Arabidopsis.
Collapse
Affiliation(s)
- Julie Leclercq
- Unité Mixte de Recherche 990, Institut National de la Recherche Agronomique/Institut National Polytechnique-Ecole Nationale Supérieure Agronomique, Boite Postale 107 Auzeville, 31326 Castanet Tolosan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Klee H, Tieman D. The tomato ethylene receptor gene family: Form and function. PHYSIOLOGIA PLANTARUM 2002; 115:336-341. [PMID: 12081525 DOI: 10.1034/j.1399-3054.2002.1150302.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phytohormones are essential for integrating many aspects of plant development and responses to the environment. Regulation of hormonally controlled events occurs at multiple levels: synthesis, catabolism and perception (Trewavas 1983, Bradford and Trewavas 1994). At the level of perception, sensitivity to hormones can be regulated both spatially and temporally during the life cycle. An example of spatial regulation is the differential response to a hormone that occurs during organ abscission. Temporally, sensitivity of an organ to a hormone may change during maturation, as occurs during fruit ripening. In this review, we will focus on the initial event in recognition of one hormone, ethylene. The ethylene receptor was the first plant hormone receptor to be unambiguously identified. Over the last few years, great progress has been made in elucidating the genes involved in ethylene action. Nonetheless, the mechanisms of signal transduction remain to be established. Here, we will address the status of the tomato receptor gene family and the evidence that regulation of receptor gene expression can influence the response of the plant to the hormone.
Collapse
Affiliation(s)
- Harry Klee
- University of Florida, Department of Horticultural Sciences, PO Box 110690, Gainesville, FL 32611 USA
| | | |
Collapse
|
29
|
Xie C, Zhang ZG, Zhang JS, He XJ, Cao WH, He SJ, Chen SY. Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco. PLANT & CELL PHYSIOLOGY 2002; 43:810-5. [PMID: 12154144 DOI: 10.1093/pcp/pcf095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A putative ethylene receptor gene NTHK1 encodes a protein with a putative signal peptide, three transmembrane segments, a putative histidine kinase domain and a putative receiver domain. The receiver domain was expressed in an Escherichia coli expression system, purified and used to generate polyclonal antibodies for immunohistochemistry analysis. The spatial expression of the NTHK1 protein was then investigated. We found that NTHK1 was abundant during flower and ovule development. It was also expressed in glandular hairs, stem, and in leaves that had been wounded. The NTHK1 gene was further introduced into the tobacco plant and we found that, in different transgenic lines, the NTHK1 gene was transcribed to various degrees. Upon ACC treatment, the etiolated transgenic seedlings showed reduced ethylene sensitivity when compared with the control, indicating that NTHK1 is a functional ethylene receptor in plants.
Collapse
Affiliation(s)
- Can Xie
- Plant Biotechnology Lab, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Peeters AJM, Cox MCH, Benschop JJ, Vreeburg RAM, Bou J, Voesenek LACJ. Submergence research using Rumex palustris as a model; looking back and going forward. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:391-398. [PMID: 11847236 DOI: 10.1093/jexbot/53.368.391] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flooding is a phenomenon that destroys many crops worldwide. During evolution several plant species evolved specialized mechanisms to survive short- or long-term waterlogging and even complete submergence. One of the plant species that evolved such a mechanism is Rumex palustris. When flooded, this plant species is capable to elongate its petioles to reach the surface of the water. Thereby it restores normal gas exchange which leads to a better survival rate. Enhanced levels of ethylene, due to physical entrapment, is the key signal for the plant that its environment has changed from air to water. Subsequently, a signal transduction cascade involving at least four (classical) plant hormones, ethylene, auxin, abscisic acid, and gibberellic acid, is activated. This results in hyponastic growth of the leaves accompanied by a strongly enhanced elongation rate of the petioles enabling them to reach the surface. Other factors, among them cell wall loosening enzymes have been shown to play a role as well.
Collapse
Affiliation(s)
- Anton J M Peeters
- Department of Plant Ecophysiology, University Utrecht, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Whitelaw CA, Lyssenko NN, Chen L, Zhou D, Mattoo AK, Tucker ML. Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. PLANT PHYSIOLOGY 2002; 128:978-87. [PMID: 11891253 PMCID: PMC152210 DOI: 10.1104/pp.010782] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Revised: 11/01/2001] [Accepted: 12/01/2001] [Indexed: 05/19/2023]
Abstract
Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3'-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene. Two independent lines with a single copy of the transgene and reduced LeETR1 transcript accumulation were selected for detailed phenotypic analysis of second generation (R1) plants. Delayed abscission, shorter internode length, and reduced auxin movement all correlated with the presence of the transgene and the degree of reduced LeETR1 transcript accumulation. No significant differences were noted for fruit coloration or fruit softening on R1 plants and all seedlings from R1 and R2 seed displayed a normal triple response. LeETR2 transcript accumulation was only slightly reduced in the R1 plants compared with azygous plants, and LeETR3 (NR) transcript levels appeared to be unaffected by the transgene. We propose that ethylene signal transduction occurs through parallel paths that partially intersect to regulate shared ethylene responses.
Collapse
Affiliation(s)
- Catherine A Whitelaw
- Soybean Genomics Improvement Laboratory, United States Department of Agriculture, Building 006, 10300 Baltimore Avenue, Beltsville, Maryland 20705, USA
| | | | | | | | | | | |
Collapse
|
32
|
Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S. Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:399-406. [PMID: 11847237 DOI: 10.1093/jexbot/53.368.399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Three ethylene receptor genes, DC-ERS1, DC-ERS2 and DC-ETR1, were previously identified in carnation (Dianthus caryophyllus L.). Here, the presence of mRNAs for respective genes in flower tissues and their changes during flower senescence are investigated by Northern blot analysis. DC-ERS2 and DC-ETR1 mRNAs were present in considerable amounts in petals, ovaries and styles of the flower at the full-opening stage. In the petals the level of DC-ERS2 mRNA showed a decreasing trend toward the late stage of flower senescence, whereas it increased slightly in ovaries and was unchanged in styles throughout the senescence period. However, DC-ETR1 mRNA showed no or little changes in any of the tissues during senescence. Exogenously applied ethylene did not affect the levels of DC-ERS2 and DC-ETR1 mRNAs in petals. Ethylene production in the flowers was blocked by treatment with 1,1-dimethyl-4-(phenylsulphonyl)semicarbazide (DPSS), but the mRNA levels for DC-ERS2 and DC-ETR1 decreased in the petals. DC-ERS1 mRNA was not detected in any cases. These results indicate that DC-ERS2 and DC-ETR1 are ethylene receptor genes responsible for ethylene perception and that their expression is regulated in a tissue-specific manner and independently of ethylene in carnation flowers during senescence.
Collapse
MESH Headings
- Apoptosis/physiology
- Blotting, Northern
- Blotting, Southern
- Cloning, Molecular
- Dianthus/genetics
- Dianthus/growth & development
- Dianthus/metabolism
- Ethylenes/antagonists & inhibitors
- Ethylenes/metabolism
- Ethylenes/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Structures/genetics
- Plant Structures/growth & development
- Plant Structures/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Semicarbazides/pharmacology
Collapse
Affiliation(s)
- Kenichi Shibuya
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Kieber JJ. The ethylene response pathway in Arabidopsis. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 48:277-96. [PMID: 11541139 DOI: 10.1146/annurev.arplant.48.1.277] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.
Collapse
Affiliation(s)
- J J Kieber
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| |
Collapse
|
34
|
Giovannoni J. MOLECULAR BIOLOGY OF FRUIT MATURATION AND RIPENING. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:725-749. [PMID: 11337414 DOI: 10.1146/annurev.arplant.52.1.725] [Citation(s) in RCA: 415] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development and maturation of fruits has received considerable scientific scrutiny because of both the uniqueness of such processes to the biology of plants and the importance of fruit as a significant component of the human diet. Molecular and genetic analysis of fruit development, and especially ripening of fleshy fruits, has resulted in significant gains in knowledge over recent years. Great strides have been made in the areas of ethylene biosynthesis and response, cell wall metabolism, and environmental factors, such as light, that impact ripening. Discoveries made in Arabidopsis in terms of general mechanisms for signal transduction, in addition to specific mechanisms of carpel development, have assisted discovery in more traditional models such as tomato. This review attempts to coalesce recent findings in the areas of fruit development and ripening.
Collapse
Affiliation(s)
- Jim Giovannoni
- USDA-ARS Plant, Soil and Nutrition Laboratory and Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853; e-mail:
| |
Collapse
|
35
|
Terajima Y, Nukui H, Kobayashi A, Fujimoto S, Hase S, Yoshioka T, Hashiba T, Satoh S. Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1, of tobacco (Nicotiana tabacum L.). PLANT & CELL PHYSIOLOGY 2001; 42:308-13. [PMID: 11266582 DOI: 10.1093/pcp/pce038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cDNA encoding a novel member (NT-ERS1) of ethylene receptor family of tobacco (Nicotiana tabacum L.) was obtained by a combination of RT-PCR and 5'-/3'-RACE cloning. The cDNA was 2,092 nucleotides long and had an open reading frame of 1,911 bp encoding 637 amino acids. The deduced polypeptide lacked a response regulator domain, indicating that the ethylene receptor belongs to an ERS-group. The amino acid sequence was similar to respective members of the tobacco ethylene receptor family: 67.8% to NT-ETR1, 39.1% to NTHK1 and 31.1% to NTHK2. Comparison of amino acid sequence suggested that NT-ERS1 is the counterpart of Nr in the ethylene receptor family of tomato, which belongs to Solanaceae as does tobacco. Northern blot analysis showed that mRNA of NT-ERS1 was present in leaf, shoot and root tissues, and accumulated in leaves treated with exogenous ethylene. A mutated NT-ERS1 cDNA transgene, obtained by introducing one nucleotide substitution into NT-ETR1 cDNA, conferred ethylene insensitivity in tobacco plants, indicating that the translation product of the cDNA actually functioned in the plants.
Collapse
Affiliation(s)
- Y Terajima
- Laboratory of Bio-adaptation, Graduate School of Agricultural Sciences, Tohoku University, Tsutsumidori-amamiyamachi 1-1, Aoba-ku, Sendai, 981-8555 Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hackett RM, Ho CW, Lin Z, Foote HC, Fray RG, Grierson D. Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model. PLANT PHYSIOLOGY 2000; 124:1079-86. [PMID: 11080285 PMCID: PMC59207 DOI: 10.1104/pp.124.3.1079] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 08/06/2000] [Indexed: 05/18/2023]
Abstract
The hormone ethylene regulates many aspects of plant growth and development, including fruit ripening. In transgenic tomato (Lycopersicon esculentum) plants, antisense inhibition of ethylene biosynthetic genes results in inhibited or delayed ripening. The dominant tomato mutant, Never-ripe (Nr), is insensitive to ethylene and fruit fail to ripen. The Nr phenotype results from mutation of the ethylene receptor encoded by the NR gene, such that it can no longer bind the hormone. NR has homology to the Arabidopsis ethylene receptors. Studies on ethylene perception in Arabidopsis have demonstrated that receptors operate by a "receptor inhibition" mode of action, in which they actively repress ethylene responses in the absence of the hormone, and are inactive when bound to ethylene. In ripening tomato fruit, expression of NR is highly regulated, increasing in expression at the onset of ripening, coincident with increased ethylene production. This expression suggests a requirement for the NR gene product during the ripening process, and implies that ethylene signaling via the tomato NR receptor might not operate by receptor inhibition. We used antisense inhibition to investigate the role of NR in ripening tomato fruit and determine its mode of action. We demonstrate restoration of normal ripening in Nr fruit by inhibition of the mutant Nr gene, indicating that this receptor is not required for normal ripening, and confirming receptor inhibition as the mode of action of the NR protein.
Collapse
Affiliation(s)
- R M Hackett
- Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Urao T, Yamaguchi-Shinozaki K, Shinozaki K. Two-component systems in plant signal transduction. TRENDS IN PLANT SCIENCE 2000; 5:67-74. [PMID: 10664616 DOI: 10.1016/s1360-1385(99)01542-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In plants, two-component systems play important roles in signal transduction in response to environmental stimuli and growth regulators. Genetic and biochemical analyses indicate that sensory hybrid-type histidine kinases, ETR1 and its homologs, function as ethylene receptors and negative regulators in ethylene signaling. Two other hybrid-type histidine kinases, CKI1 and ATHK1, are implicated in cytokinin signaling and osmosensing processes, respectively. A data base search of Arabidopsis ESTs and genome sequences has identified many homologous genes encoding two-component regulators. We discuss the possible origins and functions of these two-component systems in plants.
Collapse
Affiliation(s)
- T Urao
- Biological Resources Division, Japan International Research Center for Agricultural Science, Ministry of Agriculture, Forestry and Fisheries, 1-2 Ohwashi, Tsukuba, Ibaraki 305, Japan
| | | | | |
Collapse
|
38
|
Abstract
Ethylene signal transduction pathway regulates various aspects of plant physiology and development. Studies of mutants defective in the ethylene response, has led to the elaboration of key genes involved in the perception of ethylene. Among them are putative ethylene receptors, Raf-like kinases, nuclear-targeted proteins and transcription factors. The gene products share common motifs found in other signaling-cascade pathways in organisms ranging from bacteria to mammals. Recent biochemical studies provide insight into the function and regulation of the components of the ethylene cascade and make ethylene perception a paradigm for signal transduction in multicellular organisms.
Collapse
|
39
|
Chang C, Shockey JA. The ethylene-response pathway: signal perception to gene regulation. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:352-358. [PMID: 10508761 DOI: 10.1016/s1369-5266(99)00004-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tremendous strides have been made in the past year toward elucidating the ethylene-response pathway. Ethylene is perceived by a family of histidine kinase-like receptors, which negatively regulate ethylene responses. Binding of ethylene requires a copper cofactor, and proper receptor function relies on a copper transporter. Downstream, EIN2 is a structurally novel protein containing an integral membrane domain. In the nucleus, the EIN3 family of DNA-binding proteins regulates transcription in response to ethylene, and an immediate target of EIN3 is a DNA-binding protein of the AP2/EREBP family.
Collapse
Affiliation(s)
- C Chang
- Department of Cell Biology and Molecular Genetics, Maryland Agricultural Experiment Station, HJ Patterson Hall, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
40
|
Sato-Nara K, Yuhashi KI, Higashi K, Hosoya K, Kubota M, Ezura H. Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. PLANT PHYSIOLOGY 1999; 120:321-30. [PMID: 10318709 PMCID: PMC59264 DOI: 10.1104/pp.120.1.321] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 01/31/1999] [Indexed: 05/18/2023]
Abstract
We isolated two muskmelon (Cucumis melo) cDNA homologs of the Arabidopsis ethylene receptor genes ETR1 and ERS1 and designated them Cm-ETR1 (C. melo ETR1; accession no. AF054806) and Cm-ERS1 (C. melo ERS1; accession no. AF037368), respectively. Northern analysis revealed that the level of Cm-ERS1 mRNA in the pericarp increased in parallel with the increase in fruit size and then markedly decreased at the end of enlargement. In fully enlarged fruit the level of Cm-ERS1 mRNA was low in all tissues, whereas that of Cm-ETR1 mRNA was very high in the seeds and placenta. During ripening Cm-ERS1 mRNA increased slightly in the pericarp of fruit before the marked increase of Cm-ETR1 mRNA paralleled climacteric ethylene production. These results indicate that both Cm-ETR1 and Cm-ERS1 play specific roles not only in ripening but also in the early development of melon fruit and that they have distinct roles in particular fruit tissues at particular developmental stages.
Collapse
MESH Headings
- Arabidopsis/genetics
- Base Sequence
- Cloning, Molecular
- DNA Probes/genetics
- Fruit/genetics
- Fruit/growth & development
- Fruit/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Molecular Sequence Data
- Plant Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- K Sato-Nara
- Plant Biotechnology Institute, Ibaraki Agricultural Center, Iwama, Nishi-ibaraki 319-0292, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Tieman DM, Klee HJ. Differential expression of two novel members of the tomato ethylene-receptor family. PLANT PHYSIOLOGY 1999; 120:165-72. [PMID: 10318694 PMCID: PMC59248 DOI: 10.1104/pp.120.1.165] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/1998] [Accepted: 02/07/1999] [Indexed: 05/19/2023]
Abstract
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.
Collapse
Affiliation(s)
- D M Tieman
- Horticultural Sciences Department, P.O. Box 110690, University of Florida, Gainesville, Florida 32611-0690, USA
| | | |
Collapse
|
42
|
Nakatsuka A, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, Inaba A. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. PLANT PHYSIOLOGY 1998; 118:1295-305. [PMID: 9847103 PMCID: PMC34745 DOI: 10.1104/pp.118.4.1295] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 08/28/1998] [Indexed: 05/18/2023]
Abstract
We investigated the feedback regulation of ethylene biosynthesis in tomato (Lycopersicon esculentum) fruit with respect to the transition from system 1 to system 2 ethylene production. The abundance of LE-ACS2, LE-ACS4, and NR mRNAs increased in the ripening fruit concomitant with a burst in ethylene production. These increases in mRNAs with ripening were prevented to a large extent by treatment with 1-methylcyclopropene (MCP), an ethylene action inhibitor. Transcripts for the LE-ACS6 gene, which accumulated in preclimacteric fruit but not in untreated ripening fruit, did accumulate in ripening fruit treated with MCP. Treatment of young fruit with propylene prevented the accumulation of transcripts for this gene. LE-ACS1A, LE-ACS3, and TAE1 genes were expressed constitutively in the fruit throughout development and ripening irrespective of whether the fruit was treated with MCP or propylene. The transcripts for LE-ACO1 and LE-ACO4 genes already existed in preclimacteric fruit and increased greatly when ripening commenced. These increases in LE-ACO mRNA with ripening were also prevented by treatment with MCP. The results suggest that in tomato fruit the preclimacteric system 1 ethylene is possibly mediated via constitutively expressed LE-ACS1A and LE-ACS3 and negatively feedback-regulated LE-ACS6 genes with preexisting LE-ACO1 and LE-ACO4 mRNAs. At the onset of the climacteric stage, it shifts to system 2 ethylene, with a large accumulation of LE-ACS2, LE-ACS4, LE-ACO1, and LE-ACO4 mRNAs as a result of a positive feedback regulation. This transition from system 1 to system 2 ethylene production might be related to the accumulated level of NR mRNA.
Collapse
MESH Headings
- Alkenes/pharmacology
- Amino Acid Oxidoreductases/genetics
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- Cyclopropanes/pharmacology
- DNA Primers/genetics
- DNA, Complementary/genetics
- Ethylenes/biosynthesis
- Feedback
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Lyases/genetics
- Solanum lycopersicum/genetics
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/metabolism
- Molecular Sequence Data
- Plant Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Receptors, Cell Surface/genetics
Collapse
Affiliation(s)
- A Nakatsuka
- Laboratory of Postharvest Agriculture, Faculty of Agriculture, Okayama University, Tsushima, Okayama, 700-8530 Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Woeste K, Kieber JJ. The molecular basis of ethylene signalling in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 1998; 353:1431-8. [PMID: 9800206 PMCID: PMC1692355 DOI: 10.1098/rstb.1998.0298] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The simple gas ethylene profoundly influences plants at nearly every stage of growth and development. In the past ten years, the use of a genetic approach, based on the triple response phenotype, has been a powerful tool for investigating the molecular events that underlie these effects. Several fundamental elements of the pathway have been described: a receptor with homology to bacterial two-component histidine kinases (ETR1), elements of a MAP kinase cascade (CTR1) and a putative transcription factor (EIN3). Taken together, these elements can be assembled into a simple, linear model for ethylene signalling that accounts for most of the well-characterized ethylene mediated responses.
Collapse
Affiliation(s)
- K Woeste
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA
| | | |
Collapse
|
44
|
Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 1998; 94:261-71. [PMID: 9695954 DOI: 10.1016/s0092-8674(00)81425-7] [Citation(s) in RCA: 568] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A family of genes including ETR1, ETR2, EIN4, ERS1, and ERS2 is implicated in ethylene perception in Arabidopsis thaliana. As only dominant mutations were previously available for these genes, it was unclear whether all of them are components in the ethylene signaling pathway and whether they code for positive or negative regulators of ethylene responses. In this study, we have isolated loss-of-function mutations of four of these genes (ETR1, ETR2, EIN4, and ERS2) and identified an ethylene-independent role of ETR1 in promoting cell elongation. Quadruple mutants had constitutive ethylene responses, revealing that these proteins negatively regulate ethylene responses and that the induction of ethylene response in Arabidopsis is through inactivation rather than activation of these proteins.
Collapse
Affiliation(s)
- J Hua
- Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
45
|
Terryn N, Gielen J, De Keyser A, Van Den Daele H, Ardiles W, Neyt P, De Clercq R, Coppieters J, Déhais P, Villarroel R, Rouzé P, Van Montagu M. Sequence analysis of a 40-kb Arabidopsis thaliana genomic region located at the top of chromosome 1. Gene 1998; 215:11-7. [PMID: 9666060 DOI: 10.1016/s0378-1119(98)00286-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a contribution to the European Scientists Sequencing Arabidopsis (BIOTECH ESSA) project, a contig of almost 40kb has been sequenced at the extreme top of chromosome 1, around the Arabidopsis thaliana gene coding for a member of the 1-aminocyclopropane-1-carboxylate synthesis gene family. The region contains, besides the ACS1 gene itself, 10 putative genes, all new for Arabidopsis. Among these are three genes encoding kinases, a late embryogenesis-abundant protein, a MADS box-containing protein, a dehydrogenase, and a Myb-related transcription factor. In addition, six cDNAs have been sequenced that correspond to this region.
Collapse
Affiliation(s)
- N Terryn
- Laboratorium voor Genetica, Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chang C, Stewart RC. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes. PLANT PHYSIOLOGY 1998; 117:723-31. [PMID: 9662515 PMCID: PMC1539182 DOI: 10.1104/pp.117.3.723] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- C Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
47
|
Lashbrook CC, Tieman DM, Klee HJ. Differential regulation of the tomato ETR gene family throughout plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:243-52. [PMID: 9721682 DOI: 10.1046/j.1365-313x.1998.00202.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene perception in plants is co-ordinated by multiple hormone receptor candidates sharing sequence commonalties with prokaryotic environmental sensor proteins known as two-component regulators. Two tomato homologs of the Arabidopsis ethylene receptor ETR1 were cloned from a root cDNA library. Both cDNAs, termed LeETR1 and LeETR2, were highly homologous to ETR1, exhibiting approximately 90% deduced amino acid sequence similarity and 80% deduced amino acid sequence identity. LeETR1 and LeETR2 contained all the major structural elements of two-component regulators, including the response regulator motif absent in LeETR3, the gene encoding tomato NEVER RIPE (NR). Using RNase protection analysis, the mRNAs of LeETR1, LeETR2 and NR were quantified in tissues engaged in key processes of the plant life cycle, including seed germination, shoot elongation, leaf and flower senescence, floral abscission, fruit set and fruit ripening. LeETR1 was expressed constitutively in all plant tissues examined. LeETR2 mRNA was expressed at low levels throughout the plant but was induced in imbibing tomato seeds prior to germination and was down-regulated in elongating seedlings and senescing leaf petioles. NR expression was developmentally regulated in floral ovaries and ripening fruit. Notably, hormonal regulation of NR was highly tissue-specific. Ethylene biosynthesis induced NR mRNA accumulation in ripening fruit but not in elongating seedlings or in senescing leaves or flowers. Furthermore, the abundance of mRNAs for all three LeETR genes remained uniform in multiple plant tissues experiencing marked changes in ethylene sensitivity, including the cell separation layer throughout tomato flower abscission.
Collapse
Affiliation(s)
- C C Lashbrook
- Department of Horticultural Sciences, University of Florida, Gainesville 32611-0690, USA
| | | | | |
Collapse
|
48
|
Gamble RL, Coonfield ML, Schaller GE. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci U S A 1998; 95:7825-9. [PMID: 9636235 PMCID: PMC22771 DOI: 10.1073/pnas.95.13.7825] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ETR1 represents a prototypical ethylene receptor. Homologues of ETR1 have been identified in Arabidopsis as well as in other plant species, indicating that ethylene perception involves a family of receptors and that the mechanism of ethylene perception is conserved in plants. The amino-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The carboxyl-terminal half of the polypeptide contains domains with homology to histidine kinases and response regulators, signaling motifs originally identified in bacteria. The putative histidine kinase domain of ETR1 was expressed in yeast as a fusion protein with glutathione S-transferase and affinity purified. Autophosphorylation of the purified fusion protein was observed on incubation with radiolabeled ATP. The incorporated phosphate was resistant to treatment with 3 M NaOH, but was sensitive to 1 M HCl, consistent with phosphorylation of histidine. Autophosphorylation was abolished by mutations that eliminated either the presumptive site of phosphorylation (His-353) or putative catalytic residues within the kinase domain. Truncations were used to delineate the region required for histidine kinase activity. An examination of cation requirements indicated that ETR1 requires Mn2+ for autophosphorylation. These results demonstrate that higher plants contain proteins with histidine kinase activity. Furthermore, these results indicate that aspects of ethylene signaling may be regulated by changes in histidine kinase activity of the receptor.
Collapse
Affiliation(s)
- R L Gamble
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
49
|
Clark KL, Larsen PB, Wang X, Chang C. Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci U S A 1998; 95:5401-6. [PMID: 9560288 PMCID: PMC20273 DOI: 10.1073/pnas.95.9.5401] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Arabidopsis thaliana, signal transduction of the hormone ethylene involves at least two receptors, ETR1 and ERS, both of which are members of the two-component histidine protein kinase family that is prevalent in prokaryotes. The pathway also contains a negative regulator of ethylene responses, CTR1, which closely resembles members of the Raf protein kinase family. CTR1 is thought to act at or downstream of ETR1 and ERS based on double mutant analysis; however, the signaling mechanisms leading from ethylene perception to the regulation of CTR1 are unknown. By using the yeast two-hybrid assay, we detected a specific interaction between the CTR1 amino-terminal domain and the predicted histidine kinase domain of ETR1 and ERS. We subsequently verified these interactions by using an in vitro protein association assay(s). In addition, we determined that the amino-terminal domain of CTR1 can associate with the predicted receiver domain of ETR1 in vitro. Based on deletion analysis, the portion of CTR1 that interacts with ETR1 roughly aligns with the regulatory region of Raf kinases. These physical associations support the genetic evidence that CTR1 acts in the pathway of ETR1 and ERS and suggest that these interactions could be involved in the regulation of CTR1 activity.
Collapse
Affiliation(s)
- K L Clark
- Department of Cell Biology and Molecular Genetics, H. J. Patterson Hall, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
50
|
Knoester M, Hennig J, Bol JF, Linthorst HJ. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc Natl Acad Sci U S A 1998; 95:1933-7. [PMID: 9465120 PMCID: PMC19216 DOI: 10.1073/pnas.95.4.1933] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enhanced ethylene production is an early response of plants to pathogen attack and has been associated with both resistance and susceptibility to disease. Tobacco plants were transformed with the mutant etr1-1 gene from Arabidopsis, conferring dominant ethylene insensitivity. Besides lacking known ethylene responses, these transformants (Tetr) did not slow growth when contacting neighboring plants, hardly expressed defense-related basic pathogenesis-related proteins, and developed spontaneous stem browning. Whereas hypersensitive resistance to tobacco mosaic virus was unimpaired, Tetr plants had lost nonhost resistance against normally nonpathogenic soil-borne fungi.
Collapse
Affiliation(s)
- M Knoester
- Institute of Molecular Plant Sciences, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|