1
|
Huang L, Ren Y, Lin B, Hao P, Yi K, Li X, Hua S. Cytological and Molecular Characterization of a New Ogura Cytoplasmic Male Sterility Restorer of Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1703. [PMID: 38931135 PMCID: PMC11207357 DOI: 10.3390/plants13121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Ogura cytoplasmic male sterility (CMS) is considered the rapeseed (Brassica napus L.) with the most potential to be utilized as a heterosis system worldwide, but it lacks sufficient restorers. In this study, root tip cell (RTC) mitotic and pollen mother cell (PMC) meiosis observations were compared to ensure the number of chromosomes and the formation of a chromosomal bridge using restorer lines R2000, CLR650, and Zhehuhong (a new restorer) as the experimental material. Further, molecular markers of exogenous chromosomal fragments were detected and the sequence and expression differences of restorer genes in the three lines were determined to identify the distinctive characteristics of Zhehuhong. The results showed that the number of chromosomes in Zhehuhong was stable (2n = 38), indicating that the exogenous radish chromosome segment had been integrated into the chromosome of Zhehuhong. Molecular marker detection revealed that Zhehuhong was detected at most loci, with only the RMA05 locus being missed. The exogenous radish chromosome segment of Zhehuhong differed from R2000 and CLR650. The pollen mother cells of Zhehuhong showed chromosome lagging in the meiotic metaphase I, meiotic anaphase I, and meiotic anaphase II, which was consistent with R2000 and CLR650. The restorer gene PPRB in Zhehuhong had 85 SNPs compared with R2000 and 119 SNPs compared with CLR650, indicating the distinctive characteristic of PPRB in Zhehuhong. In terms of the spatial expression of PPRB, the highest level was detected in the anthers in the three restorer lines. In addition, in terms of temporal expression, the PPRB gene expression of Zhehuhong was highest at a bud length of 4 mm. Our results clearly indicated that Zhehuhong is a new restorer line for the Ogura CMS system, which can be used further in rapeseed heterosis utilization.
Collapse
Affiliation(s)
- Lan Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Yun Ren
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| |
Collapse
|
2
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
3
|
Abstract
Brassica oleracea is an important vegetable species which belongs to the genus Brassica and the mustard family Brassicaceae Burnett. Strong heterosis in B. oleracea is displayed in yield, quality, disease resistance, and stress tolerance. Heterosis breeding is the main way to improve B. oleracea varieties. Male sterile mutants play an important role in the utilization of heterosis and the study of development and regulation in plant reproduction. In this paper, advances in the research and application of male sterility in B. oleracea were reviewed, including aspects of the genetics, cytological characteristics, discovery of genes related to male sterility, and application of male sterility in B. oleracea. Moreover, the main existing problems and prospect of male sterility application in B. oleracea were addressed and a new hybrids’ production strategy with recessive genic male sterility is introduced.
Collapse
|
4
|
Mitochondrial Genome Sequencing Reveals orf463a May Induce Male Sterility in NWB Cytoplasm of Radish. Genes (Basel) 2020; 11:genes11010074. [PMID: 31936663 PMCID: PMC7017215 DOI: 10.3390/genes11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Radish (Raphanus sativus L.) is an important root vegetable worldwide. The development of F1 hybrids, which are extensively used for commercial radish production, relies on cytoplasmic male sterility (CMS). To identify candidate genes responsible for CMS in NWB cytoplasm, we sequenced the normal and NWB CMS radish mitochondrial genomes via next-generation sequencing. A comparative analysis revealed 18 syntenic blocks and 11 unique regions in the NWB CMS mitogenome. A detailed examination indicated that orf463a was the most likely causal factor for male sterility in NWB cytoplasm. Interestingly, orf463a was identical to orf463, which is responsible for CMS in Dongbu cytoplasmic and genic male sterility (DCGMS) radish. Moreover, only structural variations were detected between the NWB CMS and DCGMS mitochondrial genomes, with no nucleotide polymorphisms (SNPs) or meaningful indels. Further analyses revealed these two mitochondrial genomes are coexisting isomeric forms belonging to the same mitotype. orf463a was more highly expressed in flower buds than in vegetative organs and its expression was differentially regulated in the presence of restorer of fertility (Rf) genes. orf463a was confirmed to originate from Raphanus raphanistrum. In this study, we identified a candidate gene responsible for the CMS in NWB cytoplasm and clarified the relationship between NWB CMS and DCGMS.
Collapse
|
5
|
Arakawa T, Uchiyama D, Ohgami T, Ohgami R, Murata T, Honma Y, Hamada H, Kuroda Y, Taguchi K, Kitazaki K, Kubo T. A fertility-restoring genotype of beet (Beta vulgaris L.) is composed of a weak restorer-of-fertility gene and a modifier gene tightly linked to the Rf1 locus. PLoS One 2018; 13:e0198409. [PMID: 29856854 PMCID: PMC5983528 DOI: 10.1371/journal.pone.0198409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/19/2018] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a plant trait that involves interactions between nuclear- and mitochondrial genomes. In CMS, the nuclear restorer-of-fertility gene (Rf), a suppressor of male-sterility inducing mitochondria, is one of the best known genetic factors. Other unidentified genetic factors may exist but have not been well characterized. In sugar beet (Beta vulgaris L.), CMS is used for hybrid seed production, but few male-sterility inducing nuclear genotypes exist. Such genotypes could be introduced from a closely related plant such as leaf beet, but first the fertility restoring genotype of the related plant must be characterized. Here, we report the discovery of a Japanese leaf beet accession ‘Fukkoku-ouba’ that has both male-sterility inducing and fertility restoring genotypes. We crossed the leaf beet accession with a sugar beet CMS line, developed succeeding generations, and examined the segregation of two DNA markers that are linked to two sugar beet Rfs, Rf1 and Rf2. Only the Rf2 marker co-segregated with fertility restoration in every generation, implying that the Rf1 locus in leaf beet is occupied by a non-restoring allele. Fertility restoration was incomplete without a genetic factor closely linked to Rf1, leading to the assumption that the Rf1 locus encodes a modifier that cannot restore fertility by itself but perhaps strengthens another Rf. We sequenced the apparently non-restoring ‘Fukkoku-ouba’ rf1 gene-coding region and found that it closely resembles a restoring allele. The protein product demonstrated its potential to suppress CMS in transgenic suspension cells. In contrast, ‘Fukkoku-ouba’ rf1 transcript abundance was highly reduced compared to that of the restoring Rf1. Consistently, changes in protein complexes containing CMS-associated mitochondrial protein in anthers were very minor. Accordingly, we concluded that ‘Fukkoku-ouba’ rf1 is a hypomorph that acts as a non-restoring allele but has the potential to support another Rf, i.e. it is a modifier candidate.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Daisuke Uchiyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takashi Ohgami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryo Ohgami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomoki Murata
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yujiro Honma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Hamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Japan
| | - Kazunori Taguchi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Japan
| | | | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
6
|
Igarashi K, Kazama T, Toriyama K. A Gene Encoding Pentatricopeptide Repeat Protein Partially Restores Fertility in RT98-Type Cytoplasmic Male-Sterile Rice. PLANT & CELL PHYSIOLOGY 2016; 57:2187-2193. [PMID: 27498808 DOI: 10.1093/pcp/pcw135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/25/2016] [Indexed: 05/03/2023]
Abstract
Cytoplasmic male sterility (CMS) lines in rice, which have the cytoplasm of a wild species and the nuclear genome of cultivated rice, are of value for the study of genetic interactions between the mitochondrial and nuclear genomes. The RT98-type CMS line RT98A and the fertility restorer line RT98C carry the cytoplasm of the wild species Oryza rufipogon and the nuclear genome of the Taichung 65 cultivar (Oryza sativa L.). Based on a classical crossing experiment, fertility is reported to be restored gametophytically by the presence of a tentative single gene, designated Rf98, which is derived from the cytoplasm donor. Fine mapping of Rf98 revealed that at least two genes, which are closely positioned, are required for complete fertility restoration in RT98A. Here, we identified seven pentatricopeptide repeat (PPR) genes that are located within a 170 kb region as candidates for Rf98 Complementation tests revealed that the introduction of one of these PPR genes, PPR762, resulted in the partial recovery of fertility with a seed setting rate up to 9.3%. We conclude that PPR762 is an essential fertility restorer gene for RT98-type CMS. The low rate of seed setting suggested that some other genes near the Rf98 locus are also necessary for the full recovery of seed setting.
Collapse
Affiliation(s)
- Keisuke Igarashi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| |
Collapse
|
7
|
Wei X, Zhang X, Yao Q, Yuan Y, Li X, Wei F, Zhao Y, Zhang Q, Wang Z, Jiang W, Zhang X. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. FRONTIERS IN PLANT SCIENCE 2015; 6:894. [PMID: 26557132 PMCID: PMC4617173 DOI: 10.3389/fpls.2015.00894] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/08/2015] [Indexed: 05/23/2023]
Abstract
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaohui Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qiuju Yao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xixiang Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Fang Wei
- College of Life Science, Zhengzhou UniversityZhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Qiang Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Wusheng Jiang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural SciencesZhengzhou, China
| |
Collapse
|
8
|
Qin X, Warguchuk R, Arnal N, Gaborieau L, Mireau H, Brown GG. In vivo functional analysis of a nuclear restorer PPR protein. BMC PLANT BIOLOGY 2014; 14:313. [PMID: 25403785 PMCID: PMC4240901 DOI: 10.1186/s12870-014-0313-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/30/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nuclear restorers of cytoplasmic male fertility (CMS) act to suppress the male sterile phenotype by down-regulating the expression of novel CMS-specifying mitochondrial genes. One such restorer gene is Rfo, which restores fertility to the radish Ogura or ogu CMS. Rfo, like most characterized restorers, encodes a pentatricopeptide repeat (PPR) protein, a family of eukaryotic proteins characterized by tandem repeats of a 35 amino acid motif. While over 400 PPR genes are found in characterized plant genomes and the importance of this gene family in organelle gene expression is widely recognized, few detailed in vivo assessments of primary structure-function relationships in this protein family have been conducted. RESULTS In contrast to earlier studies, which identified 16 or 17 PPR domains in the Rfo protein, we now find, using a more recently developed predictive tool, that Rfo has 18 repeat domains with the additional domain N-terminal to the others. Comparison of transcript sequences from pooled rfo/rfo plants with pooled Rfo/Rfo plants of a mapping population led to the identification of a non-restoring rfo allele with a 12 bp deletion in the fourth domain. Introduction into ogu CMS plants of a genetic construct in which this deletion had been introduced into Rfo led to a partial loss in the capacity to produce viable pollen, as assessed by vital staining, pollen germination and the capacity for seed production following pollination of CMS plants. The degree of viable pollen production among different transgenic plants roughly correlated with the copy number of the introduced gene and with the reduction of the levels of the ORF138 CMS-associated protein. All other constructs tested, including one in which only the C-terminal PPR repeat was deleted and another in which this repeat was replaced by the corresponding domain of the related, non-restoring gene, PPR-A, failed to result in any measure of fertility restoration. CONCLUSIONS The identification of the additional PPR domain in Rfo indicates that the protein, apart from its N-terminal mitochondrial targeting presequence, consists almost entirely of PPR repeats. The newly identified rfo allele carries the same 4 amino acid deletion as that found in the neighboring, related, non-restoring PPR gene, PPR-A. Introduction of this four amino acid deletion into a central domain the Rfo protein, however, only partially reduces its restoration capacity, even though this alteration might be expected to alter the spacing between the adjoining repeats. All other tested alterations, generated by deleting specific PPR repeats or exchanging repeats with corresponding domains of PPR-A, led to a complete loss of restorer function. Overall we demonstrate that introduction of targeted alterations of Rfo into ogu CMS plants provides a sensitive in vivo readout for analysis of the relationship between primary structure and biological function in this important family of plant proteins.
Collapse
Affiliation(s)
- Xike Qin
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
- />Current address: Lady Davis Institute for Medical research, 3999 Cote Ste-Catherine Rd., Montreal, QC H3T 1E2 Canada
| | - Richard Warguchuk
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
- />Current address: Deparment of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC H3G 1Y6 Canada
| | - Nadège Arnal
- />INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />Current address: INRA, Centre National de Ressources Génomiques Végétales, Castanet Tolosan, France
| | - Lydiane Gaborieau
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
| | - Hakim Mireau
- />INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
- />AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | - Gregory G Brown
- />Department of Biology, McGill University, 1205 Doctor Penfield Ave., Montreal, QC H3A 1B1 Canada
| |
Collapse
|
9
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
10
|
ZHANG H, FU L, LI YC, LIU J, MEI DS, PENG PF, CHEN YF, HU Q. Origin and Expression of <I>Nsa</I> CMS Candidate Restorer Gene. ACTA AGRONOMICA SINICA 2013. [DOI: 10.3724/sp.j.1006.2012.01212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dahan J, Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 2013; 10:1469-76. [PMID: 23872480 DOI: 10.4161/rna.25568] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the last years, a number of nuclear genes restoring cytoplasmic male sterility (CMS) have been cloned in various crop species. The majority of these genes have been shown to encode pentatricopeptide repeat proteins (PPR) that act by specifically suppressing the expression of sterility-causing mitochondrial transcripts. Functional analysis of these proteins has indicated that the inhibitory effects of restoring PPR (Rf-PPR) proteins involve various mechanisms, including RNA cleavage, RNA destabilization, or translation inhibition. Cross-species sequence comparison of PPR protein complements revealed that most plant genomes encode 10-30 Rf-like (RFL) proteins sharing high-sequence similarity with the identified Rf-PPRs from crops. Evolutionary analyses further showed that they constitute a monophyletic group apart in the PPR family, with peculiar evolution dynamic and constraints. Here we review recent data on RF-PPRs and present the latest discoveries on the RFL family, with prospects on the functionality and evolution of this peculiar subclass of PPR.
Collapse
Affiliation(s)
- Jennifer Dahan
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| | - Hakim Mireau
- INRA; UMR1318; Institut Jean-Pierre Bourgin; RD10; Versailles, France; AgroParisTech; Institut Jean-Pierre Bourgin; RD10; Versailles, France
| |
Collapse
|
12
|
Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S. ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. THE NEW PHYTOLOGIST 2013; 198:408-418. [PMID: 23437825 DOI: 10.1111/nph.12180] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/06/2013] [Indexed: 05/21/2023]
Abstract
Cytoplasmic male sterility (CMS) has attracted great interest because of its application in crop breeding. Despite increasing knowledge of CMS, not much is understood about its molecular mechanisms. Previously, orfH79 was cloned and identified as the CMS gene in Honglian rice, but how the ORFH79 protein causes pollen abortion is still unknown. Through bacterial two-hybrid library screening, P61, a subunit of the mitochondrial electron transport chain (ETC) complex III, was selected as a candidate that interacts with ORFH79. Bimolecular fluorescence complementation (BiFC) and coimmunoprecipitation (coIP) assays verified their interaction inside mitochondria. Blue native polyacrylamide gel electrophoresis (BN-PAGE) and western blotting showed ORF79 and P61 colocalized in mitochondrial ETC complex III of CMS lines. Compared with the maintainer line, Yuetai B (YB), a significant decrease of enzyme activity was detected in mitochondrial complex III of the CMS line, Yuetai A (YA), which resulted in decreased ATP concentrations and an increase in the reactive oxygen species (ROS) content. We propose that the CMS protein, ORFH79, can bind to complex III and decrease its enzyme activity through interaction with P61. This defect results in energy production dysfunction and oxidative stress in mitochondria, which may work as retrograde signals that lead to abnormal pollen development.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Tanaka Y, Tsuda M, Yasumoto K, Yamagishi H, Terachi T. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genomics 2012; 13:352. [PMID: 22846596 PMCID: PMC3473294 DOI: 10.1186/1471-2164-13-352] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.
Collapse
Affiliation(s)
- Yoshiyuki Tanaka
- 31 Laboratory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | | | | | | | | |
Collapse
|
14
|
Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JSP. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 2012; 20:353-61. [PMID: 22476396 DOI: 10.1007/s10577-012-9280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
Collapse
Affiliation(s)
- Tarja Niemelä
- Department of Agriculture, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Yasumoto K, Terachi T, Yamagishi H. A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 2009; 52:495-504. [PMID: 19483769 DOI: 10.1139/g09-026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To reveal the molecular and genetic mechanism of fertility restoration in Ogura male sterility in Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides), we investigated fertility restoration of a plant that lacks the dominant type of orf687, a previously identified fertility restorer gene. A total of 100 F2 plants were made from the cross between a male-sterile strain with the Ogura cytoplasm, 'MS-Gensuke', and a Japanese wild radish plant. Segregation of pollen fertility in the F2 plants led us to assume that 2 dominant complementary genes controlled the fertility restoration of the plants. However, the fertility of 27 of 59 male-fertile plants was not completely restored, resulting in a group of plants with partial male fertility. Northern blot analysis of the CMS-associated gene orf138 indicated that one restorer allele (termed Rft) was involved in the processing of orf138 RNA. Rapid amplification of cDNA ends (RACE) and subsequent Northern blot analysis confirmed that the orf138 transcript lost a 5' part of the coding region of the orf138 gene in the restored plants. The accumulation of ORF138 protein was significantly reduced by Rft, but trace amounts of the protein were recognized in both partially male-fertile and male-sterile plants with Rft. The relationship of pollen fertility and segregation of co-dominant sequence tagged site (STS) markers in the F2 generation suggested that the penetrance of Rft was so low that Rft needs suitable conditions to function sufficiently for the complete restoration of fertility.
Collapse
Affiliation(s)
- Keita Yasumoto
- Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan
| | | | | |
Collapse
|
17
|
Miyake K, Miyake T, Terachi T, Yahara T. Relative fitness of females and hermaphrodites in a natural gynodioecious population of wild radish, Raphanus sativus L. (Brassicaceae): comparison based on molecular genotyping. J Evol Biol 2009; 22:2012-9. [PMID: 19678867 DOI: 10.1111/j.1420-9101.2009.01808.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many gynodioecious species, sex determination involves both cytoplasmic male-sterility (CMS) genes and nuclear genes that restore male function. Differences in fitness among genotypes affect the dynamics of those genes, and thus that of gynodioecy. We used a molecular marker to discriminate between hermaphrodites with and without a CMS gene in gynodioecious Raphanus sativus. We compared fitness through female function among the three genotypes: females, hermaphrodites with the CMS gene and those without it. Although there was no significant difference among the genotypes in seed size, hermaphrodites without the CMS gene produced significantly more seeds, and seeds with a higher germination rate than the other genotypes, suggesting no fitness advantage for females and no benefit to bearing the CMS gene. Despite the lack of fitness advantage for females in the parameter values we estimated, a theoretical model of gynodioecy shows it can be maintained if restorer genes impose a cost paid in pollen production. In addition, we found that females invest more resources into female reproduction than hermaphrodites when they become larger. If environmental conditions enable females to grow larger this would facilitate the dynamics of CMS genes.
Collapse
Affiliation(s)
- K Miyake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
18
|
Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. THE PLANT CELL 2008; 20:3331-45. [PMID: 19098270 PMCID: PMC2630448 DOI: 10.1105/tpc.107.057208] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 10/31/2008] [Accepted: 12/05/2008] [Indexed: 05/17/2023]
Abstract
Cytoplasmic male sterility is a maternally inherited trait in higher plants that prevents the production of functional pollen. Ogura cytoplasmic male sterility in radish (Raphanus sativus) is regulated by the orf138 mitochondrial locus. Male fertility can be restored when orf138 accumulation is suppressed by the nuclear Rfo locus, which consists of three genes putatively encoding highly similar pentatricopeptide repeat proteins (PPR-A, -B, and -C). We produced transgenic rapeseed (Brassica napus) plants separately expressing PPR-A and PPR-B and demonstrated that both encoded proteins accumulated preferentially in the anthers of young flower buds. Immunodetection of ORF138 showed that, unlike PPR-B, PPR-A had no effect on the synthesis of the sterility protein. Moreover, immunolocalization experiments indicated that complete elimination of ORF138 from the tapetum of anthers correlated with the restoration of fertility. Thus, the primary role of PPR-B in restoring fertility is to inhibit ORF138 synthesis in the tapetum of young anthers. In situ hybridization experiments confirmed, at the cellular level, that PPR-B has no effect on the accumulation of orf138 mRNA. Lastly, immunoprecipitation experiments demonstrated that PPR-B, but not PPR-A, is associated with the orf138 RNA in vivo, linking restoration activity with the ability to directly or indirectly interact with the orf138 RNA. Together, our data support a role for PPR-B in the translational regulation of orf138 mRNA.
Collapse
Affiliation(s)
- M Uyttewaal
- Institut National de la Recherche Agronomique, Station de Génétique et d'Amélioration des Plantes, 78026 Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yang S, Terachi T, Yamagishi H. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. ANNALS OF BOTANY 2008; 102:483-9. [PMID: 18625698 PMCID: PMC2701772 DOI: 10.1093/aob/mcn116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Expression of the mitochondrial gene orf138 causes Ogura cytoplasmic male sterility (CMS) in Raphanus sativus, but little is known about the mechanism by which CMS takes place. A preliminary microarray experiment revealed that several nuclear genes concerned with flavonoid biosynthesis were inhibited in the male-sterile phenotype. In particular, a gene for one of the key enzymes for flavonoid biosynthesis, chalcone synthase (CHS), was strongly inhibited. A few reports have suggested that the inhibition of CHS causes nuclear-dependent male sterile expression; however, there do not appear to be any reports elucidating the effect of CHS on CMS expression. In this study, the expression patterns of the early genes in the flavonoid biosynthesis pathway, including CHS, were investigated in normal and male-sterile lines. METHODS In order to determine the aberrant stage for CMS expression, the characteristics of male-sterile anthers are observed using light and transmission electron microscopy for several stages of flower buds. The expression of CHS and the other flavonoid biosynthetic genes in the anthers were compared between normal and male-sterile types using real time RT-PCR. KEY RESULTS Among the flavonoid biosynthetic genes analysed, the expression of CHS was strongly inhibited in the later stages of anther development in sterility cytoplasm; accumulation of putative naringenin derivatives was also inhibited. CONCLUSIONS These results show that flavonoids play an important role in the development of functional pollen, not only in nuclear-dependent male sterility, but also in CMS.
Collapse
|
20
|
Pathania A, Kumar R, Kumar VD, Ashutosh, Dwivedi KK, Kirti PB, Prakash S, Chopra VL, Bhat SR. A duplicated coxI gene is associated with cytoplasmic male sterility in an alloplasmic Brassica juncea line derived from somatic hybridization with Diplotaxis catholica. J Genet 2007; 86:93-101. [PMID: 17968137 DOI: 10.1007/s12041-007-0014-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A cytoplasmic male sterile (CMS) line of Brassica juncea was derived by repeated backcrossing of the somatic hybrid (Diplotaxis catholica + B. juncea) to B. juncea. The new CMS line is comparable to euplasmic lines for almost all characters, except for flowers which bear slender, needle-like anthers with aborted pollen. Detailed Southern analysis revealed two copies of coxI gene in the CMS line. One copy, coxI-1 is similar to the coxI gene of B. juncea, whereas the second copy, coxI-2 is present in a novel rearranged region. Northern analysis with eight mitochondrial gene probes showed altered transcript pattern only for the coxI gene. Two transcripts of 2.0 and 2.4 kb, respectively, were detected in the CMS line. The novel 2.4 kb transcript was present in floral bud tissue but absent in the leaf tissue. In plants where male sterility broke down under high temperature during the later part of the growing season, the 2.4 kb coxI transcript was absent, which suggested its association with the CMS. The two coxI genes from the CMS line showed two amino acid changes in the coding region. The novel coxI gene showed unique repeats in the 5' region suggesting recombination of mitochondrial genomes of the two species. The possible role of the duplicated coxI gene in causing male sterility is discussed.
Collapse
Affiliation(s)
- Aruna Pathania
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110 012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Meur G, Gaikwad K, Bhat SR, Prakash S, Kirti PB. Homeotic-like modification of stamens to petals is associated with aberrant mitochondrial gene expression in cytoplasmic male sterile Ogura Brassica juncea. J Genet 2006; 85:133-9. [PMID: 17072082 DOI: 10.1007/bf02729019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have previously reported correction of severe leaf chlorosis in the cytoplasmic male sterile Ogura (also called Ogu) Brassica juncea line carrying Ogura cytoplasm by plastid substitution via protoplast fusion. Two cybrids obtained from the fusion experiment, Og1 and Og2, were green and carried the plastid genome of B. juncea cv. RLM198. While Og1 displayed normal flower morphology comparable to that of its euplasmic B. juncea counterpart except for sterile anthers, Og2 retained homeotic-like floral modification of stamens to petal-like structures and several other floral deformities observed in the chlorotic (Ogu) B. juncea cv. RLM198 (or OgRLM). With respect to the mitochondrial genome, Og1 showed 81% genetic similarity to the fertile cultivar RLM while Og2 showed 93% similarity to OgRLM. In spite of recombination and rearrangements in the mitochondrial genomes in the cybrids, expression patterns of 10 out of 11 mitochondrial genes were similar in all the three CMS lines; the only exception was atp6, whose expression was altered. While Og1 showed normal atp6 transcript similar to that in RLM, in Og2 and OgRLM weak expression of a longer transcript was detected. These results suggest that the homeotic-like changes in floral patterning leading to petaloid stamens in Og2 and OgRLM may be associated with aberrant mitochondrial gene expression.
Collapse
Affiliation(s)
- Gargi Meur
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | | | | | |
Collapse
|
22
|
Nahm SH, Lee HJ, Lee SW, Joo GY, Harn CH, Yang SG, Min BW. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1191-200. [PMID: 16142466 DOI: 10.1007/s00122-005-0052-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 07/16/2005] [Indexed: 05/04/2023]
Abstract
In this study, we have investigated the cytoplasmic male sterility (CMS) of a novel male sterile radish line, designated NWB CMS. The NWB CMS was crossed with 16 fertile breeding lines, and all the progenies were completely male sterile. The degree of male sterility exhibited by NWB CMS is more than Ogura CMS from the Cruciferae family. The NWB CMS was found to induce 100% male sterility when crossed with all the tested breeding lines, whereas the Ogura CMS did not induce male sterility with any of the breeding lines. PCR analysis revealed that the molecular factor that influenced Ogura CMS, the orf138 gene, was absent in the NWB CMS line, and that the orf138 gene was not also expressed in this CMS line. In order to identify the cytoplasmic factors that confer male sterility in the NWB CMS line, we carried out RFLP analyses with 32 mitochondrial genes, all of which were used as probes. Fourteen genes exhibited polymorphisms between the NWB CMS line and other radish cultivars. Based on these RFLP data, intergenic primers were developed in order to amplify the intergenic regions between the polymorphic genes. Among these, a primer pair at the 3' region of the atp6 gene (5'-cgcttggactatgctatgtatga-3') and the 5' region of the nad3 gene (5'-tcatagagaaatccaatcgtcaa-3') produced a 2 kbp DNA fragment as a result of PCR. This DNA fragment was found to be specific to NWB CMS and was not present in other CMS types. It appears that this fragment could be used as a DNA marker to select NWB CMS line in a radish-breeding program.
Collapse
Affiliation(s)
- Seok-Hyeon Nahm
- Biotechnology Institute, Nong Woo Bio Co., Yeoju, Gyeonggi, South Korea.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yamamoto MP, Kubo T, Mikami T. The 5'-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Mol Genet Genomics 2005; 273:342-9. [PMID: 15838639 DOI: 10.1007/s00438-005-1140-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 03/04/2005] [Indexed: 11/29/2022]
Abstract
Cytoplasmic male sterility (CMS) is a mitochondrially encoded trait, which is characterized by a failure of plants to produce viable pollen. We have investigated the protein profile of mitochondria from sugar beet plants with normal (fertile) or CMS cytoplasm, and observed that a 35-kDa polypeptide is expressed in Owen CMS plants but not in normal plants. The variant 35-kDa polypeptide was found in CMS mitochondria placed in five different nuclear backgrounds. Interestingly, this polypeptide proved to be antigenically related to a 387-codon ORF (preSatp6) that is fused in-frame with the downstream atp6. The presequence extension of the atp6 ORF is commonly found in higher plants, but whether or not it is normally expressed has hitherto remained unclear. Our study is thus the first to demonstrate that the atp6 presequence is actually translated in mitochondria. We also observed that preSATP6 is a mitochondrial membrane protein that assembles into a homogeneous 200-kDa protein complex. In organello translation experiments in the presence of protease inhibitors showed a reduction in the abundance of mature preSATP6 with time, suggesting that the mature preSATP6 may be derived by proteolytic processing of a translation product of the preSatp6/Satp6 ORF.
Collapse
Affiliation(s)
- Masayuki P Yamamoto
- Laboratory of Genetic Engineering, Graduate School of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | | | | |
Collapse
|
24
|
Murayama K, Yahara T, Terachi T. Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.). Mol Ecol 2004; 13:2459-64. [PMID: 15245417 DOI: 10.1111/j.1365-294x.2004.02231.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In gynodioecious plant populations, sex determination often involves both cytoplasmic male-sterility (CMS) genes and specific nuclear genes that restore male function. How gynodioecy is maintained under the joint dynamics of CMS and restorer genes remains controversial. Although many theoretical models deal with interactions between CMS genes and restorer genes with sexual phenotypes and predict changes in their frequencies, it is difficult to observe the frequencies because no molecular markers have been established for either CMS or restorer genes in well-studied gynodioecious plants. This is the first report of the frequency of a CMS gene determined using a molecular marker in natural populations of a gynodioecious plant. Using a set of CMS gene-specific polymerase chain reaction primers, we compared female and CMS gene frequencies in 18 natural populations of Raphanus sativus. Female frequency was relatively low, ranging from 0 to 0.21. In contrast, the CMS gene frequency was highly variable among populations, ranging from 0 to 1. Estimated restorer gene frequency seemed less variable than observed CMS gene frequency, probably due to higher gene flow than in the CMS gene. Genetic drift may play a role in maintaining high variability of the CMS gene, although other possibilities are not excluded.
Collapse
Affiliation(s)
- K Murayama
- Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan.
| | | | | |
Collapse
|
25
|
|
26
|
Kleter GA, Peijnenburg AACM. Presence of potential allergy-related linear epitopes in novel proteins from conventional crops and the implication for the safety assessment of these crops with respect to the current testing of genetically modified crops. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:371-80. [PMID: 17166136 DOI: 10.1046/j.1467-7652.2003.00035.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mitochondria of cytoplasmic male sterile crop plants contain novel, chimeric open reading frames. In addition, a number of crops carry endogenous double-stranded ribonucleic acid (dsRNA). In this study, the novel proteins encoded by these genetic components were screened for the presence of potential binding sites (epitopes) of allergy-associated IgE antibodies, as was previously done with transgenic proteins from genetically modified crops. The procedure entails the identification of stretches of at least six contiguous amino acids that are shared by novel proteins and known allergenic proteins. These stretches are further checked for potential linear IgE-binding epitopes. Of the 16 novel protein sequences screened in this study, nine contained stretches of six or seven amino acids that were also present in allergenic proteins. Four cases of similarity are of special interest, given the predicted antigenicity of the identical stretch within the allergenic and novel protein, the IgE-binding by a peptide containing an identical stretch reported in literature, or the multiple incidence of identical stretches of the same allergen within a novel protein. These selected stretches are present in novel proteins derived from oilseed rape and radish (ORF138), rice (dsRNA), and fava bean (dsRNA), and warrant further clinical testing. The frequency of positive outcomes and the sizes of the identical stretches were comparable to those previously found for transgenic proteins in genetically modified crops. It is discussed whether novel proteins from conventional crops should be subject to an assessment of potential allergenicity, a procedure which is currently mandatory for transgenic proteins from genetically modified crops.
Collapse
Affiliation(s)
- Gijs A Kleter
- RIKILT Institute of Food Safety, PO Box 230, NL 6700 AE Wageningen, The Netherlands
| | | |
Collapse
|
27
|
Brown GG, Formanová N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:262-72. [PMID: 12848830 DOI: 10.1046/j.1365-313x.2003.01799.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A single radish nuclear gene, Rfo, restores Ogura (ogu) cytoplasmic male sterility (CMS) in Brassica napus. A map-based cloning approach relying on synteny between radish and Arabidopsis was used to clone Rfo. A radish gene encoding a 687-amino-acid protein with a predicted mitochondrial targeting pre-sequence was found to confer male fertility upon transformation into ogu CMS B. napus. This gene, like the recently described Petunia Rf gene, codes for a pentatricopeptide repeat (PPR)-containing protein with multiple, in this case 16, PPR domains. Two similar genes that do not appear to function as Rfo flank this gene. Comparison of the Rfo region with the syntenic Arabidopsis region indicates that a PPR gene is not present at the Rfo-equivalent site in Arabidopsis, although a smaller and related PPR gene is found about 40 kb from this site. The implications of these findings for the evolution of restorer genes and other PPR encoding genes are discussed.
Collapse
Affiliation(s)
- Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Murai K, Takumi S, Koga H, Ogihara Y. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:169-181. [PMID: 11851918 DOI: 10.1046/j.0960-7412.2001.01203.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Homeotic transformation of stamens into pistil-like structures (pistillody) has been observed in a cytoplasmic substitution (alloplasmic) line of wheat (Triticum aestivum L.) cv. Norin 26, which has the cytoplasm of a wild relative species, Aegilops crassa L. On the other hand, an alloplasmic line of wheat cv. Chinese Spring (CS) with Ae. crassa cytoplasm has normal flowers. This is due to the presence in the CS nucleus of a fertility-restoring gene, Rfd1. Deletion mapping analysis revealed that Rfd1 is located on the middle part of the long arm of chromosome 7B. To investigate the function of the Rfd1 gene by a loss-of-function strategy, we produced alloplasmic lines of CS ditelosomic 7BS [(cr)-CSdt7BS] and CS monotelodisomic 7BS [(cr)-CSmd7BS] with the Ae. crassa cytoplasm, and characterized their phenotypes. The line (cr)-CSdt7BS without Rfd1 exhibited pistillody in all florets, and also female sterility. Scanning electron microscopy of the young spikes revealed that the pistillody was induced at an early stage of stamen development. The pistillate stamens often developed incomplete ovule-like structures with integuments instead of tapetum and pollen grains. It is possible that MADS box genes are associated with the induction of pistillody, because the expression of wheat APETALA3 homologue (WAP3) was reduced in the young spikes of (cr)-CSdt7BS. In addition, a histological study indicated that the female sterility in (cr)-CSdt7BS is due to the abnormality of the ovule, which fails to form an inner epidermis and integuments in the chalaza region. The line (cr)-CSmd7BS, hemizygous for Rfd1, showed partial pistillody (51%) and restored female fertility up to 72%. These results suggest that the induction of both pistillody and ovule deficiency caused by the Ae. crassa cytoplasm is inhibited by the Rfd1 gene in a dose-dependent manner.
Collapse
Affiliation(s)
- Koji Murai
- Department of Bioscience, Fukui Prefectural University, Matsuoka-cho, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|
29
|
Kempken F, Pring D. Plant Breeding: Male Sterility in Higher Plants - Fundamentals and Applications. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/978-3-642-59940-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
30
|
|
31
|
Howad W, Kempken F. Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci U S A 1997; 94:11090-5. [PMID: 9380764 PMCID: PMC23623 DOI: 10.1073/pnas.94.20.11090] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA editing and cytoplasmic male sterility are two important phenomena in higher plant mitochondria. To determine whether correlations might exist between the two, RNA editing in different tissues of Sorghum bicolor was compared employing reverse transcription-PCR and subsequent sequence analysis. In etiolated shoots, RNA editing of transcripts of plant mitochondrial atp6, atp9, nad3, nad4, and rps12 genes was identical among fertile or cytoplasmic male sterile plants. We then established a protocol for mitochondrial RNA isolation from plant anthers and pollen to include in these studies. Whereas RNA editing of atp9, nad3, nad4, and rps12 transcripts in anthers was similar to etiolated shoots, mitochondrial atp6 RNA editing was strongly reduced in anthers of the A3Tx398 male sterile line of S. bicolor. atp6 transcripts of wheat and selected plastid transcripts in S. bicolor showed normal RNA editing, indicating that loss of atp6 RNA editing is specific for cytoplasmic male sterility S. bicolor mitochondria. Restoration of fertility in F1 and F2 lines correlated with an increase in RNA editing of atp6 transcripts. Our data suggest that loss of atp6 RNA editing contributes to or causes cytoplasmic male sterility in S. bicolor. Further analysis of the mechanism of cell type-specific loss of atp6 RNA editing activity may advance our understanding of the mechanism of RNA editing.
Collapse
Affiliation(s)
- W Howad
- Lehrstuhl für Allgemeine Botanik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
32
|
Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32 kDa protein. off. PLANT MOLECULAR BIOLOGY 1996; 32:879-90. [PMID: 8980539 DOI: 10.1007/bf00020485] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Analyses of mitochondrial transcription and in organello translation were performed with the Brassica tournefortii cytoplasm. This cytoplasm causes alloplasmic male sterility when combined with the nuclear genomes of B. napus and B. juncea. Mitochondrial RNA and protein banding patterns were compared between the fertile wild species B. tournefortii, an alloplasmic male-sterile B. juncea line, an alloplasmic male-sterile B. napus line and an alloplasmic B. napus line with restored fertility. The analyses were carried out to identify differences in gene expression and to investigate whether alterations in gene expression accompanied male sterility. A difference in transcription patterns between the fertile B. tournefortii and the alloplasmic lines was found for the atp6 gene. The atp6 region was investigated further, since a similar alteration in atp6 transcription has been observed in two other Brassica cytoplasms which are associated with cytoplasmic male sterility (CMS). The additional longer atp6 transcript detected in the alloplasmic lines in the present study was found to contain an open reading frame (ORF) located downstream of the atp6 gene. DNA sequencing revealed that the ORF, orf263, could encode a protein with a predicted molecular weight of about 29 kDa. In organello analysis detected two proteins of 29 and 32 kDa respectively, which were found only in the alloplasmic lines. Furthermore, the 32 kDa protein accompanied male sterility since it was absent in alloplasmic plants restored to fertility. The protein analysis might indicate that orf263 is translated and causes CMS.
Collapse
Affiliation(s)
- M Landgren
- Department of Plant Breeding Research, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
33
|
Rankin CT, Cutright MT, Makaroff CA. Characterization of the radish mitochondrial nad3/rps12 locus: analysis of recombination repeats and RNA editing. Curr Genet 1996; 29:564-71. [PMID: 8662196 DOI: 10.1007/bf02426961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to further investigate sequences that are responsible for low-frequency recombination in plant mitochondrial DNAs and RNA editing in radish mitochondria, the nad3/rps12 locus has been isolated and characterized from a normal cultivar of radish and the male-sterile Ogura cytoplasm. A repeated sequence that has been implicated in other radish mitochondrial DNA rearrangements was identified at the breakpoint between the two loci indicating that it was also involved in the nad3/rps12 rearrangement. Similar to some other radish mitochondrial genes, nad3/rps12 genomic sequences already contain several, but not all, of the bases that are typically edited in plant mitochondrial nad3 and rps12 genes. Analysis of nad3/rps12 cDNAs indicated that the mRNAs are not edited. One partially edited transcript was identified out of the twenty two that were examined. This finding, along with the observation that nad3/rps12 RNAs are present at very low levels, raises the possibility that radish mitochondria may not encode functional copies of these genes. Consistent with this hypothesis, DNA-blot analysis detects nad3/rps12 sequences in the nucleus.
Collapse
Affiliation(s)
- C T Rankin
- Chemistry Department, Hughes Hall, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
34
|
Kamps TL, McCarty DR, Chase CD. Gametophyte genetics in Zea mays L.: dominance of a restoration-of-fertility allele (Rf3) in diploid pollen. Genetics 1996; 142:1001-7. [PMID: 8849905 PMCID: PMC1206999 DOI: 10.1093/genetics/142.3.1001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Zea mays L. plants carrying the S-type of sterility-inducing cytoplasm, male fertility is determined by a gametophytic, nuclear restoration-of-fertility gene. Haploid pollen carrying the fertility-restoring allele (historically designated Rf3) is starch-filled and functional, whereas pollen carrying the nonrestoring allele (historically designated rf3) is shrunken and nonfunctional. Because restoration of fertility occurs in haploid tissue, the dominance relationship of restoring and nonrestoring alleles is unknown. We have tested the dominance relationship of the restoring and nonrestoring alleles at the rf3 locus in diploid pollen. The meiotic mutant elongate was used to generate tetraploid plants carrying both Rf3 and rf3 alleles in the S cytoplasm. These plants shed predominantly starch-filled pollen, consistent with dominance of the restoring allele. Restriction fragment length polymorphisms linked to the rf3 locus demonstrated cotransmission of rf3 and Rf3 alleles through heterozygous diploid pollen, providing conclusive genetic evidence that the restoring allele is the dominant or functional form of this restoration-of-fertility gene. We suggest that other S-cytoplasm restorers result from loss-of-function mutations and propose analysis of unreduced gametes as a test of this model.
Collapse
Affiliation(s)
- T L Kamps
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
35
|
Van Tang H, Pring DR, Muza FR, Yan B. Sorghum mitochondrial orf25 and a related chimeric configuration of a male-sterile cytoplasm. Curr Genet 1996; 29:265-74. [PMID: 8595673 DOI: 10.1007/bf02221557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We describe fundamental characteristics of sorghum mitochondrial orf25, urf209, and a related chimeric configuration, orf265/130, which is restricted to the IS1112C source of cytoplasmic male sterility in sorghum. Transcripts of urf209 are edited at ten nucleotides, resulting in nine amino-acid changes predicted from genomic sequences. The cDNA-predicted polypeptide product is 23.6 kDa, while Western blot analyses identify a product of 20k Da. Transcription of urf209 is characterized by one or two transcripts, dependent on nuclear background, but this difference is not related to male fertility status. The orf265/130 chimeric region includes 288 bp 95% identical to sequences 5' to maize T-cytoplasm T-urf13 and atp6, which includes a common transcription initiation site, and terminates with a recombinational event involving urf209. The urf209 similarity extends 189 bp, followed by sequences duplicated 5' to sorghum atp6-2. Sequences immediately 3' to the atp6-2 similarity include a second in-frame start codon, defining orf130. Structural features 5' to orf130 are shared with motifs found 5' to several translated mitochondrial open reading frames. The orf265/orf130 configuration is uniquely transcribed, and transcripts of orf130 exhibit one silent RNA editing event. Transcription in somatic cells is not altered by male fertility status.
Collapse
Affiliation(s)
- H Van Tang
- Department of Plant Pathology and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
36
|
Conley CA, Hanson MR. How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomembr 1995; 27:447-57. [PMID: 8595980 DOI: 10.1007/bf02110007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytoplasmic male sterility arises when mitochondrial activities are disrupted that are essential for pollen development. Rearrangements in the mitochondrial genome that create novel open reading frames are strongly correlated with CMS phenotypes in a number of systems. The morphological aberrations which indicate CMS-associated degeneration are frequently restricted to the male sporogenous tissue and a limited number of vegetative tissues. In several cases, this tissue specificity may result from interactions between the mitochondrial genome and nuclear genes that regulate mitochondrial gene expression. A molecular mechanism by which CMS might be caused has not been conclusively demonstrated for any system. Several hypotheses for general mechanisms by which mitochondrial dysfunction might disrupt pollen development are discussed, based on similarities between the novel CMS-associated genes from a number of systems.
Collapse
Affiliation(s)
- C A Conley
- Section of Genetics and Development, Cornell University, Ithaca New York 14853-2703, USA
| | | |
Collapse
|