1
|
Osborne S, Pandey D, Mills G, Hayes F, Harmens H, Gillies D, Büker P, Emberson L. New Insights into Leaf Physiological Responses to Ozone for Use in Crop Modelling. PLANTS (BASEL, SWITZERLAND) 2019; 8:E84. [PMID: 30939811 PMCID: PMC6524376 DOI: 10.3390/plants8040084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Estimating food production under future air pollution and climate conditions in scenario analysis depends on accurately modelling ozone (O₃) effects on yield. This study tests several assumptions that form part of published approaches for modelling O₃ effects on photosynthesis and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in eight hemispherical glasshouses to O₃ ranging from 22 to 57 ppb (24 h mean), with profiles ranging from raised background to high peak treatments. The stomatal O₃ flux (Phytotoxic Ozone Dose, POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence occurred earlier as average POD increased according to a linear relationship, and the two cultivars showed very different senescence responses. Negative effects of O₃ on photosynthesis were only observed alongside O₃-induced leaf senescence, suggesting that O₃ does not impair photosynthesis in un-senesced flag leaves at the realistic O₃ concentrations applied here. Accelerated senescence is therefore likely to be the dominant O₃ effect influencing yield in most agricultural environments. POD was better than 24 h mean concentration and AOT40 (accumulated O₃ exceeding 40 ppb, daylight hours) at predicting physiological response to O₃, and flux also accounted for the difference in exposure resulting from peak and high background treatments.
Collapse
Affiliation(s)
- Stephanie Osborne
- Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK.
- Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK.
| | - Divya Pandey
- Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK.
| | - Gina Mills
- Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK.
| | - Felicity Hayes
- Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK.
| | - Harry Harmens
- Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, UK.
| | - David Gillies
- Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK.
| | - Patrick Büker
- Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK.
| | - Lisa Emberson
- Stockholm Environment Institute, Environment Department, University of York, York YO10 5NG, UK.
| |
Collapse
|
2
|
Zhang L, Hoshika Y, Carrari E, Cotrozzi L, Pellegrini E, Paoletti E. Effects of nitrogen and phosphorus imbalance on photosynthetic traits of poplar Oxford clone under ozone pollution. JOURNAL OF PLANT RESEARCH 2018; 131:915-924. [PMID: 30426334 DOI: 10.1007/s10265-018-1071-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/05/2018] [Indexed: 05/28/2023]
Abstract
Ozone (O3) pollution and the availability of nitrogen (N) and phosphorus (P) in the soil both affect plant photosynthesis and chlorophyll (Chl) content, but the interaction of O3 and nutrition is unclear. We postulated that the nutritional condition changes plant photosynthetic responses to O3. An O3-sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha- 1; N80, 80 kg N ha- 1), two P levels (P0, 0 kg P ha- 1; P80, 80 kg P ha- 1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) over a growing season in an O3 free air controlled exposure (FACE) facility. The daily change of leaf gas exchange and dark respiration (Rd) were investigated at mid-summer (August). Chl a fluorescence was measured three times in July, August and September. At the end of the growing season, Chl content was measured. It was found that Chl content, the maximum quantum yield (Fv/Fm), Chl a fluorescence performance index (PI) and gas exchange were negatively affected by elevated O3. Phosphorus may mitigate the O3-induced reduction of the ratio of photosynthesis to stomatal conductance, while it exacerbated the O3-induced loss of Fv/Fm. Nitrogen alleviated negative effects of O3 on Fv/Fm and PI in July. Ozone-induced loss of net photosynthetic rate was mitigated by N in medium O3 exposure (1.5 × AA). However, such a mitigation effect was not observed in the higher O3 level (2.0 × AA). Nitrogen addition exacerbated O3-induced increase of Rd suggesting an increased respiratory carbon loss in the presence of O3 and N. This may result in a further reduction of the net carbon gain for poplars exposed to O3.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, Harbin, 150030, China
| | - Yasutomo Hoshika
- National Research Council of Italy, Via Madonna del Piano 10, 50019, Florence, Italy.
| | - Elisa Carrari
- National Research Council of Italy, Via Madonna del Piano 10, 50019, Florence, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Elena Paoletti
- National Research Council of Italy, Via Madonna del Piano 10, 50019, Florence, Italy
| |
Collapse
|
3
|
Hoshika Y, Watanabe M, Carrari E, Paoletti E, Koike T. Ozone-induced stomatal sluggishness changes stomatal parameters of Jarvis-type model in white birch and deciduous oak. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:20-28. [PMID: 28941031 DOI: 10.1111/plb.12632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Stomatal ozone flux is closely related to ozone injury to plants. Jarvis-type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis-type models do not account for these ozone effects on stomatal conductance in forest trees. We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica; deciduous oak: Quercus mongolica var. crispula) grown under free-air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis-type model using a simple parameter, s, relating to cumulative ozone uptake (defined as POD: phytotoxic ozone dose). We found that ozone decreased stomatal conductance of white birch leaves after full expansion (-28%). However, such a reduction of stomatal conductance by ozone fell in late summer (-10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters. The consideration of both ozone-induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose-response relationship on ozone-induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e. stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.
Collapse
Affiliation(s)
- Y Hoshika
- Institute of Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, Italy
| | - M Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - E Carrari
- Institute of Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, Italy
| | - E Paoletti
- Institute of Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, Italy
| | - T Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Tang H, Liu G, Zhu J, Kobayashi K. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions. GLOBAL CHANGE BIOLOGY 2015; 21:1727-1736. [PMID: 25403809 DOI: 10.1111/gcb.12810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.
Collapse
Affiliation(s)
- Haoye Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
5
|
Hoshika Y, Watanabe M, Kitao M, Häberle KH, Grams TEE, Koike T, Matyssek R. Ozone induces stomatal narrowing in European and Siebold's beeches: a comparison between two experiments of free-air ozone exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:527-33. [PMID: 25156633 DOI: 10.1016/j.envpol.2014.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/26/2014] [Accepted: 07/31/2014] [Indexed: 05/19/2023]
Abstract
Stomata tend to narrow under ozone (O(3)) impact, leading to limitation of stomatal O(3) influx. Here, we review stomatal response under recently conducted free-air O(3) exposure experiments on two species of the same tree genus: Fagus sylvatica at Kranzberg Forest (Germany) and F. crenata at Sapporo Experimental Forest (Japan). Both beeches exhibited reduction in stomatal conductance (gs) by 10-20% under experimentally enhanced O(3) regimes throughout the summer relative to ambient-air controls. Stomatal narrowing occurred, in early summer, in the absence of reduced carboxylation capacity of Rubisco, although photosynthetic net CO(2) uptake rate temporarily reflected restriction to some minor extent. Observed stomatal narrowing was, however, diminished in autumn, suggesting gradual loss of stomatal regulation by O(3). Monotonic decline in gs with cumulative O(3) exposure or flux in current modeling concepts appear to be unrealistic in beech.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo 060-8689, Japan.
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu 183-8509, Japan
| | - Mitsutoshi Kitao
- Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Karl-Heinz Häberle
- Ecophysiology of Plants, Technische Universität München, Von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - Thorsten E E Grams
- Ecophysiology of Plants, Technische Universität München, Von-Carlowitz-Platz 2, D-85354 Freising, Germany
| | - Takayoshi Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo 060-8689, Japan.
| | - Rainer Matyssek
- Ecophysiology of Plants, Technische Universität München, Von-Carlowitz-Platz 2, D-85354 Freising, Germany.
| |
Collapse
|
6
|
Hoshika Y, Carriero G, Feng Z, Zhang Y, Paoletti E. Determinants of stomatal sluggishness in ozone-exposed deciduous tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:453-458. [PMID: 24631608 DOI: 10.1016/j.scitotenv.2014.02.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Our knowledge of ozone effects on dynamic stomatal response is still limited, especially in Asian tree species. We thus examined ozone effects on steady-state leaf gas exchange and stomatal dynamics in three common tree species of China (Ailanthus altissima, Fraxinus chinensis and Platanus orientalis). Seedlings were grown and were exposed to three levels of ozone in open-top chambers (42, 69, 100 nmol mol(-1) daylight average, from 09:00 to 18:00). At steady-state, ozone exposure induced an uncoupling of photosynthesis and stomatal conductance, as the former decreased while the latter did not. Dynamic stomatal response was investigated by cutting the leaf petiole after a steady-state stomatal conductance was reached. Ozone exposure increased stomatal sluggishness, i.e., slowed stomatal response after leaf cutting, in the following order of sensitivity, F. chinensis>A. altissima>P. orientalis. A restriction of stomatal ozone flux reduced the ozone-induced sluggishness in P. orientalis. The ozone-induced impairment of stomatal control was better explained by stomatal ozone flux per net photosynthesis rather than by stomatal ozone flux only. This suggests that ozone injury to stomatal control depends both on the amount of ozone entering a leaf and on the capacity for biochemical detoxification or repair. Leaf mass per area and the density of stomata did not affect stomatal sluggishness.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Plant Protection, National Research Council of Italy, Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| | - Giulia Carriero
- Institute of Plant Protection, National Research Council of Italy, Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences (CAS), 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yulong Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences (CAS), 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Elena Paoletti
- Institute of Plant Protection, National Research Council of Italy, Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
7
|
Hoshika Y, Watanabe M, Inada N, Koike T. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata). ANNALS OF BOTANY 2013; 112:1149-58. [PMID: 23904447 PMCID: PMC3783231 DOI: 10.1093/aob/mct166] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/04/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis-stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. METHODS The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. KEY RESULTS The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. CONCLUSIONS Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.
Collapse
Affiliation(s)
| | | | | | - Takayoshi Koike
- Silviculture and Forest Ecological Studies, Hokkaido University, Sapporo 060-8689, Japan
| |
Collapse
|
8
|
Biswas D, Xu H, Li Y, Ma B, Jiang G. Modification of photosynthesis and growth responses to elevated CO₂ by ozone in two cultivars of winter wheat with different years of release. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1485-96. [PMID: 23378379 PMCID: PMC3617821 DOI: 10.1093/jxb/ert005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The beneficial effects of elevated CO2 on plants are expected to be compromised by the negative effects posed by other global changes. However, little is known about ozone (O3)-induced modulation of elevated CO2 response in plants with differential sensitivity to O3. An old (Triticum aestivum cv. Beijing 6, O3 tolerant) and a modern (T. aestivum cv. Zhongmai 9, O3 sensitive) winter wheat cultivar were exposed to elevated CO2 (714 ppm) and/or O3 (72 ppb, for 7h d(-1)) in open-topped chambers for 21 d. Plant responses to treatments were assessed by visible leaf symptoms, simultaneous measurements of gas exchange and chlorophyll a fluorescence, in vivo biochemical properties, and growth. It was found that elevated CO2 resulted in higher growth stimulation in the modern cultivar attributed to a higher energy capture and electron transport rate compared with the old cultivar. Exposure to O3 caused a greater growth reduction in the modern cultivar due to higher O3 uptake and a greater loss of photosystem II efficiency (mature leaf) and mesophyll cell activity (young leaf) than in the old cultivar. Elevated CO2 completely protected both cultivars against the deleterious effects of O3 under elevated CO2 and O3. The modern cultivar showed a greater relative loss of elevated CO2-induced growth stimulation due to higher O3 uptake and greater O3-induced photoinhibition than the old cultivar at elevated CO2 and O3. Our findings suggest that the elevated CO2-induced growth stimulation in the modern cultivar attributed to higher energy capture and electron transport rate can be compromised by its higher O3 uptake and greater O3-induced photoinhibition under elevated CO2 and O3 exposure.
Collapse
Affiliation(s)
- D.K. Biswas
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, 100093, Beijing, PR China
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A0C6, Canada
| | - H. Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, 100093, Beijing, PR China
| | - Y.G. Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, 100093, Beijing, PR China
| | - B.L. Ma
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A0C6, Canada
| | - G.M. Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, 20 Nanxincun, 100093, Beijing, PR China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, No. 61, Daizong Avenue, 271018, Tai’an, PR China
| |
Collapse
|
9
|
Chen CP, Frei M, Wissuwa M. The OzT8 locus in rice protects leaf carbon assimilation rate and photosynthetic capacity under ozone stress. PLANT, CELL & ENVIRONMENT 2011; 34:1141-1149. [PMID: 21410711 DOI: 10.1111/j.1365-3040.2011.02312.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tropospheric ozone (O₃) is a phytotoxic air pollutant whose current background concentrations in parts of East Asia have caused estimated rice yield losses of up to 20%; currently, however, little is known about the mechanisms of O₃ tolerance in rice. We previously identified a quantitative trait locus (QTL) in rice called OzT8, which was associated with relative dry weight under ozone stress. The photosynthetic response in SL46, a Nipponbare (NB)-Kasalath chromosome segment substitution line (SL) containing the OzT8 locus, was compared to the parent NB in multiple ozone fumigation experiments (100 ppb, 8 h d⁻¹, 23 d). By day 23, SL46 showed significantly less reduction of photosynthetic capacity compared to NB; the maximum carboxylation rate of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) decreased by 24% in SL46 compared to 49% in NB, and the maximum electron transport rate decreased by 16 and 39%, respectively. The midday carbon assimilation rates also showed a similar trend, but there was no genotypic difference in stomatal conductance. These results indicate that the OzT8 locus confers ozone tolerance via biochemical acclimation, not avoidance, making it a potentially valuable target for breeding of ozone tolerance into future rice lines. The sequence of photosynthetic response of rice to ozone stress and related tolerance factors are also discussed.
Collapse
Affiliation(s)
- Charles P Chen
- Division of Crop Production and Environment, Japan International Research Center for Agricultural Studies, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
10
|
Cho K, Tiwari S, Agrawal SB, Torres NL, Agrawal M, Sarkar A, Shibato J, Agrawal GK, Kubo A, Rakwal R. Tropospheric ozone and plants: absorption, responses, and consequences. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 212:61-111. [PMID: 21432055 DOI: 10.1007/978-1-4419-8453-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ozone is now considered to be the second most important gaseous pollutant in our environment. The phytotoxic potential of O₃ was first observed on grape foliage by B.L. Richards and coworkers in 1958 (Richards et al. 1958). To date, unsustainable resource utilization has turned this secondary pollutant into a major component of global climate change and a prime threat to agricultural production. The projected levels to which O₃ will increase are critically alarming and have become a major issue of concern for agriculturalists, biologists, environmentalists and others plants are soft targets for O₃. Ozone enters plants through stomata, where it disolves in the apoplastic fluid. O₃ has several potential effects on plants: direct reaction with cell membranes; conversion into ROS and H₂O₂ (which alters cellular function by causing cell death); induction of premature senescence; and induction of and up- or down-regulation of responsive components such as genes , proteins and metabolites. In this review we attempt to present an overview picture of plant O₃ interactions. We summarize the vast number of available reports on plant responses to O₃ at the morphological, physiological, cellular, biochemical levels, and address effects on crop yield, and on genes, proteins and metabolites. it is now clear that the machinery of photosynthesis, thereby decreasing the economic yield of most plants and inducing a common morphological symptom, called the "foliar injury". The "foliar injury" symptoms can be authentically utilized for biomonitoring of O₃ under natural conditions. Elevated O₃ stress has been convincingly demonstrated to trigger an antioxidative defense system in plants. The past several years have seen the development and application of high-throughput omics technologies (transcriptomics, proteomics, and metabolomics) that are capable of identifying and prolifiling the O₃-responsive components in model and nonmodel plants. Such studies have been carried out ans have generated an inventory of O₃-Responsive components--a great resource to the scientific community. Recently, it has been shown that certain organic chemicals ans elevated CO₂ levels are effective in ameliorating O₃-generated stress. Both targeted and highthroughput approaches have advanced our knowledge concerning what O₃-triggerred signaling and metabolic pathways exist in plants. Moreover, recently generated information, and several biomarkers for O₃, may, in the future, be exploited to better screen and develop O₃-tolerant plants.
Collapse
Affiliation(s)
- Kyoungwon Cho
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu, Nepal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wittig VE, Ainsworth EA, Long SP. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. PLANT, CELL & ENVIRONMENT 2007; 30:1150-62. [PMID: 17661752 DOI: 10.1111/j.1365-3040.2007.01717.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The surface concentration of ozone ([O(3)]) has risen from less than 10 ppb prior to the industrial revolution to a day-time mean concentration of approximately 40 ppb over much of the northern temperate zone. If current global emission trends continue, surface [O(3)] is projected to rise a further 50% over this century, with larger increases in many locations including Northern Hemisphere forests. This review uses statistical meta-analysis to determine mean effects, and their confidence limits, of both the current and projected elevations of [O(3)] on light-saturated photosynthetic CO(2) uptake (A(sat)) and stomatal conductance (g(s)) in trees. In total, 348 measurements of A(sat) from 61 studies and 266 measures of g(s) from 55 studies were reviewed. Results suggested that the elevation of [O(3)] that has occurred since the industrial revolution is depressing A(sat) and g(s) by 11% (CI 9-13%) and 13% (CI 11-15%), respectively, where CI is the 95% confidence interval. In contrast to angiosperms, gymnosperms were not significantly affected. Both drought and elevated [CO(2)] significantly decreased the effect of ambient [O(3)]. Younger trees (<4 years) were affected less than older trees. Elevation of [O(3)] above current levels caused progressively larger losses of A(sat) and g(s), including gymnosperms. Results are consistent with the expectation that damage to photosynthesis depends on the cumulative uptake of ozone (O(3)) into the leaf. Thus, factors that lower g(s) lessen damage. Where both g(s) and [O(3)] were recorded, an overall decline in A(sat) of 0.21% per mmol m(-2) of estimated cumulative O(3) uptake was calculated. These findings suggest that rising [O(3)], an often overlooked aspect of global atmospheric change, is progressively depressing the ability of temperate and boreal forests to assimilate carbon and transfer water vapour to the atmosphere, with significant potential effects on terrestrial carbon sinks and regional hydrologies.
Collapse
Affiliation(s)
- Victoria E Wittig
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 190 ERML, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
12
|
Grantz DA, Gunn S, Vu HB. O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. PLANT, CELL & ENVIRONMENT 2006; 29:1193-209. [PMID: 17080943 DOI: 10.1111/j.1365-3040.2006.01521.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mechanism of O3 action on plants remains poorly characterized. Symptoms include visible lesions on the leaf surface, reduced growth and a hypothesized reduction in allocation of carbohydrate to roots. The generality of this latter phenomenon has not been demonstrated. Here, a meta-analysis is performed of all available experimental data, to test the hypotheses that O3 exposure of the shoot inhibits biomass allocation below ground (the root/shoot allometric coefficient, k) and inhibits whole-plant growth rate [relative growth rate (RGR)]. Both k and RGR were significantly reduced by O3 (5.6 and 8.2%, respectively). Variability in k was greater than in RGR, and both exhibited some positive as well as mostly negative responses. The effects on k were distinct from the effects on RGR. In some cases, k was reduced while RGR was unaffected. Slow-growing plants (small RGR) exhibited the largest declines in k. These observations may have mechanistic implications regarding O3 phytotoxicity. There were no effects of type of exposure chamber on sensitivity to O3. The analyses indicate that the O3 inhibition of allocation to roots is real and general, but variable. Further experiments are needed for under-represented plant groups, to characterize exceptions to this generalization and to evaluate O3--environment interactions.
Collapse
Affiliation(s)
- D A Grantz
- Department of Botany and Plant Sciences and Air Pollution Research Center, University of California at Riverside, Kearney Agricultural Center, Parlier, CA 93648, USA.
| | | | | |
Collapse
|
13
|
Paoletti E, Grulke NE. Does living in elevated CO2 ameliorate tree response to ozone? A review on stomatal responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 137:483-93. [PMID: 16005760 DOI: 10.1016/j.envpol.2005.01.035] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 01/31/2005] [Indexed: 05/03/2023]
Abstract
Short-term elevated O3 reduces photosynthesis, which reduces stomatal conductance (g(s)) in response to increased substomatal CO2 concentration (Ci). Further exposure causes stomata to become sluggish in response to environmental stimuli. Exposure to elevated CO2 stimulates rapid stomata closure in response to increased Ci. This reduction in g(s) may not be sustained over time as photosynthesis down-regulates and with it, g(s). The relationship between g(s) and photosynthesis may not be constant because stomata respond more slowly to environmental changes than photosynthesis, and because elevated CO2 may alter guard cell sensitivity to other signals. Also, reduced stomatal density (and g(s)) in response to long-term CO2 enrichment suggests sustained reduction in g(s). Elevated CO2 is believed to ameliorate the deleterious O3 effects by reducing g(s) and thus the potential O3 flux into leaves. Confirmation that g(s) acclimation to CO2 enrichment does not lessen over time is critical for developing meaningful O3 flux scenarios.
Collapse
Affiliation(s)
- Elena Paoletti
- Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino, Italy.
| | | |
Collapse
|
14
|
Grantz DA. Ozone impacts on cotton: towards an integrated mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2003; 126:331-344. [PMID: 12963294 DOI: 10.1016/s0269-7491(03)00246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vegetation removes tropospheric ozone (O(3)) mainly through uptake by stomata. O(3) reduces growth, photosynthesis, and carbohydrate allocation. Effects on mesophyll photosynthesis, may reducing carbohydrate source strength and, indirectly, carbohydrate translocation. Alternatively direct translocation, itself, could explain all of these observations. O(3)-reduced root proliferation inhibits exploitation of soil resources and interferes with underground carbon sequestration. Simulations with cotton suggest O(3)-disrupted root development could indirectly reduce shoot photosynthesis. Strong evidence for O(3) impacts on both carbon assimilation and carbon translocation exists, but data determining the primacy of direct or indirect O(3) effects on either or both processes remain inconclusive. Phloem loading may be particularly sensitive to O(3). Further research on metabolic feedback control of carbon assimilation and phloem loading activity as affected by O(3) exposure is required.
Collapse
Affiliation(s)
- D A Grantz
- Department of Botany and Plant Sciences and Air Pollution Research Center, University of California at Riverside, Kearney Agricultural Center, 9240 South Riverbend Avenue, Parlier, CA 93648, USA.
| |
Collapse
|
15
|
Zheng Y, Shimizu H, Barnes JD. Limitations to CO 2 assimilation in ozone-exposed leaves of Plantago major. THE NEW PHYTOLOGIST 2002; 155:67-78. [PMID: 33873292 DOI: 10.1046/j.1469-8137.2002.00446.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The potential limitations on net leaf carbon assimilation imposed by stomatal conductance, carboxylation velocity, capacity for ribulose 1,5-bisphosphate regeneration and triose phosphate ultilization rate were derived from steady-state gas exchange measurements made over the life-span of two leaves on plants of an 'O3 -sensitive' population of Plantago major grown at contrasting atmospheric O3 concentrations. • Parallel measurements of chlorophyll fluorescence were used to monitor changes in the quantum efficiency of PSII photochemistry, and in vitro measurements of Rubisco activity were made to corroborate modelled gas exchange data. • Data indicated that a loss of Rubisco was predominantly responsible for the decline in CO2 assimilation observed in O3 -treated leaves. The quantum efficiency of PSII was unchanged by O3 exposure. • Stomatal aperture declined in parallel with CO2 assimilation in O3 -treated plants, but this did not account for the observed decline in photosynthesis. Findings suggested that O3 -induced shifts in stomatal conductance result from 'direct' effects on the stomatal complex as well as 'indirect effects' mediated through changes in intercellular CO2 concentration. Leaves on the same plant exposed to equivalent levels of O3 showed striking differences in their response to the pollutant.
Collapse
Affiliation(s)
- Y Zheng
- Air Pollution Laboratory, Department of Agricultural and Environmental Science, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - H Shimizu
- Centre for Global Environmental Research, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-0053, Japan
| | - J D Barnes
- Air Pollution Laboratory, Department of Agricultural and Environmental Science, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
16
|
Martin MJ, Host GE, Lenz KE, Isebrands JG. Simulating the growth response of aspen to elevated ozone: a mechanistic approach to scaling a leaf-level model of ozone effects on photosynthesis to a complex canopy architecture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 115:425-436. [PMID: 11789923 DOI: 10.1016/s0269-7491(01)00232-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Predicting ozone-induced reduction of carbon sequestration of forests under elevated tropospheric ozone concentrations requires robust mechanistic leaf-level models, scaled up to whole tree and stand level. As ozone effects depend on genotype, the ability to predict these effects on forest carbon cycling via competitive response between genotypes will also be required. This study tests a process-based model that predicts the relative effects of ozone on the photosynthetic rate and growth of an ozone-sensitive aspen clone, as a first step in simulating the competitive response of genotypes to atmospheric and climate change. The resulting composite model simulated the relative above ground growth response of ozone-sensitive aspen clone 259 exposed to square wave variation in ozone concentration. This included a greater effect on stem diameter than on stem height, earlier leaf abscission, and reduced stem and leaf dry matter production at the end of the growing season. Further development of the model to reduce predictive uncertainty is discussed.
Collapse
Affiliation(s)
- M J Martin
- Natural Resources Research Institute, University of Minnesota, Duluth 55811, USA.
| | | | | | | |
Collapse
|
17
|
Grünhage L, Krause GH, Köllner B, Bender J, Weigel HJ, Jäger HJ, Guderian R. A new flux-orientated concept to derive critical levels for ozone to protect vegetation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2001; 111:355-362. [PMID: 11202739 DOI: 10.1016/s0269-7491(00)00181-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The current European critical levels for ozone (O3) to protect crops, natural and semi-natural vegetation and forest trees are based on a relative small number of open-top chamber experiments with a very limited number of plant species. Therefore, the working group "Effects of Ozone on Plants" of the Commission on Air Pollution Prevention of the Association of German Engineers and the German Institute of Standardization reanalysed the literature on O3 effects on European plant species published between 1989 and 1999. An exposure-response relationship for wild plant species and agricultural crops could be derived from 30 experiments with more than 30 species and 90 data points; the relationship for conifer and deciduous trees is based on 20 experiments with nine species and 50 data points. From these relationships maximum O3 concentrations for different risk stages are deduced, below which the vegetation type is protected on the basis of the respective criteria. Because it is assumed that the fumigation concentrations reflect the O3 concentrations at the top of the canopy, i.e. the upper surface boundary of the quasi-laminar layer if the micrometeorological big-leaf approach is applied, the application of these maximum O3 concentrations requires the transformation of O3 concentrations measured at a reference height above the canopy to the effective phytotoxic concentrations at the top of the canopy. Thus, the approach described in this paper is a synthesis of the classical concept of toxicology of air pollutants (critical concentrations) and the more toxicological relevant dose concept.
Collapse
Affiliation(s)
- L Grünhage
- Institute for Plant Ecology, University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Scherzer AJ, Eshita SM, Davis KR. Ozone sensitivity in hybrid poplar is correlated with a lack of defense-gene activation. PLANT PHYSIOLOGY 1998; 118:1243-52. [PMID: 9847098 PMCID: PMC34740 DOI: 10.1104/pp.118.4.1243] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/1998] [Accepted: 08/31/1998] [Indexed: 05/19/2023]
Abstract
Ozone is a major gaseous pollutant thought to contribute to forest decline. Although the physiological and morphological responses of forest trees to ozone have been well characterized, little is known about the molecular basis for these responses. Our studies compared the response to ozone of ozone-sensitive and ozone-tolerant clones of hybrid poplar (Populus maximowizii x Populus trichocarpa) at the physiological and molecular levels. Gas-exchange analyses demonstrated clear differences between the ozone-sensitive clone 388 and the ozone-tolerant clone 245. Although ozone induced a decrease in photosynthetic rate and stomatal conductance in both clones, the magnitude of the decrease in stomatal conductance was significantly greater in the ozone-tolerant clone. RNA-blot analysis established that ozone-induced mRNA levels for phenylalanine ammonia-lyase, O-methyltransferase, a pathogenesis-related protein, and a wound-inducible gene were significantly higher in the ozone-tolerant than in the ozone-sensitive plants. Wound- and pathogen-induced levels of these mRNAs were also higher in the ozone-tolerant compared with the ozone-sensitive plants. The different physiological and molecular responses to ozone exposure exhibited by clones 245 and 388 suggest that ozone tolerance involves the activation of salicylic-acid- and jasmonic-acid-mediated signaling pathways, which may be important in triggering defense responses against oxidative stress.
Collapse
|