1
|
Li Z, Lu Y, Wang L, Shi L, Wang T. Reactive oxygen species-dependent nanomedicine therapeutic modalities for gastric cancer. NANOSCALE ADVANCES 2025; 7:3210-3227. [PMID: 40308560 PMCID: PMC12038724 DOI: 10.1039/d5na00321k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Reactive oxygen species (ROS) play a double-edged role in gastric cancer (GC). Higher levels of ROS in tumor cells compared to normal cells facilitate tumor progression. Once ROS concentrations rise rapidly to toxic levels, they cause GC cell death, which is instead beneficial for GC treatment. Based on these functions, nano-delivery systems taking the therapeutic advantages of ROS have been widely employed in tumor therapy in recent years, overcoming the drawbacks of conventional drug delivery techniques, such as non-specific systemic effects. In this review, the precise impacts of ROS on GC have been detailed, along with ROS-based nanomedicine therapeutic schemes. These strategies mainly focused on the use of excess ROS in the tumor microenvironment for controlled drug release and a substantial enhancement of ROS concentrations for tumor killing. The challenges and opportunities for the advancement of these anticancer therapies are also emphasized.
Collapse
Affiliation(s)
- Zhiyan Li
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Yanjun Lu
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Lulu Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Liuyi Shi
- Yangzhou University Medical College Yangzhou 225001 China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
2
|
Malhotra K, Malik A, Almalki WH, Sahebkar A, Kesharwani P. Reactive Oxygen Species and its Manipulation Strategies in Cancer Treatment. Curr Med Chem 2025; 32:55-73. [PMID: 37303173 DOI: 10.2174/0929867330666230609110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Cancer is one of the serious diseases of modern times, occurring in all parts of the world and shows a wide range of effects on the human body. Reactive Oxygen Species (ROS) such as oxide and superoxide ions have both advantages and disadvantages during the progression of cancer, dependent on their concentration. It is a necessary part of the normal cellular mechanisms. Changes in its normal level can cause oncogenesis and other relatable problems. Metastasis can also be controlled by ROS levels in the tumor cells, which can be prevented by the use of antioxidants. However, ROS is also used for the initiation of apoptosis in cells by different mediators. There exists a cycle between the production of oxygen reactive species, their effect on the genes, role of mitochondria and the progression of tumors. ROS levels cause DNA damage by the oxidation process, gene damage, altered expression of the genes and signalling mechanisms. They finally lead to mitochondrial disability and mutations, resulting in cancer. This review summarizes the important role and activity of ROS in developing different types of cancers like cervical, gastric, bladder, liver, colorectal and ovarian cancers.
Collapse
Affiliation(s)
- Kabil Malhotra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arzoo Malik
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Lu XX, Xue C, Dong JH, Zhang YZ, Gao F. Nanoplatform-based strategies for enhancing the lethality of current antitumor PDT. J Mater Chem B 2024; 12:3209-3225. [PMID: 38497405 DOI: 10.1039/d4tb00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jian-Hui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Solanum Procumbens-Derived Zinc Oxide Nanoparticles Suppress Lung Cancer In Vitro through Elevation of ROS. Bioinorg Chem Appl 2022; 2022:2724302. [PMID: 36147774 PMCID: PMC9489396 DOI: 10.1155/2022/2724302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is one of the cancers with high mortality rate. The current therapeutic regimens have only limited success rate. The current work highlights the potential of Solanum procumbens-derived zinc oxide nanoparticle (SP-ZnONP)-induced apoptosis in A549 lung cancer cells. Synthesized nanoparticles were confirmed by UV-Vis spectrophotometry, X-ray diffraction (XRD), dynamic light scattering analysis (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and photoluminescence analysis. Lactate dehydrogenase (LDH), cytotoxicity, and cell viability assays revealed that the SP-ZnONP caused the cell death and the inhibition concentration (IC50) was calculated to be 61.28 μg/mL. Treatment with SP-ZnONPs caused morphological alterations in cells, such as rounding, which may have been caused by the substance's impact on integrins. Acridine orange/ethidium bromide dual staining revealed that the cells undergo apoptosis in a dose-dependent manner, which indicates the cell death. Furthermore, reactive oxygen species (ROS) were examined and it was shown that the nanoparticles elevated ROS levels, which led to lipid peroxidation. In short, the SP-ZnONPs increase the level of ROS, which in turn causes lipid peroxidation results in apoptosis. On the other hand, the SP-ZnONPs decrease nitric oxide level in A549 cells in a dose-dependent manner, which also supports the apoptosis. In conclusion, SP-ZnONPs would become a promising treatment option for lung cancer.
Collapse
|
7
|
Haikazian S, Olson MF. MICAL1 Monooxygenase in Autosomal Dominant Lateral Temporal Epilepsy: Role in Cytoskeletal Regulation and Relation to Cancer. Genes (Basel) 2022; 13:715. [PMID: 35627100 PMCID: PMC9141472 DOI: 10.3390/genes13050715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Autosomal dominant lateral temporal epilepsy (ADLTE) is a genetic focal epilepsy associated with mutations in the LGI1, RELN, and MICAL1 genes. A previous study linking ADLTE with two MICAL1 mutations that resulted in the substitution of a highly conserved glycine residue for serine (G150S) or a frameshift mutation that swapped the last three C-terminal amino acids for 59 extra residues (A1065fs) concluded that the mutations increased enzymatic activity and promoted cell contraction. The roles of the Molecule Interacting with CasL 1 (MICAL1) protein in tightly regulated semaphorin signaling pathways suggest that activating MICAL1 mutations could result in defects in axonal guidance during neuronal development. Further studies would help to illuminate the causal relationships of these point mutations with ADLTE. In this review, we discuss the proposed pathogenesis caused by mutations in these three genes, with a particular emphasis on the G150S point mutation discovered in MICAL1. We also consider whether these types of activating MICAL1 mutations could be linked to cancer.
Collapse
Affiliation(s)
| | - Michael F. Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
8
|
Tyagi A, Haq S, Ramakrishna S. Redox regulation of DUBs and its therapeutic implications in cancer. Redox Biol 2021; 48:102194. [PMID: 34814083 PMCID: PMC8608616 DOI: 10.1016/j.redox.2021.102194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) act as a double-edged sword in cancer, where low levels of ROS are beneficial but excessive accumulation leads to cancer progression. Elevated levels of ROS in cancer are counteracted by the antioxidant defense system. An imbalance between ROS generation and the antioxidant system alters gene expression and cellular signaling, leading to cancer progression or death. Post-translational modifications, such as ubiquitination, phosphorylation, and SUMOylation, play a critical role in the maintenance of ROS homeostasis by controlling ROS production and clearance. Recent evidence suggests that deubiquitinating enzymes (DUBs)-mediated ubiquitin removal from substrates is regulated by ROS. ROS-mediated oxidation of the catalytic cysteine (Cys) of DUBs, leading to their reversible inactivation, has emerged as a key mechanism regulating DUB-controlled cellular events. A better understanding of the mechanism by which DUBs are susceptible to ROS and exploring the ways to utilize ROS to pharmacologically modulate DUB-mediated signaling pathways might provide new insight for anticancer therapeutics. This review assesses the recent findings regarding ROS-mediated signaling in cancers, emphasizes DUB regulation by oxidation, highlights the relevant recent findings, and proposes directions of future research based on the ROS-induced modifications of DUB activity.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
9
|
Foo BJA, Eu JQ, Hirpara JL, Pervaiz S. Interplay between Mitochondrial Metabolism and Cellular Redox State Dictates Cancer Cell Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1341604. [PMID: 34777681 PMCID: PMC8580634 DOI: 10.1155/2021/1341604] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are the main powerhouse of the cell, generating ATP through the tricarboxylic acid cycle (TCA) and oxidative phosphorylation (OXPHOS), which drives myriad cellular processes. In addition to their role in maintaining bioenergetic homeostasis, changes in mitochondrial metabolism, permeability, and morphology are critical in cell fate decisions and determination. Notably, mitochondrial respiration coupled with the passage of electrons through the electron transport chain (ETC) set up a potential source of reactive oxygen species (ROS). While low to moderate increase in intracellular ROS serves as secondary messenger, an overwhelming increase as a result of either increased production and/or deficient antioxidant defenses is detrimental to biomolecules, cells, and tissues. Since ROS and mitochondria both regulate cell fate, attention has been drawn to their involvement in the various processes of carcinogenesis. To that end, the link between a prooxidant milieu and cell survival and proliferation as well as a switch to mitochondrial OXPHOS associated with recalcitrant cancers provide testimony for the remarkable metabolic plasticity as an important hallmark of cancers. In this review, the regulation of cell redox status by mitochondrial metabolism and its implications for cancer cell fate will be discussed followed by the significance of mitochondria-targeted therapies for cancer.
Collapse
Affiliation(s)
- Brittney Joy-Anne Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jie Qing Eu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Cancer Science Institute, NUS, Singapore, Singapore
| | | | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- NUS Medicine Healthy Longevity Program, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
- Integrative Sciences and Engineering Program, NUS Graduate School, NUS, Singapore, Singapore
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Faculté de Médicine, Université de Paris, Paris, France
| |
Collapse
|
10
|
Shashni B, Nagasaki Y. Newly Developed Self-Assembling Antioxidants as Potential Therapeutics for the Cancers. J Pers Med 2021; 11:jpm11020092. [PMID: 33540693 PMCID: PMC7912983 DOI: 10.3390/jpm11020092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Elevated reactive oxygen species (ROS) have been implicated as significant for cancer survival by functioning as oncogene activators and secondary messengers. Hence, the attenuation of ROS-signaling pathways in cancer by antioxidants seems a suitable therapeutic regime for targeting cancers. Low molecular weight (LMW) antioxidants such as 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO), although they are catalytically effective in vitro, exerts off-target effects in vivo due to their size, thus, limiting their clinical use. Here, we discuss the superior impacts of our TEMPO radical-conjugated self-assembling antioxidant nanoparticle (RNP) compared to the LMW counterpart in terms of pharmacokinetics, therapeutic effect, and adverse effects in various cancer models.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan;
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan;
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Correspondence: ; Fax: +81-(0)29-853-5750
| |
Collapse
|
11
|
Hu S, Jiang H, Zhu J, Wang J, Wang S, Tang J, Zhou Z, Liu S, Shen Y. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. J Control Release 2021; 330:842-850. [DOI: 10.1016/j.jconrel.2020.10.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
12
|
Akbaribazm M, Khazaei MR, Khazaei M. Trifolium pratense L. (red clover) extract and doxorubicin synergistically inhibits proliferation of 4T1 breast cancer in tumor-bearing BALB/c mice through modulation of apoptosis and increase antioxidant and anti-inflammatory related pathways. Food Sci Nutr 2020; 8:4276-4290. [PMID: 32884708 PMCID: PMC7455927 DOI: 10.1002/fsn3.1724] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
Abstract
Therapeutic strategies against triple-negative breast cancer (TNBC) are associated with drug-induced toxicities. The tropical edible red clover (Trifolium pratense L.) is rich in polyphenolic compounds which confer the plant potential anticancer properties. The aim of this study was to investigate the effects of T. pratense and doxorubicin (DOX) on the apoptosis and proliferation of 4T1 tumor cells in an allograft model of tumor-bearing BALB/c mice. Fifty-six female 4T1-tumor bearing- BALB/c mice were randomly divided into 7 groups (n = 8/group) to receive different doses and combinations of DOX and T. pratense extract for 35 days. On the 36th day, serum estradiol (E2), IL-12 and IFN-γ cytokines, and glutathione peroxidase (GPx) activity were measured. Tumor's ferric reducing antioxidant power (FRAP) and the expressions of apoptosis-related genes (p53, Bax, Bcl-2, and caspase-3) were also evaluated. Immunohistochemical staining for Ki-67 and p53 were performed. Our results showed that the co-treatment of DOX and T. pratense (100-400 mg/kg) inhibited the proliferation of 4T1 tumor cells in dose- and time-dependent manners. The co-treatment of DOX and T. pratense (especially at the dose of 400 mg/kg) decreased the serum level of E2 (as a stimulant for breast tumor growth) and increased the serum levels of IL-12 and IFN-γ along with significant increments in serum GPx and tumor FRAP activities. The co-administration of DOX and T. pratense also decreased the expression of Ki-67 proliferation marker and increased the number p53 positive (i.e., apoptotic) cells within tumors. This was accompanied with the upregulation of pro-apoptotic and down-regulation of antiapoptotic genes. The key findings indicated the synergistic effects of DOX and T. pratense against TNBC xenografts.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Students Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
13
|
Organophosphate Pesticide Exposure and Breast Cancer Risk: A Rapid Review of Human, Animal, and Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145030. [PMID: 32668751 PMCID: PMC7399930 DOI: 10.3390/ijerph17145030] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Organophosphate pesticides (OPs) are one of the most commonly used classes of insecticides in the U.S., and metabolites of OPs have been detected in the urine of >75% of the U.S. POPULATION While studies have shown that OP exposure is associated with risk of neurological diseases and some cancers, the relationship between OP exposure and breast cancer risk is not well understood. METHODS The aim of this rapid review was to systematically evaluate published literature on the relationship between OP exposure and breast cancer risk, including both epidemiologic and laboratory studies. Twenty-seven full-text articles were reviewed by searching on Pubmed, EMBASE, and Cochrane databases. RESULTS Some human studies showed that malathion, terbufos, and chlorpyrifos were positively associated with human breast cancer risk, and some laboratory studies demonstrated that malathion and chlorpyrifos have estrogenic potential and other cancer-promoting properties. However, the human studies were limited in number, mostly included agricultural settings in several geographical areas in the U.S., and did not address cumulative exposure. CONCLUSIONS Given the mixed results found in both human and laboratory studies, more research is needed to further examine the relationship between OP exposure and breast cancer risk, especially in humans in non-agricultural settings.
Collapse
|
14
|
Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020; 33:850-868. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/09/2020] [Accepted: 06/07/2020] [Indexed: 12/22/2022]
Abstract
Biosynthesis and degradation of heme, an iron-bound protoporphyrin molecule utilized by a wide variety of metabolic processes, are tightly regulated. Two closely related enzymes, heme oxygenase 1 (HMOX1) and heme oxygenase 2 (HMOX2), degrade free heme to produce carbon monoxide, Fe2+ , and biliverdin. HMOX1 expression is controlled via the transcriptional activator, NFE2L2, and the transcriptional repressor, Bach1. Transcription of HMOX1 and other NFE2L2-dependent genes is increased in response to electrophilic and reactive oxygen species. Many tumor-derived cell lines have elevated levels of NFE2L2. Elevated expression of NFE2L2-dependent genes contributes to tumor growth and acquired resistance to therapies. Here, we report a novel role for heme oxygenase activity in melanosphere formation by human melanoma-derived cell lines. Transcriptional induction of HMOX1 through derepression of Bach1 or transcriptional activation of HMOX2 by oncogenic B-RafV600E results in increased melanosphere formation. Genetic ablation of HMOX1 diminishes melanosphere formation. Further, inhibition of heme oxygenase activity with tin protoporphyrin markedly reduces melanosphere formation driven by either Bach1 derepression or B-RafV600E expression. Global transcriptome analyses implicate genes involved in focal adhesion and extracellular matrix interactions in melanosphere formation.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA.,Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Jie Hou
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Philip Mannino
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Computer Science Department, University of Missouri, Columbia, Missouri, USA
| | - Mark Hannink
- Christopher Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
15
|
Miller DR, Ingersoll MA, Chatterjee A, Baker B, Shrishrimal S, Kosmacek EA, Zhu Y, Cheng PW, Oberley-Deegan RE, Lin MF. p66Shc protein through a redox mechanism enhances the progression of prostate cancer cells towards castration-resistance. Free Radic Biol Med 2019; 139:24-34. [PMID: 31100478 PMCID: PMC6620027 DOI: 10.1016/j.freeradbiomed.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) remains the second leading cause of cancer-related deaths in U.S. men due to the development of the castration-resistant (CR) PCa phenotype. A useful cell model for analysis of the molecular mechanism of PCa progression is required for developing targeted therapies toward CR PCa. In this study, we established a PCa cell progressive model in three separate cell lines, of which androgen-independent (AI) cells were derived from respective androgen-sensitive (AS) cells. Those AI PCa cells obtain the biochemical properties of the clinical CR phenotype, including AR and PSA expression as well as enhanced proliferation and tumorigenicity under androgen-deprived conditions. Thus, those AI cells recapitulate CR PCa and exhibit increased oxidant species levels as well as enhanced signaling of proliferation and survival pathways. H2O2 treatment directly enhanced AS cell growth and migration, which was counteracted by antioxidant N-acetyl cysteine (NAC). We further identified p66Shc protein enhances the production of oxidant species which contributes to phenotypic and cell signaling alterations from AS to AI PCa cells. H2O2-treated LNCaP-AS cells had a similar signaling profile to that of LNCaP-AI or p66Shc subclone cells. Conversely, the oxidant species-driven alterations of LNCaP-AI and p66Shc subclone cell signaling is mitigated by p66Shc knockdown. Moreover, LNCaP-AI cells and p66Shc subclones, but not LNCaP-AS cells, develop xenograft tumors with metastatic nodules, correlating with p66Shc protein levels. Together, the data shows that p66Shc enhances oxidant species production that plays a role in promoting PCa progression to the CR stage.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Heterografts
- Humans
- Hydrogen Peroxide/pharmacology
- Kallikreins/genetics
- Kallikreins/metabolism
- Lymphatic Metastasis
- Male
- Mice
- Mice, Nude
- Prostate/drug effects
- Prostate/metabolism
- Prostate/pathology
- Prostate-Specific Antigen/genetics
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Reactive Oxygen Species/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Src Homology 2 Domain-Containing, Transforming Protein 1/genetics
- Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
Collapse
Affiliation(s)
- Dannah R Miller
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew A Ingersoll
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brian Baker
- Department of Biology, Clark Atlanta University, Atlanta, GA, USA
| | - Shashank Shrishrimal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuxiang Zhu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Section of Urology, Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Kitiyanant V, Lotrakul P, Kanchanabanca C, Padungros P, Punnapayak H, Prasongsuk S, Chanvorachote P. Fusigen Reduces Intracellular Reactive Oxygen Species and Nitric Oxide Levels. In Vivo 2019; 33:425-432. [PMID: 30804121 DOI: 10.21873/invivo.11490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Oxidative stress caused by the production of excessive cellular reactive oxygen species (ROS) and high levels of nitric oxide contribute to several human pathologies. This study aimed to examine the anti-oxidant effects of fusigen, a compound produced from Aureobasidium melanogenum. MATERIALS AND METHODS Extracts of A. melanogenum were selected as a source for the isolation of fusigen. The anti-oxidant, nitric oxide suppression, as well as the free radical scavenging activities of fusigen were tested in BEAS-2B human bronchial epithelial cell line (BEAS-2B cells) and human dermal papilla cells (DP cells) using specific fluorescence dyes and flow cytometry analysis. Cell viability was determined by the MTT assay. RESULTS Fusigen did not exert cytotoxicity in the human normal BEAS-2B and DP cells at concentrations up to 100 μM. Fusigen decreased basal levels of cellular ROS, as well as the levels of ROS induced by hydrogen peroxide and ferrous ion enrichment. ROS decreasing effect was confirmed in DP cells. In addition, fusigen treatment suppressed intracellular NO levels in both BEAS-2B and DP cells. CONCLUSION The optimal process of production of purified fusigen from A. melanogenum was determined. Fusigen exhibited a low cytotoxic effect and the potential to suppress ROS and NO. These results demonstrated that fusigen may be used for the treatment or prevention of human diseases.
Collapse
Affiliation(s)
- Vorawat Kitiyanant
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pongtharin Lotrakul
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Panuwat Padungros
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Hunsa Punnapayak
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Sehanat Prasongsuk
- Plant Biomass Utilization Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand .,Cell-based Drug and Health Product Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res Int 2018; 111:451-471. [DOI: 10.1016/j.foodres.2018.05.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023]
|
18
|
The Role of Inflammation and Inflammatory Mediators in the Development, Progression, Metastasis, and Chemoresistance of Epithelial Ovarian Cancer. Cancers (Basel) 2018; 10:cancers10080251. [PMID: 30061485 PMCID: PMC6116184 DOI: 10.3390/cancers10080251] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a role in the initiation and development of many types of cancers, including epithelial ovarian cancer (EOC) and high grade serous ovarian cancer (HGSC), a type of EOC. There are connections between EOC and both peritoneal and ovulation-induced inflammation. Additionally, EOCs have an inflammatory component that contributes to their progression. At sites of inflammation, epithelial cells are exposed to increased levels of inflammatory mediators such as reactive oxygen species, cytokines, prostaglandins, and growth factors that contribute to increased cell division, and genetic and epigenetic changes. These exposure-induced changes promote excessive cell proliferation, increased survival, malignant transformation, and cancer development. Furthermore, the pro-inflammatory tumor microenvironment environment (TME) contributes to EOC metastasis and chemoresistance. In this review we will discuss the roles inflammation and inflammatory mediators play in the development, progression, metastasis, and chemoresistance of EOC.
Collapse
|
19
|
Shashni B, Nagasaki Y. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer. Biomaterials 2018; 178:48-62. [PMID: 29908344 DOI: 10.1016/j.biomaterials.2018.05.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The critical importance of reactive oxygen species (ROS) as oncogene activators and essential secondary messengers in cancer cell survival have been widely reported. Since oxidative stress has been implicated as being pivotal in various cancers, antioxidant therapy seems an apt strategy to abrogate ROS-mediated cellular processes to attenuate cancers. We therefore synthesized ROS scavenging nitroxide radical-containing nanoparticles (RNPs); pH insensitive RNPO and pH sensitive RNPN, to impede the proliferative and metastatic characteristics of the triple negative breast cancer cell line, MDA-MB-231, both in vitro and in vivo. RNPs significantly curtailed the proliferative and clonogenic potential of MDA-MB-231 and MCF-7 cell lines. Inhibition of ROS-mediated migratory and invasive characteristics of MDA-MB-231, via down regulation of NF-κB and MMP-2, was also confirmed. Furthermore, a significant anti-tumor and anti-metastatic potential of RNPs was observed in an MDA-MB-231 mouse xenograft model. Such tumoricidal effects of RNPs were attained with negligible adverse effects, compared to conventional low molecular weight antioxidants, TEMPOL. Thus, the tumoricidal effects of RNPs are suggestive of insights on precedence of nanoparticle-based therapeutics over current low molecular weight antioxidants to curtail ROS-induced tumorigenesis of various cancers.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotope and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
20
|
Abstract
Cancer survival is largely impacted by the dissemination of cancer cells from the original tumor site to secondary tissues or organs through metastasis. Targets for antimetastatic therapies have recently become a focus of research, but progress will require a better understanding of the molecular mechanisms driving metastasis. Selenoproteins play important roles in many of the cellular activities underlying metastasis including cell adhesion, matrix degradation and migration, invasion into the blood and extravasation into secondary tissues, and subsequent proliferation into metastatic tumors along with the angiogenesis required for growth. In this review the roles identified for different selenoproteins in these steps and how they may promote or inhibit metastatic cancers is discussed. These roles include selenoenzyme modulation of redox tone and detoxification of reactive oxygen species, calcium homeostasis and unfolded protein responses regulated by endoplasmic reticulum selenoproteins, and the multiple physiological responses influenced by other selenoproteins.
Collapse
Affiliation(s)
- Michael P Marciel
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peter R Hoffmann
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States.
| |
Collapse
|
21
|
Focal photodynamic intracellular acidification as a cancer therapeutic. Semin Cancer Biol 2017; 43:147-156. [PMID: 28215969 DOI: 10.1016/j.semcancer.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022]
Abstract
Cancer cells utilize an array of proton transporters to regulate intra- and extracellular pH to thrive in hypoxic conditions, and to increase tumor growth and metastasis. Efforts to target many of the transporters involved in cancer cell pH regulation have yielded promising results, however, many productive attempts to disrupt pH regulation appear to be non-specific to cancer cells, and more effective in some cancer cells than others. Following a review of the status of photodynamic cancer therapy, a novel light-activated process is presented which creates very focal, rapid, and significant decreases in only intracellular pH (pHi), leading to cell death. The light-activation of the H+ carrier, nitrobenzaldehyde, has been effective at initiating pH-induced apoptosis in non-cancerous and numerous cancerous cell lines in vitro, to include breast, prostate, and pancreatic cancers. Also, this intracellular acidification technique caused significant reductions in tumor growth rate and enhanced survival in mice bearing triple negative breast cancer tumors. The efficacy of an NBA-upconverting nanoparticle to kill breast cancer cells in vitro is described, as well as a discussion of the potential intracellular mechanisms underlying the pH-induced apoptosis.
Collapse
|
22
|
Matijevic Glavan T, Cipak Gasparovic A, Vérillaud B, Busson P, Pavelic J. Toll-like receptor 3 stimulation triggers metabolic reprogramming in pharyngeal cancer cell line through Myc, MAPK, and HIF. Mol Carcinog 2016; 56:1214-1226. [PMID: 27805282 DOI: 10.1002/mc.22584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 09/30/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022]
Abstract
Toll-like receptor 3 (TLR3) has a dual role in cancer; its activation can trigger apoptosis as well as stimulate cancer cell survival, proliferation, and progression. We have shown here that TLR3 activation can induce metabolic reprogramming in a pharyngeal cancer cell line, leading to increased aerobic glycolysis, cell migration, elevated levels of reactive oxidative species (ROS), and decreased anti-oxidative response. Key proteins in these signaling pathways are heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), pyruvate kinase M2 (PKM2), and CD44 variants, which were over-expressed after TLR3 stimulation. TLR3 activation also induced upregulation of different genes involved in cancer progression (VEGF, MMP9, uPAR) and enzymes involved in glycolytic pathway. Most of the observed effects were Myc-dependent; however, some of them were also connected with MAPK and HIF signaling pathways. Since TLR3 agonists are being investigated as potential novel cancer therapy adjuvants and apoptosis inducers, alone or in combination with other therapeutic options, data presented here suggest extreme caution before their introduction into clinical practice. The fact that TLR3 ligands [poly(I:C) and poly(A:U)] can also aid cancer survival and progression, through induction of metabolic reprogramming, emphasizes the need to investigate this particular topic. Our data suggest that the combination of TLR3 ligands with Myc or MAPK inhibitors may be a way to neutralize their undesirable effects while enhancing their anti-tumor effect. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Benjamin Vérillaud
- Institut Gustave Roussy, University Paris-Sud 11, CNRS-UMR 8126, Villejuif, France.,Department of Head and Neck Surgery, Lariboisière Hospital, AP-HP, University Paris-Diderot Paris 7, Paris, France
| | - Pierre Busson
- Institut Gustave Roussy, University Paris-Sud 11, CNRS-UMR 8126, Villejuif, France
| | - Jasminka Pavelic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
23
|
Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression. Tumour Biol 2016; 37:13307-13322. [DOI: 10.1007/s13277-016-5224-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023] Open
|
24
|
Patras L, Sesarman A, Licarete E, Luca L, Alupei MC, Rakosy-Tican E, Banciu M. Dual role of macrophages in the response of C26 colon carcinoma cells to 5-fluorouracil administration. Oncol Lett 2016; 12:1183-1191. [PMID: 27446416 DOI: 10.3892/ol.2016.4708] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Previous studies have demonstrated that tumor-associated macrophages (TAMs) are pivotal players in tumor progression via modulation of tumor angiogenesis, inflammation, metastasis and oxidative stress, as well as of the response of cancer cells to cytotoxic drugs. Nevertheless, the role of TAMs in the prognosis of colorectal cancer remains controversial. Therefore, the present study aimed to investigate how TAMs mediate the response of C26 colon carcinoma cells to the cytotoxic drug 5-fluorouracil (5-FU), upon TAM co-cultivation with these cancer cells in vitro. In this respect, 5-FU cytotoxicity was assessed in C26 cells in standard culture and in a co-culture with peritoneal macrophages, the production of NF-κB was determined by western blot analysis, and the production of angiogenic/inflammatory proteins in each experimental model was evaluated by protein array analysis. To gain further evidence of the effect of TAMs on oxidative stress, malondialdehyde was measured through high-performance liquid chromatography, and the total nonenzymatic antioxidant levels and the production of nitrites were measured through colorimetric assays. The results demonstrated that TAMs exerted a dual role in the response of C26 cells to 5-FU administration in the co-culture model. Thus, on one side, TAMs sensitized C26 cells to 5-FU administration through inhibition of the production of inflammatory and angiogenic proteins in these cancer cells; however, they also protected cancer cells against 5-FU-induced oxidative stress. Collectively, the present findings suggest that the combined administration of 5-FU with pharmacological agents that prevent TAMs to maintain the physiological range of tumor cell oxidative stress may highly improve the therapeutic potential of this drug.
Collapse
Affiliation(s)
- Laura Patras
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Lavinia Luca
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Marius Costel Alupei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| | - Elena Rakosy-Tican
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania; Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Abstract
The mechanism by which reactive oxygen species (ROS) are produced by tumour cells remained incompletely understood until the discovery over the last 15 years of the family of NADPH oxidases (NOXs 1–5 and dual oxidases DUOX1/2) which are structural homologues of gp91phox, the major membrane-bound component of the respiratory burst oxidase of leucocytes. Knowledge of the roles of the NOX isoforms in cancer is rapidly expanding. Recent evidence suggests that both NOX1 and DUOX2 species produce ROS in the gastrointestinal tract as a result of chronic inflammatory stress; cytokine induction (by interferon-γ, tumour necrosis factor α, and interleukins IL-4 and IL-13) of NOX1 and DUOX2 may contribute to the development of colorectal and pancreatic carcinomas in patients with inflammatory bowel disease and chronic pancreatitis, respectively. NOX4 expression is increased in pre-malignant fibrotic states which may lead to carcinomas of the lung and liver. NOX5 is highly expressed in malignant melanomas, prostate cancer and Barrett's oesophagus-associated adenocarcinomas, and in the last it is related to chronic gastro-oesophageal reflux and inflammation. Over-expression of functional NOX proteins in many tissues helps to explain tissue injury and DNA damage from ROS that accompany pre-malignant conditions, as well as elucidating the potential mechanisms of NOX-related damage that contribute to both the initiation and the progression of a wide range of solid and haematopoietic malignancies.
Collapse
|
26
|
Shah MH, Liu GS, Thompson EW, Dusting GJ, Peshavariya HM. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells. Breast Cancer Res Treat 2015; 150:523-34. [PMID: 25794772 DOI: 10.1007/s10549-015-3329-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.
Collapse
Affiliation(s)
- Manisha H Shah
- Victorian Breast Cancer Research, Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia,
| | | | | | | | | |
Collapse
|
27
|
Mitochondrial dysfunction in cancer. MENOPAUSE REVIEW 2014; 13:136-44. [PMID: 26327844 PMCID: PMC4520353 DOI: 10.5114/pm.2014.42717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/02/2014] [Accepted: 01/15/2014] [Indexed: 01/10/2023]
Abstract
Mitochondria are semi-autonomous organelles of eukaryotic cells. They perform crucial functions such as generating most of the cellular energy through the oxidative phosphorylation (OXPHOS) system and some other metabolic processes. In addition, mitochondria are involved in regulation of cell death and reactive oxygen species (ROS) generation. Also, mitochondria play important roles in carcinogenesis via altering energy metabolism, resistance to apoptosis, increase of production of ROS and mtDNA (mitochondrial genome) changes. Studies have suggested that aerobic glycolysis is high in malignant tumors. Probably, it correlates with high glucose intake of cancerous tissues. This observation is contrary to Warburg's theory that the main way of energy generation in cancer cells is non-oxidative glycolysis. Further studies have suggested that in tumor cells both oxidative phosphorylation and glycolysis were active at various rates. An increase of intracellular oxidative stress induces damage of cellular structure and somatic mutations. Further studies confirmed that permanent activity of oxidative stress and the influence of chronic inflammation damage the healthy neighboring epithelium and may lead to carcinogenesis. For instance, chronic inflammatory bowel disease could be related to high risk of colon adenocarcinoma. The data have shown a role of ROS generation, mtDNA or nDNA alterations and abnormal apoptotic machinery in endometrial cancer progress. Recent studies suggest that mtDNA mutations might play a potential role in endometrial cancer progress and indicate an increase of mitochondrial biogenesis in this cancer. The investigators suggested that MtCOI and MtND6 alteration has an influence on assembly of respiratory complexes in endometrial cancer. In many human cancers, there is a deregulation of the balance between cell growth and death. The tumor cells can avoid apoptosis through a loss of balance between anti- and pro-apoptotic proteins, reduced caspase function and impaired death receptor signaling. Over-expression of the anti-apoptotic BCL-2 gene has also been identified in numerous cancers including colon, thyroid, breast and endometrial cancer. Most studies have found low BCL-2 family gene expression, which could be a sign of blocking apoptosis in breast and endometrial cancer. Moreover, BCL-2 gene expression is correlated with the degree of aggressiveness and differentiation in endometrial cancer. As a result, it could be a valuable predictor of disease progression.
Collapse
|
28
|
Mahalingaiah PKS, Singh KP. Chronic oxidative stress increases growth and tumorigenic potential of MCF-7 breast cancer cells. PLoS One 2014; 9:e87371. [PMID: 24489904 PMCID: PMC3905021 DOI: 10.1371/journal.pone.0087371] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence suggests that exposures to elevated levels of either endogenous estrogen or environmental estrogenic chemicals are associated with breast cancer development and progression. These natural or synthetic estrogens are known to produce reactive oxygen species (ROS) and increased ROS has been implicated in both cellular apoptosis and carcinogenesis. Though there are several studies on direct involvement of ROS in cellular apoptosis using short-term exposure model, there is no experimental evidence to directly implicate chronic exposure to ROS in increased growth and tumorigenicity of breast cancer cells. Therefore, the objective of this study was to evaluate the effects of chronic oxidative stress on growth, survival and tumorigenic potential of MCF-7 breast cancer cells. MCF-7 cells were exposed to exogenous hydrogen peroxide (H2O2) as a source of ROS at doses of 25 µM and 250 µM for acute (24 hours) and chronic period (3 months) and their effects on cell growth/survival and tumorigenic potential were evaluated. The results of cell count, MTT and cell cycle analysis showed that while acute exposure inhibits the growth of MCF-7 cells in a dose-dependent manner, the chronic exposure to H2O2-induced ROS leads to increased cell growth and survival of MCF-7 cells. This was further confirmed by gene expression analysis of cell cycle and cell survival related genes. Significant increase in number of soft agar colonies, up-regulation of pro-metastatic genes VEGF, WNT1 and CD44, whereas down-regulation of anti-metastatic gene E-Cadherin in H2O2 treated MCF-7 cells observed in this study further suggests that persistent exposure to oxidative stress increases tumorigenic and metastatic potential of MCF-7 cells. Since many chemotherapeutic drugs are known to induce their cytotoxicity by increasing ROS levels, the results of this study are also highly significant in understanding the mechanism for adaptation to ROS-induced toxicity leading to acquired chemotherapeutic resistance in breast cancer cells.
Collapse
Affiliation(s)
- Prathap Kumar S. Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, Pei I, Thomas EY, Miele L. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vasc Cell 2013; 5:9. [PMID: 23638734 PMCID: PMC3649947 DOI: 10.1186/2045-824x-5-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50–100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.
Collapse
Affiliation(s)
- Jian-Wei Gu
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Breast cancer mortality is primarily due to the occurrence of metastatic disease. We have identified a novel potential therapeutic agent derived from an edible root of the plant Colocasia esculenta, commonly known as taro, which has demonstrable activity in a preclinical model of metastatic breast cancer and that should have minimal toxicity. We have shown for the first time that a water-soluble extract of taro (TE) potently inhibits lung-colonizing ability and spontaneous metastasis from mammary gland-implanted tumors, in a murine model of highly metastatic estrogen receptor, progesterone receptor and Her-2/neu-negative breast cancer. TE modestly inhibits the proliferation of some, but not all, breast and prostate cancer cell lines. Morphological changes including cell rounding were observed. Tumor cell migration was completely blocked by TE. TE treatment also inhibited prostaglandin E2 (PGE2) synthesis and downregulated cyclooxygenase 1 and 2 mRNA expression. We purified the active compound(s) to near homogeneity with antimetastatic activity comparable with stock TE. The active compound with a native size of approximately 25 kDa contains two fragments of nearly equal size. The N-terminal amino acid sequencing of both fragments reveals that the active compound is highly related to three taro proteins: 12-kDa storage protein, tarin and taro lectin. All are similar in terms of amino acid sequence, posttranslational processing and all contain a carbohydrate-binding domain. This is the first report describing compound(s) derived from taro that potently and specifically inhibits tumor metastasis.
Collapse
|
31
|
Chen J, Liu B, Yuan J, Yang J, Zhang J, An Y, Tie L, Pan Y, Li X. Atorvastatin reduces vascular endothelial growth factor (VEGF) expression in human non-small cell lung carcinomas (NSCLCs) via inhibition of reactive oxygen species (ROS) production. Mol Oncol 2011; 6:62-72. [PMID: 22153388 DOI: 10.1016/j.molonc.2011.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022] Open
Abstract
The high metastatic potential of non-small cell lung cancers (NSCLCs) is closely correlated with the elevated expression of vascular endothelial growth factor (VEGF) and resultant tumor angiogenesis. However, no effective strategies against VEGF expression have been available in NSCLCs therapy. This study demonstrated that elevated reactive oxygen species (ROS) levels derived from both mitochondria and NADPH oxidase were required for VEGF expression in NSCLC cells. Atorvastatin administration could significantly inhibit VEGF expression both in vitro and in vivo via inhibition of ROS production. Atorvastatin inhibited ROS generation partly through suppression of Rac1/NADPH oxidase activity. Specifically, atorvastatin could upregulate the activity of glutathione peroxidase (GPx) and catalase, which are responsible for elimination of hydrogen peroxide (H(2)O(2)) in the mitochondria and peroxisomes, respectively. Thus, inhibition of ROS production by concomitant suppression of Rac1/NADPH oxidase activity and upregulation of the activity of GPx and catalase contributes critically to atorvastatin-reduced VEGF expression in NSCLCs. Atorvastatin may be a potential alternative against VEGF expression and angiogenesis in NSCLCs therapy.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, and Institute of System Biomedicine, Peking University, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bhattarai G, Lee YH, Lee NH, Yun JS, Hwang PH, Yi HK. c-myb mediates inflammatory reaction against oxidative stress in human breast cancer cell line, MCF-7. Cell Biochem Funct 2011; 29:686-93. [DOI: 10.1002/cbf.1808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/15/2011] [Accepted: 08/24/2011] [Indexed: 12/23/2022]
Affiliation(s)
- Govinda Bhattarai
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Young-Hee Lee
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Nan-Hee Lee
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| | - Ji-Soo Yun
- Molecular Science and Technology Research Center; Ajou University; Suwon; Korea
| | - Pyoung-Han Hwang
- Department of Pediatrics; Chonbuk National Medical School, Chonbuk National University; Joenju; Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral-Bio Science and BK21 Program; School of Dentistry, Chonbuk National University; Joenju; Korea
| |
Collapse
|
33
|
Azad P, Ryu J, Haddad GG. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 2011; 51:530-8. [PMID: 21616137 PMCID: PMC3138732 DOI: 10.1016/j.freeradbiomed.2011.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023]
Abstract
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
| | - Julie Ryu
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Gabriel G. Haddad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
34
|
Jukanti R, Devraj G, Shashank AS, Devraj R. Biodistribution of ascorbyl palmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice. J Microencapsul 2011; 28:142-9. [DOI: 10.3109/02652048.2010.542496] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Rungtabnapa P, Nimmannit U, Halim H, Rojanasakul Y, Chanvorachote P. Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol Cell Physiol 2010; 300:C235-45. [PMID: 21148404 DOI: 10.1152/ajpcell.00249.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anoikis or detachment-induced apoptosis plays an essential role in the regulation of cancer cell metastasis. Caveolin-1 (Cav-1) is a key protein involved in tumor metastasis, but its role in anoikis and its regulation during cell detachment are unclear. We report here that Cav-1 plays a key role as a negative regulator of anoikis through a reactive oxygen species (ROS)-dependent mechanism in human lung carcinoma H460 cells. During cell detachment, Cav-1 is downregulated, whereas ROS generation is upregulated. Hydrogen peroxide and hydroxyl radical are two key ROS produced by cells during detachment. Treatment of the cells with hydrogen peroxide scavengers, catalase and N-acetylcysteine, promoted Cav-1 downregulation and anoikis during cell detachment, indicating that produced hydrogen peroxide plays a primary role in preventing anoikis by stabilizing Cav-1 protein. Catalase and N-acetylcysteine promoted ubiquitination and proteasomal degradation of Cav-1, which is a major pathway of its downregulation during cell anoikis. Furthermore, addition of hydrogen peroxide exogenously to the cells inhibited Cav-1 downregulation by preventing the formation of Cav-1-ubiquitin complex, supporting the inhibitory role of endogenous hydrogen peroxide in Cav-1 degradation during cell detachment. Together, these results indicate a novel role of hydrogen peroxide as an endogenous suppressor of cell anoikis through its stabilizing effect on Cav-1.
Collapse
Affiliation(s)
- Pimuma Rungtabnapa
- Dept. of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand 10330
| | | | | | | | | |
Collapse
|
36
|
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49:1603-16. [PMID: 20840865 PMCID: PMC2990475 DOI: 10.1016/j.freeradbiomed.2010.09.006] [Citation(s) in RCA: 3649] [Impact Index Per Article: 243.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 02/06/2023]
Abstract
Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
Affiliation(s)
- Simone Reuter
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumour development and progression. However, tumour cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signalling to effectively deprive cells from ROS-induced tumour promoting events, towards tipping the balance to ROS-induced apoptotic signalling. Alternatively, therapeutic antioxidants may prevent early events in tumour development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signalling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumour cells, their detoxification, their cellular effects, as well as the major signalling cascades they utilize, but also provides an outlook on their modulation in therapeutics.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL 32224, USA
| | | |
Collapse
|
38
|
Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, Dewhirst MW, Vujaskovic Z, Batinic-Haberle I. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med 2009; 47:992-1004. [PMID: 19591920 PMCID: PMC2749298 DOI: 10.1016/j.freeradbiomed.2009.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/13/2009] [Accepted: 07/02/2009] [Indexed: 12/20/2022]
Abstract
MnTE-2-PyP(5+) is a potent catalytic scavenger of reactive oxygen and nitrogen species, primarily superoxide and peroxynitrite. It therefore not only attenuates primary oxidative damage, but was found to modulate redox-based signaling pathways (HIF-1alpha, NF-kappaB, SP-1, and AP-1) and thus, in turn, secondary oxidative injury also. Cancer has been widely considered an oxidative stress condition. The goal of this study was to prove if and why a catalytic SOD mimic/peroxynitrite scavenger would exert anti-cancer effects, i.e., to evaluate whether the attenuation of the oxidative stress by MnTE-2-PyP(5+) could suppress tumor growth in a 4T1 mouse breast tumor model. Tumor cells were implanted into Balb/C mouse flanks. Three groups of mice (n=25) were studied: control (PBS) and 2 and 15 mg/kg/day of MnTE-2-PyP(5+) given subcutaneously twice daily starting when the tumors averaged 200 mm(3) (until they reached approximately 5-fold the initial volume). Intratumoral hypoxia (pimonidazole, carbonic anhydrase), HIF-1alpha, VEGF, proliferating capillary index (CD105), microvessel density (CD31), protein nitration, DNA oxidation (8-OHdG), NADPH oxidase (Nox-4), apoptosis (CD31), macrophage infiltration (CD68), and tumor drug levels were assessed. With 2 mg/kg/day a trend toward tumor growth delay was observed, and a significant trend was observed with 15 mg/kg/day. The 7.5-fold increase in drug dose was accompanied by a similar (6-fold) increase in tumor drug levels. Oxidative stress was largely attenuated as observed through the decreased levels of DNA damage, protein 3-nitrotyrosine, macrophage infiltration, and NADPH oxidase. Further, hypoxia was significantly decreased as were the levels of HIF-1alpha and VEGF. Consequently, suppression of angiogenesis was observed; both the microvessel density and the endothelial cell proliferation were markedly decreased. Our study indicates for the first time that MnTE-2-PyP(5+) has anti-cancer activity in its own right. The anti-cancer activity via HIF/VEGF pathways probably arises from the impact of the drug on the oxidative stress. Therefore, the catalytic scavenging of ROS/RNS by antioxidants, which in turn suppresses cellular transcriptional activity, could be an appropriate strategy for anti-cancer therapy. Enhancement of the anti-cancer effects may be achieved by optimizing the dosing regime, utilizing more bioavailable Mn porphyrins (MnP), and combining MnP treatment with irradiation, hyperthermia, and chemotherapy. Mn porphyrins may be advantageous compared to other anti-cancer drugs, owing to their radioprotection of normal tissue and the ability to afford pain management in cancer patients via prevention of chronic morphine tolerance.
Collapse
Affiliation(s)
- Zahid N. Rabbani
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Ivan Spasojevic
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - XiuWu Zhang
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Benjamin J. Moeller
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Sinisa Haberle
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | | | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
39
|
Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009; 8:579-91. [PMID: 19478820 DOI: 10.1038/nrd2803] [Citation(s) in RCA: 4159] [Impact Index Per Article: 259.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Collapse
|
40
|
A novel RNA-binding protein, Ossa/C9orf10, regulates activity of Src kinases to protect cells from oxidative stress-induced apoptosis. Mol Cell Biol 2008; 29:402-13. [PMID: 19015244 DOI: 10.1128/mcb.01035-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the process of tumor progression and clinical treatments, tumor cells are exposed to oxidative stress. Tumor cells are frequently resistant to such stress by producing antiapoptotic signaling, including activation of Src family kinases (SFKs), although the molecular mechanism is not clear. In an attempt to identify the SFK-binding proteins selectively phosphorylated in gastric scirrhous carcinoma, we identified an uncharacterized protein, C9orf10. Here we report that C9orf10 (designated Ossa for oxidative stress-associated Src activator) is a novel RNA-binding protein that guards cancer cells from oxidative stress-induced apoptosis by activation of SFKs. Exposure to oxidative stress such as UV irradiation induces the association of Ossa/C9orf10 with regulatory domains of SFKs, which activates these kinases and causes marked tyrosine phosphorylation of C9orf10 in turn. Tyrosine-phosphorylated Ossa recruits p85 subunits of phosphatidylinositol 3-kinase (PI3-kinase) and behaves as a scaffolding protein for PI3-kinase and SFKs, which activates the Akt-mediated antiapoptotic pathway. On the other hand, the carboxyl terminus of Ossa has a distinct function that directly binds RNAs such as insulin-like growth factor II (IGF-II) mRNA and promotes the extracellular secretion of IGF-II. Our findings indicate that Ossa is a dual-functional protein and might be a novel therapeutic target which modulates the sensitivity of tumors to oxidative stress.
Collapse
|
41
|
Abstract
Oxidative stress is defined as an imbalance between generation of reactive oxygen species (ROS) and decreased antioxidant defense systems. Oxidative stress develops particularly in inflammatory reactions because the inflammatory cells, neutrophils, and macrophages produce large amounts of ROS. It has been known for a long time that oxidative stress in inflamed tissue can pave the way for malignant tumors, and that it is a major pathogenetic factor for the well-established correlation between inflammatory diseases and cancer. Oxidative stress has long been associated with the pathogenesis of chronic inflammatory bowel disease (IBD)-related colorectal cancer. This article provides an overview of the pathology of ROS and presents recent advances concerning the role of ROS in IBD-related colorectal carcinogenesis (Fig. 1).
Collapse
|
42
|
Abstract
Chronic inflammation is involved in the pathogenesis of most common cancers. The aetiology of the inflammation is varied and includes microbial, chemical and physical agents. The chronically inflamed milieu is awash with pro-inflammatory cytokines and is characterized by the activation of signalling pathways that cross-talk between inflammation and carcinogenesis. Many of the factors involved in chronic inflammation play a dual role in the process, promoting neoplastic progression but also facilitating cancer prevention. A comprehensive understanding of the molecular and cellular inflammatory mechanisms involved is vital for developing preventive and therapeutic strategies against cancer. The purpose of the present review is to evaluate the mechanistic pathways that underlie chronic inflammation and cancer with particular emphasis on the role of host genetic factors that increase the risk of carcinogenesis.
Collapse
|
43
|
Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype. Cancer Res 2008; 68:1777-85. [DOI: 10.1158/0008-5472.can-07-5259] [Citation(s) in RCA: 548] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Abstract
Expression of the ABC transporter P-glycoprotein (P-gp or ABCB1) is associated with resistance to chemotherapy in cancer. However, early investigations into the regulation of ABCB1 expression revealed that the process is not a classical induction as observed for certain metabolizing enzymes. The process involves the cellular stress response pathway initiated by either inflicted (e.g., chemotherapy damage) or endogenous (e.g., hypoxia) factors. However, ABCB1 is also expressed in a number of noncancerous tissues. In particular, the protein is found at tissues providing a barrier or secretory function. The localization of ABCB1 in normal tissues will impact significantly on drug pharmacokinetics, in particular the absorption and elimination processes. This review also describes the mechanism underlying ABCB1 expression in noncancerous tissue, a process that does not involve the stress response.
Collapse
Affiliation(s)
- Richard Callaghan
- Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
45
|
Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, Datta MW, Young AN, Petros JA. Nox1 expression determines cellular reactive oxygen and modulates c-fos-induced growth factor, interleukin-8, and Cav-1. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:2021-32. [PMID: 18055552 DOI: 10.2353/ajpath.2007.061144] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased cellular reactive oxygen species (ROS) can act as mitogenic signals in addition to damaging DNA and oxidizing lipids and proteins, implicating ROS in cancer development and progression. To analyze the effects of Nox1 expression and its relation to cellular ROS and signal transduction involved in cellular proliferation, Nox1RNAi constructs were transfected into DU145 prostate cancer cells overexpressing Nox1, causing decreased Nox1 message and protein levels in the Nox1RNAi cell lines. Increased ROS and tumor growth in the Nox1-overexpressing DU145 cells were reversed in the presence of the Nox1RNAi. Analysis and comparison of the message levels in the overexpression and RNAi cells demonstrated that Nox1 overexpression leads to changes in message levels of a variety of proteins including c-fos-induced growth factor, interleukin-8, and Cav-1. Finally, we found that Nox1 protein overexpression is an early event in the development of prostate cancer using a National Cancer Institute prostate cancer tissue microarray (CPCTR). Tumor (86%) was significantly more likely to have Nox1 staining than benign prostate tissue (62%) (P = 0.0001). These studies indicate that Nox1 overexpression may function as a reversible signal for cellular proliferation with relevance for a common human tumor.
Collapse
Affiliation(s)
- Rebecca S Arnold
- Department of Urology, Winship Cancer Institute, Emory University School of Medicine, 1365 Clifton Rd., Building B, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kulkarni AC, Kuppusamy P, Parinandi N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid Redox Signal 2007; 9:1717-30. [PMID: 17822371 DOI: 10.1089/ars.2007.1724] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.
Collapse
Affiliation(s)
- Aditi C Kulkarni
- Center for Biomedical EPR Spectroscopy and Imaging, Comprehensive Cancer Center, Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
47
|
Sangrar W, Gao Y, Scott M, Truesdell P, Greer PA. Fer-mediated cortactin phosphorylation is associated with efficient fibroblast migration and is dependent on reactive oxygen species generation during integrin-mediated cell adhesion. Mol Cell Biol 2007; 27:6140-52. [PMID: 17606629 PMCID: PMC1952165 DOI: 10.1128/mcb.01744-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The molecular details linking integrin engagement to downstream cortactin (Ctn) tyrosine phosphorylation are largely unknown. In this report, we show for the first time that Fer and Ctn are potently tyrosine phosphorylated in response to hydrogen peroxide (H2O2) in a variety of cell types. Working with catalytically inactive fer and src/yes/fyn-deficient murine embryonic fibroblasts (ferDR/DR and syf MEF, respectively), we observed that H2O2-induced Ctn tyrosine phosphorylation is primarily dependent on Fer but not Src family kinase (SFK) activity. We also demonstrated for the first time that Fer is activated by fibronectin engagement and, in concert with SFKs, mediates Ctn tyrosine phosphorylation in integrin signaling pathways. Reactive oxygen species (ROS) scavengers or the NADPH oxidase inhibitor, diphenylene iodonium, attenuated integrin-induced Fer and Ctn tyrosine phosphorylation. Taken together, these findings provide novel genetic evidence that a ROS-Fer signaling arm contributes to SFK-mediated Ctn tyrosine phosphorylation in integrin signaling. Lastly, a migration defect in ferDR/DR MEF suggests that integrin signaling through the ROS-Fer-Ctn signaling arm may be linked to mechanisms governing cell motility. These data demonstrate for the first time an oxidative link between integrin adhesion and an actin-binding protein involved in actin polymerization.
Collapse
Affiliation(s)
- Waheed Sangrar
- Queen's University Cancer Research Institute, Botterell Hall, Room A309, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
48
|
Khaitan D, Dwarakanath BS. Multicellular spheroids as anin vitromodel in experimental oncology: applications in translational medicine. Expert Opin Drug Discov 2006; 1:663-75. [DOI: 10.1517/17460441.1.7.663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Li F, Meng L, Zhou J, Xing H, Wang S, Xu G, Zhu H, Wang B, Chen G, Lu YP, Ma D. Reversing chemoresistance in cisplatin-resistant human ovarian cancer cells: A role of c-Jun NH2-terminal kinase 1. Biochem Biophys Res Commun 2005; 335:1070-7. [PMID: 16105650 DOI: 10.1016/j.bbrc.2005.07.169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 07/30/2005] [Indexed: 02/05/2023]
Abstract
To investigate the role of activation of c-Jun NH2-terminal kinase 1 (JNK1) in mediating cisplatin-induced apoptosis and the possibility of induction of JNK activity in triggering relation to DNA damage and drug resistance. We investigated the difference of cisplatin-induced activation of JNK pathway and H2O2 alteration between cisplatin-sensitive human ovarian carcinoma cell line A2780 and its resistant variant A2780/DDP. JNK, p-JNK protein, and extracellular H2O2 levels were determined in both A2780 and A2780/DDP cells which were transfected with dominant negative allele of JNK and recombinant JNK1 separately. Both A2780 and A2780/DDP were treated with CDDP, the JNK pathway was activated and a prolonged JNK activation was maintained for at least 12 h in A2780, and only a transient activation (3 h) was detected in A2780/DDP in response to cisplatin treatment. Inhibition of JNK activity by transfection with a dominant negative allele of JNK blocked CDDP-induced apoptosis significantly in A2780 cells. Selective stimulation of the JNK pathway by lipofectamine-mediated delivery of recombinant JNK1 led to activation of c-Jun and decrease of extracellular H2O2, as well as apoptosis sensitization to CDDP in A2780/DDP cells. We concluded that JNK pathway might play an important role in mediating cisplatin-induced apoptosis in A2780 cells, and the duration of JNK activation might be critical in determining whether cells survive or undergo apoptosis. The resistance to CDDP can be reversed through activating c-Jun and decreasing extracellular generation of H2O2 by pcDNA3(FLAG)-JNK1-wt transfection in A2780/DDP cells.
Collapse
Affiliation(s)
- Fang Li
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Massicot F, Dutertre-Catella H, Pham-Huy C, Liu XH, Duc HT, Warnet JM. In vitro Assessment of Renal Toxicity and Inflammatory Events of Two Protein Phosphatase Inhibitors Cantharidin and Nor-Cantharidin*. Basic Clin Pharmacol Toxicol 2005; 96:26-32. [PMID: 15667592 DOI: 10.1111/j.1742-7843.2005.pto960104.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In China, cantharidin has been reported to be active against various human cancers, but with severe side effects such as nephrotoxicity. In order to reduce this toxicity, its demethylated analogue nor-cantharidin has been synthesized and used in cancer therapy, but with only few data regarding safety assessment. The aim of this study was to compare the in vitro effects of cantharidin and nor-cantharidin on renal toxicity and on inflammatory events associated with tumoural process where protein phosphatases could be involved (energy status, prostanoid production, glutathione and nitrite contents) on RAW 264.7 and LLC-PK1 cells. In macrophages, both cantharidin and nor-cantharidin decreased cell viability, in a concentration- and time-dependent manner. However, IC50 was lower with cantharidin than with nor-cantharidin. These two drugs significantly decreased the ATP level after 24 hr incubation. However, ATP decreased much more with cantharidin (up to 4 times) than with nor-cantharidin. When control macrophages were activated with lipopolysaccharide+interferon-gamma for 24 hr a significant increase in nitrite content and in prostanoids were observed. Addition of either drug decreased nitrite generation and prostanoids, however these decreases were greater with cantharidin than with nor-cantharidin. In LLC-PK1 cells, incubated with either cantharidin or nor-cantharidin, our results show significant differences between the two drugs, similar to those observed in peritoneal macrophages, except for GSH content with opposite variations in both cells. We provide a better understanding of the various mechanisms of cantharidin side effects, allowing an easier comparison with nor-cantharidin which could be an attractive therapeutic potential in cancer chemotherapy in western countries.
Collapse
Affiliation(s)
- France Massicot
- Laboratory of Toxicology, Faculty of Pharmaceutical and Biological Sciences, University René Descartes-Paris 5, 75270 Paris Cedex 06, France.
| | | | | | | | | | | |
Collapse
|