1
|
Daskoulidou N, Carpanini SM, Zelek WM, Morgan BP. Involvement of Complement in Alzheimer's Disease: From Genetics Through Pathology to Therapeutic Strategies. Curr Top Behav Neurosci 2025; 69:3-24. [PMID: 39455500 DOI: 10.1007/7854_2024_524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Complement is a critical component of innate immunity, evolved to defend against pathogens and clear toxic debris ranging from dead and dying cells to immune complexes. These roles make complement a key player in homeostasis; however, complement has a dark side. When the rigid control mechanisms fail, complement becomes dysregulated, acting as a driver of inflammation and resultant pathology in numerous diseases. Roles of complement in Alzheimer's disease (AD) and other dementias have emerged in recent years, supported by genetic, biomarker and pathological evidence and animal model studies. Numerous questions remain regarding the precise roles of complement in the brain in health and disease, including where and when complement is expressed, how it contributes to immune defence and garbage disposal in the healthy brain, and exactly how complement contributes to pathology in dementias. In this brief review, we will summarise current knowledge on complement roles in brain, present the evidence implicating complement in AD and explore whether complement represents an attractive therapeutic target for AD.
Collapse
Affiliation(s)
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Ge TQ, Guan PP, Wang P. Complement 3a induces the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms during the development and progression of Alzheimer's disease. Neurosci Biobehav Rev 2024; 165:105868. [PMID: 39218048 DOI: 10.1016/j.neubiorev.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing β-amyloid protein (Aβ). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aβ, leading to the deposition of Aβ and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aβ and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.
Collapse
Affiliation(s)
- Tong-Qi Ge
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China; College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
3
|
Gedam M, Zheng H. Complement C3aR signaling: Immune and metabolic modulation and its impact on Alzheimer's disease. Eur J Immunol 2024; 54:e2350815. [PMID: 38778507 PMCID: PMC11305912 DOI: 10.1002/eji.202350815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid β plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.
Collapse
Affiliation(s)
- Manasee Gedam
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Nimmo J, Byrne R, Daskoulidou N, Watkins L, Carpanini S, Zelek W, Morgan B. The complement system in neurodegenerative diseases. Clin Sci (Lond) 2024; 138:387-412. [PMID: 38505993 PMCID: PMC10958133 DOI: 10.1042/cs20230513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Complement is an important component of innate immune defence against pathogens and crucial for efficient immune complex disposal. These core protective activities are dependent in large part on properly regulated complement-mediated inflammation. Dysregulated complement activation, often driven by persistence of activating triggers, is a cause of pathological inflammation in numerous diseases, including neurological diseases. Increasingly, this has become apparent not only in well-recognized neuroinflammatory diseases like multiple sclerosis but also in neurodegenerative and neuropsychiatric diseases where inflammation was previously either ignored or dismissed as a secondary event. There is now a large and rapidly growing body of evidence implicating complement in neurological diseases that cannot be comprehensively addressed in a brief review. Here, we will focus on neurodegenerative diseases, including not only the 'classical' neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also two other neurological diseases where neurodegeneration is a neglected feature and complement is implicated, namely, schizophrenia, a neurodevelopmental disorder with many mechanistic features of neurodegeneration, and multiple sclerosis, a demyelinating disorder where neurodegeneration is a major cause of progressive decline. We will discuss the evidence implicating complement as a driver of pathology in these diverse diseases and address briefly the potential and pitfalls of anti-complement drug therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacqui Nimmo
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Robert A.J. Byrne
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lewis M. Watkins
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Wioleta M. Zelek
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, Cardiff University, Cardiff CF24 4HQ, U.K
| |
Collapse
|
5
|
Shibata M, Makioka K, Nakamura T, Kasahara H, Yamazaki T, Takatama M, Okamoto K, Ikeda Y. Role of complement activation and disruption of the blood-brain barrier in the pathogenesis of multiple system atrophy. Neurosci Lett 2024; 822:137642. [PMID: 38228218 DOI: 10.1016/j.neulet.2024.137642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Multiple system atrophy (MSA) is a progressive and sporadic neurodegenerative disorder characterized by the histological appearance of glial cytoplasmic inclusions primarily composed of α-synuclein. Recently, complement-mediated neuroinflammation has been proposed as a key factor in the pathogenesis of numerous neurodegenerative disorders. We conducted immunohistochemical/immunofluorescent assays targeting a number of complements to explore the role of complements in MSA pathogenesis using brain samples from deceased patients and controls. Complement deposition was notably increased in the cerebral vasculature and myelin sheath in the MSA brains. Furthermore, fibrinogen leakage resulting from the disruption of the blood-brain barrier (BBB) was observed, along with the presence of C1q-positive microglia clusters surrounding the MSA brain vessels. These immunohistochemical/immunofluorescent findings suggest that complement activation and BBB disruption play critical roles in MSA progression.
Collapse
Affiliation(s)
- Makoto Shibata
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Koki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroo Kasahara
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | - Koichi Okamoto
- Geriatrics Research Institute and Hospital, Gunma, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan.
| |
Collapse
|
6
|
Sierra DP, Tripathi A, Pillai A. Dysregulation of complement system in neuropsychiatric disorders: A mini review. Biomark Neuropsychiatry 2022; 7. [PMID: 37123465 PMCID: PMC10136364 DOI: 10.1016/j.bionps.2022.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Complement system is one of the most important defense mechanisms of the innate immune system. In addition to their roles in immune regulation, complement proteins are also involved in neurodevelopment and adult brain plasticity. Complement dysregulation has been shown in neurodevelopmental disorders including schizophrenia and autism spectrum disorder as well as in mood disorders. A number of clinical as well as genetic studies suggest the role of complement proteins in the cortical thinning and excessive synaptic pruning frequently associated with schizophrenia. The changes in complement proteins are also associated with the pathophysiology of autism spectrum disorder, major depressive disorder and bipolar disorder, but warrant further research. In addition, rodent models suggest a strong case for complement system in anxiety-like behavior. In this article, we review the recent findings on the role of complement system in neuropsychiatric disorders. The possible uses for future complement targeted therapies are also discussed.
Collapse
Affiliation(s)
- Danny Perez Sierra
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ashutosh Tripathi
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Correspondence to: Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. (A. Pillai)
| |
Collapse
|
7
|
Carpanini SM, Torvell M, Bevan RJ, Byrne RAJ, Daskoulidou N, Saito T, Saido TC, Taylor PR, Hughes TR, Zelek WM, Morgan BP. Terminal complement pathway activation drives synaptic loss in Alzheimer's disease models. Acta Neuropathol Commun 2022; 10:99. [PMID: 35794654 PMCID: PMC9258209 DOI: 10.1186/s40478-022-01404-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Complement is involved in developmental synaptic pruning and pathological synapse loss in Alzheimer's disease. It is posited that C1 binding initiates complement activation on synapses; C3 fragments then tag them for microglial phagocytosis. However, the precise mechanisms of complement-mediated synaptic loss remain unclear, and the role of the lytic membrane attack complex (MAC) is unexplored. We here address several knowledge gaps: (i) is complement activated through to MAC at the synapse? (ii) does MAC contribute to synaptic loss? (iii) can MAC inhibition prevent synaptic loss? Novel methods were developed and optimised to quantify C1q, C3 fragments and MAC in total and regional brain homogenates and synaptoneurosomes from WT and AppNL-G-F Alzheimer's disease model mouse brains at 3, 6, 9 and 12 months of age. The impact on synapse loss of systemic treatment with a MAC blocking antibody and gene knockout of a MAC component was assessed in Alzheimer's disease model mice. A significant increase in C1q, C3 fragments and MAC was observed in AppNL-G-F mice compared to controls, increasing with age and severity. Administration of anti-C7 antibody to AppNL-G-F mice modulated synapse loss, reflected by the density of dendritic spines in the vicinity of plaques. Constitutive knockout of C6 significantly reduced synapse loss in 3xTg-AD mice. We demonstrate that complement dysregulation occurs in Alzheimer's disease mice involving the activation (C1q; C3b/iC3b) and terminal (MAC) pathways in brain areas associated with pathology. Inhibition or ablation of MAC formation reduced synapse loss in two Alzheimer's disease mouse models, demonstrating that MAC formation is a driver of synapse loss. We suggest that MAC directly damages synapses, analogous to neuromuscular junction destruction in myasthenia gravis.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Megan Torvell
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Ryan J Bevan
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Robert A J Byrne
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Philip R Taylor
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Timothy R Hughes
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Wioleta M Zelek
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
8
|
Yin R, Yang L, Hao Y, Yang Z, Lu T, Jin W, Dan M, Peng L, Zhang Y, Wei Y, Li R, Ma H, Shi Y, Fan P. Proteomic landscape subtype and clinical prognosis of patients with the cognitive impairment by Japanese encephalitis infection. J Neuroinflammation 2022; 19:77. [PMID: 35379280 PMCID: PMC8981687 DOI: 10.1186/s12974-022-02439-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cognitive impairment is one of the primary sequelae affecting the quality of life of patients with Japanese encephalitis (JE). The clinical treatment is mainly focused on life support, lacking of targeted treatment strategy. METHODS A cerebrospinal fluid (CSF) proteomic profiling study was performed including 26 patients with JE in Gansu province of China from June 2017 to October 2018 and 33 other concurrent hospitalized patients who were excluded central nervous system (CNS) organic or CNS infection diseases. The clinical and proteomics data of patients with JE were undergoing combined analysis for the first time. RESULTS Two subtypes of JE associated with significantly different prognoses were identified. Compared to JE1, the JE2 subtype is associated with lower overall survival rate and a higher risk of cognitive impairment. The percentages of neutrophils (N%), lymphocyte (L%), and monocytes (M%) decreased in JE2 significantly. CONCLUSIONS The differences in proteomic landscape between JE subgroups have specificity for the prognosis of cognitive impairment. The data also provided some potential target proteins for treatment of cognitive impairments caused by JE. Trial registration ChiCTR, ChiCTR2000030499. Registered 1st June 2017, http://www.medresman.org.cn/pub/cn/proj/projectshow.aspx?proj=6333.
Collapse
Affiliation(s)
- Rong Yin
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, China
| | - Linpeng Yang
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China.,The Fourth Department of Research, Center for Gansu Provincial Vaccine Engineering Research, Lanzhou, 730046, China
| | - Ying Hao
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, 10065, USA
| | - Zhiqi Yang
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanjun Jin
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China
| | - Meiling Dan
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - Liang Peng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingjie Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,The First Clinical Medical School, Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Yaxuan Wei
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, China
| | - Rong Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou, 730050, China.,Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Huiping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China
| | - Yuanyuan Shi
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, China.
| | - Pengcheng Fan
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou, 730050, China. .,State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
9
|
Torvell M, Carpanini SM, Daskoulidou N, Byrne RAJ, Sims R, Morgan BP. Genetic Insights into the Impact of Complement in Alzheimer's Disease. Genes (Basel) 2021; 12:1990. [PMID: 34946939 PMCID: PMC8702080 DOI: 10.3390/genes12121990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The presence of complement activation products at sites of pathology in post-mortem Alzheimer's disease (AD) brains is well known. Recent evidence from genome-wide association studies (GWAS), combined with the demonstration that complement activation is pivotal in synapse loss in AD, strongly implicates complement in disease aetiology. Genetic variations in complement genes are widespread. While most variants individually have only minor effects on complement homeostasis, the combined effects of variants in multiple complement genes, referred to as the "complotype", can have major effects. In some diseases, the complotype highlights specific parts of the complement pathway involved in disease, thereby pointing towards a mechanism; however, this is not the case with AD. Here we review the complement GWAS hits; CR1 encoding complement receptor 1 (CR1), CLU encoding clusterin, and a suggestive association of C1S encoding the enzyme C1s, and discuss difficulties in attributing the AD association in these genes to complement function. A better understanding of complement genetics in AD might facilitate predictive genetic screening tests and enable the development of simple diagnostic tools and guide the future use of anti-complement drugs, of which several are currently in development for central nervous system disorders.
Collapse
Affiliation(s)
- Megan Torvell
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sarah M. Carpanini
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Robert A. J. Byrne
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK;
| | - B. Paul Morgan
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.T.); (S.M.C.); (N.D.); (R.A.J.B.)
- Division of Infection and Immunity, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
10
|
The complement cascade in Alzheimer's disease: a systematic review and meta-analysis. Mol Psychiatry 2021; 26:5532-5541. [PMID: 31628417 DOI: 10.1038/s41380-019-0536-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
Abstract
Genetic evidence implicates a causal role for the complement pathway in Alzheimer's disease (AD). Since studies have shown inconsistent differences in cerebrospinal fluid (CSF) and peripheral blood complement protein concentrations between AD patients and healthy elderly, this study sought to summarize the clinical data. Original peer-reviewed articles measuring CSF and/or blood concentrations of complement or complement regulator protein concentrations in AD and healthy elderly control (HC) groups were included. Of 2966 records identified, means and standard deviations from 86 studies were summarized as standardized mean differences (SMD) by random effects meta-analyses. In CSF, concentrations of clusterin (NAD/NHC = 625/577, SMD = 0.53, Z8 = 8.81, p < 0.005; I2 < 0.005%) and complement component 3 (C3; NAD/NHC = 299/522, SMD = 0.45, Z3 = 3.21, p < 0.005; I2 = 68.40%) were significantly higher in AD, but differences in C1q, C-reactive protein (CRP), serum amyloid protein (SAP), and factor H concentrations were not significant. In peripheral blood, concentrations of CRP were elevated in AD (NAD/NHC = 3404/3332, SMD = 0.44, Z43 = 3.43, p < 0.005; I2 = 93.81%), but differences between groups in C3, C4, C1-inhibitor, SAP, factor H and clusterin concentrations were not significant, and inconsistent between studies. Of 64 complement pathway proteins or regulators in the quantitative synthesis, trends in C1q, factor B, C4a, and late-stage complement pathway components (e.g. C9) in blood, C4 in CSF, and the membrane attack complex in blood and CSF, might be investigated further. The results collectively support elevated complement pathway activity in AD, which was best characterized by increased CSF clusterin concentrations and less consistently by CSF C3 concentrations. Complement activity related to an AD diagnosis was not reflected consistently by the peripheral blood proteins investigated.
Collapse
|
11
|
Mahdiabadi S, Momtazmanesh S, Perry G, Rezaei N. Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Rev Neurosci 2021; 33:365-381. [PMID: 34506700 DOI: 10.1515/revneuro-2021-0092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.
Collapse
Affiliation(s)
- Sara Mahdiabadi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center, Tehran 1419733151, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
12
|
Byrne RAJ, Torvell M, Daskoulidou N, Fathalla D, Kokkali E, Carpanini SM, Morgan BP. Novel Monoclonal Antibodies Against Mouse C1q: Characterisation and Development of a Quantitative ELISA for Mouse C1q. Mol Neurobiol 2021; 58:4323-4336. [PMID: 34002346 PMCID: PMC8487419 DOI: 10.1007/s12035-021-02419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Recent studies have identified roles for complement in synaptic pruning, both physiological during development and pathological in Alzheimer's disease (AD). These reports suggest that C1q initiates complement activation on synapses and C3 fragments then tag them for removal by microglia. There is an urgent need to characterise these processes in rodent AD models; this requires the development of reagents and methods for detection and quantification of rodent C1q in fluids and pathological tissues. These will enable better evaluation of the role of C1q in disease and its value as disease biomarker. We describe the generation in C1q-deficient mice of novel monoclonal antibodies against mouse and rat C1q that enabled development of a sensitive, specific, and quantitative ELISA for mouse and rat C1q capable of measuring C1q in biological fluids and tissue extracts. Serum C1q levels were measured in wild-type (WT), C1q knockout (KO), C3 KO, C7 KO, Crry KO, and 3xTg and APPNL-G-F AD model mice through ageing. C1q levels significantly decreased in WT, APPNL-G-F, and C7 KO mice with ageing. C1q levels were reduced in APPNL-G-F compared to WT at all ages and in 3xTg at 12 months; C3 KO and C7 KO, but not Crry KO mice, also demonstrated significantly lower C1q levels compared to matched WT. In brain homogenates, C1q levels increased with age in both WT and APPNL-G-F mice. This robust and adaptable assay for quantification of mouse and rat C1q provides a vital tool for investigating the expression of C1q in rodent models of AD and other complement-driven pathologies.
Collapse
Affiliation(s)
- Robert A J Byrne
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Megan Torvell
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Dina Fathalla
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Eirini Kokkali
- School of Optometry and Visual Sciences, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK. .,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK.
| |
Collapse
|
13
|
Carpanini SM, Harwood JC, Baker E, Torvell M, Sims R, Williams J, Morgan BP. The Impact of Complement Genes on the Risk of Late-Onset Alzheimer's Disease. Genes (Basel) 2021; 12:443. [PMID: 33804666 PMCID: PMC8003605 DOI: 10.3390/genes12030443] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD), the most common cause of dementia, and a huge global health challenge, is a neurodegenerative disease of uncertain aetiology. To deliver effective diagnostics and therapeutics, understanding the molecular basis of the disease is essential. Contemporary large genome-wide association studies (GWAS) have identified over seventy novel genetic susceptibility loci for LOAD. Most are implicated in microglial or inflammatory pathways, bringing inflammation to the fore as a candidate pathological pathway. Among the most significant GWAS hits are three complement genes: CLU, encoding the fluid-phase complement inhibitor clusterin; CR1 encoding complement receptor 1 (CR1); and recently, C1S encoding the complement enzyme C1s. Complement activation is a critical driver of inflammation; changes in complement genes may impact risk by altering the inflammatory status in the brain. To assess complement gene association with LOAD risk, we manually created a comprehensive complement gene list and tested these in gene-set analysis with LOAD summary statistics. We confirmed associations of CLU and CR1 genes with LOAD but showed no significant associations for the complement gene-set when excluding CLU and CR1. No significant association with other complement genes, including C1S, was seen in the IGAP dataset; however, these may emerge from larger datasets.
Collapse
Affiliation(s)
- Sarah M. Carpanini
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Janet C. Harwood
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK; (J.C.H.); (R.S.)
| | - Emily Baker
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
| | - Megan Torvell
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK; (J.C.H.); (R.S.)
| | - Julie Williams
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
| | - B. Paul Morgan
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
14
|
Koopman JJE, van Essen MF, Rennke HG, de Vries APJ, van Kooten C. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol 2021; 11:599974. [PMID: 33643288 PMCID: PMC7906018 DOI: 10.3389/fimmu.2020.599974] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
The membrane attack complex-also known as C5b-9-is the end-product of the classical, lectin, and alternative complement pathways. It is thought to play an important role in the pathogenesis of various kidney diseases by causing cellular injury and tissue inflammation, resulting in sclerosis and fibrosis. These deleterious effects are, consequently, targeted in the development of novel therapies that inhibit the formation of C5b-9, such as eculizumab. To clarify how C5b-9 contributes to kidney disease and to predict which patients benefit from such therapy, knowledge on deposition of C5b-9 in the kidney is essential. Because immunohistochemical staining of C5b-9 has not been routinely conducted and never been compared across studies, we provide a review of studies on deposition of C5b-9 in healthy and diseased human kidneys. We describe techniques to stain deposits and compare the occurrence of deposits in healthy kidneys and in a wide spectrum of kidney diseases, including hypertensive nephropathy, diabetic nephropathy, membranous nephropathy, IgA nephropathy, lupus nephritis, C3 glomerulopathy, and thrombotic microangiopathies such as the atypical hemolytic uremic syndrome, vasculitis, interstitial nephritis, acute tubular necrosis, kidney tumors, and rejection of kidney transplants. We summarize how these deposits are related with other histological lesions and clinical characteristics. We evaluate the prognostic relevance of these deposits in the light of possible treatment with complement inhibitors.
Collapse
Affiliation(s)
- Jacob J E Koopman
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mieke F van Essen
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Helmut G Rennke
- Division of Renal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aiko P J de Vries
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Boon BDC, Bulk M, Jonker AJ, Morrema THJ, van den Berg E, Popovic M, Walter J, Kumar S, van der Lee SJ, Holstege H, Zhu X, Van Nostrand WE, Natté R, van der Weerd L, Bouwman FH, van de Berg WDJ, Rozemuller AJM, Hoozemans JJM. The coarse-grained plaque: a divergent Aβ plaque-type in early-onset Alzheimer's disease. Acta Neuropathol 2020; 140:811-830. [PMID: 32926214 PMCID: PMC7666300 DOI: 10.1007/s00401-020-02198-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ) deposits, which come in myriad morphologies with varying clinical relevance. Previously, we observed an atypical Aβ deposit, referred to as the coarse-grained plaque. In this study, we evaluate the plaque's association with clinical disease and perform in-depth immunohistochemical and morphological characterization. The coarse-grained plaque, a relatively large (Ø ≈ 80 µm) deposit, characterized as having multiple cores and Aβ-devoid pores, was prominent in the neocortex. The plaque was semi-quantitatively scored in the middle frontal gyrus of Aβ-positive cases (n = 74), including non-demented cases (n = 15), early-onset (EO)AD (n = 38), and late-onset (LO)AD cases (n = 21). The coarse-grained plaque was only observed in cases with clinical dementia and more frequently present in EOAD compared to LOAD. This plaque was associated with a homozygous APOE ε4 status and cerebral amyloid angiopathy (CAA). In-depth characterization was done by studying the coarse-grained plaque's neuritic component (pTau, APP, PrPC), Aβ isoform composition (Aβ40, Aβ42, AβN3pE, pSer8Aβ), its neuroinflammatory component (C4b, CD68, MHC-II, GFAP), and its vascular attribution (laminin, collagen IV, norrin). The plaque was compared to the classic cored plaque, cotton wool plaque, and CAA. Similar to CAA but different from classic cored plaques, the coarse-grained plaque was predominantly composed of Aβ40. Furthermore, the coarse-grained plaque was distinctly associated with both intense neuroinflammation and vascular (capillary) pathology. Confocal laser scanning microscopy (CLSM) and 3D analysis revealed for most coarse-grained plaques a particular Aβ40 shell structure and a direct relation with vessels. Based on its morphological and biochemical characteristics, we conclude that the coarse-grained plaque is a divergent Aβ plaque-type associated with EOAD. Differences in Aβ processing and aggregation, neuroinflammatory response, and vascular clearance may presumably underlie the difference between coarse-grained plaques and other Aβ deposits. Disentangling specific Aβ deposits between AD subgroups may be important in the search for disease-mechanistic-based therapies.
Collapse
Affiliation(s)
- Baayla D C Boon
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands.
| | - Marjolein Bulk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Allert J Jonker
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Tjado H J Morrema
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Emma van den Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Marko Popovic
- Microscopy and Cytometry Core Facility, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sathish Kumar
- Department of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, USA
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, USA
| | - Remco Natté
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Femke H Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Propson NE, Gedam M, Zheng H. Complement in Neurologic Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:277-298. [PMID: 33234021 DOI: 10.1146/annurev-pathol-031620-113409] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration. The reactivation of the complement signaling pathway in aging and disease has opened new avenues for understanding brain aging and neurological disease pathogenesis and has implicated cell types such as astrocytes, microglia, endothelial cells, oligodendrocytes, neurons, and even peripheral immune cells in these processes. In this review, we aim to unravel the past decade of research related to complement activation and its numerous consequences in aging and neurological disease.
Collapse
Affiliation(s)
- Nicholas E Propson
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasee Gedam
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA;
| |
Collapse
|
17
|
Lee JD, Coulthard LG, Woodruff TM. Complement dysregulation in the central nervous system during development and disease. Semin Immunol 2019; 45:101340. [PMID: 31708347 DOI: 10.1016/j.smim.2019.101340] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
The complement cascade is an important arm of the immune system that plays a key role in protecting the central nervous system (CNS) from infection. Recently, it has also become clear that complement proteins have fundamental roles in the developing and aging CNS that are distinct from their roles in immunity. During neurodevelopment, complement signalling is involved in diverse processes including neural tube closure, neural progenitor proliferation and differentiation, neuronal migration, and synaptic pruning. In acute neurotrauma and ischamic brain injury, complement drives inflammation and neuronal death, but also neuroprotection and regeneration. In diseases of the aging CNS including dementias and motor neuron disease, chronic complement activation is associated with glial activation, and synapse and neuron loss. Proper regulation of complement is thus essential to allow for an appropriately developed CNS and prevention of excessive damage following neurotrauma or during neurodegeneration. This review provides a comprehensive overview of the evidence for functional roles of complement in brain formation, and its dysregulation during acute and chronic disease. We also provide working models for how complement can lead to neurodevelopmental disorders such as schizophrenia and autism, and either protect, or propagate neurodegenerative diseases including Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, Australia; School of Clinical Medicine, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
18
|
Olsen I, Singhrao SK. Is there a link between genetic defects in the complement cascade and Porphyromonas gingivalis in Alzheimer's disease? J Oral Microbiol 2019; 12:1676486. [PMID: 31893014 PMCID: PMC6818111 DOI: 10.1080/20002297.2019.1676486] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Defects, as determined by Genome-Wide Association Studies (GWAS), in the complement cascade of innate immunity have been suggested to play a key role in Alzheimer's disease (AD). These defective genes encode sub-component 1s (C1s), complement receptor 1, complement component 9, and clusterin, a fluid-phase regulatory protein. A dysregulated complement cascade has been shown to relate to cell activation, defective complement mediated clearance and possible cognitive decline in AD patients. Porphyromonas gingivalis, a putative keystone pathogen of periodontal disease, has been reported to be associated with human AD. The inflammatory burden following experimental oral infection in mice and putative entry of this bacterium into the brain appears to drive the formation of amyloid-beta plaques and neurofibrillary tangles with loss of cognition. P. gingivalis is a master of immune subversion in this inflammatory cascade and may establish microbial dysbiosis where it is located. Here we discuss if P. gingivalis may enhance the detrimental effects of the defective GWAS complement cascade protein genes.
Collapse
Affiliation(s)
- Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K Singhrao
- Dementia and Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| |
Collapse
|
19
|
Carpanini SM, Torvell M, Morgan BP. Therapeutic Inhibition of the Complement System in Diseases of the Central Nervous System. Front Immunol 2019; 10:362. [PMID: 30886620 PMCID: PMC6409326 DOI: 10.3389/fimmu.2019.00362] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Given this body of evidence implicating complement in diverse brain diseases, manipulating complement in the brain is an attractive prospect; however, the blood-brain barrier (BBB), critical to protect the brain from potentially harmful agents in the circulation, is also impermeable to current complement-targeting therapeutics, making drug design much more challenging. For example, antibody therapeutics administered systemically are essentially excluded from the brain. Recent protocols have utilized "Trojan horse" techniques to transport therapeutics across the BBB or used osmotic shock or ultrasound to temporarily disrupt the BBB. Most research to date exploring the impact of complement inhibition on CNS diseases has been in animal models, and some of these studies have generated convincing data; for example, in models of MS, NMO, and stroke. There have been a few recent clinical trials of available anti-complement drugs in CNS diseases associated with BBB impairment, for example the use of the anti-C5 monoclonal antibody (mAb) eculizumab in NMO, but for most CNS diseases there have been no human trials of anti-complement therapies. Here we will review the evidence implicating complement in diverse CNS disorders, from acute, such as traumatic brain or spine injury, to chronic, including demyelinating, neuroinflammatory, and neurodegenerative diseases. We will discuss the particular problems of drug access into the CNS and explore ways in which anti-complement therapies might be tailored for CNS disease.
Collapse
Affiliation(s)
- Sarah M Carpanini
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Megan Torvell
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bryan Paul Morgan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
20
|
Morgan BP. Complement in the pathogenesis of Alzheimer's disease. Semin Immunopathol 2018; 40:113-124. [PMID: 29134267 PMCID: PMC5794825 DOI: 10.1007/s00281-017-0662-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/01/2017] [Indexed: 12/19/2022]
Abstract
The emergence of complement as an important player in normal brain development and pathological remodelling has come as a major surprise to most scientists working in neuroscience and almost all those working in complement. That a system, evolved to protect the host against infection, should have these unanticipated roles has forced a rethink about what complement might be doing in the brain in health and disease, where it is coming from, and whether we can, or indeed should, manipulate complement in the brain to improve function or restore homeostasis. Complement has been implicated in diverse neurological and neuropsychiatric diseases well reviewed elsewhere, from depression through epilepsy to demyelination and dementia, in most complement drives inflammation to exacerbate the disease. Here, I will focus on just one disease, the most common cause of dementia, Alzheimer's disease. I will briefly review the current understanding of what complement does in the normal brain, noting, in particular, the many gaps in understanding, then describe how complement may influence the genesis and progression of pathology in Alzheimer's disease. Finally, I will discuss the problems and pitfalls of therapeutic inhibition of complement in the Alzheimer brain.
Collapse
Affiliation(s)
- B Paul Morgan
- Systems Immunity Research Institute and Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
21
|
Chan GG, Koch CM, Connors LH. Blood Proteomic Profiling in Inherited (ATTRm) and Acquired (ATTRwt) Forms of Transthyretin-Associated Cardiac Amyloidosis. J Proteome Res 2017; 16:1659-1668. [PMID: 28196416 DOI: 10.1021/acs.jproteome.6b00998] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transthyretin-associated forms of cardiac amyloidosis are fatal protein misfolding diseases that can be inherited (ATTRm) or acquired (ATTRwt). An accurate diagnosis of ATTR amyloidosis can be challenging as biopsy evidence, usually from the affected organ, is required. Precise biomarkers for ATTR disease identification and monitoring are undiscovered, disease-specific therapeutic options are needed, and the current understanding of ATTR molecular pathogenesis is limited. The aim of this study was to investigate and compare the serum proteomes in ATTRm and ATTRwt cardiac amyloidosis to identify differentially expressed blood proteins that were disease-specific. Using multiple-reaction monitoring mass spectrometry (MRM-MS), the concentrations of 160 proteins were analyzed in serum samples from ATTRm and ATTRwt patients, and a healthy control group. Patient and control sera were matched to age (≥60 years), gender (male), and race (Caucasian). The circulating concentrations of 123/160 proteins were significantly different in patient vs control sera; TTR and retinol-binding protein (RBP4) levels were significantly decreased (p < 0.03) in ATTRm compared to controls. In ATTRm, 14/123 proteins were identified as unique to that group and found generally to be lower than controls; moreover, the concentrations of RBP4 and 6 other proteins in this group were significantly different (p < 0.04) compared to ATTRwt. Predicted interactions among the 14 proteins unique to ATTRm were categorized as reaction and binding associations. Alternatively, 27 proteins were found to be unique to ATTRwt with associated interactions defined as activation, catalysis, and inhibition, in addition to reaction and binding. This study demonstrates significant proteomic differences between ATTR patient and control sera, and disease-associated variations in circulating levels of several proteins including TTR and RBP4. The identification of serum proteins unique to ATTRm and ATTRwt cardiac amyloidosis may have diagnostic and prognostic utility, and may provide important clues about disease mechanisms.
Collapse
Affiliation(s)
- Gloria G Chan
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Clarissa M Koch
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Lawreen H Connors
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| |
Collapse
|
22
|
Rocha-Ferreira E, Hristova M. Antimicrobial peptides and complement in neonatal hypoxia-ischemia induced brain damage. Front Immunol 2015; 6:56. [PMID: 25729383 PMCID: PMC4325932 DOI: 10.3389/fimmu.2015.00056] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1-5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London , London , UK
| | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London , London , UK
| |
Collapse
|
23
|
Ramadass M, Ghebrehiwet B, Kew RR. Enhanced recognition of plasma proteins in a non-native state by complement C3b. A possible clearance mechanism for damaged proteins in blood. Mol Immunol 2014; 64:55-62. [PMID: 25466612 DOI: 10.1016/j.molimm.2014.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/26/2014] [Indexed: 02/04/2023]
Abstract
Complement C3 is a key fluid-phase protein of the immune system that covalently tags pathogenic cells and molecules for subsequent clearance. Previously, we reported that complement activation results in the formation of multiple C3b:plasma protein complexes in serum. However, it is not known if C3b attaches to any plasma protein in close proximity or preferentially binds damaged proteins. The objective of this study was to determine if C3b couples to plasma proteins in a non-native state and if this could be a potential mechanism to detect and clear damaged proteins from the blood. Using a purified in vitro system with alternative pathway proteins C3, factors B and D it was observed that guanidinium-HCl denaturation of three purified plasma proteins (albumin, alpha-1 proteinase inhibitor, vitamin D binding protein) greatly increased their capacity to form covalent complexes with C3b. However, native vitamin D binding protein, covalently attached to C3b, still retained the ability to bind its natural ligand G-actin, indicating that C3b links to plasma proteins in their native configuration but denaturation substantially increases this interaction. Serum complement activation generated a large number of C3b:plasma protein complexes that bound red blood cell membranes, suggesting a CR1-mediated clearance mechanism. Thermally denatured (60°C) serum activated the alternative pathway when added to fresh serum as evidenced by factor B cleavage and iC3b generation, but this heat-treated serum could not generate the pro-inflammatory peptide C5a. These results show that C3 recognizes and tags damaged plasma proteins for subsequent removal from the blood without triggering proinflammatory functions.
Collapse
Affiliation(s)
- Mahalakshmi Ramadass
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Berhane Ghebrehiwet
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Richard R Kew
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
24
|
Veerhuis R, Nielsen HM, Tenner AJ. Complement in the brain. Mol Immunol 2011; 48:1592-603. [PMID: 21546088 DOI: 10.1016/j.molimm.2011.04.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/24/2023]
Abstract
The brain is considered to be an immune privileged site, because the blood-brain barrier limits entry of blood borne cells and proteins into the central nervous system (CNS). As a result, the detection and clearance of invading microorganisms and senescent cells as well as surplus neurotransmitters, aged and glycated proteins, in order to maintain a healthy environment for neuronal and glial cells, is largely confined to the innate immune system. In recent years it has become clear that many factors of innate immunity are expressed throughout the brain. Neuronal and glial cells express Toll like receptors as well as complement receptors, and virtually all complement components can be locally produced in the brain, often in response to injury or developmental cues. However, as inflammatory reactions could interfere with proper functioning of the brain, tight and fine tuned regulatory mechanisms are warranted. In age related diseases, such as Alzheimer's disease (AD), accumulating amyloid proteins elicit complement activation and a local, chronic inflammatory response that leads to attraction and activation of glial cells that, under such activation conditions, can produce neurotoxic substances, including pro-inflammatory cytokines and oxygen radicals. This process may be exacerbated by a disturbed balance between complement activators and complement regulatory proteins such as occurs in AD, as the local synthesis of these proteins is differentially regulated by pro-inflammatory cytokines. Much knowledge about the role of complement in neurodegenerative diseases has been derived from animal studies with transgenic overexpressing or knockout mice for specific complement factors or receptors. These studies have provided insight into the potential therapeutic use of complement regulators and complement receptor antagonists in chronic neurodegenerative diseases as well as in acute conditions, such as stroke. Interestingly, recent animal studies have also indicated that complement activation products are involved in brain development and synapse formation. Not only are these findings important for the understanding of how brain development and neural network formation is organized, it may also give insights into the role of complement in processes of neurodegeneration and neuroprotection in the injured or aged and diseased adult central nervous system, and thus aid in identifying novel and specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Veerhuis
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Carter CJ. Alzheimer's disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int J Alzheimers Dis 2010; 2010:140539. [PMID: 21234306 PMCID: PMC3018626 DOI: 10.4061/2010/140539] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/27/2010] [Accepted: 10/22/2010] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex is implicated in Alzheimer's disease and viral infection produces Alzheimer's disease like pathology in mice. The virus expresses proteins containing short contiguous amino acid stretches (5–9aa “vatches” = viralmatches) homologous to APOE4, clusterin, PICALM, and complement receptor 1, and to over 100 other gene products relevant to Alzheimer's disease, which are also homologous to proteins expressed by other pathogens implicated in Alzheimer's disease. Such homology, reiterated at the DNA level, suggests that gene association studies have been tracking infection, as well as identifying key genes, demonstrating a role for pathogens as causative agents. Vatches may interfere with the function of their human counterparts, acting as dummy ligands, decoy receptors, or via interactome interference. They are often immunogenic, and antibodies generated in response to infection may target their human counterparts, producing protein knockdown, or generating autoimmune responses that may kill the neurones in which the human homologue resides, a scenario supported by immune activation in Alzheimer's disease. These data may classify Alzheimer's disease as an autoimmune disorder created by pathogen mimicry of key Alzheimer's disease-related proteins. It may well be prevented by vaccination and regular pathogen detection and elimination, and perhaps stemmed by immunosuppression or antibody adsorption-related therapies.
Collapse
Affiliation(s)
- C J Carter
- Polygenic Pathways, Flat 4, 20 Upper Maze Hill, Saint Leonard's on Sea, East Sussex TN38 OLG, UK
| |
Collapse
|
26
|
Abstract
The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this delicate balance is disrupted, the C system may cause injury and contribute to the pathogenesis of various diseases, including neurodegenerative disorders and neuropathies. Here we review evidence indicating that C factors and regulators are locally synthesized in the nervous system and we discuss the evidence supporting the protective or detrimental role of C activation in health, injury, and disease of the nerve.
Collapse
Affiliation(s)
- V Ramaglia
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
27
|
Fabbro S, Seeds NW. Plasminogen activator activity is inhibited while neuroserpin is up-regulated in the Alzheimer disease brain. J Neurochem 2009; 109:303-15. [PMID: 19222708 DOI: 10.1111/j.1471-4159.2009.05894.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid-beta plaques are a pathological hallmark of Alzheimer's disease. Several proteases are known to cleave/remove amyloid-beta, including plasmin, the product of tissue plasminogen activator cleavage of the pro-enzyme plasminogen. Although plasmin levels are lower in Alzheimer brain, there has been little analysis of the plasminogen activator/plasmin system in the brains of Alzheimer patients. In this study, zymography, immunocapture, and ELISAs were utilized to show that tissue plasminogen activator activity in frontal cortex tissue of Alzheimer patients is dramatically reduced compared with age-matched controls, while tissue plasminogen activator and plasminogen protein levels are unchanged; suggesting that plasminogen activator activity is inhibited in the Alzheimer brain. Analysis of endogenous plasminogen activator inhibitors shows that while plasminogen activator inhibitor-1 and protease nexin-1 levels are unchanged, the neuroserpin levels are significantly elevated in brains of Alzheimer patients. Furthermore, elevated amounts of tissue plasminogen activator-neuroserpin complexes are seen in the Alzheimer brain, and immunohistochemical studies demonstrate that both tissue plasminogen activator and neuroserpin are associated with amyloid-beta plaques in Alzheimer brain tissue. Thus, neuroserpin inhibition of tissue plasminogen activator activity leads to reduced plasmin and may be responsible for reduced clearance of amyloid-beta in the Alzheimer disease brain. Furthermore, decreased tissue plasminogen activator activity in the Alzheimer brain may directly influence synaptic activity and impair cognitive function.
Collapse
Affiliation(s)
- Shay Fabbro
- Neuroscience Program and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, USA
| | | |
Collapse
|
28
|
Trouw LA, Nielsen HM, Minthon L, Londos E, Landberg G, Veerhuis R, Janciauskiene S, Blom AM. C4b-binding protein in Alzheimer's disease: Binding to Aβ1–42 and to dead cells. Mol Immunol 2008; 45:3649-60. [DOI: 10.1016/j.molimm.2008.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/16/2022]
|
29
|
Jamali S, Bartolomei F, Robaglia-Schlupp A, Massacrier A, Peragut JC, Régis J, Dufour H, Ravid R, Roll P, Pereira S, Royer B, Roeckel-Trevisiol N, Fontaine M, Guye M, Boucraut J, Chauvel P, Cau P, Szepetowski P. Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex. ACTA ACUST UNITED AC 2006; 129:625-41. [PMID: 16399808 DOI: 10.1093/brain/awl001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human mesial temporal lobe epilepsies (MTLE) are the most frequent form of partial epilepsies and display frequent pharmacoresistance. The molecular alterations underlying human MTLE remain poorly understood. A two-step transcriptional analysis consisting in cDNA microarray experiments followed by quantitative RT-PCR validations was performed. Because the entorhinal cortex (EC) plays an important role in the pathophysiology of the MTLE and usually discloses no detectable or little cell loss, resected EC and each corresponding lateral temporal neocortex (LTC) of MTLE patients were used as the source of disease-associated and control RNAs, respectively. Six genes encoding (i) a serotonin receptor (HTR2A) and a neuropeptide Y receptor type 1 (NPY1R), (ii) a protein (FHL2) associating with the KCNE1 (minK) potassium channel subunit and with presenilin-2 and (iii) three immune system-related proteins (C3, HLA-DR-gamma and CD99), were found consistently downregulated or upregulated in the EC of MTLE patients as compared with non-epileptic autopsy controls. Quantitative western blot analyses confirmed decreased expression of NPY1R in all eight MTLE patients tested. Immunohistochemistry experiments revealed the existence of a perivascular infiltration of C3 positive leucocytes and/or detected membrane attack complexes on a subset of neurons, within the EC of nine out of eleven MTLE patients. To summarize, a large-scale microarray expression study on the EC of MTLE patients led to the identification of six candidate genes for human MTLE pathophysiology. Altered expression of NPY1R and C3 was also demonstrated at the protein level. Overall, our data indicate that local dysregulation of the neurotransmission and complement systems in the EC is a frequent event in human MTLE.
Collapse
Affiliation(s)
- Sarah Jamali
- INSERM UMR 491, Université de la Méditerranée, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tenner AJ, Fonseca MI. The double-edged flower: roles of complement protein C1q in neurodegenerative diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:153-76. [PMID: 16893071 DOI: 10.1007/0-387-34134-x_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A role for the complement cascade in AD neuropathology was hypothesized over a decade ago, and the results of a significant number of in vitro studies are consistent with the involvement of this pathway in AD pathogenesis (reviewed in). Since C1q is colocalized with thioflavine-positive plaques and the C5b-9 complement membrane attack complex is detected in AD brain at autopsy, it is reasonable to hypothesize that complement activation has a role in the manifestation of AD either by its lytic capacity or as a trigger of glial infiltration and initiation of potentially damaging inflammation. The observed diminished glial activation and reduced loss of neuronal integrity in a murine model overexpressing mutant human APP but lacking the ability to activate the classical complement cascade provide the first direct evidence for a detrimental role of C1q, and presumably activation of the classical complement pathway in an animal model of AD. Research is now focused on generating mouse models that more closely mimic the human disease, so that the role of complement activation and inflammation on the behavioral/learning and memory dysfunction that occurs in this disease can be assessed. In addition, candidate therapies such as targeted inhibition of complement activation will need to be tested in these animal models as a step toward treatment of humans with the disease. However, it is important that the potential for a protective effect of C1q early on in disease progression should not be overlooked. Rather, strategies that enhance or mimic the protective effects of C1q as well as strategies that inhibit the detrimental processes should be fully investigated.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology, Center for Immunology, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
31
|
Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A, Lambris JD, Sandor M, Fabry Z. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol 2004; 155:55-63. [PMID: 15342196 PMCID: PMC4766842 DOI: 10.1016/j.jneuroim.2004.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/01/2004] [Accepted: 06/02/2004] [Indexed: 10/26/2022]
Abstract
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3-/- or C5-/- mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3-/- mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5-/- mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury.
Collapse
Affiliation(s)
- Diane L. Sewell
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Brendon Nacewicz
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Frances Liu
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Sinarack Macvilay
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Anna Erdei
- Department of Immunology, Eotvos L. University, Budapest, Hungary
| | - John D. Lambris
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, 402 Stellar Chance, Philadelphia, PA 19104, USA
| | - Matyas Sandor
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
| | - Zsuzsa Fabry
- Department of Pathology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Corresponding author. Tel.: +1-608-265-8716; fax: +1-608-265-3301. (Z. Fabry)
| |
Collapse
|
32
|
Loeffler DA. Using animal models to determine the significance of complement activation in Alzheimer's disease. J Neuroinflammation 2004; 1:18. [PMID: 15479474 PMCID: PMC529311 DOI: 10.1186/1742-2094-1-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/12/2004] [Indexed: 12/11/2022] Open
Abstract
Complement inflammation is a major inflammatory mechanism whose function is to promote the removal of microorganisms and the processing of immune complexes. Numerous studies have provided evidence for an increase in this process in areas of pathology in the Alzheimer's disease (AD) brain. Because complement activation proteins have been demonstrated in vitro to exert both neuroprotective and neurotoxic effects, the significance of this process in the development and progression of AD is unclear. Studies in animal models of AD, in which brain complement activation can be experimentally altered, should be of value for clarifying this issue. However, surprisingly little is known about complement activation in the transgenic animal models that are popular for studying this disorder. An optimal animal model for studying the significance of complement activation on Alzheimer's – related neuropathology should have complete complement activation associated with senile plaques, neurofibrillary tangles (if present), and dystrophic neurites. Other desirable features include both classical and alternative pathway activation, increased neuronal synthesis of native complement proteins, and evidence for an increase in complement activation prior to the development of extensive pathology. In order to determine the suitability of different animal models for studying the role of complement activation in AD, the extent of complement activation and its association with neuropathology in these models must be understood.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, William Beaumont Hospital Research Institute, Royal Oak, MI 48073, USA.
| |
Collapse
|
33
|
Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP. Complement components of the innate immune system in health and disease in the CNS. IMMUNOPHARMACOLOGY 2000; 49:171-86. [PMID: 10904116 DOI: 10.1016/s0162-3109(00)80302-1] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The innate immune system and notably the complement (C) system play important roles in host defense to recognise and kill deleterious invaders or toxic entities, but activation at inappropriate sites or to an excessive degree can cause severe tissue damage. C has been implicated as a factor in the exacerbation and propagation of tissue injury in numerous diseases including neurodegenerative disorders. In this article, we review the evidence indicating that brain cells can synthesise a full lytic C system and also express specific C inhibitors (to protect from C activation and C lysis) and C receptors (involved in cell activation, chemotaxis and phagocytosis). We also summarise the mechanisms involved in the antibody-independent activation of the classical pathway of C in Alzheimer's disease, Huntington's disease and Pick's disease. Although the primary role of C activation on a target cell is to induce cell lysis (particularly of neurons), we present evidence indicating that C (C3a, C5a, sublytic level of C5b-9) may also be involved in pro- as well as anti-inflammatory activities. Moreover, we discuss evidence suggesting that local C activation may contribute to tissue remodelling activities during repair in the CNS.
Collapse
Affiliation(s)
- P Gasque
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
34
|
Emmerling MR, Watson MD, Raby CA, Spiegel K. The role of complement in Alzheimer's disease pathology. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:158-71. [PMID: 10899441 DOI: 10.1016/s0925-4439(00)00042-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complement proteins are integral components of amyloid plaques and cerebral vascular amyloid in Alzheimer brains. They can be found at the earliest stages of amyloid deposition and their activation coincides with the clinical expression of Alzheimer's dementia. This review will examine the origins of complement in the brain and the role of beta-amyloid peptide (Abeta) in complement activation in Alzheimer's disease, an event that might serve as a nidus of chronic inflammation. Pharmacology therapies that may serve to inhibit Abeta-mediated complement activation will also be discussed.
Collapse
Affiliation(s)
- M R Emmerling
- Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, MI 48106, USA.
| | | | | | | |
Collapse
|
35
|
Chang BD, Watanabe K, Broude EV, Fang J, Poole JC, Kalinichenko TV, Roninson IB. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci U S A 2000; 97:4291-6. [PMID: 10760295 PMCID: PMC18232 DOI: 10.1073/pnas.97.8.4291] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Induction of cyclin-dependent kinase inhibitor p21(Waf1/Cip1/Sdi1) triggers cell growth arrest associated with senescence and damage response. Overexpression of p21 from an inducible promoter in a human cell line induces growth arrest and phenotypic features of senescence. cDNA array hybridization showed that p21 expression selectively inhibits a set of genes involved in mitosis, DNA replication, segregation, and repair. The kinetics of inhibition of these genes on p21 induction parallels the onset of growth arrest, and their reexpression on release from p21 precedes the reentry of cells into cell cycle, indicating that inhibition of cell-cycle progression genes is a mechanism of p21-induced growth arrest. p21 also up-regulates multiple genes that have been associated with senescence or implicated in age-related diseases, including atherosclerosis, Alzheimer's disease, amyloidosis, and arthritis. Most of the tested p21-induced genes were not activated in cells that had been growth arrested by serum starvation, but some genes were induced in both forms of growth arrest. Several p21-induced genes encode secreted proteins with paracrine effects on cell growth and apoptosis. In agreement with the overexpression of such proteins, conditioned media from p21-induced cells were found to have antiapoptotic and mitogenic activity. These results suggest that the effects of p21 induction on gene expression in senescent cells may contribute to the pathogenesis of cancer and age-related diseases.
Collapse
Affiliation(s)
- B D Chang
- Departments of Molecular Genetics and Periodontics, University of Illinois, Chicago, IL 60607-7170, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Eikelenboom P, Rozemuller JM, van Muiswinkel FL. Inflammation and Alzheimer's disease: relationships between pathogenic mechanisms and clinical expression. Exp Neurol 1998; 154:89-98. [PMID: 9875271 DOI: 10.1006/exnr.1998.6920] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 15 years a variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's disease (AD) postmortem. There is now considerable evidence that in AD the deposition of amyloid-beta (A beta) protein precedes a cascade of events that ultimately leads to a local "brain inflammatory response." Here we reviewed the evidence (i) that inflammatory mechanisms can be a part of the relevant etiological factors for AD in patients with head trauma, ischemia, and Down's syndrome; (ii) that in cerebral A beta disorders the clinical symptoms are determined to a great extent by the site of inflammation; and (iii) that a brain inflammatory response can explain some poorly understood characteristics of the clinical picture, among others the susceptibility of AD patients to delirium. The present data indicate that inflammatory processes in the brain contribute to the etiology, the pathogenesis, and the clinical expression of AD.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Psychiatry, Graduate School Neurosciences Amsterdam, Vrije Universiteit, Valeriuskliniek, The Netherlands
| | | | | |
Collapse
|
37
|
Van Dam AM, Bol JG, Binnekade R, van Muiswinkel FL. Acute or chronic administration of okadaic acid to rats induces brain damage rather than Alzheimer-like neuropathology. Neuroscience 1998; 85:1333-5. [PMID: 9681967 DOI: 10.1016/s0306-4522(97)00696-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- A M Van Dam
- Research Institute Neurosciences Free University, Medical Faculty, Department of Pharmacology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Morgan BP, Gasque P, Singhrao S, Piddlesden SJ. The role of complement in disorders of the nervous system. IMMUNOPHARMACOLOGY 1997; 38:43-50. [PMID: 9476113 DOI: 10.1016/s0162-3109(97)00059-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complement (C) system plays important roles in host defense but activation at inappropriate sites or to an excessive degree can cause host tissue damage. C has been implicated as a factor in the causation or propagation of tissue injury in numerous diseases. The brain is an immunologically isolated site, sheltered from circulating cells and proteins of the immune system; nevertheless, there is a growing body of evidence implicating C in numerous brain diseases. In this brief article we review the evidence suggesting a role for C in diseases of the central and peripheral nervous system and discuss the possible sources of C at these sites. Some brain cells synthesize C and also express specific receptors; some are exquisitely sensitive to the lytic effects of C. The evidence suggests that C synthesis and activation in the brain are important in immune defense at this site, but may also play a role in brain disease.
Collapse
Affiliation(s)
- B P Morgan
- University of Wales College of Medicine, Cardiff, UK
| | | | | | | |
Collapse
|
39
|
Emmerling MR, Spiegel K, Watson MD. Inhibiting the formation of classical C3-convertase on the Alzheimer's beta-amyloid peptide. IMMUNOPHARMACOLOGY 1997; 38:101-9. [PMID: 9476121 DOI: 10.1016/s0162-3109(97)00067-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloid plaques are the pathological hallmark of Alzheimer Disease (AD) brains, being found primarily in the hippocampus and neocortex, where AD pathology is most evident. Complement activation is associated with amyloid plaques which are made from fibrils of aggregated amyloid peptides, 39-42 amino acids long. In vitro studies show that aggregated amyloid peptides activate complement via the classical pathway, implying that amyloid plaques themselves cause complement activation in AD brains. In order to test this hypothesis, we sought to determine if a major peptide component of amyloid plaques, A beta 1-42, supports the formation of the classical pathway C3 convertase. Using normal human serum depleted of C3, we are able to detect C3 convertase activity on aggregated A beta 1-42 in vitro. The convertase activity is associated with the binding of C1q and activation of C4 on the aggregated peptide. Inhibitors of C1 esterase and the cation chelator EGTA both block the formation of the convertase activity. Congo red, a histochemical stain for amyloid deposits and an inhibitor of amyloid aggregation, reduces C3 convertase activity on aggregated A beta 1-42, indicated by decreased C3a production. Our results provide further evidence that aggregated A beta 1-42 alone is sufficient to serve as a nidus for complement activation, and thus may be involved directly in initiating the inflammation seen in AD brains.
Collapse
Affiliation(s)
- M R Emmerling
- Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Department of Pharmacology, Neuroscience Therapeutics, Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
40
|
Cadman ED, Puttfarcken PS. Beta-amyloid peptides initiate the complement cascade without producing a comparable effect on the terminal pathway in vitro. Exp Neurol 1997; 146:388-94. [PMID: 9270049 DOI: 10.1006/exnr.1997.6540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Activation of the classical complement cascade by beta-amyloid peptides has been hypothesized to underlie the neurodegeneration observed in Alzheimer's diseased brains. In this study, various lots of synthetic beta-amyloid peptides, A beta(1-40), A beta(1-42), and A beta(25-35), were tested for their ability to activate both early complement cascade events and formation of the membrane attack complex through terminal pathway activation. Unlike recent reports which did not assess activation of complement terminal pathway, we found that concentrations of beta-amyloid which activated early cascade events, to an extent comparable to aggregated IgG, failed to elicit formation of comparable levels of membrane attack complex.
Collapse
Affiliation(s)
- E D Cadman
- Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064-3500, USA
| | | |
Collapse
|
41
|
Webster S, Lue LF, Brachova L, Tenner AJ, McGeer PL, Terai K, Walker DG, Bradt B, Cooper NR, Rogers J. Molecular and cellular characterization of the membrane attack complex, C5b-9, in Alzheimer's disease. Neurobiol Aging 1997; 18:415-21. [PMID: 9330973 DOI: 10.1016/s0197-4580(97)00042-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The membrane attack complex, C5b-9, is of considerable importance in many inflammatory reactions. It is the terminal, cytolytic component of both classical and alternative pathway activation, and its presence presupposes other potentially destructive complement constituents, including anaphylotoxins and opsonins. We have characterized C5b-9 and its C9 constituent in the Alzheimer's disease (AD) and nondemented elderly (ND) brain using immunohistochemistry at the light and electron microscopic levels, Western blot analysis, and the reverse transcriptase polymerase chain reaction. We have also conducted in vitro ELISA assays of amyloid beta-peptide-stimulated SC5b-9 production. C5b-9 is abundantly present in Alzheimer's disease cortex, associated with neurofibrillary tangle containing neurons, dystrophic neurites within neuritic plaques, and neuropil threads, but is weakly detected, if at all, in nondemented elderly cortex under the same conditions. Staining of Alzheimer's disease sections is abolished both by deletion of primary antibody or preabsorption with purified SC5b-9.
Collapse
Affiliation(s)
- S Webster
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Choi-Miura NH, Oda T. Relationship between multifunctional protein “clusterin” and Alzheimer disease. Neurobiol Aging 1996. [DOI: 10.1016/0197-4580(96)00106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Cotman CW, Tenner AJ, Cummings BJ. beta-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiol Aging 1996; 17:723-31. [PMID: 8892345 DOI: 10.1016/0197-4580(96)00117-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As the brain ages, amyloid deposits accumulate and, as these deposits condense into a beta-sheet conformation, they contribute to the organization of cellular responses and maintain a chronic level of stimulation and injury. Furthermore, accompanying reactions can lead to the production of additional beta-amyloid, the build up of additional fibrillar beta-amyloid, and prolongation of the response. As it accumulates, beta-amyloid appears to develop properties that drive many signal transduction processes in the classic injury cascade and also activate complement, which results in an amplified beta-amyloid AD cascade. In this way several mechanisms, although apparently independent, proceed in parallel, reinforce each other, and perpetuate pathology and structural damage to the brain. Specifically, we suggest that via the activation of complement, initiation, and perpetuation of other cascades, and its own direct toxic actions, beta-amyloid converts an acute response to injury into a chronic damaging inflammatory reaction thereby contributing to neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- C W Cotman
- Institute for Brain Aging and Dementia, University of California Irvine 92697, USA
| | | | | |
Collapse
|
44
|
Eikelenboom P, Veerhuis R. The role of complement and activated microglia in the pathogenesis of Alzheimer's disease. Neurobiol Aging 1996; 17:673-80. [PMID: 8892339 DOI: 10.1016/0197-4580(96)00108-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A variety of inflammatory mediators including complement activation products, protease inhibitors, and cytokines are colocalized with beta-amyloid (A beta) deposits in the Alzeimer's disease (AD) brain. Activation products of the early complement components C1, C4, and C3 are always found in neuritic plaques and to a lesser extent in varying numbers of diffuse plaques. In contrast to these findings, no immunohistochemical evidence was obtained for the presence of the late complement components C7 and C9 and the complement membrane attack complex in the neuropathological lesions in AD brains. The mRNA encoding the late complement components C7 and C9 appears to be hardly or not detectable. These findings indicate that in AD the complement system does not act as an inflammatory mediator through membrane attack complex formation, but through the actions of the early complement products. In this review we focus on the role of complement in the pathological amyloid cascade in AD. In our opinion, the early complement activation products play a crucial role as mediators between the A beta deposits and the inflammatory responses leading to neurotoxicity.
Collapse
Affiliation(s)
- P Eikelenboom
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Department of Psychiatry, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Kalaria RN, Harshbarger-Kelly M, Cohen DL, Premkumar DR. Molecular aspects of inflammatory and immune responses in Alzheimer's disease. Neurobiol Aging 1996; 17:687-93. [PMID: 8892341 DOI: 10.1016/0197-4580(96)00114-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent advances indicate numerous molecular and cellular elements of the immune system are involved in the pathogenesis of Alzheimer's disease. Amyloid beta protein deposition induces many molecules associated with a predominantly local inflammatory response within the brain parenchyma. These responses also provoke the release of immune system mediators including cytokines, which all seem largely to be produced by reactive cells such as astrocytes and microglia. Classical acute phase proteins of the pentraxin and serine protease inhibitor (serpin) families as well as a host of complement proteins and some coagulation factor seem the most intrinsically involved. These secreted molecules display variable binding with the amyloidotic lesions. Although our understanding of the molecular specificity and significance of the interaction of these proteins within the lesions is not replete, the development of unique inhibitors of the inflammatory reactions could provide therapeutic strategies to impede the pathogenetic process. Currently, this appears a more viable option than to inhibit amyloid beta production or modify amyloid beta precursor protein processing, an approach which seems more complex.
Collapse
Affiliation(s)
- R N Kalaria
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4938, USA
| | | | | | | |
Collapse
|
46
|
Pasinetti GM. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease: the role of the complement system. Neurobiol Aging 1996; 17:707-16. [PMID: 8892343 DOI: 10.1016/0197-4580(96)00113-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review discusses key findings indicating potential roles of the complement (C)-system in chronic inflammation in Alzheimer's disease (AD) brain. Although there is no means to cure or prevent the disease, recent studies suggest that antiinflammatory drugs may delay the onset of AD dementia. One target of these drugs may be the (C)-system, which is best known for its roles in inflammatory processes in peripheral tissues. However, recent data show C-system expression and regulation in brain cells, and C-system protein deposition in AD plaques. It is still nuclear whether C-system activation contributes to neuropathology in the AD brain, as shown in multiple sclerosis (MS). New clinical studies with antiinflammatory agents are now under general consideration by the Alzheimer's Disease Cooperative Study program. In this review I outline research directions which address possible C-system contributions to neurodegeneration. Finally, I discuss potential pharmacological interventions designed to control segments of classical inflammatory cascades in which the C-system is highly implicated. These aspects are critical to the understanding of C-mediated responses in normal and pathologic brain.
Collapse
Affiliation(s)
- G M Pasinetti
- Mount Sinai Medical Center, Department of Psychiatry, New York, NY 10029-6574, USA
| |
Collapse
|