1
|
Yamamoto K, Tanabe Y, Nonogaki K, Watanabe S, Takemura K, Yamanaka T, Kizawa R, Yamaguchi T, Suyama K, Hayashi N, Miura Y. Questionnaire survey of healthcare professionals on taxane-induced nail change in Japan. Support Care Cancer 2024; 32:647. [PMID: 39251506 DOI: 10.1007/s00520-024-08858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE Taxanes are widely used chemotherapeutic agents that frequently cause nail changes and have a significant impact on patients' quality of life. Despite the prevalence of taxane-induced nail toxicity, limited data are available regarding evidence-based management strategies for the prevention or treatment of taxane-induced nail changes. Therefore, we aimed to gain insights into the prevention, treatment, and evaluation of nail changes in patients with cancer in Japan by conducting a questionnaire survey of physicians, pharmacists, and nurses involved in oncology treatment. METHODS The questions addressed prophylactic methods, evaluation practices, and treatment approaches for various nail disorders. The questionnaires were distributed on March 1, 2022, with a response deadline of December 1, 2022. RESULTS Of the 120 questionnaires distributed, 88 (73.3%) were returned, and all of them were analyzed. The respondents included 69 physicians (32 oncologists, 26 breast surgeons, 6 dermatologists, 3 obstetricians/gynecologists, 1 gastroenterological surgeon, and 1 urologist), 9 pharmacists, and 10 nurses. Prophylactic measures included moisturizing (58.0%), protection (42.0%), cooling therapy (37.5%), and cleanliness (33.0%). Approximately 70% of the respondents used the Common Criteria for Adverse Events (CTCAE), while approximately 30% did not use a specific evaluation method. Opinions regarding treatment with antimicrobial or corticosteroid ointments varied; however, all severe cases were referred by dermatologists. CONCLUSION Our survey revealed that the management of chemotherapy-induced nail changes varies in clinical practice in Japan. These findings emphasize the need for standardized management strategies and further research.
Collapse
Affiliation(s)
- Kazumasa Yamamoto
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Yuko Tanabe
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan.
| | - Kiyomi Nonogaki
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Shogo Watanabe
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Kohji Takemura
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Taro Yamanaka
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Rika Kizawa
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Takeshi Yamaguchi
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Koichi Suyama
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Nobukazu Hayashi
- Department of Dermatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| | - Yuji Miura
- Department of Medical Oncology, Toranomon Hospital, 2-2-2 Toranomon, Minato-Ku, Tokyo, 105-8470, Japan
| |
Collapse
|
2
|
Thyashan N, Ghimire ML, Lee S, Kim MJ. Exploring single-molecule interactions: heparin and FGF-1 proteins through solid-state nanopores. NANOSCALE 2024; 16:8352-8360. [PMID: 38563277 DOI: 10.1039/d4nr00274a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Detection and characterization of protein-protein interactions are essential for many cellular processes, such as cell growth, tissue repair, drug delivery, and other physiological functions. In our research, we have utilized emerging solid-state nanopore sensing technology, which is highly sensitive to better understand heparin and fibroblast growth factor 1 (FGF-1) protein interactions at a single-molecule level without any modifications. Understanding the structure and behavior of heparin-FGF-1 complexes at the single-molecule level is very important. An abnormality in their formation can lead to life-threatening conditions like tumor growth, fibrosis, and neurological disorders. Using a controlled dielectric breakdown pore fabrication approach, we have characterized individual heparin and FGF-1 (one of the 22 known FGFs in humans) proteins through the fabrication of 17 ± 1 nm nanopores. Compared to heparin, the positively charged heparin-binding domains of some FGF-1 proteins translocationally react with the pore walls, giving rise to a distinguishable second peak with higher current blockade. Additionally, we have confirmed that the dynamic FGF-1 is stabilized upon binding with heparin-FGF-1 at the single-molecule level. The larger current blockades from the complexes relative to individual heparin and the FGF-1 recorded during the translocation ensure the binding of heparin-FGF-1 proteins, forming binding complexes with higher excluded volumes. Taken together, we demonstrate that solid-state nanopores can be employed to investigate the properties of individual proteins and their complex interactions, potentially paving the way for innovative medical therapies and advancements.
Collapse
Affiliation(s)
- Navod Thyashan
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, 75205, USA.
| | - Madhav L Ghimire
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, 75205, USA.
| | - Sangyoup Lee
- Bionic Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, 75205, USA.
| |
Collapse
|
3
|
von Glinski M, Voigt M, Sogorski A, Wallner C, Dadras M, Behr B, Lehnhardt M, Goertz O. Influence of Remote Ischemic Conditioning and Nitrogen Monoxide on Angiogenesis and Microcirculation in a Mouse Ear Burn Model. J Surg Res 2024; 293:347-356. [PMID: 37806221 DOI: 10.1016/j.jss.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Remote ischemic conditioning (RIC) has been shown to improve tissue resilience against ischemia. The aim of this study was to investigate the influence of RIC and its key factor, nitrogen monoxide (NO), on angiogenesis in a burn wound. MATERIALS AND METHODS A unilateral burn injury on the ear of hairless mice (n = 48) was generated via a hot air jet in a contact-free manner. In four randomized groups, including the control (NoRIC group), RIC alone (RIConly group), RIC plus NO donor (ISDN group), and RIC plus NO synthase inhibitor (L-NAME group), the impact on angiogenesis, vessel diameter, blood flow, edema formation, and leukocyte-endothelial-cell interaction was evaluated over a 12-d period using intravital fluorescence microscopy. RESULTS Tissue perfusion was significantly improved by RIC (Day 3: ISDN group showed 182% and RIConly group showed 200% of baseline [BL], P < 0.001), while angiogenesis was not improved by RIC (nonperfused area on Day 12: mean 52% of BL in all groups, P >0.05). The application of ISDN did not further enhance the positive effect of RIC, whereas the application of L-NAME neutralized the effect of RIC. The most pronounced edema formation was observed in the RIConly group (mean 145% of BL, P ≤0.001), while the NoRIC group showed the least edema formation (Day 12: 117% of BL). CONCLUSIONS RIC led to increased tissue perfusion, which did not result in improved angiogenesis, which may have been due to increased edema formation after RIC performance. The results of the present study do not support the establishment of a causal therapy strategy for burn wounds, including RIC.
Collapse
Affiliation(s)
- Maxi von Glinski
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | - Maria Voigt
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Alexander Sogorski
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Bjoern Behr
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Ole Goertz
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany; Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther Hospital, Berlin, Germany
| |
Collapse
|
4
|
Sinusas AJ. Targeted imaging of angiogenesis post-myocardial infarction predicts development of heart failure. J Nucl Cardiol 2023; 30:2085-2088. [PMID: 37495762 DOI: 10.1007/s12350-023-03347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Affiliation(s)
- Albert J Sinusas
- Section of Cardiovascular Medicine, Yale University School of Medicine, DANA3, P.O. Box 208017, New Haven, CT, 06520-8017, USA.
| |
Collapse
|
5
|
Kruzicova A, Chalupova M, Kuzminova G, Parak T, Klusakova J, Sopuch T, Suchy P. Effect of novel carboxymethyl cellulose-based dressings on acute wound healing dynamics. VET MED-CZECH 2023; 68:403-411. [PMID: 38028207 PMCID: PMC10666658 DOI: 10.17221/89/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
The clinical implications and efficacy of newly developed modified cellulose materials were evaluated in an acute wound animal model. In the current study, sixty male rats were divided into four groups. A full-thickness circular excision wound was created in the suprascapular area. Newly developed matrices (acidic partially carboxymethylated cellulose; acidic partially carboxymethylated cellulose impregnated with a povidone-iodine solution) were applied in two test groups, while fifteen animals were used as a control group without any primary dressing. Aquacel Ag, a clinically used dressing, was selected as the reference material. To compare the efficacy in vivo, the wound size and production of selected cytokines and growth factors (TNF-α, TGF-β1, and VEGF), which play a key role in the healing process, were measured at two, seven, and fourteen days after surgery. The activity of matrix metalloproteinases 2 and 9, which actively participate in cell signalling and are essential for tissue remodelling, was determined in wound tissue by gelatin zymography. A positive effect of the newly developed dressing materials on the healing process, tissue granulation, and wound re-epithelialisation was demonstrated.
Collapse
Affiliation(s)
- Alzbeta Kruzicova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Marta Chalupova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Gabriela Kuzminova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Tomas Parak
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | | | - Tomas Sopuch
- Holzbecher, Ltd. – Bleaching & Dyeing Plant, Zlic, Czech Republic
| | - Pavel Suchy
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Karatsai O, Lehka L, Wojton D, Grabowska AI, Duda MK, Lenartowski R, Redowicz MJ. Unconventional myosin VI in the heart: Involvement in cardiac dysfunction progressing with age. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166748. [PMID: 37169038 DOI: 10.1016/j.bbadis.2023.166748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hypertrophic cardiomyopathy is the most common cardiovascular disease, which is characterized by structural and functional myocardial abnormalities. It is caused predominantly by autosomal dominant mutations, mainly in genes encoding cardiac sarcomeric proteins, resulting in diverse phenotypical patterns and a heterogenic clinical course. Unconventional myosin VI (MVI) is one of the proteins important for heart function, as it was shown that a point mutation within MYO6 is associated with left ventricular hypertrophy. Previously, we showed that MVI is expressed in the cardiac muscle, where it localizes to the sarcoplasmic reticulum and intercalated discs. Here, we addressed the mechanisms of its involvement in cardiac dysfunction in Snell's waltzer mice (natural MVI knockouts) during heart development. We showed that heart enlargement was already seen in the E14.5 embryos and newborn animals (P0), and was maintained throughout the examined lifespan (up to 12 months). The higher levels of MVI were observed in the hearts of E14.5 embryos and P0 of control heterozygous mice. A search for the mechanisms behind the observed phenotype revealed several changes, accumulation of which resulted in age-progressing heart dysfunction. The main changes that mostly contribute to this functional impairment are the increase in cardiomyocyte proliferation in newborns, disorganization of intercalated discs, and overexpression of SERCA2 in hearts isolated from 12-month-old mice, indicative of functional alterations of sarcoplasmic reticulum. Also, possible aberrations in the heart vascularization, observed in 12-month-old animals could be additional factors responsible for MVI-associated heart dysfunction.
Collapse
Affiliation(s)
- Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Dominika Wojton
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Izabela Grabowska
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Monika Katarzyna Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, 99/103 Marymoncka St., 01-813 Warsaw, Poland.
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, The Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland.
| | - Maria Jolanta Redowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Ji E, Leijsten L, Witte-Bouma J, Rouchon A, Di Maggio N, Banfi A, van Osch GJVM, Farrell E, Lolli A. In Vitro Mineralisation of Tissue-Engineered Cartilage Reduces Endothelial Cell Migration, Proliferation and Tube Formation. Cells 2023; 12:cells12081202. [PMID: 37190110 DOI: 10.3390/cells12081202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Tissue engineering bone via endochondral ossification requires the generation of a cartilage template which undergoes vascularisation and remodelling. While this is a promising route for bone repair, achieving effective cartilage vascularisation remains a challenge. Here, we investigated how mineralisation of tissue-engineered cartilage affects its pro-angiogenic potential. To generate in vitro mineralised cartilage, human mesenchymal stromal cell (hMSC)-derived chondrogenic pellets were treated with β-glycerophosphate (BGP). After optimising this approach, we characterised the changes in matrix components and pro-angiogenic factors by gene expression analysis, histology and ELISA. Human umbilical vein endothelial cells (HUVECs) were exposed to pellet-derived conditioned media, and migration, proliferation and tube formation were assessed. We established a reliable strategy to induce in vitro cartilage mineralisation, whereby hMSC pellets are chondrogenically primed with TGF-β for 2 weeks and BGP is added from week 2 of culture. Cartilage mineralisation determines loss of glycosaminoglycans, reduced expression but not protein abundance of collagen II and X, and decreased VEGFA production. Finally, the conditioned medium from mineralised pellets showed a reduced ability to stimulate endothelial cell migration, proliferation and tube formation. The pro-angiogenic potential of transient cartilage is thus stage-dependent, and this aspect must be carefully considered in the design of bone tissue engineering strategies.
Collapse
Affiliation(s)
- Encheng Ji
- Department of Oral and Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Lieke Leijsten
- Department of Oral and Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Adelin Rouchon
- Department of Biomedicine, Basel University Hospital, University of Basel, 4031 Basel, Switzerland
| | - Nunzia Di Maggio
- Department of Biomedicine, Basel University Hospital, University of Basel, 4031 Basel, Switzerland
| | - Andrea Banfi
- Department of Biomedicine, Basel University Hospital, University of Basel, 4031 Basel, Switzerland
| | - Gerjo J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
- Department of Biomechanical Engineering, University of Technology Delft, 2628 CD Delft, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Andrea Lolli
- Department of Oral and Maxillofacial Surgery, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
8
|
Yurtal Z, Kulualp K, Ozkan H, Micili SC, Dogan H, Sisman AR, Ersoy N, Kizmazoglu C, Yakan A. Protective and Therapeutic Effects of Bovine Amniotic Fluids Collected in Different Trimesters on the Epidural Fibrosis After Experimental Laminectomy in Rats. World Neurosurg 2023; 171:e722-e730. [PMID: 36608801 DOI: 10.1016/j.wneu.2022.12.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND The aim of this study was to investigate the protective and therapeutic effects of bovine amniotic fluid (BAF) on the inhibition of epidural fibrosis (EF) after experimental laminectomy. METHODS Forty female Sprague Dawley rats were used. The amniotic fluids were collected from each trimester of a pregnant cow. The rats were divided into 5 groups. Whereas no laminectomy was applied to the control group, animals in the sham group underwent laminectomy. Laminectomy was performed in the animals in other groups and the operation area was closed by dripping 1 mL of BAF collected in 3 trimesters of pregnancy. Animals were killed 28 days after the operation. RESULTS Compared with control, VEGF gene expression levels were downregulated approximately 5-fold in BAF-2. Whereas IL-6 was upregulated approximately 8-fold in the sham, it was downregulated 5-fold and 3-fold in BAF-1 and BAF-2, respectively. There was downregulation in BAF-2 and BAF-3 in terms of CD105 gene expression levels. TGFβ1 was upregulated approximately 2-fold in the sham group and downregulated in BAF-1 and BAF-2. Although histopathologic alterations including EF grade and fibroblast cell density were found to increase in the sham group, all BAF treatment decreased those of alterations. The highest CD105 immunoreactivity was detected in the sham group. All BAF treatment markedly aggravated fibrosis via decreasing CD105 immunoreactivity. In terms of grading parameters, almost the closest grades to the control were determined in the BAF-2. BAF collected in the second trimester is most effective in healing of scar tissue and preventing fibrosis via decreasing microvessel and fibroblast densities. CONCLUSIONS The results indicate that BAF may be used as a potential protective agent to prevent EF.
Collapse
Affiliation(s)
- Ziya Yurtal
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Kadri Kulualp
- Department of Surgery, Faculty of Veterinary Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Huseyin Ozkan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Halef Dogan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Tekirdag Namık Kemal University, Turkey
| | - Ali Riza Sisman
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Nevin Ersoy
- Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ceren Kizmazoglu
- Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Akin Yakan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
9
|
Omorou M, Liu N, Huang Y, Al-Ward H, Gao M, Mu C, Zhang L, Hui X. Cystathionine beta-Synthase in hypoxia and ischemia/reperfusion: A current overview. Arch Biochem Biophys 2022; 718:109149. [DOI: 10.1016/j.abb.2022.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/02/2022]
|
10
|
Jia W, Yang Z, Zhang X, Dong Y, Jia X, Zhou J. Shear wave elastography and pulsed doppler for breast lesions: Similar diagnostic performance and positively correlated stiffness and blood flow resistance. Eur J Radiol 2022; 147:110149. [PMID: 35007981 DOI: 10.1016/j.ejrad.2021.110149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/11/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To compare the diagnostic performance of shear wave elastography (SWE) and pulsed Doppler ultrasound in breast lesions, and to explore whether the quantitative SWE parameters correlated with pulsed Doppler ultrasound parameters. MATERIALS AND METHODS Seventy-nine patients with 79 breast lesions who had undergone conventional ultrasound, pulsed Doppler ultrasound and SWE examination were included. All of them underwent core needle biopsy or surgery within one week. Parameters including Emax (the maximum elastic modulus), Emean (mean elastic modulus), Emin (minimum elastic modulus), Esd (elastic modulus standard deviation), and RI (resistive index), PI (pulsatility index), PSV (peak systolic velocity) and EDV (end diastolic velocity) were obtained for statistical analysis. RESULTS Almost all SWE parameters were significantly different between benign and malignant breast lesions (P<0.05). There was no significant difference between Esd and PI (P>0.05), which had the best AUC among SWE and vascular parameters respectively (0.877 vs. 0.871). Emax showed a moderate correlation with PI (P = 0.000, r = 0.552) and RI (P = 0.000, r = 0.544), and Esd moderately correlated with PI (P = 0.000, r = 0.567) and RI (P = 0.000, r = 0.546). For the benign group, no parameters showed any significant correlation (P>0.05), while for the malignant group, Emax and Esd also significantly correlated with PI or RI. CONCLUSIONS SWE and pulsed Doppler ultrasound had similar diagnostic efficacy for breast lesions. SWE and pulsed Doppler parameters were significantly correlated in breast lesions, especially in malignant ones, indicating the potential association between elastographic and vascular characteristics of breast tumors.
Collapse
Affiliation(s)
- WanRu Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - ZhiFang Yang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - XiaoXiao Zhang
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - YiJie Dong
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - XiaoHong Jia
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - JianQiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Guo J, Zhou P, Pan M, Liu Z, An G, Han J, Dai F, Du L, Jin X. Relationship between elevated microRNAs and growth factors levels in the vitreous of patients with proliferative diabetic retinopathy. J Diabetes Complications 2021; 35:108021. [PMID: 34420810 DOI: 10.1016/j.jdiacomp.2021.108021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023]
Abstract
AIM The aim of this study was to identify differentially expressed microRNAs (miRNAs) in the vitreous of patients with proliferative diabetic retinopathy (PDR) and correlate some of them with growth factors. METHODS Vitreous samples were collected from 5 PDR eyes and 5 control eyes, and then miRNAs were assayed with next-generation sequencing (NGS). Three differentially expressed miRNAs were validated in vitreous of another cohort using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). RESULTS Transforming growth factor β (TGF-β) and vascular endothelial growth factor (VEGF) signaling pathway were excavated out through bioinformatic analysis of deregulated miRNAs. The expression of hsa-miR-24-3p, hsa-miR-197-3p and hsa-miR-3184-3p, VEGF-A and TGF-β were confirmed to be significantly higher in the vitreous of PDR eyes than controls(P < 0.05). Furthermore, Pearson's correlation analysis showed significantly positive correlations between these elevated miRNAs and growth factors (P < 0.05). CONCLUSIONS Elevated vitreous levels of hsa-miR-24-3p, hsa-miR-197-3p, hsa-miR-3184-3p in PDR patients may play roles in pathophysiology of PDR, the target mRNAs of which significantly enriched in VEGF and TGF-β signaling pathways. Positive correlations between elevated vitreous levels of the three miRNAs and VEGF-A, TGF-β in PDR patients could provide a novel research direction for PDR.
Collapse
Affiliation(s)
- Ju Guo
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Pengyi Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Meng Pan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhenhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Guangqi An
- People's Hospital of Zhengzhou University, Henan Eye Institute, Zhengzhou 450000, China
| | - Jinfeng Han
- People's Hospital of Zhengzhou University, Henan Eye Institute, Zhengzhou 450000, China
| | - Fangfang Dai
- People's Hospital of Zhengzhou University, Henan Eye Institute, Zhengzhou 450000, China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
12
|
Smit-McBride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1280. [PMID: 34532417 PMCID: PMC8421969 DOI: 10.21037/atm-20-5189] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/14/2021] [Indexed: 01/10/2023]
Abstract
Diabetic retinopathy (DR) accounts for ~80% of legal blindness in persons aged 20-74 years and is associated with enormous social and health burdens. Current therapies are invasive, non-curative, and in-effective in 15-25% of DR patients. This review outlines the potential utility of microRNAs (miRNAs) as biomarkers and potential therapy for diabetic retinopathy. miRNAs are small noncoding forms of RNA that may play a role in the pathogenesis of DR by altering the level of expression of genes via single nucleotide polymorphism and regulatory loops. A majority of miRNAs are intracellular and specific intracellular microRNAs have been associated with cellular changes associated with DR. Some microRNAs are extracellular and called circulatory microRNAs. Circulatory miRNAs have been found to be differentially expressed in serum and bodily fluid in patients with diabetes mellitus (DM) with and without retinopathy. Some miRNAs have been associated with the severity of DR, and future studies may reveal whether circulatory miRNAs could serve as novel reliable biomarkers to detect or predict retinopathy progression. Therapeutic strategies can be developed utilizing the natural miRNA/long noncoding RNA (lncRNA) regulatory loops. miRNAs and lncRNAs are two major families of the non-protein-coding transcripts. They are regulatory molecules for fundamental cellular processes via a variety of mechanisms, and their expression and function are tightly regulated. The recent evidence indicates a cross-talk between miRNAs and lncRNAs. Therefore, dysregulation of miRNAs and lncRNAs is critical to human disease pathogenesis, such as diabetic retinopathy. miRNAs are long-distance communicators and reprogramming agents, and they embody an entirely novel paradigm in cellular and tissue signaling and interaction. By targeting specific miRNAs, whole pathways implicated in the pathogenesis of DR may potentially be altered. Understanding the endogenous roles of miRNAs in the pathogenesis of diabetic retinopathy could lead to novel diagnostic and therapeutic approaches to managing this frequently blinding retinal condition.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| | - Lawrence S Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
13
|
Okumo T, Furuta A, Kimura T, Yusa K, Asano K, Sunagawa M. Inhibition of Angiogenic Factor Productions by Quercetin In Vitro and In Vivo. MEDICINES 2021; 8:medicines8050022. [PMID: 34065895 PMCID: PMC8150841 DOI: 10.3390/medicines8050022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Background: Angiogenesis is well known to be an important event in the tissue remodeling observed in allergic diseases. Although there is much evidence that quercetin, one of the most abundant dietary flavonoids, exerts anti-allergic effects in both human and experimental animal models of allergic diseases, the action of quercetin on angiogenesis has not been defined. Therefore, in this study, we first examined the action of quercetin on the secretion of angiogenic factors from murine mast cells in vitro. We also examined the action of quercetin on angiogenic factor secretion in the murine allergic rhinitis model in vivo. Methods: Mast cells (1 × 105 cells/mL) sensitized with ovalbumin (OVA)-specific murine IgE were stimulated with 10.0 ng/mL OVA in the presence or the absence of quercetin for 24 h. The concentrations of angiogenic factors, vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), tumor necrosis factor-α, IL-6 and IL-8 in the supernatants were examined by ELISA. BALB/c male mice immunized with OVA were challenged intranasally with OVA every other day, starting seven days after the final immunization. These mice were then orally administered quercetin once a day for five days, starting seven days after the final immunization. Clinical symptoms were assessed by counting the number of sneezes and nasal rubbing behaviors during the 10 min period just after OVA nasal provocation. The angiogenic factor concentrations in the nasal lavage fluids obtained 6 h after nasal antigenic provocation were examined by ELISA. Results: Quercetin significantly inhibited the production of angiogenetic factors induced by IgE-dependent mechanisms at 5.0 µM or more. Oral administration of 25.0 mg/kg quercetin into the mice also suppressed the appearance of angiogenetic factors in nasal lavage fluids, along with the attenuation of nasal symptoms. Conclusions: These results strongly suggest that the inhibitory action of quercetin on angiogenic factor secretion may be implicated in the therapeutic action of quercetin on allergic diseases, especially allergic rhinitis.
Collapse
Affiliation(s)
- Takayuki Okumo
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Atsuko Furuta
- Department of Medical Education, Showa University School of Medicine, Tokyo 142-8555, Japan;
| | - Tarou Kimura
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Kanako Yusa
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| | - Kazuhito Asano
- Faculty of Human Sciences, University of Human Arts and Sciences, Saitama 339-8555, Japan
- Correspondence: ; Tel.: +81-48-758-7111
| | - Masataka Sunagawa
- Department of Physiology, Showa University School of Medicine, Tokyo 142-8555, Japan; (T.O.); (T.K.); (K.Y.); (M.S.)
| |
Collapse
|
14
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
15
|
Mani H, Bellizzi A, Miller B, Milhem M, Monga V. A rare case series of composite hemangioendothelioma presenting as bone tumors. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2020. [DOI: 10.1016/j.cpccr.2020.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Zhuravleva K, Goertz O, Wölkart G, Guillemot L, Petzelbauer P, Lehnhardt M, Schmidt K, Citi S, Schossleitner K. The tight junction protein cingulin regulates the vascular response to burn injury in a mouse model. Microvasc Res 2020; 132:104067. [PMID: 32877697 DOI: 10.1016/j.mvr.2020.104067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/04/2023]
Abstract
Edema formation due to the collapse of physiological barriers and the associated delayed healing process is still a central problem in the treatment of burn injuries. In healthy individuals, tight junctions form a barrier to fluid and small molecules. Cingulin is a cytoplasmic component of tight junctions and is involved in the regulation of the paracellular barrier. Endothelial specific cingulin knock-out mice provide new insight into the influence of tight junction proteins on edema formation and angiogenesis during wound healing. Knock-out mice lacking the head domain of cingulin in endothelial cells (CgnΔEC) were created by breeding Cgnfl/fl mice with Tie1-cre mice. Using a no-touch hot air jet a burn trauma was induced on the ear of the mouse. Over a period of 12 days microcirculatory parameters such as edema formation, angiogenesis and leukocyte-endothelial interactions were visualized using intravital fluorescence microscopy. At baseline, CgnΔEC mice surprisingly showed significantly less tracer extravasation compared to Cgnfl/fl littermates, whereas, after burn injury, edema was consistently higher in CgnΔEC mice. Non-perfused area after wounding was increased, but there was no difference in vessel diameters, contraction or dilation of arteries in CgnΔEC mice. Moreover, cingulin knock-out did not cause a difference in leukocyte adhesion after burn injury. In summary, cingulin limits non-perfused area after burn injury and maintains the paracellular barrier of blood vessels. Since edema formation with serious systemic effects is a central problem of burn wounds, understanding the importance of tight junction proteins might help to find new treatment strategies for burn wounds.
Collapse
Affiliation(s)
- Kristina Zhuravleva
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany; Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther Hospital, Berlin, Germany
| | - Ole Goertz
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany; Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Martin-Luther Hospital, Berlin, Germany
| | - Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Laurent Guillemot
- Department of Cell Biology, Faculty of Sciences, and Institute of Genetics and Genomics of Geneva, University of Geneva, Switzerland
| | - Peter Petzelbauer
- Skin and Endothelium Research Division, Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Marcus Lehnhardt
- Department of Plastic and Hand Surgery, Burn Center, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, and Institute of Genetics and Genomics of Geneva, University of Geneva, Switzerland
| | - Klaudia Schossleitner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Smit-McBride Z, Nguyen AT, Yu AK, Modjtahedi SP, Hunter AA, Rashid S, Moisseiev E, Morse LS. Unique molecular signatures of microRNAs in ocular fluids and plasma in diabetic retinopathy. PLoS One 2020; 15:e0235541. [PMID: 32692745 PMCID: PMC7373301 DOI: 10.1371/journal.pone.0235541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
The main objective of this pilot study was to identify circulatory microRNAs in aqueous or plasma that were reflecting changes in vitreous of diabetic retinopathy patients. Aqueous, vitreous and plasma samples were collected from a total of 27 patients undergoing vitreoretinal surgery: 11 controls (macular pucker or macular hole patients) and 16 with diabetes mellitus(DM): DM-Type I with proliferative diabetic retinopathy(PDR) (DMI-PDR), DM Type II with PDR(DMII-PDR) and DM Type II with nonproliferative DR(DMII-NPDR). MicroRNAs were isolated using Qiagen microRNeasy kit, quantified on BioAnalyzer, and profiled on Affymetrix GeneChip miRNA 3.0 microarrays. Data were analyzed using Expression Console, Transcriptome Analysis Console, and Ingenuity Pathway Analysis. The comparison analysis of circulatory microRNAs showed that out of a total of 847 human microRNA probes on the microarrays, common microRNAs present both in aqueous and vitreous were identified, and a large number of unique microRNA, dependent on the DM type and severity of retinopathy. Most of the dysregulated microRNAs in aqueous and vitreous of DM patients were upregulated, while in plasma, they were downregulated. Dysregulation of miRNAs in aqueous did not appear to be a good representative of the miRNA abundance in vitreous, or plasma, although a few potential candidates for common biomarkers stood out: let-7b, miR-320b, miR-762 and miR-4488. Additionally, each of the DR subtypes showed miRNAs that were uniquely dysregulated in each fluid (i.e. aqueous: for DMII-NPDR was miR-455-3p; for DMII-PDR was miR-296, and for DMI-PDR it was miR-3202). Pathway analysis identified TGF-beta and VEGF pathways affected. The comparative profiling of circulatory miRNAs showed that a small number of them displayed differential presence in diabetic retinopathy vs. controls. A pattern is emerging of unique molecular microRNA signatures in bodily fluids of DR subtypes, offering promise for the use of ocular fluids and plasma for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Zeljka Smit-McBride
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Anthony T. Nguyen
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Alfred K. Yu
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Sara P. Modjtahedi
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Allan A. Hunter
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Saadia Rashid
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Elad Moisseiev
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Lawrence S. Morse
- Department of Ophthalmology & Vision Science, Vitreoretinal Research Laboratory, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Zhang S, Tao X, Cao Q, Feng X, Wu J, Yu H, Yu Y, Xu C, Zhao H. lnc003875/miR-363/EGR1 regulatory network in the carcinoma -associated fibroblasts controls the angiogenesis of human placental site trophoblastic tumor (PSTT). Exp Cell Res 2020; 387:111783. [PMID: 31857113 DOI: 10.1016/j.yexcr.2019.111783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 11/26/2022]
Abstract
The rare gestational trophoblastic neoplasia placental site trophoblastic tumor (PSTT) frequently demonstrates a high degree of vascularization, which may facilitate the tumor metastasis. However, the underlying mechanisms remain largely unknown. In the present study, we found that early growth response 1 (EGR1) was highly expressed in the carcinoma-associated fibroblasts (CAFs) of PSTT tissues. Further data showed that miR-363 down-regulated EGR1 expression whereas long non-coding RNA NONHSAT003875 (lnc003875) up-regulated EGR1 expression in PSTT derived CAFs. lnc003875 exerted no effect on miR-363 expression, but it recovered the decrease of EGR1 caused by miR-363 mimic. The conditioned media from PSTT CAFs treated with miR-363 mimic abrogated the tube formation capacity of human umbilical vein endothelial cells (HUVECs), which can be partially restored by lnc003875 over-expression. Moreover, over-expression of EGR1 promoted the secretion of Angiopoietin-1 (Ang-1) in PSTT derived CAFs and improved the tube formation of HUVECs, which could be effectively abrogated by Ang-1 siRNAs. In vivo vasculogenesis assay demonstrated that lnc003875/EGR1 in PSTT derived CAFs promoted the vasculogenesis of HUVECs in C57BL/6 mice. Collectively, these findings indicated that lnc003875/miR-363/EGR1/Ang-1 in CAFs may be crucial for the angiogenesis of PSTT.
Collapse
Affiliation(s)
- Sai Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Xiang Tao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Qi Cao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Xuan Feng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Jing Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Huandi Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Yinhua Yu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
19
|
Nasirzadeh M, Rasmi Y, Rahbarghazi R, Kheradmand F, Karimipour M, Aramwit P, Astinfeshan M, Gholinejad Z, Daeihasani B, Saboory E, Shirpoor A, Rezabakhsh A, Zolali E, Khalaji N. Crocetin promotes angiogenesis in human endothelial cells through PI3K-Akt-eNOS signaling pathway. EXCLI JOURNAL 2019; 18:936-949. [PMID: 31762720 PMCID: PMC6868919 DOI: 10.17179/excli2019-1175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/14/2019] [Indexed: 02/02/2023]
Abstract
Previous studies proved the pro-angiogenic effect of Crocetin, a natural carotenoid dicarboxylic acid, in both in vivo and in vitro models. However, the exact mechanism of Crocetin action has not completely been elucidated yet. The current experiment was designed to find the activity of PI3K-Akt-eNOS axis after the treatment of endothelial cells with Crocetin in vitro. Human Umbilical Vein Endothelial Cells (HUVECs) were incubated with various concentrations of Crocetin (1, 5, 25, 50, and 100 µM) over a period of 72 h. Crocetin significantly increased HUVECs viability after 72 h as compared with the control group. We also found that Crocetin promoted the formation of the capillary-like structure compared to the control (p<0.05). Moreover, an improved migration rate and increased MMP-9 activity were observed in HUVECs that received 50 µM Crocetin (p<0.05). Crocetin enhanced the uptake of Ac-LDL which is correlated with increased lipid metabolism. Based on the data from the current experiment, protein level of VEGFR-1, -2 and p-Akt/Akt, p-eNOS/eNOS ratios were increased 72 h after the treatment of HUVECs with Crocetin (p<0.05). In contrast, the transcription level of VEGF was reduced in Crocetin-treated cells. These data demonstrated that Crocetin promotes HUVECs angiogenesis potential by the modulation of VEGF signaling pathway and increased cell viability. The PI3K/Akt/eNOS axis is required for a Crocetin-associated activity in endothelial cells.
Collapse
Affiliation(s)
- Mahdieh Nasirzadeh
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phaya Thai Road, Phatumwan, Bangkok 10330, Thailand
| | - Maryam Astinfeshan
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zafar Gholinejad
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Behrokh Daeihasani
- Department of Biology, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran
| | - Ehsan Saboory
- Neuroscience Research Center, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Aysa Rezabakhsh
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Zolali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Khalaji
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Evaluation of dermal tissue regeneration using resveratrol loaded fibrous matrix in a preclinical mouse model of full-thickness ischemic wound. Int J Pharm 2019; 558:177-186. [DOI: 10.1016/j.ijpharm.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
|
21
|
Future perspectives of nanoparticle-based contrast agents for cardiac magnetic resonance in myocardial infarction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:329-341. [PMID: 30802547 DOI: 10.1016/j.nano.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/11/2019] [Accepted: 02/02/2019] [Indexed: 12/23/2022]
Abstract
Cardiac Magnetic Resonance (CMR), thanks to high spatial resolution and absence of ionizing radiation, has been widely used in myocardial infarction (MI) assessment to evaluate cardiac structure, function, perfusion and viability. Nevertheless, it suffers from limitations in tissue and assessment of myocardial pathophysiological changes subsequent to MI. In this issue, nanoparticle-based contrast agents offer the possibility to track biological processes at cellular and molecular level underlying the various phases of MI, infarct healing and tissue repair. In this paper, first we examine the conventional CMR protocol and its findings in MI patients. Next, we looked at how nanoparticles can help in the imaging of MI and give an overview of the major approaches currently explored. Based on the presentation of successful nanoparticle applications as contrast agents (CAs) in preclinical and clinical models, we discuss promises and outstanding challenges facing the field of CMR in MI, their translational potential and clinical application.
Collapse
|
22
|
Satish A, Korrapati PS. Nanofiber-Mediated Sustained Delivery of Triiodothyronine: Role in Angiogenesis. AAPS PharmSciTech 2019; 20:110. [PMID: 30756201 DOI: 10.1208/s12249-019-1326-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a vital component of the orchestrated wound healing cascade and tissue regeneration process, which has a therapeutic prominence in treatment of ischemic vascular diseases and certain cardiac conditions. Based on its eminence, several strategies using growth factors have been studied to initiate angiogenesis. However, growth factors are expensive and have short half-life. In this work, sustained release of triiodothyronine, which plays a crucial role in stimulating growth factors and other signaling pathways that are instrumental in initiating angiogenesis, has been attempted through electrospun polycaprolactone nanofibers. This delivery system enabled the slow and sustained delivery of triiodothyronine into the micro-environment, reducing seepage of excess into systemic circulation and eliminating the necessity of repeated dosage forms. It was observed that triiodothyronine-incorporated nanofibers exhibited favorable interaction with cells (phalloidin staining of actin filaments) and also enhanced the rate of endothelial proliferation, migration, and adhesion. The angiogenic potential of these nanofibers was further corroborated through chorioallantoic membrane and rat aortic ring assay (demonstrating cell sprouting area of 3.3 ± 0.71 mm2 compared to 1.2 ± 0.01 mm2 in control). The nanofiber matrix thus fabricated demonstrated a vibrant therapeutic potential to induce angiogenesis. Triiodothyronine also plays a significant role in wound healing independent of initiating angiogenesis. This further substantiates the positive impact of this delivery system as a dressing material for chronic wound therapeutics, ischemic vascular diseases, and certain cardiac conditions.
Collapse
|
23
|
Zhang YF, Yang JY, Meng XP, Qiao XL. l-arginine protects against T-2 toxin-induced male reproductive impairments in mice. Theriogenology 2018; 126:249-253. [PMID: 30590246 DOI: 10.1016/j.theriogenology.2018.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022]
Abstract
l-arginine is beneficial for reproductive health; however, whether l-arginine may confer protection against T-2 toxin-induced reproductive impairment is not known. To address this, we used a mice model treated with T-2 toxin to investigate protective effects of l-arginine. Experimentally, we pre-treated mice with designed diet of l-arginine supplementation prior to the T-2 toxin-injected intraperitoneally exposure and then assessed semen quality, fertility and serum testosterone concentration. The results showed that l-arginine improved semen quality (e.g., live spermatozoa, abnormal spermatozoa, and acrosomal integrity of spermatozoa), testicular and cauda epididymal sperm counts, efficiency of sperm production and serum testosterone concentration in mice treated with T-2 toxin. In addition, l-arginine could increase pregnancy rate and decrease fetal resorption rate in females mated with T-2 toxin exposed males. Collectively, these findings suggest that dietary l-arginine supplementation may protect male reproductive impairments in mice treated with T-2 toxin through improving semen quality and serum testosterone levels.
Collapse
Affiliation(s)
- Yong Fa Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China; College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
| | - Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China.
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Xiao Lan Qiao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| |
Collapse
|
24
|
Marks DH, Qureshi A, Friedman A. Evaluation of Prevention Interventions for Taxane-Induced Dermatologic Adverse Events. JAMA Dermatol 2018; 154:1465-1472. [DOI: 10.1001/jamadermatol.2018.3465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dustin H. Marks
- The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Azam Qureshi
- Department of Dermatology, The George Washington University Medical Faculty Associates, Washington, DC
| | - Adam Friedman
- The George Washington University School of Medicine and Health Sciences, Washington, DC
- Department of Dermatology, The George Washington University Medical Faculty Associates, Washington, DC
| |
Collapse
|
25
|
Smith OJ, Jell G, Mosahebi A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. Int Wound J 2018; 16:275-285. [PMID: 30460739 DOI: 10.1111/iwj.13029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is becoming a common procedure in regenerative medicine because of its high content of growth factors and adipose derived stem cells (ADSCs) and the ease of harvest, safety, and low cost. The high concentration of ADSCs found in fat has the potential to differentiate into a wide range of wound-healing cells including fibroblasts and keratinocytes as well as demonstrating proangiogenic qualities. This suggests that fat could play an important role in wound healing. However retention rates of fat grafts are highly variable due in part to inconsistent vascularisation of the transplanted fat. Furthermore, conditions such as diabetes, which have a high prevalence of chronic wounds, reduce the potency and regenerative potential of ADSCs. Platelet-rich plasma (PRP) is an autologous blood product rich in growth factors, cell adhesion molecules, and cytokines. It has been hypothesised that PRP may have a positive effect on the survival and retention of fat grafts because of improved proliferation and differentiations of ADSCs, reduced inflammation, and improved vascularisation. There is also increasing interest in a possible synergistic effect that PRP may have on the healing potential of fat, although the evidence for this is very limited. In this review, we evaluate the evidence in both in vitro and animal studies on the mechanistic relationship between fat and PRP and how this translates to a benefit in wound healing. We also discuss future directions for both research and clinical practice on how to enhance the regenerative potential of the combination of PRP and fat.
Collapse
Affiliation(s)
- Oliver J Smith
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Gavin Jell
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ash Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
26
|
Thomas R, Williams M, Cauchi M, Berkovitz S, Smith SA. A double-blind, randomised trial of a polyphenolic-rich nail bed balm for chemotherapy-induced onycholysis: the UK polybalm study. Breast Cancer Res Treat 2018; 171:103-110. [PMID: 29736742 DOI: 10.1007/s10549-018-4788-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Nail damage is common amongst patients receiving chemotherapy causing disfigurement and pain. This investigation evaluated whether a topical balm containing steam-extracted, bioactive polyphenolic-rich herbal oils blended with organic waxes could protect the nails via their reported anti-inflammatory, analgesic, anti-oxidant and anti-microbial properties. METHODS 60 patients (23M, 37F) were randomised to apply (2-3/day) either the plant balm (PB) or a petroleum control (PC) to their nail beds. Demographics, type and number of chemotherapy cycles did not differ between the two groups, recruited between Sept 2015 and Sept 2016. An unpaired t test was used to test the differences in symptoms and physical nail damage between the two groups. RESULTS Symptom scores recorded with the dermatology life quality questionnaire (DLQQ) were significantly better, between the start and end of chemotherapy, in the group applying the PB versus PC. Likewise, the mean fall in nail damage, scored with the Nail Psoriasis Index by the supervising physician, was also significantly different. CONCLUSION The polyphenolic-rich essential oils and plant-based waxes in this nail bed balm profoundly reduced chemotherapy-related nail damage and improved nail-related quality of life, compared to a control. A further analysis is planned combining this balm with nail bed cooling.
Collapse
Affiliation(s)
- Robert Thomas
- Bedford and Addenbrooke's Cambridge University Hospital Trusts c/o The Primrose Unit, Kempston Rd, Bedford, MK42 9DJ, UK.
- The Primrose Unit Research Office, Bedford Hospital, Kempston Road, Bedford, MK42 9DJ, UK.
- Department of Biological and Exercise Science, Coventry Univerity, Priory Street, Coventry, CV1 5FB, UK.
| | - Madeleine Williams
- The Primrose Unit Research Office, Bedford Hospital, Kempston Road, Bedford, MK42 9DJ, UK
| | - Michael Cauchi
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Saul Berkovitz
- Royal London Hospital for Integrated Medicine, Great Ormond Street, London, WC1N 3HR, UK
| | - Sarah A Smith
- Bedford and Addenbrooke's Cambridge University Hospital Trusts c/o The Primrose Unit, Kempston Rd, Bedford, MK42 9DJ, UK
| |
Collapse
|
27
|
Subramaniam N, Petrik JJ, Vickaryous MK. VEGF, FGF-2 and TGFβ expression in the normal and regenerating epidermis of geckos: implications for epidermal homeostasis and wound healing in reptiles. J Anat 2018; 232:768-782. [PMID: 29417581 PMCID: PMC5879961 DOI: 10.1111/joa.12784] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 01/17/2023] Open
Abstract
The skin is a bilayered organ that serves as a key barrier between an organism and its environment. In addition to protecting against microbial invasion, physical trauma and environmental damage, skin participates in maintaining homeostasis. Skin is also capable of spontaneous self-repair following injury. These functions are mediated by numerous pleiotrophic growth factors, including members of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor β (TGFβ) families. Although growth factor expression has been well documented in mammals, particularly during wound healing, for groups such as reptiles less is known. Here, we investigate the spatio-temporal pattern of expression of multiple growth factors in normal skin and following a full-thickness cutaneous injury in the representative lizard Eublepharis macularius, the leopard gecko. Unlike mammals, leopard geckos can heal cutaneous wounds without scarring. We demonstrate that before, during and after injury, keratinocytes of the epidermis express a diverse panel of growth factor ligands and receptors, including: VEGF, VEGFR1, VEGFR2, and phosphorylated VEGFR2; FGF-2 and FGFR1; and phosphorylated SMAD2, TGFβ1, and activin βA. Unexpectedly, only the tyrosine kinase receptors VEGFR1 and FGFR1 were dynamically expressed, and only during the earliest phases of re-epithelization; otherwise all the proteins of interest were constitutively present. We propose that the ubiquitous pattern of growth factor expression by keratinocytes is associated with various roles during tissue homeostasis, including protection against ultraviolet photodamage and coordinated body-wide skin shedding.
Collapse
Affiliation(s)
- Noeline Subramaniam
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
- Institute of Medical ScienceFaculty of MedicineUniversity of TorontoTorontoONCanada
- Keenan Research Centre in the Li Ka Shing Knowledge InstituteSt. Michael's HospitalDepartment of MedicineUniversity of TorontoTorontoONCanada
| | - James J. Petrik
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - Matthew K. Vickaryous
- Department of Biomedical SciencesOntario Veterinary CollegeUniversity of GuelphGuelphONCanada
| |
Collapse
|
28
|
Fanelli M, Locopo N, Gattuso D, Gasparini G. Assessment of Tumor Vascularization: Immunohistochemical and Non-Invasive Methods. Int J Biol Markers 2018; 14:218-31. [PMID: 10669950 DOI: 10.1177/172460089901400405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth of solid tumors beyond a certain mass is dependent on the vascular bed from pre-existing host vasculature. The process of angiogenesis is essential not only for primary tumor growth but also for metastasis. The number of microvessels within the invasive component of a primary tumor reflects the degree of tumor angiogenesis. At present the most widely used method to assess neovascularization is the quantitation of intratumoral microvessel density (IMD) by immunohistochemical methods in which specific markers for endothelial cells are employed. In this paper we analyze the different methods used to assess IMD, as well as their advantages and potential methodological pitfalls. Several studies have shown a close correlation between IMD, tumor growth and the occurrence of metastasis, suggesting that IMD is a prognostic indicator of clinical relevance. Furthermore, preliminary studies suggest that determination of angiogenesis may predict responsiveness to some forms of conventional anticancer therapy. Although the histological microvessel density technique is the current gold standard to characterize tumor angiogenesis, it may not be the ideal tool for clinical purposes because it needs to be performed on biopsy material and does not assess the functional pathways involved in the angiogenic activity of tumors. Non-invasive assessment of tumor vascularity is possible in vivo by means of Doppler sonography, dynamic contrast-enhanced magnetic resonance imaging (MRI) and positron emission tomography (PET). These methods may be preferable to histological assay because they are non-invasive, survey the entire tumor, reflect both anatomic and physiologic characteristics, and may be useful to monitor the activity of antiangiogenic therapies.
Collapse
Affiliation(s)
- M Fanelli
- Division of Medical Oncology, Azienda Ospedaliera Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | | | | | | |
Collapse
|
29
|
Chaqour J, Lee S, Ravichandra A, Chaqour B. Abscisic acid - an anti-angiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages. J Cell Sci 2018; 131:jcs.210492. [PMID: 29361545 DOI: 10.1242/jcs.210492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Abscisic acid (ABA) has shown anti-inflammatory and immunoregulatory properties in preclinical models of diabetes and inflammation. Herein, we studied the effects of ABA on angiogenesis, a strictly controlled process that, when dysregulated, leads to severe angiogenic disorders including vascular overgrowth, exudation, cellular inflammation and organ dysfunction. By using a 3D sprouting assay, we show that ABA effectively inhibits migration, growth and expansion of endothelial tubes without affecting cell viability. Analyses of the retinal vasculature in developing normoxic and hyperoxic mice challenged by oxygen toxicity reveal that exogenously administered ABA stunts the development and regeneration of blood vessels. In these models, ABA downregulates endothelial cell (EC)-specific growth and migratory genes, interferes with tip and stalk cell specification, and hinders the function of filopodial protrusions required for precise guidance of vascular sprouts. In addition, ABA skews macrophage polarization towards the M1 phenotype characterized by anti-angiogenic marker expression. In accordance with this, ABA treatment accelerates macrophage-induced programmed regression of fetal blood vessels. These findings reveal protective functions of ABA against neovascular growth through modulation of EC and macrophage plasticity, suggesting the potential utility of ABA as a treatment in vasoproliferative diseases.
Collapse
Affiliation(s)
- Julienne Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sangmi Lee
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Aashreya Ravichandra
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Brahim Chaqour
- The Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY 11203, USA .,The Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
30
|
Hu W, Wei R, Wang L, Lu J, Liu H, Zhang W. Correlations of MMP-1, MMP-3, and MMP-12 with the degree of atherosclerosis, plaque stability and cardiovascular and cerebrovascular events. Exp Ther Med 2018; 15:1994-1998. [PMID: 29434795 PMCID: PMC5776639 DOI: 10.3892/etm.2017.5623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
We analyzed the effects of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-12 on the degree of carotid atherosclerosis (CAS) and plaque stability, and investigated their correlations with cardiovascular and cerebrovascular events (CCEs). Two hundred CAS patients were enrolled. Carotid intima-media thickness (IMT) was measured using ultrasonic examination. Patients were divided into the no plaque group (NP group), stable plaque group (SP group), and vulnerable plaque group (VP group). The Crouse method was used for the evaluation of plaque scores. Additionally, 60 healthy subjects were enrolled as the control group. Serum triacylglycerol (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were analyzed. The serum protein levels of MMP-1, MMP-3, and MMP-12 were measured by western blotting. The frequency of CCEs within 2 years was recorded, and its correlation with MMP-1, MMP-3, and MMP-12 was analyzed. The CAS plaque scores in the SP and VP groups were significantly increased compared with the NP group, and the difference between the SP and VP groups was significant. The levels of TC, TG, LDL-C, and HDL-C of CAS patients were significantly increased compared with those in the control group, but the differences in these indexes between the patient groups were not significant. Western blotting showed that the levels of MMP-1, MMP-3, and MMP-12 in the patient groups were significantly increased compared with those in the control group, and the protein levels in the VP group were significantly higher than those in the SP and NP groups. Additionally, the levels of MMP-1, MMP-3, and MMP-12 had significantly positive correlations with the occurrence of CCEs in CAS patients. In conclusion, MMP-1, MMP-3, and MMP-12 are positively correlated with CCEs in CAS patients. They can be used as markers for the clinical diagnosis and prognosis of CAS.
Collapse
Affiliation(s)
- Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Rui Wei
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Liyue Wang
- Department of Cardiology, Wuhan Puren Hospital, Wuhan, Hubei 430000, P.R. China
| | - Jingqian Lu
- Department of Cardiology, Kunming Calmette International Hospital, Kunming, Yunnan 650000, P.R. China
| | - Hongming Liu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
31
|
Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death Dis 2018; 9:58. [PMID: 29352190 PMCID: PMC5833357 DOI: 10.1038/s41419-017-0082-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Vascularization deficiency caused a lot of diseases, such as diabetes ulcer and myocardial infarction. Mesenchymal stem cells (MSCs), with the self-renewal and multipotent differentiation capacities, have been used for many diseases treatment through regulation microenvironment. Numerous studies reported that MSCs transplantation could largely improve cutaneous wound healing via paracrine secretion of growth factors. However, whether MSCs take part in the angiogenesis process directly remains elusive. Previous study proved that autophagy inhibited immunosuppressive function of MSCs and prevented the degradation of MSCs function in inflammatory and senescent microenvironment. Here, we proved that autophagy determines the therapeutic effect of MSCs in cutaneous wound healing through promoting endothelial cells angiogenesis and demonstrated that the paracrine of vascular endothelial growth factor (VEGF) in MSCs was required in wound site. We further revealed that autophagy enhanced the VEGF secretion from MSCs through ERK phosphorylation directly. Collectively, we put forward that autophagy mediated paracrine of VEGF plays a central role in MSCs cured cutaneous wound healing and may provide a new therapeutic method for angiogenesis-related diseases.
Collapse
|
32
|
Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis. EBioMedicine 2017; 27:71-85. [PMID: 29248508 PMCID: PMC5828296 DOI: 10.1016/j.ebiom.2017.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis, a prominent feature of pathology, is known to be guided by factors secreted by living cells around a lesion. Although many cells are disrupted in a response to injury, the relevance of degenerating cells in pathological angiogenesis is unclear. Here, we show that the release of lactate dehydrogenase A (LDHA) from degenerating neurons drives central nervous system (CNS) angiogenesis. Silencing neuronal LDHA expression suppressed angiogenesis around experimental autoimmune encephalomyelitis (EAE)- and controlled cortical impact-induced lesions. Extracellular LDHA-mediated angiogenesis was dependent on surface vimentin expression and vascular endothelial growth factor receptor (VEGFR) phosphorylation in vascular endothelial cells. Silencing vimentin expression in vascular endothelial cells prevented angiogenesis around EAE lesions and improved survival in a mouse model of glioblastoma. These results elucidate novel mechanisms that may mediate pathologic angiogenesis and identify a potential molecular target for the treatment of CNS diseases involving angiogenesis. Injury leads to the release of intracellular components including LDHA, which promotes angiogenesis in the CNS. Cell surface vimentin, which is expressed on vascular endothelial cells, is involved in LHDA-mediated angiogenesis.
Angiogenesis is a prominent feature of many central nervous system (CNS) diseases, and regulates both pathologic progression and wound healing in several diseases. Pathologic CNS is characterized by neuronal damage that leads to the release of intracellular components. However, the effect of damaged cells on angiogenesis has not been clarified. This study revealed that LDHA, which is a known damage marker, promotes CNS-specific angiogenesis. LDHA-mediated angiogenesis depends on vimentin on the surface of vascular endothelial cells. The work described here proposes a novel mechanism by which neurodegeneration drives angiogenesis in the CNS.
Collapse
|
33
|
Smink AM, Li S, Swart DH, Hertsig DT, de Haan BJ, Kamps JAAM, Schwab L, van Apeldoorn AA, de Koning E, Faas MM, Lakey JRT, de Vos P. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia. J Biomed Mater Res A 2017; 105:2533-2542. [PMID: 28470672 PMCID: PMC5575460 DOI: 10.1002/jbm.a.36101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet-derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor (aFGF), and basic FGF were compared in a tube formation assay. Furthermore, the release kinetics of different liposome compositions were tested. aFGF and L-α-phosphatidylcholine/cholesterol liposomes were selected to support vascularization. Two dosages of aFGF-liposomes (0.5 and 1.0 μg aFGF per injection) were administered weekly for a month after which islets were transplanted. We observed enhanced efficacy in the immediate post-transplant period compared to the untreated scaffolds. However, on the long-term, glucose levels of the aFGF treated animals started to increase to diabetic levels. These results suggest that injections with aFGF liposomes do improve vascularization and the immediate restoration of blood glucose levels but does not facilitate the long-term survival of islets. Our data emphasize the need for long-term studies to evaluate potential beneficial and adverse effects of vascularization protocols of scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2533-2542, 2017.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiri Li
- Department of Surgery, University of California Irvine, Orange
| | - Daniël H Swart
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aart A van Apeldoorn
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Eelco de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange.,Department of Biomedical Engineering, University of California Irvine, Irvine
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Wu X, Newbold MA, Gao Z, Haynes CL. A versatile microfluidic platform for the study of cellular interactions between endothelial cells and neutrophils. Biochim Biophys Acta Gen Subj 2017; 1861:1122-1130. [DOI: 10.1016/j.bbagen.2017.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/11/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022]
|
35
|
Wang Z, Long DW, Huang Y, Khor S, Li X, Jian X, Wang Y. Fibroblast Growth Factor-1 Released from a Heparin Coacervate Improves Cardiac Function in a Mouse Myocardial Infarction Model. ACS Biomater Sci Eng 2017; 3:1988-1999. [PMID: 33440554 DOI: 10.1021/acsbiomaterials.6b00509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence supports the beneficial effect of fibroblast growth factor-1 (FGF1) on heart diseases, but its application has been hindered by the short half-life and limited bioactivity of the free protein. We designed an injectable coacervate to facilitate robust growth factor delivery, which would both protect and increase the bioactivity of growth factors. In this study, a model for acute myocardial infarction was established in mice, and the cardioprotective effect of the FGF1 coacervate was investigated. Echocardiographic results showed that the FGF1 coacervate inhibited ventricular dilation and preserved cardiac contractibility more than the free FGF1 and the saline control within the 6-week duration of the experiments. Histological examination revealed that the FGF1 coacervate reduced inflammation and fibrosis post-MI, significantly increased the proliferation of endothelial and mural cells, and resulted in stable arterioles and capillaries. Furthermore, the FGF1 coacervate improved the proliferation of cardiac stem cells 6 weeks post-MI. However, free FGF1, dosed identically, did not show significant difference from saline treatment. Thus, one injection of FGF1 coacervate was sufficient to attenuate the injury caused by MI, and the results were significantly better than those obtained from an equal dose of free FGF1.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Daniel W Long
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yan Huang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Xiaokun Li
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao Jian
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Yadong Wang
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
36
|
Hyoun Kim M, Kim SG, Guhn Kim C, Kim DW. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model. Appl Radiat Isot 2016; 121:22-27. [PMID: 28013153 DOI: 10.1016/j.apradiso.2016.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/09/2016] [Accepted: 12/18/2016] [Indexed: 12/25/2022]
Abstract
The serine-aspartic acid-valine (SDV) peptide binds specifically to integrin αvβ3. We developed a Tc-99m and TAMRA labeled peptide, Tc-99m SDV-ECG-K-TAMRA for multimodal imaging of angiogenesis. Tc-99m SDV-ECG-K-TAMRA was prepared in high yield (>96%) and showed low cytotoxicity. Tc-99m tetrofosmin images 1 week after operation, revealed significantly decreased perfusion of the ischemic hindlimb, and the perfusion recovered gradually for 4 weeks. In contrast, Tc-99m SDV-ECG-K-TAMRA uptake was maximal 1 week after the operation (ischemic-to-non-ischemic uptake ratio =5.03±1.01) and decreased gradually. The ischemic-to-non-ischemic ratio of Tc-99m SDV-ECG-K-TAMRA and Tc-99m tetrofosmin was strongly negatively correlated (r =-0.94). A postmortem analysis revealed increased angiogenesis markers and uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Our in vivo and in vitro studies revealed substantial uptake of Tc-99m SDV-ECG-K-TAMRA by ischemic tissue. Tc-99m SDV-ECG-K-TAMRA could be a good candidate dual-modality imaging agent to assess angiogenesis.
Collapse
Affiliation(s)
- Myoung Hyoun Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Seul-Gi Kim
- Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Chang Guhn Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | - Dae-Weung Kim
- Department of Nuclear Medicine and Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea; Research Unit of Molecular Imaging Agent (RUMIA), Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea.
| |
Collapse
|
37
|
Microvascular effects of the inhibition of dipeptidylpeptidase IV by linagliptin in nondiabetic hypertensive patients. J Hypertens 2016; 34:345-50. [PMID: 26599219 DOI: 10.1097/hjh.0000000000000776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent studies suggest vascular benefits of dipeptidylpeptidase IV (DPP-IV) inhibition in patients with diabetes mellitus. Only little is known about potential vascular effects of DPP-IV inhibitors in nondiabetic individuals. The aim of this study was to investigate the effect of DPP-IV inhibition in a nondiabetic hypertensive population. METHOD This was a double-blinded, randomized, placebo-controlled, mechanistic study, comparing microvascular effects of the DPP-IV inhibitor linagliptin with placebo in nondiabetic individuals with a history of arterial hypertension. Twenty-one patients received 5 mg linagliptin (5 women; age 67.6 ± 6.0 years; mean ± SD), whereas 22 patients were randomized to placebo (5 women; age 64.8 ± 7.1 years). RESULTS At baseline, after 6 and 12 weeks, retinal microcirculation and arterial blood pressure profiles were assessed. Moreover, blood samples were taken for the measurement of HbA1c, asymmetric dimethylarginine, C-reactive peptide, cyclic guanosinmonophosphate, transforming growth factor beta (TGF-ß1) and cystatin C. Retinal capillary perfusion increased by 23.7 ± 10.3% (mean ± SEM; P < 0.05), retinal arterial flow by 7.6 ± 0.6 (P < 0.05) and the retinal hyperemic response by 290 ± 263% (P < 0.05) during treatment with linagliptin. No change in retinal blood flow was found in the placebo group. Although blood pressure declined in both groups, a significant decline in TGF-ß1 by 9.3 ± 4.5% (P < 0.05) could only be observed in the linagliptin group. No significant change in other laboratory parameters could be observed in both groups. CONCLUSION Our study suggests microvascular and antifibrotic effects of linagliptin in a nondiabetic, hypertensive population.
Collapse
|
38
|
Knight SP, Browne JE, Meaney JF, Smith DS, Fagan AJ. A novel anthropomorphic flow phantom for the quantitative evaluation of prostate DCE-MRI acquisition techniques. Phys Med Biol 2016; 61:7466-7483. [PMID: 27694709 DOI: 10.1088/0031-9155/61/20/7466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel anthropomorphic flow phantom device has been developed, which can be used for quantitatively assessing the ability of magnetic resonance imaging (MRI) scanners to accurately measure signal/concentration time-intensity curves (CTCs) associated with dynamic contrast-enhanced (DCE) MRI. Modelling of the complex pharmacokinetics of contrast agents as they perfuse through the tumour capillary network has shown great promise for cancer diagnosis and therapy monitoring. However, clinical adoption has been hindered by methodological problems, resulting in a lack of consensus regarding the most appropriate acquisition and modelling methodology to use and a consequent wide discrepancy in published data. A heretofore overlooked source of such discrepancy may arise from measurement errors of tumour CTCs deriving from the imaging pulse sequence itself, while the effects on the fidelity of CTC measurement of using rapidly-accelerated sequences such as parallel imaging and compressed sensing remain unknown. The present work aimed to investigate these features by developing a test device in which 'ground truth' CTCs were generated and presented to the MRI scanner for measurement, thereby allowing for an assessment of the DCE-MRI protocol to accurately measure this curve shape. The device comprised a four-pump flow system wherein CTCs derived from prior patient prostate data were produced in measurement chambers placed within the imaged volume. The ground truth was determined as the mean of repeat measurements using an MRI-independent, custom-built optical imaging system. In DCE-MRI experiments, significant discrepancies between the ground truth and measured CTCs were found for both tumorous and healthy tissue-mimicking curve shapes. Pharmacokinetic modelling revealed errors in measured K trans, v e and k ep values of up to 42%, 31%, and 50% respectively, following a simple variation of the parallel imaging factor and number of signal averages in the acquisition protocol. The device allows for the quantitative assessment and standardisation of DCE-MRI protocols (both existing and emerging).
Collapse
Affiliation(s)
- Silvin P Knight
- National Centre for Advanced Medical Imaging (CAMI), St James's Hospital/School of Medicine, Trinity College University of Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
39
|
Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol 2016; 37:12927-12939. [PMID: 27448306 DOI: 10.1007/s13277-016-5184-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, the scientific community has discovered an immense potential of natural compounds in the treatment of dreadful diseases such as cancer. Besides the availability of a variety of natural bioactive molecules, efficacious cancer therapy still needs to be developed. So, to design an efficacious cancer treatment strategy, it is essential to understand the interactions of natural molecules with their respective cellular targets. Quercetin (Quer) is a naturally occurring flavonol present in many commonly consumed food items. It governs numerous intracellular targets, including the proteins involved in apoptosis, cell cycle, detoxification, antioxidant replication, and angiogenesis. The weight of available synergistic studies vigorously fortifies the utilization of Quer as a chemoprevention drug. This extensive review covers various therapeutic interactions of Quer with their recognized cellular targets involved in cancer treatment.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Katrin Sak
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India.
| |
Collapse
|
40
|
Mandic L, Traxler D, Gugerell A, Zlabinger K, Lukovic D, Pavo N, Goliasch G, Spannbauer A, Winkler J, Gyöngyösi M. Molecular Imaging of Angiogenesis in Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016; 9:27. [PMID: 27683600 PMCID: PMC5018257 DOI: 10.1007/s12410-016-9389-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Myocardial infarction (MI) leading to heart failure displays an important cause of death worldwide. Adequate restoration of blood flow to prevent this transition is a crucial factor to improve long-term morbidity and mortality. Novel regenerative therapies have been thoroughly investigated within the past decades. RECENT FINDINGS Increased angiogenesis in infarcted myocardium has shown beneficial effects on the prognosis of MI; therefore, the proangiogenic capacity of currently tested treatments is of specific interest. Molecular imaging to visualize formation of new blood vessels in vivo displays a promising option to monitor proangiogenic effects of regenerative substances. SUMMARY Based on encouraging results in preclinical models, molecular angiogenesis imaging has recently been applied in a small set of patients. This article reviews recent literature on noninvasive in vivo molecular imaging of angiogenesis after MI as an integral part of cardiac regeneration.
Collapse
Affiliation(s)
- Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
41
|
Witt CJ, Gabel SP, Meisinger J, Werra G, Liu SW, Young MR. Interrelationship between Protein Phosphatase-2A and Cytoskeletal Architecture during the Endothelial Cell Response to Soluble Products Produced by Human Head and Neck Cancer. Otolaryngol Head Neck Surg 2016; 122:721-7. [PMID: 10793354 DOI: 10.1016/s0194-5998(00)70204-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tumor neovascularization is necessary for the progressive development of all solid tumors, including head and neck squamous cell carcinomas (HNSCCs). The angiogenic process includes increased endothelial cell motility. Our prior studies have shown the importance of protein phos-phatase-2A (PP-2A) in restricting endothelial cell motility. Because motility is regulated by the polymerization/depolymerization of the cellular cytoskeleton, the present study defined the interrelationship between PP-2A and the cytoskeleton during endothelial cell responses to HNSCC-derived angiogenic factors. PP-2A was shown to colocalize with microtubules of unstimulated endothelial cells. However, exposure to HNSCC-derived products resulted in a more diffuse distribution of PP-2A staining and a loss of filamentous tubulin. The feasibility of pharmacologically preventing this cytoskeletal disorganization as a means of blocking tumor-induced angiogenesis was tested. This was accomplished by use of 1α,25-dihydroxyvitamin D3[1,25 (OH)2D3] and all- trans-retinoic acid to indirectly stimulate PP-2A activity through their capacity to elevated intracellular levels of the second messenger ceramide. Pretreatment of endothelial cells with either 1,25(OH)2D3or retinoic acid prevented the cytoskeletal disorganization that otherwise occurs in endothelial cells on exposure to HNSCC-derived products. These studies support the feasibility of using elevation of PP-2A to prevent the mor-phogenic component of the angiogenic process that is stimulated by HNSCC-derived factors.
Collapse
Affiliation(s)
- C J Witt
- Department of Otolaryngology-Head and Neck Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | | | |
Collapse
|
42
|
Reginelli A, Silvestro G, Fontanella G, Sangiovanni A, Conte M, Nuzzo I, Calvanese M, Traettino M, Ferraioli P, Grassi R, Manzo R, Cappabianca S. Validation of DWI in assessment of radiotreated bone metastases in elderly patients. Int J Surg 2016; 33 Suppl 1:S148-53. [PMID: 27392721 DOI: 10.1016/j.ijsu.2016.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bone metastases are commonly observed in oncologic patients with advanced disease. These metastases are considered the main cause of neoplastic pain, with more than half of oncologic patients experiencing neoplastic pain during the course of the disease due to bone involvement. Lung, breast, and prostate cancers are the primary causes of bone metastases. Magnetic resonance imaging (MRI), especially diffusion weighted imaging (DWI) sequences, is the focus of our research, as it has been proven to be an optimal predictive index to assess the radiation treatment in many patients. We included patients treated with standard fractioning of radiation therapy. First, we examined the irradiated lesions with the MRI-DWI technique, before treatment and 30 and 60 days after its completion. Then we combined the MRI results and clinical parameters in a table with a predictive score for the quality of life in patients with bone metastases. This was a significant predictor of the efficacy of radiation treatment, from both clinical and psychological points of view, as it can allow an early assessment of the response to RT and therefore better scheduling of the next therapeutic steps to be performed. The table of the score we proposed helped guide patient monitoring, enabling us to undertake, where possible, follow-up with therapeutic strategies tailored to each patient's needs.
Collapse
Affiliation(s)
- Alfonso Reginelli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | | | - Giovanni Fontanella
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | - Angelo Sangiovanni
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | - Mario Conte
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | - Iolanda Nuzzo
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | | | - Marianna Traettino
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | - Piera Ferraioli
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| | - Roberta Grassi
- Department of Radiotherapy, University of Sassari, Sassari, Italy.
| | - Roberto Manzo
- Department of Radiotherapy, Cardinale Ascalesi Hospital, Naples, Italy.
| | - Salvatore Cappabianca
- Department of Internal and Experimental Medicine, Magrassi-Lanzara, Institute of Radiology and Radiotherapy, Second University of Naples, Naples, Italy.
| |
Collapse
|
43
|
Ming H, Lan Y, He F, Xiao X, Zhou X, Zhang Z, Li P, Huang G. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis. CHINESE JOURNAL OF CANCER 2015; 34:459-67. [PMID: 26275421 PMCID: PMC4593386 DOI: 10.1186/s40880-015-0044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
Abstract
Background Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2. Methods Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF). Results In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model. Conclusion CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.
Collapse
Affiliation(s)
- Huixin Ming
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Ying Lan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Feng He
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xiaoying Zhou
- Medical Research Centre, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| |
Collapse
|
44
|
Liu J, Deng YH, Yang L, Chen Y, Lawali M, Sun LP, Liu Y. CPU-12, a novel synthesized oxazolo[5,4-d]pyrimidine derivative, showed superior anti-angiogenic activity. J Pharmacol Sci 2015; 129:9-17. [PMID: 26154846 DOI: 10.1016/j.jphs.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis is a crucial requirement for malignant tumor growth, progression and metastasis. Tumor-derived factors stimulate formation of new blood vessels which actively support tumor growth and spread. Various of drugs have been applied to inhibit tumor angiogenesis. CPU-12, 4-chloro-N-(4-((2-(4-methoxyphenyl)-5-methyloxazolo[5,4-d] pyrimidin-7-yl)amino)phenyl)benzamide, is a novel oxazolo[5,4-d]pyrimidine derivative that showed potent activity in inhibiting VEGF-induced angiogenesis in vitro and ex-vivo. In cell toxicity experiments, CPU-12 significantly inhibited the human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner with a low IC50 value at 9.30 ± 1.24 μM. In vitro, CPU-12 remarkably inhibited HUVEC's migration, chemotactic invasion and capillary-like tube formation in a dose-dependent manner. In ex-vivo, CPU-12 effectively inhibited new microvessels sprouting from the rat aortic ring. In addition, the downstream signalings of vascular endothelial growth factor receptor-2 (VEGFR-2), including the phosphorylation of PI3K, ERK1/2 and p38 MAPK, were effectively down-regulated by CPU-12. These evidences suggested that angiogenic response via the induction of VEGFR through distinct signal transduction pathways regulating proliferation, migration and tube formation of endothelial cells was significantly inhibited by the novel small molecule compound CPU-12 in vitro and ex-vivo. In conclusion, CPU-12 showed superior anti-angiogenic activity in vitro.
Collapse
Affiliation(s)
- Jiping Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ya-Hui Deng
- Jiangsu Key Laboratory of Drug Design & Optimization, and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ling Yang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yijuan Chen
- Jiangsu Key Laboratory of Drug Design & Optimization, and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Manzo Lawali
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
45
|
Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumour Biol 2015; 36:4005-16. [DOI: 10.1007/s13277-015-3391-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
|
46
|
Gnyawali SC, Barki KG, Mathew-Steiner SS, Dixith S, Vanzant D, Kim J, Dickerson JL, Datta S, Powell H, Roy S, Bergdall V, Sen CK. High-resolution harmonics ultrasound imaging for non-invasive characterization of wound healing in a pre-clinical swine model. PLoS One 2015; 10:e0122327. [PMID: 25799513 PMCID: PMC4370665 DOI: 10.1371/journal.pone.0122327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/10/2015] [Indexed: 11/18/2022] Open
Abstract
This work represents the first study employing non-invasive high-resolution harmonic ultrasound imaging to longitudinally characterize skin wound healing. Burn wounds (day 0-42), on the dorsum of a domestic Yorkshire white pig were studied non-invasively using tandem digital planimetry, laser speckle imaging and dual mode (B and Doppler) ultrasound imaging. Wound depth, as measured by B-mode imaging, progressively increased until day 21 and decreased thereafter. Initially, blood flow at the wound edge increased up to day 14 and subsequently regressed to baseline levels by day 21, when the wound was more than 90% closed. Coinciding with regression of blood flow at the wound edge, there was an increase in blood flow in the wound bed. This was observed to regress by day 42. Such changes in wound angiogenesis were corroborated histologically. Gated Doppler imaging quantitated the pulse pressure of the primary feeder artery supplying the wound site. This pulse pressure markedly increased with a bimodal pattern following wounding connecting it to the induction of wound angiogenesis. Finally, ultrasound elastography measured tissue stiffness and visualized growth of new tissue over time. These studies have elegantly captured the physiological sequence of events during the process of wound healing, much of which is anticipated based on certain dynamics in play, to provide the framework for future studies on molecular mechanisms driving these processes. We conclude that the tandem use of non-invasive imaging technologies has the power to provide unprecedented insight into the dynamics of the healing skin tissue.
Collapse
Affiliation(s)
- Surya C. Gnyawali
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Kasturi G. Barki
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Shomita S. Mathew-Steiner
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Sriteja Dixith
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel Vanzant
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Jayne Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Jennifer L. Dickerson
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Soma Datta
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Heather Powell
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States of America
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio, United States of America
| | - Sashwati Roy
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
| | - Valerie Bergdall
- Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Chandan K. Sen
- Comprehensive Wound Center, Davis Heart and Lung Research Institute, Centers for Regenerative Medicine and Cell Based Therapies, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
47
|
Jung HJ, Kim Y, Lee HB, Kwon HJ. Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from red pepper leaf. Mol Cells 2015; 38:273-8. [PMID: 25556370 PMCID: PMC4363728 DOI: 10.14348/molcells.2015.2320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/27/2022] Open
Abstract
The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible factor-1α and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.
Collapse
Affiliation(s)
- Hye Jin Jung
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
- Department of Pharmaceutical Engineering, Sun Moon University, Asan 336-708,
Korea
| | - Yonghyo Kim
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
| | - Hyang Burm Lee
- Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757,
Korea
| | - Ho Jeong Kwon
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749,
Korea
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul 120-752,
Korea
| |
Collapse
|
48
|
Hendrikx G, De Saint-Hubert M, Dijkgraaf I, Bauwens M, Douma K, Wierts R, Pooters I, Van den Akker NM, Hackeng TM, Post MJ, Mottaghy FM. Molecular imaging of angiogenesis after myocardial infarction by (111)In-DTPA-cNGR and (99m)Tc-sestamibi dual-isotope myocardial SPECT. EJNMMI Res 2015; 5:2. [PMID: 25853008 PMCID: PMC4384708 DOI: 10.1186/s13550-015-0081-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background CD13 is selectively upregulated in angiogenic active endothelium and can serve as a target for molecular imaging tracers to non-invasively visualise angiogenesis in vivo. Non-invasive determination of CD13 expression can potentially be used to monitor treatment response to pro-angiogenic drugs in ischemic heart disease. CD13 binds peptides and proteins through binding to tripeptide asparagine-glycine-arginine (NGR) amino acid residues. Previous studies using in vivo fluorescence microscopy and magnetic resonance imaging indicated that cNGR tripeptide-based tracers specifically bind to CD13 in angiogenic vasculature at the border zone of the infarcted myocardium. In this study, the CD13-binding characteristics of an 111In-labelled cyclic NGR peptide (cNGR) were determined. To increase sensitivity, we visualised 111In-DTPA-cNGR in combination with 99mTc-sestamibi using dual-isotope SPECT to localise CD13 expression in perfusion-deficient regions. Methods Myocardial infarction (MI) was induced in Swiss mice by ligation of the left anterior descending coronary artery (LAD). 111In-DTPA-cNGR and 99mTc-sestamibi dual-isotope SPECT imaging was performed 7 days post-ligation in MI mice and in control mice. In addition, ex vivo SPECT imaging on excised hearts was performed, and biodistribution of 111In-DTPA-cNGR was determined using gamma counting. Binding specificity of 111In-DTPA-cNGR to angiogenic active endothelium was determined using the Matrigel model. Results Labelling yield of 111In-DTPA-cNGR was 95% to 98% and did not require further purification. In vivo, 111In-DTPA-cNGR imaging showed a rapid clearance from non-infarcted tissue and a urinary excretion of 82% of the injected dose (I.D.) 2 h after intravenous injection in the MI mice. Specific binding of 111In-DTPA-cNGR was confirmed in the Matrigel model and, moreover, binding was demonstrated in the infarcted myocardium and infarct border zone. Conclusions Our newly designed and developed angiogenesis imaging probe 111In-DTPA-cNGR allows simultaneous imaging of CD13 expression and perfusion in the infarcted myocardium and the infarct border zone by dual-isotope micro-SPECT imaging. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0081-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Geert Hendrikx
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke De Saint-Hubert
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Matthias Bauwens
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands
| | - Kim Douma
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Roel Wierts
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands
| | - Ivo Pooters
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands
| | - Nynke Ms Van den Akker
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mark J Post
- Department of Physiology, CARIM, Maastricht University, Maastricht, The Netherlands ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Maastricht University Medical Centre (MUMC+), Postbox 5800, 6202 AZ Maastricht, The Netherlands ; Department of Nuclear Medicine, University hospital, RWTH University, Aachen, Germany
| |
Collapse
|
49
|
Laurent M, Joimel U, Varin R, Cazin L, Gest C, Le-Cam-Duchez V, Jin J, Liu J, Vannier JP, Lu H, Soria J, Li H, Soria C. Comparative study of the effect of rivaroxaban and fondaparinux on monocyte's coagulant activity and cytokine release. Exp Hematol Oncol 2014; 3:30. [PMID: 25601900 PMCID: PMC4298120 DOI: 10.1186/2162-3619-3-30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/07/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Tissue factor (TF) exposed on activated monocytes and macrophages is involved in thrombosis through activation of factor X and cytokine release, responsible for inflammation and thrombosis. We investigated the effect of two anti-factor Xa drugs: rivaroxaban, a direct anti-Xa inhibitor, and fondaparinux, an antithrombin dependent anti-Xa inhibitor, on monocyte/macrophage procoagulant activity and cytokine release. METHODS Rivaroxaban and fondaparinux were tested at pharmacological concentrations on LPS-activated monocytes and on THP-1 cells, a human monocytic cell line, to assess 1) TF expression by flow cytometry 2) prothrombinase activity by its coagulant activity and 3) cytokine release in cell supernatants by antibody based cytokine array and ELISA for IL-8 and TNFα. RESULTS AND CONCLUSION Rivaroxaban and fondaparinux did not modify TF expression level on activated cells. In contrast procoagulant activity associated to monocytes and macrophages was dose dependently inhibited by rivaroxaban, but not significantly by fondaparinux. These results could explain why patients undergoing major orthopedic surgery with rivaroxaban prophylaxis were able to achieve significant reductions in venous thromboembolism, compared with drugs commonly used, i.e. fondaparinux and low molecular weight heparin. In addition, rivaroxaban and fondaparinux suppressed some chemokine secretion produced by activated macrophages. This may also contribute to their antithrombotic effect in clinic.
Collapse
Affiliation(s)
- Marc Laurent
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | - Ulrich Joimel
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | - Rémi Varin
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France.,INSERM UMR 965, Lariboisiere Hospital, University of Paris Diderot, Paris, France
| | - Lionel Cazin
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | - Caroline Gest
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | | | - Jian Jin
- INSERM UMR_S1165, IUH, University of Paris Diderot, Saint Louis Hospital, Paris, France.,School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122 China
| | - Jielin Liu
- INSERM UMR_S1165, IUH, University of Paris Diderot, Saint Louis Hospital, Paris, France.,Research center of Tissue engineering and stem cells, Guiyang Medical University, 550004 Guiyang, China
| | - Jean-Pierre Vannier
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | - He Lu
- INSERM UMR_S1165, IUH, University of Paris Diderot, Saint Louis Hospital, Paris, France
| | - Jeannette Soria
- INSERM UMR 965, Lariboisiere Hospital, University of Paris Diderot, Paris, France
| | - Hong Li
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| | - Claudine Soria
- Laboratory MERCI (EA 3829), Faculty of Medicine and Pharmacy, CHU Rouen, Rouen, France
| |
Collapse
|
50
|
BLÁHA V, ŠŤÁSEK J, BIS J, FORTUNATO J, ANDRÝS C, PAVLÍK V, POLANSKÝ P, BRTKO M, SOBOTKA L. The Role of VEGF in the Diabetic Patients Undergoing Endovascular Therapy of Symptomatic Aortic Valve Stenosis. Physiol Res 2014; 63:S351-9. [DOI: 10.33549/physiolres.932857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to explore changes in plasma vascular endothelial growth factor (VEGF) in aged patients who undergone transcatheter aortic valve implantation or balloon angioplasty for the treatment of aortic stenosis. Plasma VEGF was measured in subjects with diabetes mellitus type 2 (DM) (n=21, age 79.2±1.6 years) and in non-diabetic subjects (non-DM) (n=23, age 84.4±0.7 years), using an ELISA kit. Before the procedure plasma levels of VEGF were significantly lower in DM than in non-DM patients (P<0.05). Plasma VEGF significantly increased in both groups (DM and non-DM) 24 h (387±64 vs. 440±30 pg/ml, P<0.05) and 72 h (323±69 vs. 489±47 pg/ml, P<0.05) after the endovascular procedure. However, the VEGF in DM patients was significantly lower compared to non-DM subjects up to one month after the endovascular procedure (283±47 vs. 386±38 pg/ml, P<0.05). We conclude that increased plasma VEGF in aged patients associates with atherosclerotic aortic valve stenosis. In spite of that plasma VEGF in DM was constantly significantly lower than in non diabetic patients, both before and after the endovascular procedure, possibly reflecting a disturbance of angiogenic/anti-angiogenic balance in diabetes.
Collapse
Affiliation(s)
- V. BLÁHA
- Third Department of Internal Medicine, Metabolism and Gerontology, University Hospital Hradec Králové and Medical Faculty Charles University in Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|