1
|
Lucas-Romero J, Bandres MF, McPherson JG. Targeted inactivation of spinal α2 adrenoceptors promotes paradoxical anti-nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636935. [PMID: 39975256 PMCID: PMC11839011 DOI: 10.1101/2025.02.06.636935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Noradrenergic drive from the brainstem to the spinal cord varies in a context-dependent manner to regulate the patterns of sensory and motor transmission that govern perception and action. In sensory networks, it is traditionally assumed that activation of spinal α2 receptors is anti-nociceptive, while spinal α2 blockade is pro-nociceptive. Here, however, we demonstrate in vivo in rats that targeted blockade of spinal α2 receptors can promote anti-nociception. The anti-nociceptive effects are not contingent upon supraspinal actions, as they persist below a chronic spinal cord injury and are enhanced by direct spinal application of antagonist. They are also evident throughout sensory-dominant, sensorimotor integrative, and motor-dominant regions of the gray matter, and neither global changes in spinal neural excitability nor off-target activation of spinal α1 adrenoceptors or 5HT 1A receptors abolished the anti-nociception. Together, these findings challenge the current understanding of noradrenergic modulation of spinal nociceptive transmission.
Collapse
|
2
|
Juri T, Fujimoto Y, Suehiro K, Nishikawa K, Mori T. Participation of the descending noradrenergic inhibitory system in the anti-hyperalgesic effect of acetaminophen in a rat model of inflammation. Life Sci 2021; 286:120030. [PMID: 34627774 DOI: 10.1016/j.lfs.2021.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated the relationship between the analgesic efficacy of acetaminophen and the descending noradrenergic systems using rodent models of inflammatory pain. MAIN METHODS Inflammatory pain models were established by carrageenan injection into rats' paws. The models were defined as acute (4 h after carrageenan injection), subacute (24 h after carrageenan injection), and late (1 week after carrageenan injection) phase. To evaluate intravenous acetaminophen treatment, the withdrawal threshold to mechanical stimuli was assessed simultaneously with in vivo microdialysis assay of noradrenaline levels in the locus coeruleus (LC). Further analyses were performed to observe the effect of yohimbine on the treatment and the impact of AM404 treatment, a metabolite of acetaminophen, on noradrenaline levels in the LC. KEY FINDINGS In all phases, intravenous acetaminophen had a significant anti-hyperalgesic effect (p < 0.05). There was a significant time-dependent increase in the noradrenaline concentration within the LC (acetaminophen versus saline treatment; at 30 min, p < 0.001; 60 min, p < 0.01) in the subacute pain model, but not in the acute and late phase pain models. Intrathecal pre-injection of yohimbine attenuated the anti-hyperalgesic effect after acetaminophen injection only in the subacute model (p < 0.05). In the subacute pain model, intracerebroventricular administration of AM404 showed the same trend in noradrenaline levels as acetaminophen administration (AM404 versus vehicle group at 30 min, p < 0.001). SIGNIFICANCE We found the descending noradrenergic inhibitory system is involved in the antinociceptive action of acetaminophen in the subacute phase of inflammatory pain.
Collapse
Affiliation(s)
- Takashi Juri
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Fujimoto
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Koichi Suehiro
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: An fMRI study. NEUROIMAGE-CLINICAL 2019; 24:101971. [PMID: 31648171 PMCID: PMC7239932 DOI: 10.1016/j.nicl.2019.101971] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/22/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022]
Abstract
Background Migraine is a common episodic neurological disorder. Literature has shown that transcutaneous auricular vagus nerve stimulation (taVNS) at 1 Hz can significantly relieve migraine symptoms. However, its underlying mechanism remains unclear. This study aims to investigate the neural pathways associated with taVNS treatment of migraine. Methods Twenty-nine patients with migraine were recruited from outpatient neurology clinics. Each patient attended two magnetic resonance imaging/functional magnetic resonance imaging (MRI/fMRI) scan sessions separated by one week. Each session included a pre-stimulation resting state fMRI scan, fMRI scans during real or sham 1 Hz taVNS (with block design), and a post-stimulation resting state fMRI scan. Results Twenty-six patients were included in the final analyses. Real taVNS evoked fMRI signal decreases in brain areas belonging to the default mode network (DMN) and brain stem areas including the locus coeruleus (LC), raphe nuclei, parabrachial nucleus, and solitary nucleus. Sham taVNS evoked fMRI signal decreases in brain areas belonging to the DMN. Compared to sham taVNS, real taVNS produced greater deactivation at the bilateral LC. Resting state functional connectivity (rsFC) analysis showed that after taVNS, LC rsFC with the right temporoparietal junction and left secondary somatosensory cortex (S2) significantly increased compared to sham taVNS. The increased rsFC of the left LC-left S2 was significantly negatively associated with the frequency of migraine attacks during the preceding month. Conclusion Our results suggest that taVNS at 1 Hz can significantly modulate activity/connectivity of brain regions associated with the vagus nerve central pathway and pain modulation system, which may shed light on the neural mechanisms underlying taVNS treatment of migraine. taVNS at l HZ evoked fMRI signal decrease in the locus coeruleus in migraine. After taVNS, LC rsFC with TPJ, hippocampus and S2 increased in migraine. The increased LC-S2 rsFC negatively associated with the frequency of migraine attacks.
Collapse
|
5
|
Analgesic Neural Circuits Are Activated by Electroacupuncture at Two Sets of Acupoints. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3840202. [PMID: 27429635 PMCID: PMC4939346 DOI: 10.1155/2016/3840202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/17/2022]
Abstract
To investigate analgesic neural circuits activated by electroacupuncture (EA) at different sets of acupoints in the brain, goats were stimulated by EA at set of Baihui-Santai acupoints or set of Housanli acupoints for 30 min. The pain threshold was measured using the potassium iontophoresis method. The levels of c-Fos were determined with Streptavidin-Biotin Complex immunohistochemistry. The results showed pain threshold induced by EA at set of Baihui-Santai acupoints was 44.74% ± 4.56% higher than that by EA at set of Housanli acupoints (32.64% ± 5.04%). Compared with blank control, EA at two sets of acupoints increased c-Fos expression in the medial septal nucleus (MSN), the arcuate nucleus (ARC), the nucleus amygdala basalis (AB), the lateral habenula nucleus (HL), the ventrolateral periaqueductal grey (vlPAG), the locus coeruleus (LC), the nucleus raphe magnus (NRM), the pituitary gland, and spinal cord dorsal horn (SDH). Compared with EA at set of Housanli points, EA at set of Baihui-Santai points induced increased c-Fos expression in AB but decrease in MSN, the paraventricular nucleus of the hypothalamus, HL, and SDH. It suggests that ARC-PAG-NRM/LC-SDH and the hypothalamus-pituitary may be the common activated neural pathways taking part in EA-induced analgesia at the two sets of acupoints.
Collapse
|
6
|
Mohammad Ahmadi Soleimani S, Azizi H, Mirnajafi-Zadeh J, Semnanian S. Orexin type 1 receptor antagonism in rat locus coeruleus prevents the analgesic effect of intra-LC met-enkephalin microinjection. Pharmacol Biochem Behav 2015. [DOI: 10.1016/j.pbb.2015.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Saadé NE, Barchini J, Tchachaghian S, Chamaa F, Jabbur SJ, Song Z, Meyerson BA, Linderoth B. The role of the dorsolateral funiculi in the pain relieving effect of spinal cord stimulation: a study in a rat model of neuropathic pain. Exp Brain Res 2014; 233:1041-52. [PMID: 25537469 DOI: 10.1007/s00221-014-4180-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
Activation of the dorsal columns is relayed to supraspinal centers, involved in pain modulation, probably via the descending fibers in the dorsolateral funiculi (DLF). The present study examines the role of the DLF in the attenuation of pain-related signs by spinal cord stimulation (SCS). Several groups of rats were subjected to nerve injury and to chronic bilateral DLF lesions at C5-7 level. In each animal, two sets of miniature electrodes were implanted, a caudal system placed in the dorsal epidural space at low thoracic level and another implanted over the dorsal column nuclei, rostral to the lesions. Stimulation (50 Hz, 0.2 ms; 70 % of motor threshold) was applied for 5 min via either of the electrodes. Behavioral tests were used to assess the effects of SCS on the nerve injury-induced mechanical and cold hypersensitivity and heat hyperalgesia. Prior to application of SCS, antagonists to either of GABAA or B, 5-HT1 or 1-2 or α/β-adrenergic receptors were injected i.p. Both stimulations produced comparable decreases (80-90 % of the control) of neuropathic manifestations in rats with intact spinal cords. DLF lesions attenuated the effects of both types of stimulation by about 50 %. Pretreatment with receptor antagonists differentially counteracted the effects of rostral and caudal stimulation; the inhibition with rostral stimulation generally being more prominently influenced. These results provide further support to the notion of important involvement of brainstem pain modulating centers in the effects of SCS. A major component of the inhibitory spinal-supraspinal-spinal loop is mediated by fibers running in the DLF.
Collapse
Affiliation(s)
- N E Saadé
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Riad El Solh Beirut, Beirut, 1107-2020, Lebanon,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Evaluation of c-Fos immunoreactivity in the rat brainstem nuclei relevant in migraine pathogenesis after electrical stimulation of the trigeminal ganglion. Neurol Sci 2013; 34:1597-604. [DOI: 10.1007/s10072-013-1292-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/05/2013] [Indexed: 11/25/2022]
|
9
|
Abstract
This article reviews the baffling problem of the pathophysiology behind a peripheral genesis of migraine pain--or more particularly the baffling problem of its absence. I examine a number of pathophysiological states and the effector mechanisms for these states and find most of them very plausible and that they are all supported by abundant evidence. However, this evidence is mostly indirect; to date the occurrence of any of the presumed pathological states has not been convincingly demonstrated. Furthermore, there is little evidence of increased trigeminal sensory traffic into the central nervous system during a migraine attack. The article also examines a number of observations and experimental programs used to bolster a theory of peripheral pathology and suggests reasons why they may in fact not bolster it. I suggest that a pathology, if one exists, may be in the brain and even that it may not be a pathology at all. Migraine headache might just happen because of random noise in an exquisitely sensitive and complex network. The article suggests an experimental program to resolve these issues.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Australia
| |
Collapse
|
10
|
Coradazzi M, Gulino R, Garozzo S, Leanza G. Selective lesion of the developing central noradrenergic system: short- and long-term effects and reinnervation by noradrenergic-rich tissue grafts. J Neurochem 2010; 114:761-71. [PMID: 20477936 DOI: 10.1111/j.1471-4159.2010.06800.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The possibility to selectively remove noradrenergic neurons in the locus coeruleus/subcoeruleus (LC/SubC) complex by the immunotoxin anti-dopamine-beta-hydroxylase (DBH)-saporin has offered a powerful tool to study the functional role of this projection system. In the present study, the anatomical consequences of selective lesions of the LC/SubC on descending noradrenergic projections during early postnatal development have been investigated following bilateral intraventricular injections of anti-DBH-saporin or 6-hydroxydopamine to immature (4 day old) rats. Administration of increasing doses (0.25-1.0 microg) of the immunotoxin produced, about 5 weeks later, a dose-dependent loss of DBH-immunoreactive neurons in the LC/SubC complex (approximately 45-90%) paralleled by a similar reduction of noradrenergic innervation in the terminal territories in the lumbar spinal cord. Even at the highest dose used (1.0 microg) the immunotoxin did not produce any detectable effects on dopaminergic, adrenergic, serotonergic or cholinergic neuronal populations, which, by contrast, were markedly reduced after administration of 6-hydroxydopamine. The approximately 90% noradrenergic depletion induced by 0.5 and 1.0 microg of anti-DBH-saporin remained virtually unchanged at 40 weeks post-lesion. Conversely, the approximately 45% reduction of spinal innervation density estimated at 5 weeks in animals injected with the lowest dose (0.25 microg) of the immunotoxin was seen recovered up to near-normal levels at 40 weeks, possibly as a result of the intrinsic plasticity of the developing noradrenergic system. A similar reinnervation in the lumbar spinal cord was also seen promoted by grafts of fetal LC tissue implanted at the postnatal day 8 (i.e. 4 days after the lesion with 0.5 microg of anti-DBH-saporin). In these animals, the number of surviving neurons in the grafts and the magnitude of the reinnervation, with fibers extending in both the grey and white matter for considerable distances, were seen higher than those reported in previous studies using adult recipients. This would suggest that the functional interactions between the grafted tissue and the host may recapitulate the events normally occurring during the ontogenesis of the coeruleo-spinal projection system, and can therefore be developmentally regulated. Thus, the neonatal anti-DBH-saporin lesion model, with the possibility to produce graded noradrenergic depletions, holds promises as a most valuable tool to address issues of compensatory reinnervation and functional recovery in the severed CNS as well as to elucidate the mechanisms governing long-distance axon growth from transplanted neural precursors.
Collapse
Affiliation(s)
- Marino Coradazzi
- BRAIN Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | |
Collapse
|
11
|
Vierck CJ, Green M, Yezierski RP. Pain as a stressor: effects of prior nociceptive stimulation on escape responding of rats to thermal stimulation. Eur J Pain 2009; 14:11-6. [PMID: 19261494 DOI: 10.1016/j.ejpain.2009.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/14/2009] [Accepted: 01/27/2009] [Indexed: 01/06/2023]
Abstract
In our previous studies, psychological stress was shown to enhance operant escape responding of male and female rats. The stressors that produced hyperalgesia were physical restraint and social defeat. Nociceptive input also elicits stress reactions, generating the prediction that pain would facilitate pain under certain circumstances. For example, the usual method of evaluating stress in laboratory animals is to test for effects after termination of the stressor. Accordingly, operant escape performance of male and female rats was evaluated during two successive trials involving nociceptive thermal stimulation. The intent was to determine whether nociceptive sensitivity differed on first trials and during pain-induced stress on second trials. Compared to a first trial of 44.5 degrees C stimulation, escape responding increased during a second trial of 44.5 degrees C stimulation (preceded by an escape trial of 10 degrees C). Similarly, escape from cold (10 degrees C) was enhanced when preceded by escapable 44.5 degrees C stimulation. Thus, prior nociceptive stimulation enhanced escape from aversive thermal stimulation. Facilitation of pain by a preceding pain experience is consistent with stress-induced hyperalgesia and contrasts with other models of pain inhibition by concurrent nociceptive stimulation.
Collapse
Affiliation(s)
- Charles J Vierck
- Department of Orthodontics and Comprehensive Center for Pain Research, College of Dentistry, University of Florida, Rm. 10-19, Gainesville, FL 32610-0444, USA.
| | | | | |
Collapse
|
12
|
|
13
|
Electrolytic lesion of the nucleus raphe magnus reduced the antinociceptive effects of bilateral morphine microinjected into the nucleus cuneiformis in rats. Neurosci Lett 2008; 438:351-5. [DOI: 10.1016/j.neulet.2008.04.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/19/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
|
14
|
Viisanen H, Pertovaara A. Influence of peripheral nerve injury on response properties of locus coeruleus neurons and coeruleospinal antinociception in the rat. Neuroscience 2007; 146:1785-94. [PMID: 17445989 DOI: 10.1016/j.neuroscience.2007.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Noradrenergic locus coeruleus (LC) is involved in pain regulation. We studied whether response properties of LC neurons or coeruleospinal antinociception are changed 10-14 days following development of experimental neuropathy. Experiments were performed in spinal nerve-ligated, sham-operated and unoperated male rats under sodium pentobarbital anesthesia. Recordings of LC neurons indicated that responses evoked by noxious somatic stimulation were enhanced in nerve-injured animals, while the effects of nerve injury on spontaneous activity or the response to noxious visceral stimulation were not significant. Microinjection of glutamate into the central nucleus of the amygdala produced a dose-related inhibition of the discharge rate of LC neurons in nerve-injured animals but no significant effect on discharge rates in control groups. Assessment of the heat-induced hind limb withdrawal latency indicated that spinal antinociception induced by electrical stimulation of the LC was significantly weaker in nerve-injured than control animals. The results indicate that peripheral neuropathy induces bidirectional changes in coeruleospinal inhibition of pain. Increased responses of LC neurons to noxious somatic stimulation are likely to promote feedback inhibition of neuropathic hypersensitivity, while the enhanced inhibition of the LC from the amygdala is likely to suppress noradrenergic pain inhibition and promote neuropathic pain. It is proposed that the decreased spinal antinociception induced by direct stimulation of the LC may be explained by pronociceptive changes in the non-noradrenergic systems previously described in peripheral neuropathy. Furthermore, we propose the hypothesis that emotions processed by the amygdala enhance pain due to increased inhibition of the LC in peripheral neuropathy.
Collapse
Affiliation(s)
- H Viisanen
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
15
|
Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006; 80:53-83. [PMID: 17030082 DOI: 10.1016/j.pneurobio.2006.08.001] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022]
Abstract
Norepinephrine is involved in intrinsic control of pain. Main sources of norepinephrine are sympathetic nerves peripherally and noradrenergic brainstem nuclei A1-A7 centrally. Peripheral norepinephrine has little influence on pain in healthy tissues, whereas in injured tissues it has variable effects, including aggravation of pain. Its peripheral pronociceptive effect has been associated with injury-induced expression of novel noradrenergic receptors, sprouting of sympathetic nerve fibers, and pronociceptive changes in the ionic channel properties of primary afferent nociceptors, while an interaction with the immune system may contribute in part to peripheral antinociception induced by norepinephrine. In the spinal cord, norepinephrine released from descending pathways suppresses pain by inhibitory action on alpha-2A-adrenoceptors on central terminals of primary afferent nociceptors (presynaptic inhibition), by direct alpha-2-adrenergic action on pain-relay neurons (postsynaptic inhibition), and by alpha-1-adrenoceptor-mediated activation of inhibitory interneurons. Additionally, alpha-2C-adrenoceptors on axon terminals of excitatory interneurons of the spinal dorsal horn possibly contribute to spinal control of pain. At supraspinal levels, the pain modulatory effect by norepinephrine and noradrenergic receptors has varied depending on many factors such as the supraspinal site, the type of the adrenoceptor, the duration of the pain and pathophysiological condition. While in baseline conditions the noradrenergic system may have little effect, sustained pain induces noradrenergic feedback inhibition of pain. Noradrenergic systems may also contribute to top-down control of pain, such as induced by a change in the behavioral state. Following injury or inflammation, the central as well as peripheral noradrenergic system is subject to various plastic changes that influence its antinociceptive efficacy.
Collapse
Affiliation(s)
- Antti Pertovaara
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, PO Box 63, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
16
|
Kishi R, Bongiovanni R, de Nadai TR, Freitas RL, de Oliveira R, Ferreira CMDR, Coimbra NC. Dorsal raphe nucleus and locus coeruleus neural networks and the elaboration of the sweet-substance-induced antinociception. Neurosci Lett 2006; 395:12-7. [PMID: 16289556 DOI: 10.1016/j.neulet.2005.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/16/2005] [Accepted: 10/17/2005] [Indexed: 11/26/2022]
Abstract
In order to investigate the effects of monoaminergic neurons of the dorsal raphe nucleus (DRN) and locus coeruleus (LC) on the elaboration and control of sweet-substance-induced antinociception, male albino Wistar rats weighing 180-200 g received sucrose solution (250 g/L) for 7-14 days as their only source of liquid. After the chronic consumption of sucrose solution, each animal was pretreated with unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL) in the DRN or in the LC. The tail withdrawal latencies of the rats in the tail-flick test were measured immediately before and 7 days after this treatment. The neurochemical lesion of locus coeruleus, but not of DRN neural networks with ibotenic acid, after the chronic intake of sweetened solution, decreased the sweet-substance-induced antinociception. These results indicate the involvement of noradrenaline-containing neurons of the LC in the sucrose-induced antinociception. We also consider the possibility of DRN serotonergic neurons exerting some inhibitory effect on the LC neural networks involved with the elaboration of the sweet-substance-induced antinociception.
Collapse
Affiliation(s)
- Renato Kishi
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Avenida dos Bandeirantes, 3900 Ribeirão Preto (SP) 14049-900, Brasil
| | | | | | | | | | | | | |
Collapse
|
17
|
Pertovaara A, Almeida A. Chapter 13 Descending inhibitory systems. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:179-192. [PMID: 18808835 DOI: 10.1016/s0072-9752(06)80017-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
18
|
Zhuo M, Gebhart GF. Modulation of noxious and non-noxious spinal mechanical transmission from the rostral medial medulla in the rat. J Neurophysiol 2002; 88:2928-41. [PMID: 12466419 DOI: 10.1152/jn.00005.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Modulatory influences on spinal mechanical transmission from the rostral medial medulla (RMM) were studied. Noxious stimulation, produced by von Frey-like monofilaments, and non-noxious stimulation, produced by a soft brush, was applied to the glabrous skin of the hind foot. At 28 sites in RMM, electrical stimulation facilitated responses to noxious mechanical stimulation at low intensities (5-25 microA) and inhibited responses of the same neurons at greater intensities (50-100 microA) of stimulation. At 24 and 9 other sites in RMM, stimulation at all intensities only inhibited or only facilitated, respectively, responses to noxious mechanical stimulation of the hind foot. Stimulus-response functions to mechanical stimulation were shifted leftward by low intensities and decreased by high intensities of stimulation. Inhibitory influences were found to descend in the dorsolateral funiculi; facilitatory effects were contained in the ventral spinal cord. Descending modulation of non-noxious brush stimulation revealed biphasic facilitatory-inhibitory effects (9 sites in RMM), only inhibitory effects (14 sites) and only facilitatory effects (8 sites). The effects of electrical stimulation were replicated by intra-RMM administration of glutamate; a low concentration (0.25 nmol) facilitated and a greater concentration (2.5 nmol) inhibited spinal mechanical transmission, providing evidence that cells in RMM are sufficient to engage descending influences. Descending modulatory effects were specific for the site of stimulation, not for the spinal neuron, because modulation of the same neuron was different from different sites in RMM. These results show that spinal mechanical transmission, both noxious and non-noxious, is subject to descending influences, including facilitatory influences that may contribute to exaggerated responses to peripheral stimuli in some chronic pain states.
Collapse
Affiliation(s)
- M Zhuo
- Department of Pharmacology, College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
19
|
Donaldson C, Boers PM, Hoskin KL, Zagami AS, Lambert GA. The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons. Neuropharmacology 2002; 42:374-85. [PMID: 11897116 DOI: 10.1016/s0028-3908(01)00190-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The importance of 5-HT(1B) and 5-HT(1D) receptors in the actions of the anti-migraine drug naratriptan was investigated using the relatively selective 5-HT(1) receptor ligands SB224289 and BRL15572. Electrical stimulation of the superior sagittal sinus (SSS) in cats activated neurones in the trigeminal nucleus caudalis. Facial receptive fields (RF) were also electrically stimulated to activate the same neurones. Responses of these neurones to SSS stimulation were suppressed by iontophoretic application of naratriptan (5-50 nA). There were two distinct populations of neurones in the nucleus--those in deeper laminae in which the responses to SSS and RF stimulation were equally suppressed by naratriptan ('non-selective') and more superficial neurones in which only the SSS responses were suppressed by naratriptan ('selective'). Concurrent micro-iontophoretic application (50 nA) of the 5-HT(1D) antagonist BRL15572 antagonised the suppression by naratriptan of the response of 'selective' cells to SSS stimulation. Iontophoretic application of SB224289 (50 nA), a 5-HT(1B) antagonist, antagonised the suppression by naratriptan of responses of 'non-selective' cells to RF stimulation and, to a lesser extent, also antagonised the suppression of responses to SSS stimulation. Intravenous administration of SB224289 antagonised the suppression only of RF responses of "non-selective" neurons by naratriptan and intravenous administration of BRL15572 antagonised the suppression only of SSS responses of "selective" neurons by naratriptan. These results suggest that the response of nucleus caudalis neurons to stimulation of the sagittal sinus can be modulated by both 5-HT(1B) and 5-HT(1D) receptor activation, with the 5-HT(1D) receptors perhaps playing a greater role. The response to RF stimulation is more influenced by 5-HT(1B) receptor modulation with 5-HT(1D) receptors being less important. Therefore, this suggests that selective 5-HT(1D) agonists may be able to target the neuronal population, which is selectively involved in the transmission of dural inputs. We conclude that the central terminals of trigeminal primary afferent fibres contain 5-HT(1B) and 5-HT(1D) receptors. Primary afferents from the dura mater may predominantly express 5-HT(1D) receptors, while facial afferents may predominantly express 5-HT(1B) receptors. Activation of 5-HT(1D) receptors in particular may be important in the anti-migraine effect of naratriptan.
Collapse
Affiliation(s)
- Cathy Donaldson
- Institute of Neurological Sciences, The Prince Henry and Prince of Wales Hospitals, The University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
20
|
Leanza G, Cataudella T, Dimauro R, Monaco S, Stanzani S. Release properties and functional integration of noradrenergic-rich tissue grafted to the denervated spinal cord of the adult rat. Eur J Neurosci 1999; 11:1789-99. [PMID: 10215931 DOI: 10.1046/j.1460-9568.1999.00595.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Noradrenaline- (NA-) containing grafts of central (embryonic locus coeruleus, LC) or peripheral (juvenile adrenal medullary, AM, autologous superior cervical ganglionic, SCG) tissue were implanted unilaterally into rat lumbar spinal cord previously depleted of its NA content by 6-hydroxydopamine (6-OHDA) intraventricularly. A microdialysis probe was implanted in the spinal cord 3-4 months after transplantation, and extracellular levels of noradrenaline were monitored in freely moving animals during basal conditions and following administration of pharmacological or behavioural stimuli. Age-matched normal and lesioned animals both served as controls. Morphometric analyses were carried out on horizontal spinal sections processed for dopamine-beta-hydroxylase (DBH) immunocitochemistry, in order to assess lesion- or graft-induced changes in the density of spinal noradrenergic innervation, relative to the normal patterns. In lesioned animals, the entire spinal cord was virtually devoid of DBH-positive fibers, resulting in a dramatic 88% reduction in baseline NA, compared with that in controls, which did not change in response to the various stimuli. LC and SCG grafts reinstated approximately 80% and 50% of normal innervation density, respectively, but they differed strikingly in their release ability. Thus, LC grafts restored baseline NA levels up to 60% of those in controls, and responded with significantly increased NA release to KCl-induced depolarization, neuronal uptake blockade and handling. In contrast, very low NA levels and only poor and inconsistent responses to the various stimuli were observed in the SCG-grafted animals. In AM-grafted animals, spinal extracellular NA levels were restored up to 45% of those in controls, probably as a result of nonsynaptic, endocrine-like release, as grafted AM cells retained the chromaffine phenotype, showed no detectable fibre outgrowth and did not respond to any of the pharmacological or behavioural challenges. Thus, both a regulated, impulse-dependent, and a diffuse, paracrine-like, NA outflow may play roles in the recovery of lesion-induced sensory and/or motor impairments previously reported with these types of grafts following transplantation into the severed spinal cord.
Collapse
Affiliation(s)
- G Leanza
- Department of Physiological Sciences, University of Catania, Italy.
| | | | | | | | | |
Collapse
|
21
|
Wei F, Ren K, Dubner R. Inflammation-induced Fos protein expression in the rat spinal cord is enhanced following dorsolateral or ventrolateral funiculus lesions. Brain Res 1998; 782:136-41. [PMID: 9519257 DOI: 10.1016/s0006-8993(97)01253-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies have shown an enhanced expression of Fos protein-like immunoreactivity in the lumbar spinal cord of rats with complete spinal transection following persistent hindpaw inflammation. To further locate the spinal pathways responsible for these effects, we compared the inflammation-evoked Fos expression in rats with bilateral lesions of the dorsolateral (DLFX) or ventrolateral (VLFX) funiculus, and with rats with a sham operation. The results indicate that the number of Fos-labeled neurons was significantly increased in all laminae of the dorsal horn ipsilateral to the inflamed hindpaw and in contralateral deep dorsal horn in both DLFX and VLFX rats compared to sham-operated rats. Moreover, when comparing DLFX and VLFX rats, in the ipsilateral spinal cord, DLFX resulted in more Fos expression in the deep dorsal horn; in contrast, a larger number of Fos-labeled cells in superficial laminae was observed in VLFX rats. These results suggest that modulatory systems, which descend in both DLF and VLF pathways, mediate the enhanced net descending nociceptive inhibition after persistent inflammation, although the supraspinal sites of origin of each pathway are likely functionally diverse.
Collapse
Affiliation(s)
- F Wei
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, Baltimore 21201, USA.
| | | | | |
Collapse
|
22
|
Zhuo M, Gebhart GF. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol 1997; 78:746-58. [PMID: 9307109 DOI: 10.1152/jn.1997.78.2.746] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The modulatory effects of electrical and chemical (glutamate) stimulation in the rostral ventromedial medulla (RVM) on spinal nociceptive transmission and a spinal nociceptive reflex were studied in rats. Electrical stimulation at a total 86 sites in the RVM in the medial raphe nuclei (n = 54) and adjacent gigantocellular areas (n = 32) produced biphasic (facilitatory and inhibitory, n = 43) or only inhibitory (n = 43) modulation of the tail-flick (TF) reflex. At these 43 biphasic sites in the RVM, facilitation of the TF reflex was produced at low intensities of stimulation (5-25 microA) and inhibition was produced at greater intensities of stimulation (50-200 microA). At 43 sites in the RVM, electrical stimulation only produced intensity-dependent inhibition of the TF reflex. Activation of cell bodies in the RVM by glutamate microinjection reproduced the biphasic modulatory effects of electrical stimulation. At biphasic sites previously characterized by electrical stimulation, glutamate at a low concentration (5 nmol) produced facilitation of the TF reflex; a greater concentration (50 nmol) only inhibited the TF reflex. In electrophysiological experiments, electrical stimulation at 62 sites in the RVM produced biphasic (n = 26), only inhibitory (n = 26), or only facilitatory (n = 10) modulation of responses of lumbar spinal dorsal horn neurons to noxious cutaneous thermal (50 degrees C) or mechanical (75.9 g) stimulation. Facilitatory effects were produced at lesser intensities of stimulation and inhibitory effects were produced at greater intensities of stimulation. The apparent latencies to stimulation-produced facilitation and inhibition, determined with the use of a cumulative sum method and bin-by-bin analysis of spinal neuron responses to noxious thermal stimulation of the skin, were 231 and 90 ms, respectively. The spinal pathways conveying descending facilitatory and inhibitory influences were found to be different. Descending facilitatory influences on the TF reflex were conveyed in ventral/ventrolateral funiculi, whereas inhibitory influences were conveyed in dorsolateral funiculi. The results indicate that descending inhibitory and facilitatory influences can be simultaneously engaged throughout the RVM, including nucleus raphe magnus, and that such influences are conveyed in different spinal funiculi.
Collapse
Affiliation(s)
- M Zhuo
- Department of Pharmacology, College of Medicine, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
23
|
Abstract
We review many of the recent findings concerning mechanisms and pathways for pain and its modulation, emphasizing sensitization and the modulation of nociceptors and of dorsal horn nociceptive neurons. We describe the organization of several ascending nociceptive pathways, including the spinothalamic, spinomesencephalic, spinoreticular, spinolimbic, spinocervical, and postsynaptic dorsal column pathways in some detail and discuss nociceptive processing in the thalamus and cerebral cortex. Structures involved in the descending analgesia systems, including the periaqueductal gray, locus ceruleus, and parabrachial area, nucleus raphe magnus, reticular formation, anterior pretectal nucleus, thalamus and cerebral cortex, and several components of the limbic system are described and the pathways and neurotransmitters utilized are mentioned. Finally, we speculate on possible fruitful lines of research that might lead to improvements in therapy for pain.
Collapse
Affiliation(s)
- W D Willis
- Department of Anatomy & Neurosciences, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | |
Collapse
|
24
|
Leanza G, Maccavino MC, Stanzani S. Noradrenergic neurotransmission in the ventral spinal cord: basic characteristics and effects of denervating lesions, as studied in the awake rat by microdialysis. Brain Res 1996; 738:281-91. [PMID: 8955524 DOI: 10.1016/s0006-8993(96)00796-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular levels of noradrenaline (NA) were measured in the ventral horn of the lumbar spinal cord in awake unrestrained rats using in vivo microdialysis coupled to a highly sensitive radioenzymatic assay. In normal animals, baseline NA output averaged 13.4 +/- 2.2 fmol/30 microliters. KCl (100 mM) or desipramine (5 microM) added to the perfusion fluid increased NA levels 11.2-fold and 2.2-fold, respectively, whereas neuronal impulse blockade by tetrodotoxin (1 microM) added in the presence of desipramine stimulation produced a 88% reduction of extracellular NA levels. Noradrenergic denervation of the spinal cord by either electrolytic destruction of the noradrenaline-containing axon terminals or intraventricular 6-hydroxydopamine produced, 3-4 weeks later, dramatic 84 and 91% reductions in baseline NA release associated to a marked loss of immunoreactive noradrenergic fibers throughout the spinal cord or caudal to the site of electrolytic damage and almost completely abolished responses to pharmacological manipulations. The results support the view that spinal extracellular NA levels are neuronally derived, also suggesting that noradrenergic neurotransmission in the ventral spinal cord largely (by at least 85%) depends on the integrity of descending brainstem afferents. The microdialysis technique, thus, appears to be a useful tool for future studies on strategies aimed at promoting reinnervation and functional recovery in the deafferented spinal cord.
Collapse
Affiliation(s)
- G Leanza
- Institute of Human Physiology, University of Catania, Italy
| | | | | |
Collapse
|
25
|
Travagli RA, Williams JT. Endogenous monoamines inhibit glutamate transmission in the spinal trigeminal nucleus of the guinea-pig. J Physiol 1996; 491 ( Pt 1):177-85. [PMID: 9011609 PMCID: PMC1158768 DOI: 10.1113/jphysiol.1996.sp021205] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. With the use of whole-cell patch clamp recordings in slices of guinea-pig substantia gelatinosa (SG), we studied the serotonin (5-HT)- and noradrenaline (NA)-mediated inhibition of glutamate-mediated EPSCs evoked from primary afferent stimulation. 2. The frequency of spontaneous EPSPs was reduced by 5-HT and NA. 3. The inhibition of EPSCs caused by 5-HT was mediated by the 5-HT1D receptor subtype, since the 5-HT1D agonist, sumatriptan (1 microM), was effective. 4. NA and the alpha 2-agonist, 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK 14304), decreased the EPSCs and this inhibition was blocked by the alpha 2-antagonists, idazoxan (1 microM) and yohimbine (1 microM). 5. The 5-HT-releasing agent, fenfluramine (10 microM), and the Na-releasing agent, amphetamine (1 microM), also depressed EPSCs. Pretreatment of slices with the 5-HT-depleting agent, p-chloro-amphetamine (10 microM), attenuated the inhibition of fenfluramine but failed to antagonize the effects of exogenously applied 5-HT. 6. These in vitro results suggest that presynaptic inhibition of glutamate release from primary afferents can provide another mechanism to explain the antinociceptive effects of 5-HT and NA obtained in vivo.
Collapse
Affiliation(s)
- R A Travagli
- Vollum Institute, Oregon Health States University, Portland 97201, USA
| | | |
Collapse
|
26
|
Quevedo J, Eguibar JR, Jiménez I, Rudomin P. Raphe magnus and reticulospinal actions on primary afferent depolarization of group I muscle afferents in the cat. J Physiol 1995; 482 ( Pt 3):623-40. [PMID: 7738852 PMCID: PMC1157787 DOI: 10.1113/jphysiol.1995.sp020545] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. In the anaesthetized cat, electrical stimulation of the bulbar reticular formation produced a short latency (2.1 +/- 0.3 ms) positive potential in the cord dorsum. In contrast, stimulation of the nucleus raphe magnus with strengths below 50 microA evoked a slow negative potential with a mean latency of 5.5 +/- 0.6 ms that persisted after sectioning the contralateral pyramid and was abolished by sectioning the ipsilateral dorsolateral funiculus. 2. The field potentials evoked by stimulation of the bulbar reticular formation and of the nucleus raphe magnus had a different intraspinal distribution, suggesting activation of different sets of segmental interneurones. 3. Stimulation of these two supraspinal nuclei produced primary afferent depolarization (PAD) in single Ib fibres and inhibited the PAD elicited by group I volleys in single Ia fibres. The inhibition of the PAD of Ia fibres produced by reticulospinal and raphespinal inputs appears to be exerted on different interneurones along the PAD pathway. 4. It is concluded that, although reticulospinal and raphespinal pathways have similar inhibitory effects on PAD of Ia fibres, and similar excitatory effects on the PAD of Ib fibres, their actions are conveyed by partly independent pathways. This would allow their separate involvement in the control of posture and movement.
Collapse
Affiliation(s)
- J Quevedo
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Evanzados del IPN, México DF, México
| | | | | | | |
Collapse
|
27
|
|
28
|
Riddell JS, Jankowska E, Eide E. Depolarization of group II muscle afferents by stimuli applied in the locus coeruleus and raphe nuclei of the cat. J Physiol 1993; 461:723-41. [PMID: 8394431 PMCID: PMC1175282 DOI: 10.1113/jphysiol.1993.sp019538] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. Electrical stimuli applied in the locus coeruleus/subcoeruleus (LC/SC) and raphe nuclei produce a profound depression of transmission in reflex pathways from group II muscle afferents. The present experiments were performed to determine whether presynaptic inhibitory mechanisms contribute to these effects. 2. Changes in the excitability of afferent terminals to electrical stimuli have been used as an indication of primary afferent depolarization (PAD) produced by conditioning stimuli applied within the LC/SC and raphe nuclei and, for comparison, in the nucleus ruber. Group II afferents originating from ankle flexor muscles and terminating in the midlumbar segments were used for testing. 3. Clear changes in excitability were observed in fourteen of nineteen group II fibres in which the effects of conditioning stimuli applied in the LC/SC were tested and in twelve of seventeen fibres in which the effects of stimuli applied within the raphe nuclei were tested. By comparison, only one of the twelve fibres tested with conditioning stimuli applied to the nucleus ruber was found to be influenced. These effects matched those of the same conditioning stimuli on field potentials evoked by group II afferents at the location at which the terminals of group II fibres were stimulated. 4. Stimuli applied in the LC/SC and in the raphe nuclei both produced a mean decrease in threshold stimulus current of 19%. These effects are comparable to those produced by the most effective volleys in peripheral afferent which, in the same fibres, produced a mean decrease in threshold stimulus current of 24%. 5. In all cases (twelve) in which the effects of stimuli applied in the LC/SC and raphe nuclei were tested on the same group II fibre, either both or neither were found to be effective. This strengthens previous indications that some populations of neurones might be activated by stimuli applied in each of these regions of the brain. 6. In contrast to group II afferents, group Ia afferents investigated in the same experiments were only exceptionally affected. Of seven fibres tested with stimuli applied in the LC/SC, six with stimuli applied in the raphe nuclei and seven with stimuli applied in the nucleus ruber, only one fibre showed any clear change in threshold and this was a single fibre which was similarly affected by stimuli in all three sites. 7. It is concluded that presynaptic inhibitory mechanisms contribute to the depression of transmission in spinal reflex pathways from group II muscle afferents produced by stimulation in the LC/SC and raphe nuclei.
Collapse
Affiliation(s)
- J S Riddell
- Department of Physiology, University of Göteborg, Sweden
| | | | | |
Collapse
|
29
|
Randich A, Gebhart GF. Vagal afferent modulation of nociception. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1992; 17:77-99. [PMID: 1327371 DOI: 10.1016/0165-0173(92)90009-b] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical, electrical or physiological activation of cardiopulmonary vagal (cervical, thoracic or cardiac), diaphragmatic vagal (DVAG) or subdiaphragmatic vagal (SDVAG) afferents can result in either facilitation or inhibition of nociception in some species. In the rat, these effects depend upon vagal afferent input to the NTS and subsequent CNS relays, primarily in the NRM and ventral LC/SC, although specific relay nuclei vary as a function of the vagal challenge stimulus. Spinal pathways and neurotransmitters have been identified for vagally mediated effects on nociception and consistently implicate the involvement of descending 5-HT and noradrenergic systems, as well as intrinsic spinal opioid receptors. Species differences may exist with respect to both the effects of DVAG and SDVAG afferents on nociception and the efficacy of vagal afferents to modulate nociception. However, it is also possible that such differences reflect the modality of noxious input (e.g., visceral versus cutaneous), the type of neuronal activity investigated (e.g., resting versus noxious-evoked), spinal location of recording (e.g., thoracic versus lumbosacral) and/or parameters of stimulation. It is also possible that activation of some vagal afferents is aversive, but whether this contributes to changes in nociception produced by vagal activation has not clearly been established. Finally, the vagal-nociceptive networks described in this review provide a fertile area for future study. These networks can provide an understanding of physiological and pathophysiological peripheral events that affect nociception.
Collapse
Affiliation(s)
- A Randich
- School of Social and Behavioral Sciences, Department of Psychology, University of Alabama, Birmingham 35294-1170
| | | |
Collapse
|
30
|
Shimoji K, Sato Y, Denda S, Takada T, Fukuda S, Hokari T. Slow positive dorsal cord potentials activated by heterosegmental stimuli. ACTA ACUST UNITED AC 1992; 85:72-80. [PMID: 1371747 DOI: 10.1016/0168-5597(92)90104-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heterosegmental slow positive waves (HSPs) and segmental spinal cord potentials were recorded from the cord dorsum in ketamine-anesthetized rats. Forepaw stimulation produced HSPs in the lumbo-sacral enlargement (lumbar HSPs), whereas hind paw stimulation evoked HSPs in the cervical cord (cervical HSP). Both the HSP and the secondary component of the slow positive wave (P2s) in the segmental spinal cord potential were highly vulnerable to anesthetics and completely disappeared after spinal cord transection at the C1/2 level, indicating that both the HSP and P2s are produced by a long feedback loop via supraspinal structures. The lumbar HSP evoked by forepaw stimulation was maximal in amplitude at the L5 level and more dominant in the ipsilateral cord dorsum than in the contralateral one, but widely distributed in the lumbo-sacral cord. A variability of onset (7-18 msec for cervical and 5-17 msec for lumbar HSPs) and peak (22-35 msec for cervical and 12-50 msec for lumbar HSPs) suggests the existence of several nuclei to form the feedback loops for descending impulses to produce the HSPs. There were no peak latency differences between the HSPs and P2s. Since there were several similar characteristics between the P2s and HSP such as a high vulnerability to anesthetic, a complete disappearance after high spinal transection and similar response curves to graded intensities of stimulation, there may be a close relationship between their feedback nuclei and the pathways mediating them. All wide dynamic range (WDR) neurons (12/12) in lamina V of Rexed responded to heterosegmental stimulation with inhibition of firing.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Shimoji
- Department of Anesthesiology, Niigata University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Bouhassira D, Bing Z, Le Bars D. Effects of lesions of locus coeruleus/subcoeruleus on diffuse noxious inhibitory controls in the rat. Brain Res 1992; 571:140-4. [PMID: 1611486 DOI: 10.1016/0006-8993(92)90520-j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diffuse noxious inhibitory controls (DNIC) acting on trigeminal convergent neurons were compared in sham-operated animals and rats with quinolinic acid induced lesions of the locus coeruleus/subcoeruleus (LC/SC). No significant differences were observed between control animals and those with ipsilateral, contralateral or bilateral lesions of the LC/SC, in respect of: (1) the general properties of the recorded units; and (2) the magnitude of the depressions of C-fiber-evoked responses of convergent neurons produced by immersing each paw in a 50 degrees C water bath (i.e. DNIC). It is concluded that the LC/SC is not involved, at least directly, in the supraspinal part of the loop which subserves DNIC in the rat.
Collapse
|
32
|
Skoog B, Noga BR. Do noradrenergic descending tract fibres contribute to the depression of transmission from group II muscle afferents following brainstem stimulation in the cat? Neurosci Lett 1991; 134:5-8. [PMID: 1667679 DOI: 10.1016/0304-3940(91)90495-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two alpha 2 noradrenaline antagonists, idazoxan and yohimbine, were injected in midlumbar segments of the spinal cord to test whether they counteract depression of field potentials evoked by group II muscle afferents by conditioning stimuli applied in the brainstem. The tested field potentials were those evoked monosynaptically in the intermediate zone of midlumbar segments. Their depression reflected thus the depression of transmission between group II fibres and their first relay neurones. The conditioning stimuli were applied either within the ipsilateral locus coeruleus/subcoeruleus or outside these nuclei (in the raphe magnus, raphe obscurus, or cuneiform nuclei). The brainstem evoked depression of the tested field potentials (n = 12) was reduced following injection of idazoxan or yohimbine to about two thirds of that which was evoked originally but in three cases to about one half. The study leads thus to the conclusion that noradrenergic descending tract neurones contribute to the depression of transmission from group II afferents to spinal interneurones and that such noradrenergic neurones are activated by stimuli applied within as well as outside their nuclei. However, the relative contribution of monoaminergic and non-monoaminergic descending tract neurones to the control of transmission from group II afferents to these neurones remains to be established.
Collapse
Affiliation(s)
- B Skoog
- Department of Physiology, University of Göteborg, Sweden
| | | |
Collapse
|
33
|
Abstract
Descending supraspinal and propriospinal neurons projecting to the female rat sacrocaudal spinal cord, the portion of the spinal cord that innervates the tail, were identified following injection of Fluoro-Gold into the S1-Ca2 spinal cord segments. This study attempted to determine anatomical substrates for propriospinal and supraspinal control of the tail. Propriospinal neurons were identified throughout laminae V-VIII and X at all levels of the spinal cord. The greatest density of labeling was in the lumbar enlargement, followed by the cervical enlargement, with least in the thoracic spinal cord. Within a given cord level, labeling was greatest within the intermediate zone. In addition, other prominent spinal cord collections included neurons in 1) lamina V of the lumbar enlargement, 2) dorsal lamina X of the cervical enlargement, and 3) the lateral spinal nucleus within the cervical enlargement. Supraspinal cells were identified within raphe nuclei, reticular formation nuclei, dorsal column nuclei, vestibular nuclei, noradrenergic groups, the red nucleus, the periaqueductal gray, the hypothalamus, and the motor cortex. These data indicate that there are significant descending projections to the sacrocaudal spinal cord, with distributions similar to those of other cord levels. Functionally, important supraspinal and propriospinal influences on tail, pelvic viscera and limbs, such as with locomotion, balance, defense, micturition, defecation, and sexual functions, may be mediated by these connections.
Collapse
Affiliation(s)
- R L Masson
- Department of Neurological Surgery, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
34
|
Fung SJ, Manzoni D, Chan JY, Pompeiano O, Barnes CD. Locus coeruleus control of spinal motor output. PROGRESS IN BRAIN RESEARCH 1991; 88:395-409. [PMID: 1667549 DOI: 10.1016/s0079-6123(08)63825-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using electrophysiological techniques, we investigated the functional properties of the coeruleospinal system for regulating the somatomotor outflow at lumbar cord levels. Many of the fast-conducting, antidromically activated coeruleospinal units were shown to exhibit the alpha 2-receptor response common to noradrenergic locus coeruleus (LC) neurons. Electrically activating the coeruleospinal system potentiated the lumbar monosynaptic reflex and depolarized hindlimb flexor and extensor motoneurons via an alpha 1-receptor mechanism. The latter synaptically induced membrane depolarization was mimicked by norepinephrine applied iontophoretically to motoneurons. That LC inhibited Renshaw cell activity and induced a positive dorsal root potential at the lumbar cord also reinforced LC's action on motor excitation. We conclude that LC augments the somatomotor output, at least in part, via an alpha 1-adrenoceptor-mediated excitation of ventral horn motoneurons. Such process is being strengthened by LC's suppression of the recurrent inhibition pathway as well as by its presynaptic facilitation of afferent impulse transmission at the spinal cord level.
Collapse
Affiliation(s)
- S J Fung
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, College of Veterinary Medicine, Washington State University, Pullman
| | | | | | | | | |
Collapse
|
35
|
Gogas KR, Presley RW, Levine JD, Basbaum AI. The antinociceptive action of supraspinal opioids results from an increase in descending inhibitory control: correlation of nociceptive behavior and c-fos expression. Neuroscience 1991; 42:617-28. [PMID: 1659673 DOI: 10.1016/0306-4522(91)90031-i] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an earlier report, we demonstrated that subcutaneous injection of formalin in the rat hindpaw evokes a characteristic pattern of expression of the fos protein product of the c-fos protooncogene in spinal cord neurons, and that systemic morphine reversed the fos-like immunoreactivity in a dose-dependent, naloxone-reversible manner. The present study compared the effects of intracerebroventricular administration of the mu-selective opioid ligand [D-Ala2, NMe-Phe4, Gly-ol5] enkephalin, on the pain behavior and spinal cord fos-like immunoreactivity produced by subcutaneous formalin. Formalin injection produced a biphasic pain behavioral response which lasted about 1 h. There was a significant correlation between the formalin pain score and overall fos-like immunoreactivity in the lumbar enlargement. The greatest numbers of labeled cells and most intense fos-like immunoreactivity were found in laminae I, IIo and V of the L4-5 segments, ipsilateral to the formalin-injected paw. Considerable staining was also found in the ipsilateral ventral horn laminae VII and VIII. [D-Ala2, NMe-Phe4, Gly-ol5]enkephalin produced a dose-related, naloxone-reversible inhibition of both the formalin-evoked pain behavior and fos expression in the cord. The behavioral response to formalin, however, could be completely blocked without eliminating the expression of fos in spinal neurons. Moreover, subpopulations of neurons were differentially regulated. Thus, 100% inhibition of pain behavior was produced at a dose of [D-Ala2, NMe-Phe4, Gly-ol5]enkephalin which reduced fos-like immunoreactivity in the superficial laminae by only 64% and in the neck and ventral cord by 85%. Furthermore, the dose of [D-Ala2, NMe-Phe4, Gly-ol5]enkephalin which produced approximately 50% inhibition of fos-like immunoreactivity in the neck and ventral regions of the spinal cord was without effect in the superficial dorsal horn. Since the potencies for inhibition of pain behavior and fos-like immunoreactivity in the neck and ventral horn were comparable, these data suggest that the activity of neurons in these regions is directly related to the pain behavior produced by nociceptive inputs. Finally, we found that bilateral, midthoracic lesions of the dorsal part of the lateral funiculus blocked both the antinociception and fos suppression produced by intracerebroventricular [D-Ala2, NMe-Phe4, Gly-ol5]enkephalin. These results are consistent with the hypothesis that the analgesic action of supraspinally administered opiates results from an increase in descending inhibitory controls that regulate the firing of subpopulations of spinal cord nociresponsive neurons.
Collapse
Affiliation(s)
- K R Gogas
- Department of Anatomy, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
36
|
Proudfit HK, Clark FM. The projections of locus coeruleus neurons to the spinal cord. PROGRESS IN BRAIN RESEARCH 1991; 88:123-41. [PMID: 1813919 DOI: 10.1016/s0079-6123(08)63803-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spinally projecting noradrenergic neurons located in the locus coeruleus/subcoeruleus (LC/SC) are a major source of the noradrenergic innervation of the spinal cord. However, the specific terminations of these neurons have not been clearly defined. The purpose of this chapter is to describe the results of experiments that used the anterograde tracer Phaseolus vulgaris leucoagglutinin in combination with dopamine-beta-hydroxylase immunocytochemistry to more precisely determine the spinal cord terminations of neurons located in the LC/SC. The results of these experiments indicate that the axons of LC neurons are located primarily in the ipsilateral ventral funiculus and terminate most heavily in the medial part of laminae VII and VIII, the motoneuron pool of lamina IX, and lamina X. LC neurons provide a moderately dense innervation of the ventral part of the dorsal horn, but only a very sparse innervation of the superficial dorsal horn. The SC projects ipsilaterally in the ventrolateral funiculus and terminates diffusely in the intermediate and ventral laminae of the spinal cord. Finally, the results of preliminary experiments indicate that different rat substrains may have LC neurons that exhibit qualitatively different termination patterns in the spinal cord. More specifically, LC neurons in some rat substrains innervate the dorsal horn, while those in other substrains primarily innervate the ventral horn and intermediate zone.
Collapse
Affiliation(s)
- H K Proudfit
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | | |
Collapse
|
37
|
Abstract
Multiple separate and distinct supraspinally organized descending inhibitory systems have been identified which are capable of powerfully modulating spinal nociceptive transmission. Until recently, brainstem sites known to be involved in the centrifugal modulation of spinal nociceptive transmission were few in number, being limited to midline structures in the midbrain and medulla (e.g., periaqueductal gray and nucleus raphe magnus). However, with continued investigation, that number has increased and brainstem sites previously thought to be primarily involved in cardiovascular function and autonomic regulation (e.g., nucleus tractus solitarius; locus coeruleus/subcoeruleus (LC/SC); A5 cell group; lateral reticular nucleus) also have been demonstrated to play a role in the modulation of spinal nociceptive transmission. Spinal monoamines (norepinephrine (NE) and serotonin) have been shown to mediate stimulation-produced descending inhibition of nociceptive transmission from these brainstem sites. The majority of NE-containing fibers and terminations in the spinal cord arise from supraspinal sources; thus, the LC/SC, the parabrachial nuclei, the Kölliker-Fuse nucleus and the A5 cell group have all been suggested as possible sources of the spinal noradrenergic (NA) innervation involved in the centrifugal modulation of spinal nociceptive transmission. Several lines of evidence suggest that the LC/SC plays a significant role in a functionally important descending inhibitory NA system. Focal electrical stimulation in the LC produces an antinociception and increases significantly the spinal content of NA metabolites. The inhibition of the nociceptive tail-flick withdrawal reflex produced by electrical stimulation in the LC/SC has been demonstrated to be mediated by postsynaptic alpha 2-adrenoceptors in the lumbar spinal cord. Similarly, electrical or chemical stimulation given in the LC/SC inhibits noxious-evoked dorsal horn neuronal activity. Thus, results reported in electrophysiological experiments confirm those reported in functional studies and the NA coeruleospinal system appears to play a significant role in spinal nociceptive processing.
Collapse
Affiliation(s)
- S L Jones
- Department of Pharmacology, College of Medicine, University of Oklahoma, Oklahoma City
| |
Collapse
|
38
|
Terenzi MG, Prado WA. Antinociception elicited by electrical or chemical stimulation of the rat habenular complex and its sensitivity to systemic antagonists. Brain Res 1990; 535:18-24. [PMID: 2292024 DOI: 10.1016/0006-8993(90)91818-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of intraperitoneal administration of antagonists to morphine, norepinephrine, acetylcholine, dopamine and 5-hydroxytryptamine (5-HT) have been studied on the antinociceptive effect of electrical stimulation of the rat habenular complex (HbC). The antinociceptive effect of agonists microinjected into the HbC was also examined. A 15-s period of 53 microA rms sine-wave stimulation of the HbC significantly increased the latency of the tail-flick reflex to noxious heat for periods of up to 15 min. This effect was significantly attenuated by pretreating rats with naloxone (1 mg/kg) or phenoxybenzamine (5 mg/kg). Methysergide (5 mg/kg), haloperidol (5 mg/kg), atropine (1 mg/kg), and mecamylamine (1 mg/kg) had little effect on the antinociceptive effect of HbC stimulation. L-Glutamate (3.5 and 7.0 micrograms), morphine (1.0 and 5.0 micrograms), and carbachol (0.4 and 0.8 micrograms), but not 5-HT (5 micrograms), dopamine (5 micrograms) or norepinephrine (5 micrograms), induced a dose-dependent increase in the tail-flick latency when microinjected into the HbC. The effect of carbachol was significantly attenuated in rats previously treated with intraperitoneal administration of atropine or mecamylamine and fully depressed in rats previously treated with a combination of these two cholinergic antagonists. It is concluded that antagonists of opiate receptors and alpha-adrenoceptors, but not dopamine or cholinergic receptors, reduce the antinociceptive effects of HbC stimulation. These observations differ from the reported effects of these antagonists on the antinociception caused by stimulating the periaqueductal gray, but resemble the antinociception caused by stimulating the ventrolateral medulla and locus coeruleus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M G Terenzi
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Brazil
| | | |
Collapse
|
39
|
Westlund KN, Sorkin LS, Ferrington DG, Carlton SM, Willcockson HH, Willis WD. Serotoninergic and noradrenergic projections to the ventral posterolateral nucleus of the monkey thalamus. J Comp Neurol 1990; 295:197-207. [PMID: 2358512 DOI: 10.1002/cne.902950204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the present study, serotoninergic and noradrenergic varicosities were identified in the ventral posterolateral nucleus of the macaque monkey. Monoaminergic neurons projecting to the ventral posterolateral nucleus of the thalamus were identified by using retrograde labeling with horseradish peroxidase combined with immunocytochemical staining for serotonin or dopamine-beta-hydroxylase. The midbrain nucleus raphe dorsalis was the major site of origin for neurons providing a serotoninergic projection to the ventral posterolateral nucleus. A few retrogradely labeled serotonin-containing neurons were also observed in the central superior and the raphe pontis nuclei. Noradrenergic cells with projections to the thalamus were primarily located in the nucleus locus coeruleus with some projection neurons in the nucleus subcoeruleus, and the A5 catecholamine cell group of the pons.
Collapse
Affiliation(s)
- K N Westlund
- Department of Anatomy, Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77550-2772
| | | | | | | | | | | |
Collapse
|
40
|
Fritschy JM, Grzanna R. Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurol 1990; 291:553-82. [PMID: 2329191 DOI: 10.1002/cne.902910406] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The rat spinal cord receives noradrenergic (NA) projections from the locus coeruleus (LC) and the A5 and A7 groups. In contradiction to previous statements about the distribution of descending NA axons, we have recently proposed that in the rat LC neurons project primarily to the dorsal horn and intermediate zone, whereas A5 and A7 neurons project to somatic motoneurons and the intermediolateral cell column. The aim of the present study was to determine the funicular course and terminal distribution of descending NA axons from the LC and from the A5 and A7 groups. The organization of the coeruleospinal projection was analyzed by using the anterograde tracer Phaseolus vulgaris leucoagglutinin in combination with dopamine-beta-hydroxylase immunohistochemistry. The trajectory of A5 and A7 axons was studied in spinal cord sections of rats following ablation of the coeruleospinal projection with the neurotoxin DSP-4. To assess the relative contribution of the LC and the A5 and A7 groups to the NA innervation of the spinal cord, unilateral injections of the retrograde tracer True Blue were made at cervical, thoracic, and lumbar levels, and retrogradely labeled NA neurons were identified by dopamine-beta-hydroxylase immunofluorescence. The results of the anterograde tracing experiments confirm our previous findings that LC neurons project most heavily to the dorsal horn and intermediate zone. Analysis of horizontal sections revealed that LC axons descend the length of the spinal cord within layers I and II. In contrast to the intragriseal course of LC fibers, A5 and A7 axons travel in the ventral and dorsolateral funiculi and terminate in the ventral horn and the intermediolateral cell column. Retrograde transport studies indicate that the contribution of the A5 and A7 groups to the NA projection to the spinal cord is greater than that of the LC. We conclude that descending axons of the LC and A5 and A7 groups differ in their course and distribution within the spinal cord. The documentation of a definite topographic order in the bulbospinal NA projections suggests that the LC and the A5 and A7 groups have different functional capacities. The LC is in a position to influence the processing of sensory inputs, in particular nociceptive inputs, whereas A5 and A7 neurons are likely to influence motoneurons.
Collapse
Affiliation(s)
- J M Fritschy
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
41
|
Reddy VK, Fung SJ, Zhuo H, Barnes CD. Localization of enkephalinergic neurons in the dorsolateral pontine tegmentum projecting to the spinal cord of the cat. J Comp Neurol 1990; 291:195-202. [PMID: 1967617 DOI: 10.1002/cne.902910204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dorsolateral pontine tegmentum of the cat is known to contain enkephalinergic neurons, with most of the enkephalin co-contained in the catecholaminergic neurons; however, enkephalinergic cells projecting to the spinal cord have not been identified. This study employs retrograde transport of horseradish peroxidase in combination with methionine-enkephalin or tyrosine hydroxylase immunocytochemistry to 1) determine the locations of pontospinal enkephalinergic neurons and 2) compare these with the locations of pontospinal catecholaminergic neurons. Pontospinal enkephalinergic neurons were observed in the nuclei locus coeruleus and subcoeruleus and the Kölliker-Fuse nucleus. A high concentration of these neurons was evident in the Kölliker-Fuse nucleus when compared to the nuclei locus coeruleus and subcoeruleus (P less than .01). Both the enkephalinergic and catecholaminergic neurons projecting to the spinal cord were located in the same general areas of the dorsolateral pontine tegmentum and there was no significant difference in the mean diameters of these two neuronal types (P greater than .05). Quantitative data concerning the pontospinal enkephalinergic neurons correlated well with previous data on pontospinal catecholaminergic neurons (Reddy et al., Brain Res. 491:144-149, '89). A majority of the descending neurons from the dorsolateral pontine tegmentum contain enkephalin (72-80%) and catecholamine (80-87%). The observations suggest that enkephalin is contained in many of the pontospinal catecholaminergic neurons.
Collapse
Affiliation(s)
- V K Reddy
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman 99164-6520
| | | | | | | |
Collapse
|
42
|
Naranjo JR, Arnedo A, Molinero MT, Del Rio J. Involvement of spinal monoaminergic pathways in antinociception produced by substance P and neurotensin in rodents. Neuropharmacology 1989; 28:291-8. [PMID: 2471111 DOI: 10.1016/0028-3908(89)90106-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antinociceptive effects of substance P and of neurotensin have been determined in rodents after depletion of serotonin (5-HT) or noradrenaline (NA) in the spinal cord. The antinociceptive effect of substance P, given intraventricularly, in rats and mice was blocked after depletion of 5-HT in the spinal cord with the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or with the inhibitor of the synthesis of 5-HT, p-chlorophenylalanine (PCPA), but not after depletion of NA in the spinal cord with the neurotoxin 6-hydroxydopamine (6-OHDA). Conversely, the antinociceptive effect of neurotensin in mice was blocked after lesion of spinal NA pathways with 6-OHDA. When 5-HT spinal pathways of mice were lesioned with 5,7-DHT, neurotensin-induced antinociception was blocked 7 but not 15 days after the lesion. p-Chlorophenylalanine failed to prevent this effect of neurotensin. The results suggest that the antinociceptive effect of substance P depends on the integrity of spinal 5-HT neurones, whereas that of neurotensin depends on spinal NA neurones and, only to a limited extent, on 5-HT neurones. It seems that different descending systems are involved in the antinociception elicited by these two neuropeptides.
Collapse
Affiliation(s)
- J R Naranjo
- Department of Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Sandkühler J, Helmchen C, Fu QG, Zimmermann M. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat. Neurosci Lett 1988; 93:67-72. [PMID: 2905438 DOI: 10.1016/0304-3940(88)90014-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The relative contribution of cells of origin and fibers of passage to the inhibition of spinal nociceptive neurons from various brainstem sites is not known. The present study therefore quantitatively compares the descending inhibition produced by focal electrical stimulation which indiscriminatively excites all neuronal elements with the inhibition evoked by glutamate microinjections which selectively excite cell bodies at the same sites within the midbrain periaqueductal gray (PAG) and neighboring lateral reticular formation (LRF) and within the medullary nucleus raphe magnus (NRM). In pentobarbital anesthetized cats extracellular recordings were made from 22 lumbar dorsal horn neurons responding to innocuous mechanical skin stimuli and to noxious radiant heating of the glabrous skin at the ipsilateral hindpaw. Glutamate microinjections (1 microliter, 0.5 M) into 6 of 10 sites within the NRM reduced heat-evoked responses in 6 different cats to 69.2 +/- 3.8% of control. Electrical stimulation (180-600 microA) at the same sites and two additional sites in the NRM reduced responses to 50.0 +/- 8.7% of control. At 4 of 10 sites within the PAG glutamate reduced spinal neuronal responses to heat in 4 different cats to 69.4 +/- 6.1% of control. Electrical stimulation at 3 of the same sites and 6 additional sites within the PAG reduced heat-evoked responses to 52.7 +/- 3.5% of control. Microinjections of glutamate into the LRF failed to affect heat-evoked responses in any of the 8 experiments tested, while electrical stimulation at 6 of the same sites in the LRF reduced neuronal responses to heat to 52.4 +/- 7.1% of control.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Sandkühler
- II. Physiologisches Institut, Universität Heidelberg, F.R.G
| | | | | | | |
Collapse
|
44
|
Janss AJ, Gebhart GF. Brainstem and spinal pathways mediating descending inhibition from the medullary lateral reticular nucleus in the rat. Brain Res 1988; 440:109-22. [PMID: 2896043 DOI: 10.1016/0006-8993(88)91163-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The lateral reticular nucleus (LRN) in the caudal ventrolateral medulla has been implicated in descending monoaminergic modulation of spinal nociceptive transmission. Experiments were undertaken to examine the organization of pontine and spinal pathways mediating inhibition of the tail-flick (TF) reflex from the LRN in rats lightly anesthetized with pentobarbital. Microinjections of the local anesthetic lidocaine ipsilaterally or bilaterally into the dorsolateral pons blocked stimulation-produced inhibition of the TF reflex from the nucleus locus coeruleus/subcoeruleus (LC/SC), but had no effect on descending inhibition produced by microinjection of glutamate into the LRN. Thus, adrenergic modulation of the TF reflex from the LRN is not mediated by activation of spinopetal noradrenergic neurons in the LC/SC. The funicular course of descending inhibition produced by focal electrical stimulation in the LRN was studied in separate groups of rats by reversibly (local anesthetic blocks) or irreversibly (surgical transection) compromising conduction in the dorsolateral funiculi (DLFs) at the level of the cervical spinal cord. Bilateral lidocaine blocks in the DLFs significantly shortened control TF latencies and more than doubled the intensity of electrical stimulation in the LRN necessary to inhibit the TF reflex (153 +/- 29% increase from control); changes in these parameters produced by unilateral blocks of the DLFs were not statistically significant. Ipsilateral or bilateral transections of the DLFs significantly increased the intensity of electrical stimulation in the LRN to inhibit the TF reflex (110 +/- 24% and 265 +/- 46% from control, respectively). Neither lidocaine blocks nor transections of the DLFs completely blocked the descending inhibitory effects of electrical stimulation in the LRN. The DLFs appear to carry fibers mediating LRN stimulation-produced inhibition of the TF reflex as well as tonic descending inhibition of spinal reflexes. The results of the present study indicate that (1) adrenergic modulation of the nociceptive TF reflex from the LRN does not depend on a rostral loop through the pontine LC/SC, and (2) descending inhibitory influences from the LRN are contained in, but not confined to, the dorsal quadrants of the spinal cord.
Collapse
Affiliation(s)
- A J Janss
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242
| | | |
Collapse
|
45
|
Sandkühler J, Zimmermann M. Neuronal effects of controlled superfusion of the spinal cord with monoaminergic receptor antagonists in the cat. PROGRESS IN BRAIN RESEARCH 1988; 77:321-7. [PMID: 3217533 DOI: 10.1016/s0079-6123(08)62798-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Proudfit HK. Pharmacologic evidence for the modulation of nociception by noradrenergic neurons. PROGRESS IN BRAIN RESEARCH 1988; 77:357-70. [PMID: 3064177 DOI: 10.1016/s0079-6123(08)62802-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
Khanna S, Sinclair JG. Fluoxetine and pargyline on the nucleus raphe magnus inhibition of cat multireceptive dorsal horn neurones. GENERAL PHARMACOLOGY 1988; 19:249-52. [PMID: 3258264 DOI: 10.1016/0306-3623(88)90070-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. To determine whether serotonin (5-HT) is involved in the nucleus raphe magnus (NRM) inhibition of cat multireceptive dorsal horn neurones, the NRM inhibition was tested with drugs (fluoxetine and pargyline) that should enhance 5-HT synaptic activity. 2. Fluoxetine and pargyline systemically administered, individually or concurrently, decreased rather than increased the inhibition. 3. The results do not support the hypothesis that NRM stimulation-produced inhibition is mediated by 5-HT release.
Collapse
Affiliation(s)
- S Khanna
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
48
|
Willis WD. Anatomy and physiology of descending control of nociceptive responses of dorsal horn neurons: comprehensive review. PROGRESS IN BRAIN RESEARCH 1988; 77:1-29. [PMID: 3064163 DOI: 10.1016/s0079-6123(08)62776-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Abstract
1. The existence of direct projections to spinal motoneurons and interneurons from the raphe pallidus and obscurus, the adjoining ventral medial reticular formation and the locus coeruleus and subcoeruleus is now well substantiated by various anatomical techniques. 2. The spinal projections from the raphe nuclei and the adjoining medial reticular formation contain serotonergic and non-serotonergic fibres. These projections also contain various peptides, several of which are contained within the serotonergic fibres. Whether still other transmitter substances (e.g. acetylcholine) are present in the various descending brainstem projections to motoneurons remains to be determined. 3. The spinal projections from the locus coeruleus and subcoeruleus are mainly noradrenergic, but there also exists a non-noradrenergic spinal projection. 4. Pharmacological, physiological and behavioural studies indicate an overall facilitatory action of noradrenaline and serotonin (including several peptides) on motoneurons. This may lead to an enhanced susceptibility for excitatory inputs from other sources. 5. The brainstem areas in question receive an important projection from several components of the limbic system. This suggests that the emotional brain can exert a powerful influence on all regions of the spinal cord and may thus control both its sensory input and motor output.
Collapse
Affiliation(s)
- J C Holstege
- Department of Anatomy, Erasmus University Medical School, Rotterdam, The Netherlands
| | | |
Collapse
|
50
|
Sandkühler J, Maisch B, Zimmermann M. Raphe magnus-induced descending inhibition of spinal nociceptive neurons is mediated through contralateral spinal pathways in the cat. Neurosci Lett 1987; 76:168-72. [PMID: 3587751 DOI: 10.1016/0304-3940(87)90710-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In anesthetized cats, extracellular recordings were made from lumbar spinal dorsal horn neurons, driven by noxious radiant skin heating. Heat-evoked responses were inhibited during electrical stimulation in the medullary nucleus raphe magnus (NRM). To identify the spinal pathways mediating this descending inhibition, reversible blocks in the spinal cord white matter were produced by microinjection of the local anesthetic lidocaine. Descending inhibition from the NRM was significantly reduced during blocks in the dorsal and medial, but not ventral parts of the contralateral lateral funiculus (LF). Blocks at any site in the ipsilateral LF failed to affect NRM-induced descending inhibition. These results indicate that NRM-induced inhibition of nociceptive dorsal horn neurons is conveyed primarily in fibers descending in the contralateral spinal white matter.
Collapse
|