1
|
Venado RE, Wilker J, Pankievicz VCS, Infante V, MacIntyre A, Wolf ESA, Vela S, Robbins F, Fernandes-Júnior PI, Vermerris W, Ané JM. Mucilage produced by aerial roots hosts diazotrophs that provide nitrogen in Sorghum bicolor. PLoS Biol 2025; 23:e3003037. [PMID: 40029899 DOI: 10.1371/journal.pbio.3003037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 01/24/2025] [Indexed: 03/12/2025] Open
Abstract
Sorghum (Sorghum bicolor) is an important food, feed, and fodder crop worldwide and is gaining popularity as an energy crop due to its high potential for biomass production. Some sorghum accessions develop many aerial roots and produce an abundant carbohydrate-rich mucilage after rain. This aerial root mucilage is similar to that observed in landraces of maize (Zea mays) from southern Mexico, which have been previously shown to host diazotrophs. In this study, we characterized the aerial root development of several sorghum accessions and the impact of humidity on this trait. We conducted a microbiome study of the aerial root mucilage of maize and sorghum and isolated numerous diazotrophs from field sorghum mucilage. We observed that the prevailing phyla in the mucilage were Pseudomonadota, Bacteroidota, and Bacillota. However, bacterial abundances varied based on the genotype and the location. Using acetylene reduction, 15N2 gas feeding, and 15N isotope dilution assays, we confirmed that these sorghum accessions can acquire about 40% of their nitrogen from the atmosphere through these associations on aerial roots. Nitrogen fixation in sorghum aerial root mucilage offers a promising avenue to reduce reliance on synthetic fertilizers and promote sustainable agricultural practices for food, feed, fodder, and bioenergy production.
Collapse
Affiliation(s)
- Rafael E Venado
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vânia C S Pankievicz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - April MacIntyre
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, Florida, United States of America
| | - Fletcher Robbins
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paulo Ivan Fernandes-Júnior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Embrapa Semiárido, Petrolina, Pernambuco, Brazil
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Li Y, Li Y, Wang Y, Yang Y, Qi M, Su T, Li R, Liu D, Gao Y, Qi Y, Qiu L. Flg22-facilitated PGPR colonization in root tips and control of root rot. MOLECULAR PLANT PATHOLOGY 2024; 25:e70026. [PMID: 39497329 PMCID: PMC11534644 DOI: 10.1111/mpp.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Plant root border cells (RBCs) prevent the colonization of plant growth-promoting rhizobacteria (PGPR) at the root tip, rendering the PGPR unable to effectively control pathogens infecting the root tip. In this study, we engineered four strains of Pseudomonas sp. UW4, a typical PGPR strain, each carrying an enhanced green fluorescent protein (EGFP)-expressing plasmid. The UW4E strain harboured only the plasmid, whereas the UW4E-flg22 strain expressed a secreted EGFP-Flg22 fusion protein, the UW4E-Flg(flg22) strain expressed a non-secreted Flg22, and the UW4E-flg22-D strain expressed a secreted Flg22-DNase fusion protein. UW4E-flg22 and UW4E-flg22-D, which secreted Flg22, induced an immune response in wheat RBCs and colonized wheat root tips, whereas the other strains, which did not secrete Flg22, failed to elicit this response and did not colonize wheat root tips. The immune response revealed that wheat RBCs synthesized mucilage, extracellular DNA, and reactive oxygen species. Furthermore, the Flg22-secreting strains showed a 33.8%-93.8% higher colonization of wheat root tips and reduced the root rot incidence caused by Rhizoctonia solani and Fusarium pseudograminearum by 24.6%-35.7% compared to the non-Flg22-secreting strains in pot trials. There was a negative correlation between the incidence of wheat root rot and colonization of wheat root tips by these strains. In contrast, wheat root length and dry weight were positively correlated with the colonization of wheat root tips by these strains. These results demonstrate that engineered secretion of Flg22 by PGPR is an effective strategy for controlling root rot and improving plant growth.
Collapse
Affiliation(s)
- Yanan Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yafei Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuepeng Wang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yanqing Yang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Man Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Tongfu Su
- College of SciencesHenan Agricultural UniversityZhengzhouChina
| | - Rui Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of ScienceZhengzhouChina
| | - Yuqian Gao
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuancheng Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Liyou Qiu
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| |
Collapse
|
3
|
Wheatley RM, Poole PS. Mechanisms of bacterial attachment to roots. FEMS Microbiol Rev 2018; 42:448-461. [PMID: 29672765 DOI: 10.1093/femsre/fuy014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/14/2018] [Indexed: 11/13/2022] Open
Abstract
The attachment of bacteria to roots constitutes the first physical step in many plant-microbe interactions. These interactions exert both positive and negative influences on agricultural systems depending on whether a growth-promoting, symbiotic or pathogenic relationship transpires. A common biphasic mechanism of root attachment exists across agriculturally important microbial species, including Rhizobium, Agrobacterium, Pseudomonas, Azospirillum and Salmonella. Attachment studies have revealed how plant-microbe interactions develop, and how to manipulate these relationships for agricultural benefit. Here, we review our current understanding of the molecular mechanisms governing plant-microbe root attachment and draw together a common biphasic model.
Collapse
Affiliation(s)
- Rachel M Wheatley
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
4
|
Abstract
Agrobacterium exopolysaccharides play a major role in the life of the cell. Exopolysaccharides are required for bacterial growth as a biofilm and they protect the bacteria against environmental stresses. Five of the exopolysaccharides made by A. tumefaciens have been characterized extensively with respect to their structure, synthesis, regulation, and role in the life of the bacteria. These are cyclic-β-(1, 2)-glucan, cellulose, curdlan, succinoglycan, and the unipolar polysaccharide (UPP). This chapter describes the structure, synthesis, regulation, and function of these five exopolysaccharides.
Collapse
|
5
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
6
|
Chuberre C, Plancot B, Driouich A, Moore JP, Bardor M, Gügi B, Vicré M. Plant Immunity Is Compartmentalized and Specialized in Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1692. [PMID: 30546372 PMCID: PMC6279857 DOI: 10.3389/fpls.2018.01692] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
Roots are important organs for plant survival. In recent years, clear differences between roots and shoots in their respective plant defense strategies have been highlighted. Some putative gene markers of defense responses usually used in leaves are less relevant in roots and are sometimes not even expressed. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in root systems. Furthermore, roots are able to activate specific defense mechanisms in response to various elicitors including Molecular/Pathogen Associated Molecular Patterns, (MAMPs/PAMPs), signal compounds (e.g., hormones) and plant defense activator (e.g., β-aminobutyric acid, BABA). This review discusses recent findings in root defense mechanisms and illustrates the necessity to discover new root specific biomarkers. The development of new strategies to control root disease and improve crop quality will also be reviewed.
Collapse
Affiliation(s)
- Coralie Chuberre
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Barbara Plancot
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- Institut Universitaire de France, Paris, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| |
Collapse
|
7
|
Wen F, Curlango-Rivera G, Huskey DA, Xiong Z, Hawes MC. Visualization of extracellular DNA released during border cell separation from the root cap. AMERICAN JOURNAL OF BOTANY 2017; 104:970-978. [PMID: 28710125 DOI: 10.3732/ajb.1700142] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 05/22/2023]
Abstract
PREMISE OF THE STUDY Root border cells are programmed to separate from the root cap as it penetrates the soil environment, where the cells actively secrete >100 extracellular proteins into the surrounding mucilage. The detached cells function in defense of the root tip by an extracellular trapping process that also requires DNA, as in mammalian white blood cells. Trapping in animals and plants is reversed by treatment with DNase, which results in increased infection. The goal of this study was to evaluate the role of DNA in the structural integrity of extracellular structures released as border cells disperse from the root tip upon contact with water. METHODS DNA stains including crystal violet, toluidine blue, Hoechst 33342, DAPI, and SYTOX green were added to root tips to visualize the extracellular mucilage as it absorbed water and border cell populations dispersed. DNase I was used to assess structural changes occurring when extracellular DNA was degraded. KEY RESULTS Complex masses associated with living border cells were immediately evident in response to each stain, including those that are specific for DNA. Treating with DNase I dramatically altered the appearance of the extracellular structures and their association with border cells. No extracellular DNA was found in association with border cells killed by freezing or high-speed centrifugation. This observation is consistent with the hypothesis that, as with border cell extracellular proteins, DNA is secreted by living cells. CONCLUSION DNA is an integral component of border cell extracellular traps.
Collapse
Affiliation(s)
- Fushi Wen
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - David A Huskey
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | - Zhongguo Xiong
- School of Plant Sciences, Marley Building 541H, University of Arizona, Tucson, Arizona 85721, USA
| | - Martha C Hawes
- Department of Soil, Water and Environmental Science, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
- School of Plant Sciences, Marley Building 541H, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
8
|
Clevenger J, Chu Y, Arrais Guimaraes L, Maia T, Bertioli D, Leal-Bertioli S, Timper P, Holbrook CC, Ozias-Akins P. Gene expression profiling describes the genetic regulation of Meloidogyne arenaria resistance in Arachis hypogaea and reveals a candidate gene for resistance. Sci Rep 2017; 7:1317. [PMID: 28465503 PMCID: PMC5430994 DOI: 10.1038/s41598-017-00971-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/20/2017] [Indexed: 11/10/2022] Open
Abstract
Resistance to root-knot nematode was introgressed into cultivated peanut Arachis hypogaea from a wild peanut relative, A. cardenasii and previously mapped to chromosome A09. The highly resistant recombinant inbred RIL 46 and moderately resistant RIL 48 were selected from a population with cv. Gregory (susceptible) and Tifguard (resistant) as female and male parents, respectively. RNA-seq analysis was performed on these four genotypes using root tissue harvested from root-knot nematode infected plants at 0, 3, 7 days after inoculation. Differential gene expression analysis provides evidence that root-knot nematodes modulate biological pathways involved in plant hormone, defense, cell signaling, cytoskeleton and cell wall metabolism in a susceptible reaction. Corresponding to resistance reaction, an effector-induced-immune response mediated by an R-gene was identified in Tifguard. Mapping of the introgressed region indicated that 92% of linkage group A09 was of A. cardenasii origin in Tifguard. RIL46 and RIL 48 possessed 3.6% and 83.5% of the introgression on A09, respectively. Within the small introgressed region carried by RIL 46, a constitutively expressed TIR-NBS-LRR gene was identified as the candidate for nematode resistance. Potential defense responsive pathways include effector endocytosis through clathrin-coated vesicle trafficking, defense signaling through membrane lipid metabolism and mucilage production.
Collapse
Affiliation(s)
- Josh Clevenger
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Tifton, GA, 31793, USA
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Tifton, GA, 31793, USA
| | - Larissa Arrais Guimaraes
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Tifton, GA, 31793, USA
| | - Thiago Maia
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Tifton, GA, 31793, USA
| | - David Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA, 30602, USA
- University of Brasília, Institute of Biological Sciences, Campus Darcy Ribeiro, 70910-900, Brasília, DF, Brazil
| | - Soraya Leal-Bertioli
- Center for Applied Genetic Technologies and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Athens, GA, 30602, USA
- Embrapa Genetic Resources and Biotechnology, 70770-917, Brasília, DF, Brazil
| | | | | | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, The University of Georgia, Tifton, GA, 31793, USA.
| |
Collapse
|
9
|
Hawes M, Allen C, Turgeon BG, Curlango-Rivera G, Minh Tran T, Huskey DA, Xiong Z. Root Border Cells and Their Role in Plant Defense. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:143-161. [PMID: 27215971 DOI: 10.1146/annurev-phyto-080615-100140] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.
Collapse
Affiliation(s)
- Martha Hawes
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - B Gillian Turgeon
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology Section, Cornell University, Ithaca, New York 14853;
| | - Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Tuan Minh Tran
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706; ,
| | - David A Huskey
- Department of Soil, Water and Environmental Sciences, Bio5 Institute, University of Arizona, Tucson, Arizona 85721; , ,
| | - Zhongguo Xiong
- School of Plant Science, Bio5 Institute, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
10
|
Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. AMERICAN JOURNAL OF BOTANY 2013; 100:1706-1712. [PMID: 23942085 DOI: 10.3732/ajb.1200607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Border cells, which separate from the root cap, can comprise >90% of carbon-based exudates released into the rhizosphere, but may not provide a general source of nutrients for soil microorganisms. Instead, this population of specialized cells appears to function in defense of the root tip by an extracellular trapping process similar to that of mammalian white blood cells. Border cell production is tightly regulated, and direct tests of their impact on crop production have been hindered by lack of intraspecies variation. • METHODS Border cell number, viability, and clumping were compared among 22 cotton cultivars. Slime layer "extracellular trap" production by border cells in response to copper chloride, an elicitor of plant defenses, was compared in two cultivars with divergent border cell production. Trapping of bacteria by border cells in these lines also was measured. • KEY RESULTS Emerging roots of some cultivars produced more than 20000 border cells per root, a 100% increase over previously reported values for this species. No differences in border cell morphology, viability, or clumping were found. Copper chloride-induced extracellular trap formation by border cells from a cultivar that produced 27921 ± 2111 cells per root was similar to that of cells from a cultivar with 10002 ± 614 cells, but bacterial trapping was reduced. • CONCLUSIONS Intraspecific variation in border cell production provides a tool to measure their impact on plant development in the laboratory, greenhouse, and field. Further research is needed to determine the basis for this variation, and its impact on rhizosphere community structure.
Collapse
Affiliation(s)
- Gilberto Curlango-Rivera
- Department of Soil, Water and Environmental Sciences, 429 Shantz Building #38, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kumar N, Pandey S, Bhattacharya A, Ahuja PS. Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]? J Biosci 2005; 29:309-17. [PMID: 15381852 DOI: 10.1007/bf02702613] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The host range specificity of Agrobacterium with five tea cultivars and an unrelated species (Artemisia parviflora) having extreme surface characteristics was evaluated in the present study. The degree of Agrobacterium infection in the five cultivars of tea was affected by leaf wetness, micro-morphology and surface chemistry. Wettable leaf surfaces of TV1, Upasi-9 and Kangra jat showed higher rate (75%) of Agrobacterium infection compared to Upasi-10 and ST-449, whereas non-wettable leaves of A. parviflora showed minimum (25%) infection. This indicated that the leaves with glabrous surface having lower q (larger surface area covered by water droplet), higher phenol and wax content were more suitable for Agrobacterium infection. Caffeine fraction of tea promoted Agrobacterium infection even in leaves poor in wax (Upasi-10), whereas caffeine-free wax inhibited both Agrobacterium growth and infection. Thus, study suggests the importance of leaf surface features in influencing the Agrobacterium infection in tea leaf explants. Our study also provides a basis for the screening of a clone/cultivar of a particular species most suitable for Agrobacterium infection the first step in Agrobacterium-mediated genetic transformation.
Collapse
Affiliation(s)
- Nitish Kumar
- Division of Biotechnology, Institute of Himalayan Bioresource Technology, Palampur 176 061, India
| | | | | | | |
Collapse
|
12
|
Pan JW, Ye D, Wang LL, Hua J, Zhao GF, Pan WH, Han N, Zhu MY. Root Border Cell Development is a Temperature-Insensitive and Al-Sensitive Process in Barley. ACTA ACUST UNITED AC 2004; 45:751-60. [PMID: 15215510 DOI: 10.1093/pcp/pch090] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo and in vitro experiments showed that border cell (BC) survival was dependent on root tip mucigel in barley (Hordeum vulgare L. cv. Hang 981). In aeroponic culture, BC development was an induced process in barley, whereas in hydroponic culture, it was a kinetic equilibrium process during which 300-400 BCs were released into water daily. The response of root elongation to temperatures (10-35 degrees C) was very sensitive but temperature changes had no great effect on barley BC development. At 35 degrees C, the root elongation ceased whereas BC production still continued, indicating that the two processes might be regulated independently under high temperature (35 degrees C) stress. Fifty microM Al could inhibit significantly BC development by inhibiting pectin methylesterase activity in the root cap of cv. 2000-2 (Al-sensitive) and cv. Humai 16 (Al-tolerant), but 20 microM Al could not block BC development in cv. Humai 16. BCs and their mucigel of barley had a limited role in the protection of Al-induced inhibition of root elongation, but played a significant role in the prevention of Al from diffusing into the meristems of the root tip and the root cap. Together, these results suggested that BC development was a temperature-insensitive but Al-sensitive process, and that BCs and their mucigel played an important role in the protection of root tip and root cap meristems from Al toxicity.
Collapse
Affiliation(s)
- Jian-Wei Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310012, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu MY, Ahn SJ, Matsumoto H. Inhibition of growth and development of root border cells in wheat by Al. PHYSIOLOGIA PLANTARUM 2003; 117:359-367. [PMID: 12654036 DOI: 10.1034/j.1399-3054.2003.00036.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The production and development of border cells vary with genotype, and they are released in wheat at an earlier stage of root development than other species studied so far. No significant difference was observed in the maximum number of border cells between Al-tolerant (Atlas 66) and Al-sensitive (Scout 66) cultivars in the absence of Al treatment. Al seriously inhibited the production and release of border cells, resulting in clumping of border cells in Scout 66, but less clustering in Atlas 66. The number of border cells released from roots treated with Al is significantly less than that from roots grown without Al treatment. Al treatment induced the death of detached border cells in vitro and they were killed by a 20-h treatment with 25 micro m Al. No significant difference in survival percentage of detached border cells was observed between Atlas 66 and Scout 66, regardless of the presence or absence of Al. The removal of border cells from root tips of both Atlas 66 and Scout 66 enhanced the Al-induced inhibition of root elongation concomitant with increased Al accumulation in the root. These results suggest that border cells adhered to the root tips play a potential role in the protection of root from Al injury in wheat.
Collapse
Affiliation(s)
- Mu-Yuan Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310012, PR China Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | | | | |
Collapse
|
14
|
Hawes MC, Gunawardena U, Miyasaka S, Zhao X. The role of root border cells in plant defense. TRENDS IN PLANT SCIENCE 2000; 5:128-33. [PMID: 10707079 DOI: 10.1016/s1360-1385(00)01556-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.
Collapse
Affiliation(s)
- M C Hawes
- University of Arizona, Dept of Plant Pathology, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
15
|
Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y. Function of root border cells in plant health: pioneers in the rhizosphere. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:311-327. [PMID: 15012503 DOI: 10.1146/annurev.phyto.36.1.311] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants dedicate a large amount of energy to the regulated production of living cells programmed to separate from roots into the external environment. This unusual process may be worth the cost because it enables the plant to dictate which species will share its ecological niche. For example, border cells can rapidly attract and stimulate growth in some microorganisms and repel and inhibit the growth of others. Such specificity may provide a way to control the dynamics of adjacent microbial populations in the soil to foster beneficial associations and inhibit pathogenic invasion. Plant genes controlling the delivery of border cells and the expression of their unique properties provide tools to genetically engineer plants with altered border cell quality and quantity. Such variants are being used to test the hypothesis that the function of border cells is to protect plant health by controlling the ecology of the root system.
Collapse
Affiliation(s)
- M C Hawes
- Department of Plant Pathology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- L A Brigham
- Department of Plant Pathology, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|
17
|
Abstract
The presence of the Ti plasmid favorably influences the attachment of agrobacteria to grape callus cells, especially during the early stages of a 2-h incubation.
Agrobacterium
strains attached to a similar extent to both the crown gall-resistant cultivar (Catawba),
Vitis labruscana
, and the crown gall-susceptible cultivar (Chancellor),
Vitis
sp. Attachment of the virulent strain to grape callus cells is blocked by the avirulent strain HLB-2 in both the tissue culture cell suspension and the seedling root systems.
Collapse
Affiliation(s)
- X A Pu
- Department of Plant Pathology, University of Missouri-Columbia, 108 Waters Hall, Columbia, Missouri 65211
| | | |
Collapse
|
18
|
Affiliation(s)
- S R Long
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
19
|
Wagner VT, Matthysse AG. Involvement of a vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells. J Bacteriol 1992; 174:5999-6003. [PMID: 1381711 PMCID: PMC207141 DOI: 10.1128/jb.174.18.5999-6003.1992] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infections of dicotyledonous plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. Attachment of the bacteria to plant host cells is required for tumor formation. Human vitronectin and antivitronectin antibodies both inhibited the binding of A. tumefaciens to carrot cells. Wild-type bacteria are able to bind radioactive vitronectin; nonattaching mutants showed a reduction in the ability to bind vitronectin. The binding of biotype 1 A. tumefaciens to carrot cells or to radioactive vitronectin was not affected by high ionic strength. Detergent extraction of carrot cells removed the receptor to which the bacteria bind. The extract was found to contain a vitronectin-like protein. These results suggest that A. tumefaciens utilizes a vitronectin-like protein on the plant cell surface as the receptor for its initial attachment to host cells.
Collapse
Affiliation(s)
- V T Wagner
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | |
Collapse
|
20
|
Rong LJ, Karcher SJ, Gelvin SB. Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 1991; 173:5110-20. [PMID: 1860822 PMCID: PMC208202 DOI: 10.1128/jb.173.16.5110-5120.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
picA is an Agrobacterium tumefaciens chromosomal locus, identified by Mu d11681 mutagenesis, that is inducible by certain acidic polysaccharides found in carrot root extract. Cloning and genetic analysis of a picA::lacZ fusion defined a region of the picA promoter that is responsible for the induction of this locus. Furthermore, we identified a possible negative regulator of picA expression upstream of the picA locus. This sequence, denoted pgl, has extensive homology to polygalacturonase genes from several organisms and inhibited the induction of the picA promoter when present in multiple copies in A. tumefaciens. DNA sequence analysis indicated at least two long open reading frames (ORFs) in the picA region. S1 nuclease mapping was used to identify the transcription initiation site of picA. Mutation of ORF1, but not ORF2, of the picA locus was responsible for an increased aggregation of A. tumefaciens, forming "ropes" in the presence of pea root cap cells. In addition, a potato tuber disk virulence assay indicated that a preinduced picA mutant was more virulent than was the wild-type control, a further indication that the picA locus regulates the surface properties of the bacterium in the presence of plant cells or plant cell extracts.
Collapse
Affiliation(s)
- L J Rong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
21
|
Rong L, Karcher SJ, O'Neal K, Hawes MC, Yerkes CD, Jayaswal RK, Hallberg CA, Gelvin SB. picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 1990; 172:5828-36. [PMID: 2170328 PMCID: PMC526900 DOI: 10.1128/jb.172.10.5828-5836.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.
Collapse
Affiliation(s)
- L Rong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang ML, Cangelosi GA, Halperin W, Nester EW. A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J Bacteriol 1990; 172:1814-22. [PMID: 2156804 PMCID: PMC208673 DOI: 10.1128/jb.172.4.1814-1822.1990] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The vir gene products of Agrobacterium tumefaciens carry out the transfer of T-DNA to the plant genome. Effective transcriptional induction of the vir genes by plant signal molecules is controlled by two vir gene products, VirA and VirG. In this study we have identified and cloned a chromosomal region which is also required for vir gene induction. Transposon insertions within this region reduce induction significantly and strongly attenuate virulence, resulting in a restricted host range for infection. The reduction in vir gene transcription can be partially overcome by high concentrations of the inducer molecule acetosyringone. Expression of virG at low pH and low phosphate concentrations, which is independent of plant signals, is not affected by these mutations. Sequence analysis of the region revealed two divergent open reading frames, which we have designated chvE and ORF1. Several transposon insertions mapped in chvE; this resulted in attenuated virulence. chvE codes for a putative protein which is homologous to two periplasmic receptor proteins involved in chemotaxis and uptake of sugars. Whether ORF1 is required for virulence is uncertain. One transposon insertion resulting in avirulence maps in or near the 5' end of ORF1, and several which do not affect virulence map in its 3' end. ORF1 codes for a putative protein which is homologous to a family of transcriptional activator proteins.
Collapse
Affiliation(s)
- M L Huang
- Department of Botany, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
23
|
Conditional Requirement for Chemotaxis in Induction of Rooty Tumors by Agrobacterium Tumefaciens on Roots of Pisum Sativum. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/978-3-642-74158-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
24
|
In Vitro Genetic Manipulation of Cereals and Grasses. ACTA ACUST UNITED AC 1988. [DOI: 10.1016/b978-0-12-007906-3.50015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|