1
|
Hani S, Mercier C, David P, Bertrand E, Desnos T, Nussaume L. Live Single-Cell Transcriptional Dynamics in Plant Cells. Methods Mol Biol 2025; 2875:37-58. [PMID: 39535638 DOI: 10.1007/978-1-0716-4248-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Transcriptional reprogramming plays a key role in a variety of biological processes. Recent advances in RNA imaging techniques have allowed to visualize, in vivo, transcription-related mechanisms in different organisms. The MS2 system constitutes a robust method that has been used for over two decades to image multiple steps of a transcript's life cycle from "birth to death" with high spatiotemporal resolution in the animal field. It is based on the high affinity binding of the MS2 bacteriophage coat protein to its RNA hairpin ligands. Despite its broad applicability, a limited number of studies have implemented the system in plants, but without exploiting its full potential. Here, we describe the transposition of the MS2 technique to Arabidopsis. Combined with microfluidics, it allows to visualize the transcriptional repression of a phosphate starvation induced gene (SPX1) upon phosphate refeeding in vivo. The system provided access to the transcriptional response kinetics of individual cells, gene expression heterogeneity, and revealed bursting phenomena in plantae. The described methods provide new insights for multiple applications.
Collapse
Affiliation(s)
- Sahar Hani
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France
| | - Caroline Mercier
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, Univ. Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, Montpellier, France
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des Végétaux à leur Environnement), Saint-Paul, France
| |
Collapse
|
2
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
3
|
Cuyas L, David P, de Craieye D, Ng S, Arkoun M, Plassard C, Faharidine M, Hourcade D, Degan F, Pluchon S, Nussaume L. Identification and interest of molecular markers to monitor plant Pi status. BMC PLANT BIOLOGY 2023; 23:401. [PMID: 37612632 PMCID: PMC10463364 DOI: 10.1186/s12870-023-04411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Inorganic phosphate (Pi) is the sole source of phosphorus for plants. It is a limiting factor for plant yield in most soils worldwide. Due to economic and environmental constraints, the use of Pi fertilizer is and will be more and more limited. Unfortunately, evaluation of Pi bioavailability or Pi starvation traits remains a tedious task, which often does not inform us about the real Pi plant status. RESULTS Here, we identified by transcriptomic studies carried out in the plant model Arabidopsis thaliana, early roots- or leaves-conserved molecular markers for Pi starvation, exhibiting fast response to modifications of phosphate nutritional status. We identified their homologues in three crops (wheat, rapeseed, and maize) and demonstrated that they offer a reliable opportunity to monitor the actual plant internal Pi status. They turn out to be very sensitive in the concentration range of 0-50 µM which is the most common case in the vast majority of soils and situations where Pi hardly accumulates in plants. Besides in vitro conditions, they could also be validated for plants growing in the greenhouse or in open field conditions. CONCLUSION These markers provide valuable physiological tools for plant physiologists and breeders to assess phosphate bio-availability impact on plant growth in their studies. This also offers the opportunity to cope with the rising economical (shortage) and societal problems (pollution) resulting from the management of this critical natural resource.
Collapse
Affiliation(s)
- Laura Cuyas
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Damien de Craieye
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
| | - Sophia Ng
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France
- Centre for AgriBioscience, La Trobe University, 5 Ring Road Bundoora, Victoria, 3086, Australia
| | - Mustapha Arkoun
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Claude Plassard
- INRAE, CIRAD, IRD, Univ Montpellier, Eco&Sols, Institut Agro, 34060, Montpellier, France
| | | | - Delphine Hourcade
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Francesca Degan
- Arvalis, Institut du Végétal, Station Expérimentale, Boigneville, France
| | - Sylvain Pluchon
- TIMAC AGRO, Laboratoire de Nutrition Végétale, AgroInnovation International, 18 Avenue Franklin Roosevelt, 35400, Saint‑Malo, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, EBMP, 13115, Saint-Paul Lez Durance, France.
| |
Collapse
|
4
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
5
|
Guan H, Xu X, He C, Liu C, Liu Q, Dong R, Liu T, Wang L. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize. PLoS One 2016; 11:e0153962. [PMID: 27100184 PMCID: PMC4839758 DOI: 10.1371/journal.pone.0153962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/06/2016] [Indexed: 11/24/2022] Open
Abstract
A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.
Collapse
Affiliation(s)
- Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Xiangbo Xu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Chunxiao Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Qiang Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Rui Dong
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
- * E-mail: (TSL); (LMW)
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Biology and Genetic Improvement of North Summer Maize, Ministry of Agriculture, Jinan, China
- National Maize Improvement Sub-Center, Jinan, China
- * E-mail: (TSL); (LMW)
| |
Collapse
|
6
|
Kanno S, Cuyas L, Javot H, Bligny R, Gout E, Dartevelle T, Hanchi M, Nakanishi TM, Thibaud MC, Nussaume L. Performance and Limitations of Phosphate Quantification: Guidelines for Plant Biologists. PLANT & CELL PHYSIOLOGY 2016; 57:690-706. [PMID: 26865660 DOI: 10.1093/pcp/pcv208] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/19/2015] [Indexed: 05/02/2023]
Abstract
Phosphate (Pi) is a macronutrient that is essential for plant life. Several regulatory components involved in Pi homeostasis have been identified, revealing a very high complexity at the cellular and subcellular levels. Determining the Pi content in plants is crucial to understanding this regulation, and short real-time(33)Pi uptake imaging experiments have shown Pi movement to be highly dynamic. Furthermore, gene modulation by Pi is finely controlled by localization of this ion at the tissue as well as the cellular and subcellular levels. Deciphering these regulations requires access to and quantification of the Pi pool in the various plant compartments. This review presents the different techniques available to measure, visualize and trace Pi in plants, with a discussion of the future prospects.
Collapse
Affiliation(s)
- Satomi Kanno
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan Biotechnology Research Center, the University of Tokyo, Yayoi, 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Laura Cuyas
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| | - Hélène Javot
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| | - Richard Bligny
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, CNRS, Université Grenoble Alpes, Institut National de la Recherche Agronomique (INRA), CEA, Grenoble, F-38054, France
| | - Elisabeth Gout
- CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire & Végétale, Unité Mixte de Recherche 5168, CNRS, Université Grenoble Alpes, Institut National de la Recherche Agronomique (INRA), CEA, Grenoble, F-38054, France
| | - Thibault Dartevelle
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| | - Mohamed Hanchi
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| | - Tomoko M Nakanishi
- Graduate School of Agricultural and Life Sciences, the University of Tokyo, Yayoi, 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Marie-Christine Thibaud
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| | - Laurent Nussaume
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Developpement des Plantes; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 7265 Biologie Vegetale & Microbiologie Environnementale; Aix-Marseille Universite, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
7
|
Arnaud C, Clément M, Thibaud MC, Javot H, Chiarenza S, Delannoy E, Revol J, Soreau P, Balzergue S, Block MA, Maréchal E, Desnos T, Nussaume L. Identification of phosphatin, a drug alleviating phosphate starvation responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1479-91. [PMID: 25209983 PMCID: PMC4226385 DOI: 10.1104/pp.114.248112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inorganic phosphate (Pi) is present in most soils at suboptimal concentrations, strongly limiting plant development. Plants have the ability to sense and adapt to the surrounding ionic environment, and several genes involved in the response to Pi starvation have been identified. However, a global understanding of the regulatory mechanisms involved in this process is still elusive. Here, we have initiated a chemical genetics approach and isolated compounds that inhibit the response to Pi starvation in Arabidopsis (Arabidopsis thaliana). Molecules were screened for their ability to inhibit the expression of a Pi starvation marker gene (the high-affinity Pi transporter PHT1;4). A drug family named Phosphatin (PTN; Pi starvation inhibitor), whose members act as partial suppressors of Pi starvation responses, was thus identified. PTN addition also reduced various traits of Pi starvation, such as phospholipid/glycolipid conversion, and the accumulation of starch and anthocyanins. A transcriptomic assay revealed a broad impact of PTN on the expression of many genes regulated by low Pi availability. Despite the reduced amount of Pi transporters and resulting reduced Pi uptake capacity, no reduction of Pi content was observed. In addition, PTN improved plant growth; this reveals that the developmental restrictions induced by Pi starvation are not a consequence of metabolic limitation but a result of genetic regulation. This highlights the existence of signal transduction pathway(s) that limit plant development under the Pi starvation condition.
Collapse
Affiliation(s)
- Carole Arnaud
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Mathilde Clément
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Marie-Christine Thibaud
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Hélène Javot
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Serge Chiarenza
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Etienne Delannoy
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Julia Revol
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Paul Soreau
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Sandrine Balzergue
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Maryse A Block
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Eric Maréchal
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Thierry Desnos
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| | - Laurent Nussaume
- Aix-Marseille Université, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale and Microbiologie Environnementale, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., P.S., T.D., L.N.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Laboratoire de Biologie du Développement des Plantes, F-13108 Saint-Paul-lez-Durance, France (C.A., M.C., M.-C.T., H.J., S.C., J.R., T.D., L.N.);Unité Mixte de Recherche Institut National de Recherche Agronomique 1165 Centre National de la Recherche Scientifique 8114, Recherche en Génomique Végétale, Université Evry Val d'Essonne, 91057 Evry cedex, France (E.D., S.B.);Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Environnementale et de Biotechnologie, Groupe de Recherche Appliquée à la Phytotechnologie, F-13108 Saint-Paul-lez-Durance, France (P.S.); andUnité Mixte de Recherche 5168 Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche Agronomique, Grenoble Université, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'Energie Atomique-Grenoble, 38054 Grenoble, France (M.A.B., E.M.)
| |
Collapse
|
8
|
Abstract
Genome walking is a molecular procedure for the direct identification of nucleotide sequences from purified genomes. The only requirement is the availability of a known nucleotide sequence from which to start. Several genome walking methods have been developed in the last 20 years, with continuous improvements added to the first basic strategies, including the recent coupling with next generation sequencing technologies. This review focuses on the use of genome walking strategies in several aspects of the study of eukaryotic genomes. In a first part, the analysis of the numerous strategies available is reported. The technical aspects involved in genome walking are particularly intriguing, also because they represent the synthesis of the talent, the fantasy and the intelligence of several scientists. Applications in which genome walking can be employed are systematically examined in the second part of the review, showing the large potentiality of this technique, including not only the simple identification of nucleotide sequences but also the analysis of large collections of mutants obtained from the insertion of DNA of viral origin, transposons and transfer DNA (T-DNA) constructs. The enormous amount of data obtained indicates that genome walking, with its large range of applicability, multiplicity of strategies and recent developments, will continue to have much to offer for the rapid identification of unknown sequences in several fields of genomic research.
Collapse
Affiliation(s)
- Claudia Leoni
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
9
|
Hirsch J, Misson J, Crisp PA, David P, Bayle V, Estavillo GM, Javot H, Chiarenza S, Mallory AC, Maizel A, Declerck M, Pogson BJ, Vaucheret H, Crespi M, Desnos T, Thibaud MC, Nussaume L, Marin E. A novel fry1 allele reveals the existence of a mutant phenotype unrelated to 5'->3' exoribonuclease (XRN) activities in Arabidopsis thaliana roots. PLoS One 2011; 6:e16724. [PMID: 21304819 PMCID: PMC3033419 DOI: 10.1371/journal.pone.0016724] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mutations in the FRY1/SAL1 Arabidopsis locus are highly pleiotropic, affecting drought tolerance, leaf shape and root growth. FRY1 encodes a nucleotide phosphatase that in vitro has inositol polyphosphate 1-phosphatase and 3',(2'),5'-bisphosphate nucleotide phosphatase activities. It is not clear which activity mediates each of the diverse biological functions of FRY1 in planta. PRINCIPAL FINDINGS A fry1 mutant was identified in a genetic screen for Arabidopsis mutants deregulated in the expression of Pi High affinity Transporter 1;4 (PHT1;4). Histological analysis revealed that, in roots, FRY1 expression was restricted to the stele and meristems. The fry1 mutant displayed an altered root architecture phenotype and an increased drought tolerance. All of the phenotypes analyzed were complemented with the AHL gene encoding a protein that converts 3'-polyadenosine 5'-phosphate (PAP) into AMP and Pi. PAP is known to inhibit exoribonucleases (XRN) in vitro. Accordingly, an xrn triple mutant with mutations in all three XRNs shared the fry1 drought tolerance and root architecture phenotypes. Interestingly these two traits were also complemented by grafting, revealing that drought tolerance was primarily conferred by the rosette and that the root architecture can be complemented by long-distance regulation derived from leaves. By contrast, PHT1 expression was not altered in xrn mutants or in grafting experiments. Thus, PHT1 up-regulation probably resulted from a local depletion of Pi in the fry1 stele. This hypothesis is supported by the identification of other genes modulated by Pi deficiency in the stele, which are found induced in a fry1 background. CONCLUSIONS/SIGNIFICANCE Our results indicate that the 3',(2'),5'-bisphosphate nucleotide phosphatase activity of FRY1 is involved in long-distance as well as local regulatory activities in roots. The local up-regulation of PHT1 genes transcription in roots likely results from local depletion of Pi and is independent of the XRNs.
Collapse
Affiliation(s)
- Judith Hirsch
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Julie Misson
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Peter A. Crisp
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pascale David
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Vincent Bayle
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Gonzalo M. Estavillo
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hélène Javot
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Serge Chiarenza
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | | | - Alexis Maizel
- Department of Stem Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Marie Declerck
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Barry J. Pogson
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRA, Versailles, France
| | - Martin Crespi
- Institut des Sciences du Végétal, CNRS, Gif sur Yvette, France
| | - Thierry Desnos
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Marie-Christine Thibaud
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Laurent Nussaume
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Elena Marin
- CEA, DSV IBEB, Laboratoire de Biologie du Développement des Plantes, UMR 6191 CNRS, CEA, Aix-Marseille II, Saint-Paul-lez-Durance, France
- * E-mail:
| |
Collapse
|
10
|
Schauer SE, Schlüter PM, Baskar R, Gheyselinck J, Bolaños A, Curtis MD, Grossniklaus U. Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:987-1000. [PMID: 19473325 DOI: 10.1111/j.1365-313x.2009.03928.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The screening of enhancer detector lines in Arabidopsis thaliana has identified genes that are specifically expressed in the sporophytic tissue of the ovule. One such gene is the MADS-domain transcription factor AGAMOUS-LIKE6 (AGL6), which is expressed asymmetrically in the endothelial layer of the ovule, adjacent to the developing haploid female gametophyte. Transcription of AGL6 is regulated at multiple stages of development by enhancer and silencer elements located in both the upstream regulatory region and the large first intron. These include a bipartite enhancer, which requires elements in both the upstream regulatory region and the first intron, active in the endothelium. Transcription of the AGL13 locus, which encodes the other member of the AGL6 subfamily in Arabidopsis, is also regulated by elements located in the upstream regulatory region and in the first intron. There is, however, no overlapping expression of AGL6 and AGL13 except in the chalaza of the developing ovule, as was shown using a dual gene reporter system. Phylogenetic shadowing of the first intron of AGL6 and AGL13 homologs from other Brassicaceae identified four regions of conservation that probably contain the binding sites of transcriptional regulators, three of which are conserved outside Brassicaceae. Further phylogenetic analysis using the protein-encoding domains of AGL6 and AGL13 revealed that the MADS DNA-binding domain shows considerable divergence. Together, these results suggest that AGL6 and AGL13 show signs of subfunctionalization, with divergent expression patterns, regulatory sequences and possibly functions.
Collapse
Affiliation(s)
- Stephen E Schauer
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
11
|
Papdi C, Joseph MP, Salamó IP, Vidal S, Szabados L. Genetic technologies for the identification of plant genes controlling environmental stress responses. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:696-720. [PMID: 32688681 DOI: 10.1071/fp09047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 06/11/2009] [Indexed: 06/11/2023]
Abstract
Abiotic conditions such as light, temperature, water availability and soil parameters determine plant growth and development. The adaptation of plants to extreme environments or to sudden changes in their growth conditions is controlled by a well balanced, genetically determined signalling system, which is still far from being understood. The identification and characterisation of plant genes which control responses to environmental stresses is an essential step to elucidate the complex regulatory network, which determines stress tolerance. Here, we review the genetic approaches, which have been used with success to identify plant genes which control responses to different abiotic stress factors. We describe strategies and concepts for forward and reverse genetic screens, conventional and insertion mutagenesis, TILLING, gene tagging, promoter trapping, activation mutagenesis and cDNA library transfer. The utility of the various genetic approaches in plant stress research we review is illustrated by several published examples.
Collapse
Affiliation(s)
- Csaba Papdi
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Mary Prathiba Joseph
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Imma Pérez Salamó
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| | - Sabina Vidal
- Facultad de Ciencias, Universidad de la República, Iguá 4225, CP 11400, Montevideo, Uruguay
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre, 6726-Szeged, Temesvári krt. 62, Hungary
| |
Collapse
|
12
|
Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S. Variegation mutants and mechanisms of chloroplast biogenesis. PLANT, CELL & ENVIRONMENT 2007; 30:350-365. [PMID: 17263779 DOI: 10.1111/j.1365-3040.2006.01630.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Variegated plants typically have green- and white-sectored leaves. Cells in the green sectors contain normal-appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.
Collapse
Affiliation(s)
- Fei Yu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Aigen Fu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Maneesha Aluru
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Sungsoon Park
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yang Xu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Huiying Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Xiayan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Andrew Foudree
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Milly Nambogga
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Steven Rodermel
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
13
|
Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U. An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. PLANT PHYSIOLOGY 2005; 139:1421-32. [PMID: 16258010 PMCID: PMC1283777 DOI: 10.1104/pp.105.068262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.
Collapse
Affiliation(s)
- Wei Yang
- CAMBIA, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Rutherford S, Brandizzi F, Townley H, Craft J, Wang Y, Jepson I, Martinez A, Moore I. Improved transcriptional activators and their use in mis-expression traps in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:769-88. [PMID: 16115072 DOI: 10.1111/j.1365-313x.2005.02486.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The synthetic transcription factor LhG4 has been used in numerous mis-expression studies in plants. We show that the sequence encoding the LhG4 activation domain, derived from Saccharomyces cerevisiae GAL4, contains several cryptic polyadenylation signals in Arabidopsis. The GAL4-derived sequence was modified according to preferred Arabidopsis codon usage, generating LhG4AtO which was faithfully transcribed in Arabidopsis plants. In protoplasts, LhG4AtO achieved maximum transactivation of the pOp promoter with 10-fold less input DNA than LhG4. The same methods were used to compare 10 other LhG4 derivatives that carried alternative natural or synthetic activation domains. Lh214 and Lh314, which contain synthetic activation domains comprising trimers of a core acidic activation domain, directed threefold more GUS expression from the pOp promoter with 20-fold less input DNA than LhG4. In contrast, when expressed from the CaMV 35S promoter in transgenic plants carrying a pOp-GUS reporter, Lh214 and Lh314 yielded transformants with substantially lower GUS activities than other constructs including LhG4AtO and LhG4 which performed similarly. When incorporated into an enhancer-trapping vector, however, LhG4AtO and Lh314 yielded enhancer traps with approximately twice the frequency of LhG4, suggesting that the modified activation domains offer improved performance when expressed from weaker transcription signals. To increase the number of LhG4 patterns available for mis-expression studies, we describe a population of enhancer-trap lines obtained with LhG4AtO in a pOp-GUS background. We show that enhancer-trap lines can transactivate an unlinked pOp-green fluorescent protein (pOp-GFP) reporter in the pattern predicted by staining for GUS activity.
Collapse
Affiliation(s)
- Stephen Rutherford
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
An G, Jeong DH, Jung KH, Lee S. Reverse genetic approaches for functional genomics of rice. PLANT MOLECULAR BIOLOGY 2005; 59:111-23. [PMID: 16217606 DOI: 10.1007/s11103-004-4037-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/30/2004] [Indexed: 05/04/2023]
Abstract
T-DNA and transposable elements e.g., Ds and Tos17, are used to generate a large number of insertional mutant lines in rice. Some carry the GUS or GFP reporter for gene trap or enhancer trap. These reporter systems are valuable for identifying tissue- or organ-preferential genes. Activation tagging lines have also been generated for screening mutants and isolating mutagenized genes. To utilize these resources more efficiently, tagged lines have been produced for reverse genetic approaches. DNA pools of the T-DNA tagged lines and Tos17 lines have been prepared for PCR screening of insertional mutants in a given gene. Tag end sequences (TES) of the inserts have also been produced. TES databases are beneficial for analyzing the function of a large number of rice genes.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
16
|
Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC PLANT BIOLOGY 2005; 5:9. [PMID: 15941484 PMCID: PMC1164422 DOI: 10.1186/1471-2229-5-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 06/07/2005] [Indexed: 05/02/2023]
Abstract
BACKGROUND Gal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS) as five repeats (5XUAS) and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS). While Gal4 transactivation has been demonstrated in Arabidopsis, wide use of a trap has not emerged in part because of the lack of detailed analysis, which is the purpose of the present study. RESULTS A key feature of this study is the use of luciferase (LUC) as the primary reporter and rsGFP-GUS as secondary reporters. Reporters driven by a 5XUAS are better suited in Arabidopsis than those containing a 1X or 2X UAS. A 5XUAS-LUC reporter is expressed at high levels in Arabidopsis lines transformed with Gal4 driven by the full, enhanced 35S promoter. In contrast, a minimum 35S (containing the TATA region) upstream of Gal4 acts as an enhancer trap system. Luciferase expression in trap lines of the T1, T2, and T3 generations are generally stable but by the T4 generation approximately 25% of the lines are significantly silenced. This silencing is reversed by growing plants on media containing 5-aza-2'-deoxycytidine. Quantitative multiplex RT-PCR on the Gal4 and LUC mRNA indicate that this silencing can occur at the level of Gal4 or LUC transcription. Production of a 10,000 event library and observations on screening, along with the potential for a Gal4 driver system in other plant species are discussed. CONCLUSION The Gal4 trap system described here uses the 5XUAS-LUC and 5XUAS rsGFP-GUS as reporters and allows for in planta quantitative screening, including the rapid monitoring for silencing. We conclude that in about 75% of the cases silencing is at the level of transcription of the Gal4 transgene and is at an acceptable frequency to make the Gal4 trap system in Arabidopsis of value. This system will be useful for the isolation and comprehensive characterization of specific reporter and driver lines.
Collapse
Affiliation(s)
- Cawas B Engineer
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | - Karen C Fitzsimmons
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | | | | | - Robert G Kranz
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Abstract
Now that sequencing of the rice genome is nearly completed, functional analysis of its large number of genes is the next challenge. Because rice is easy to transform, T-DNA has been used successfully to generate insertional mutant lines. Collectively, several laboratories throughout the world have established at least 200,000 T-DNA insertional lines. Some of those carry the GUS or GFP reporters for either gene or enhancer traps. Others are activation tagging lines for gain-of-function mutagenesis when T-DNA is inserted in the intergenic region. A forward genetic approach showed limited success because of somaclonal variations induced during tissue culture. To utilize these resources more efficiently, tagged lines have been produced for reverse genetics approaches. DNA pools of the T-DNA-tagged lines have been prepared for polymerase chain reaction (PCR) screening of insertional mutants in a given gene. Appropriate T-DNA insertion sites are determined by sequencing the region flanking the T-DNA. This information is then used to make databases that are shared with the scientific community. International efforts on seed amplification and maintenance are needed to exploit these valuable materials efficiently.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
18
|
Pecota DC, Da Silva NA. Evaluation of the tetracycline promoter system for regulated gene expression inKluyveromyces marxianus. Biotechnol Bioeng 2005; 92:117-23. [PMID: 15962338 DOI: 10.1002/bit.20584] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A tetracycline repressible promoter system designed for Saccharomyces cerevisiae was evaluated for use in Kluyveromyces marxianus. A plasmid was constructed containing the Escherichia coli beta-glucuronidase (gus) gene cloned downstream of the yeast tet-off promoter, the tetR-VP16 activator protein gene, and the URA3 gene for selection. The tet-off promoter-gus construct was integrated into the chromosomal DNA and tested under varying growth conditions in complex medium. The repressors tetracycline and doxycycline were both found to be effective for inhibiting gene expression. Doxycycline levels of 0.5 microg/mL or greater were sufficient to nearly completely suppress Gus synthesis. For most transformants, the induction ratio was approximately 2,000-fold. The tet-off promoter was effective at 30, 37, and 42 degrees C, although the overall Gus activity was highest at 37 degrees C. During exponential growth, little product was formed; expression increased dramatically in late exponential and early stationary phase. The promoter thus shows promise for protein synthesis following cell growth. No inducer is required and the repressor is only needed to prevent expression during the seed culture.
Collapse
Affiliation(s)
- Douglas C Pecota
- Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697-2575, USA
| | | |
Collapse
|
19
|
Fridborg I, Williams A, Yang A, MacFarlane S, Coutts K, Angell S. Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1086-94. [PMID: 15497401 DOI: 10.1094/mpmi.2004.17.10.1086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enhancer trap Arabidopsis thaliana plants were screened for genes up-regulated by virus infection. The plants carried T-DNA insertions comprising a minimal -60-bp Cauliflower mosaic virus 35S promoter fused to the beta-glucuronidase (GUS) reporter gene. Approximately 12,000 plants were assayed for GUS activity before and after rub-inoculation with Tobacco rattle virus (TRV) tagged with the green fluorescent protein (GFP). One plant and its progeny consistently showed upregulation of GUS activity in response to TRV-GFP infection, indicating that a virus-responsive enhancer element was "tagged" by the T-DNA in this line. Other viruses, bacteria, and oomycetes, but not wounding, up-regulated GUS activity in the enhancer trap line, indicating that the response was not specific to TRV-GFP infection. A pathogen-inducible, alternatively spliced gene was identified, which we have termed TRI for TRV-induced gene. A pathogen-responsive element was localized to a 1.1-kb region upstream of the T-DNA insertion, and two different cis-acting elements, both implicated in defense responses, were found in the sequence upstream of TRI. Sequence analyses revealed that TRI is similar to ACRE169, a gene that is up-regulated in Cf-9-expressing tobacco when treated with Avr-9, the Cladosporium fulvum elicitor of the Cf-9 resistance response.
Collapse
Affiliation(s)
- Ingela Fridborg
- Department of Disease and Stress Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | | | | | | | | | | |
Collapse
|
20
|
Alvarado MC, Zsigmond LM, Kovács I, Cséplö A, Koncz C, Szabados LM. Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. PLANT PHYSIOLOGY 2004; 134:18-27. [PMID: 14730060 PMCID: PMC316285 DOI: 10.1104/pp.103.027151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 07/18/2003] [Accepted: 09/11/2003] [Indexed: 05/21/2023]
Abstract
To monitor the expression of T-DNA-tagged plant genes in vivo, a collection of 20,261 transgenic lines of Arabidopsis (Columbia-0) were generated with the promoter trap vector pTluc, which carries a promoterless firefly luc (luciferase) reporter gene linked to the right T-DNA border. By detection of bioluminescence in 3-week-old seedlings, 753 lines were identified showing constitutive, organ-specific, and stress-responsive luciferase expression patterns. To facilitate the identification of well-defined luciferase expression patterns, a pooled seed stock was established. Several lines showed sugar, salt, and abscisic acid (ABA)-inducible luciferase activity. Segregation analysis of 215 promoter trap lines indicated that about 50% of plants contained single insertions, whereas 40% carried two and 10% carried three or more T-DNA tags. Sequencing the T-DNA insert junctions isolated from 17 luciferase-expressing lines identified T-DNA tags in 5'- and 3'-transcribed domains and translational gene fusions generated by T-DNA insertions in exons and introns of Arabidopsis genes. Tissue specific expression of eight wild-type Arabidopsis genes was confirmed to be similar to the luminescence patterns observed in the corresponding luciferase-tagged lines. Here, we describe the characterization of a transcriptional luc reporter gene fusion with the WBC-type ABC transporter gene At1g17840. Expression of wild-type and luciferase-tagged At1g17840 alleles revealed similar induction by salt, glucose, and ABA treatments and gibberellin-mediated down-regulation of ABA-induced expression. These results illustrate that luciferase gene traps are well suited for monitoring the expression of stress-responsive Arabidopsis genes in vivo.
Collapse
Affiliation(s)
- Martha C Alvarado
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, 6726-Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
Léonard B, Creff A, Desnos T. The HY2 gene as an efficient marker for transposon excision in Arabidopsis. Mol Genet Genomics 2003; 269:746-52. [PMID: 12905069 DOI: 10.1007/s00438-003-0867-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 05/20/2003] [Indexed: 10/26/2022]
Abstract
Transposable elements can generate germinal and somatic mutations, and hence represent a powerful tool for the analysis of gene function. Transposons from maize have been adapted to mutagenise the genomes of diverse species. The efficiency of these systems partly relies on the ease with which germinal (i.e. germinally transmitted) or somatic excisions can be detected. Here we describe the use of HY2, a gene that codes for an enzyme involved in the biosynthesis of the phytochrome chromophore, to monitor the excision of a Ds gene-trap element in Arabidopsis thaliana. Taking advantage of the altered germination and de-etiolation behaviour of a Ds -tagged hy2 mutant, we have designed an efficient protocol for the recovery of germinal revertants, making HY2 the most precocious excision marker available, to the best of our knowledge. In addition, HY2 is also useful for generating visible sectors in photosynthetic tissues, thanks to the somatic instability of this mutable hy2 allele.
Collapse
Affiliation(s)
- B Léonard
- Direction des Sciences du Vivant, Département d'Ecophysiologie Végétale et Microbiologie, Laboratoire de Biologie du Développement des Plantes (LBDP) Bât.178, CEA Cadarache, 13108, Saint Paul-lez-Durance, France
| | | | | |
Collapse
|
22
|
Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:418-27. [PMID: 12887592 DOI: 10.1046/j.1365-313x.2003.01808.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enhancer trapping has provided a powerful strategy for identifying novel genes and regulatory elements. In this study, we adopted an enhancer trap system, consisting of the GAL4/VP16-UAS elements with GUS as the reporter, to generate a trapping population of rice. Currently, 31 443 independent transformants were obtained from two cultivars using Agrobacterium-mediated T-DNA insertion. PCR tests and DNA blot hybridization showed that about 94% of the transformants contained T-DNA insertions. The transformants carried, on average, two copies of the T-DNA, and 42% of the transformants had single-copy insertions. Histochemical assays of approximately 1000 T0 plants revealed various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. The expression pattern of the reporter gene in T1 families corresponded well with the T0 plants and segregated in a 3 : 1 Mendelian ratio in majority of the T1 families tested. The frequency of reporter gene expression in the enhancer trap lines was much higher than that in gene trap lines reported previously. Analysis of flanking sequences of T-DNA insertion sites from about 200 transformants showed that almost all the sequences had homology with the sequences in the rice genome databases. Morphologically conspicuous mutations were observed in about 7.5% of the 2679 T1 families that were field-tested, and segregation in more than one-third of the families fit the 3 : 1 ratio. It was concluded that GAL4/VP16-UAS elements provided a useful system for enhancer trap in rice.
Collapse
Affiliation(s)
- Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
24
|
Hamada F, Namekawa S, Kasai N, Nara T, Kimura S, Sugawara F, Sakaguchi K. Proliferating cell nuclear antigen from a basidiomycete, Coprinus cinereus. Alternative truncation and expression in meiosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:164-74. [PMID: 11784310 DOI: 10.1046/j.0014-2956.2002.02634.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The primary purpose of the present study was to investigate whether DNA replication at meiotic prophase also requires replication factors, especially proliferating cell nuclear antigen (PCNA). We cloned PCNA cDNAs (CoPCNA) from a cDNA library made from basidia of the basidiomycete, Coprinus cinereus. Interestingly, although CoPCNA is a single-copy gene in the genome, two different PCNA cDNA species were isolated using degenerate primers and a meiotic cDNA library, and were designated as CoPCNA-alpha and CoPCNA-beta. CoPCNA-beta was made by truncating at specific sites in CoPCNA-alpha mRNA, 5'-AAGAAGGAGAAG-3' and 5'-GAAGAGGAAGAA-3'. Both of these sequences were present in exon IV in the genomic sequence, and interestingly the former was the same as the inverse sequence of the latter. CoPCNA-alpha was 107 amino acids larger than human PCNA, and so the 107 amino-acid sequence was inserted in a loop, the so-called D2E2 loop, in human PCNA. Northern blotting analysis indicated that CoPCNA was expressed not only at premeiotic S but also at the meiotic prophase stages such as leptotene and early zygotene, just before and when karyogamy occurs and the homologous chromosomes pair. Western blotting analysis using anti-(CoPCNA-alpha) Ig revealed that at least two CoPCNA mRNAs before and after truncation were translated at the meiotic prophase as CoPCNA-alpha and CoPCNA-beta.
Collapse
Affiliation(s)
- Fumika Hamada
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Steven Rodermel
- Department of Genetics, Development and Cell Biology, 353 Bessey Hall, Iowa State University, Ames, IA 50014, Tel: 515 294-8890, fax: 294-1337,
| |
Collapse
|
26
|
Sarrobert C, Thibaud MC, Contard-David P, Gineste S, Bechtold N, Robaglia C, Nussaume L. Identification of an Arabidopsis thaliana mutant accumulating threonine resulting from mutation in a new dihydrodipicolinate synthase gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:357-367. [PMID: 11069709 DOI: 10.1046/j.1365-313x.2000.00884.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A novel Arabidopsis DHDPS gene named DHDPS2 was found through identification of a mutant by promoter trapping. The mutation promotes a reduction of growth resulting from combination of a defect in lysine biosynthesis and accumulation of a toxic level of threonine or derived products. The mutant also modifies the amino acid composition issuing from the pyruvate and aspartate pathways, affecting mainly the root compartment. These data are in accordance with the expression of DHDPS2 in the root apex as visualized by expression of the GUS reporter gene. This suggests that a large proportion of the amino acids derived from pyruvate and aspartate are synthesized in this organ.
Collapse
Affiliation(s)
- C Sarrobert
- Laboratoire du Métabolisme Carboné, UMR 163, CNRS-CEA, DSV.DEVM, CEA/Cadarache, F-13108 St Paul les Durance Cedex, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Pego JV, Kortstee AJ, Huijser C, Smeekens SC. Photosynthesis, sugars and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:407-16. [PMID: 10938849 DOI: 10.1093/jexbot/51.suppl_1.407] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and signalling. An overview of these strategies has been included. Sugar-mediated regulation of gene expression is thought to require the hexokinase (HXK) protein. It has previously been shown that one such sugar, mannose, is capable of blocking germination in Arabidopsis. This inhibition is also mediated by HXK and occurs in the low millimolar concentration range. Here, the use of germination on mannose as an effective screening strategy for putative sugar sensing and signalling mutants is reported. T-DNA- and EMS-mutagenized collections were used to isolate 31 mannose-insensitive germination (mig) mutants. With the use of these mutants, a comparison between this screen and other existing sugar-sensing screens is presented.
Collapse
Affiliation(s)
- J V Pego
- University of Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
28
|
Sundaresan V, Springer P, Volpe T, Haward S, Jones JD, Dean C, Ma H, Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 1995; 9:1797-810. [PMID: 7622040 DOI: 10.1101/gad.9.14.1797] [Citation(s) in RCA: 452] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crucifer Arabidopsis thaliana has been used widely as a model organism for the study of plant development. We describe here the development of an efficient insertional mutagenesis system in Arabidopsis that permits identification of genes by their patterns of expression during development. Transposable elements of the Ac/Ds system carrying the GUS reporter gene have been designed to act as enhancer traps or gene traps. A novel selection scheme maximizes recovery of unlinked transposition events. In this study 491 plants carrying independent transposon insertions were generated and screened for expression patterns. One-half of the enhancer trap insertions and one-quarter of the gene trap insertions displayed GUS expression in seedlings or flowers, including expression patterns specific to organs, tissues, cell types, or developmental stages. The patterns identify genes that act during organogenesis, pattern formation, or cell differentiation. Transposon insertion lines with specific GUS expression patterns provide valuable markers for studies of Arabidopsis development and identify new cell types or subtypes in plants. The diversity of gene expression patterns generated suggests that the identification and cloning of Arabidopsis genes expressed in any developmental process is feasible using this system.
Collapse
Affiliation(s)
- V Sundaresan
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | | | | | | | | | |
Collapse
|