1
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng Z(J. Organization and morphology of calcitonin gene-related peptide-immunoreactive axons in the whole mouse stomach. J Comp Neurol 2023; 531:1608-1632. [PMID: 37694767 PMCID: PMC10593087 DOI: 10.1002/cne.25519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 09/12/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers (e.g., substance P [SP] and calcitonin gene-related peptide [CGRP]). We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: (1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. (2) CGRP-IR axons densely innervated the blood vessels. (3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. (4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. (5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. (6) CGRP-IR axons did not colocalize with tyrosine hydroxylase or vesicular acetylcholine transporter axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. (7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Andrew M. Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Mabelle Lin
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | | | | | - John B. Furness
- Department of Anatomy & Physiology, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Terry L. Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Ma J, Nguyen D, Madas J, Bizanti A, Mistareehi A, Kwiat AM, Chen J, Lin M, Christie R, Hunter P, Heal M, Baldwin S, Tappan S, Furness JB, Powley TL, Cheng ZJ. Mapping the Organization and Morphology of Calcitonin Gene-Related Peptide (CGRP)-IR Axons in the Whole Mouse Stomach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541811. [PMID: 37398245 PMCID: PMC10312482 DOI: 10.1101/2023.05.23.541811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nociceptive afferent axons innervate the stomach and send signals to the brain and spinal cord. Peripheral nociceptive afferents can be detected with a variety of markers [e.g., substance P (SP) and calcitonin gene-related peptide (CGRP)]. We recently examined the topographical organization and morphology of SP-immunoreactive (SP-IR) axons in the whole mouse stomach muscular layer. However, the distribution and morphological structure of CGRP-IR axons remain unclear. We used immunohistochemistry labeling and applied a combination of imaging techniques, including confocal and Zeiss Imager M2 microscopy, Neurolucida 360 tracing, and integration of axon tracing data into a 3D stomach scaffold to characterize CGRP-IR axons and terminals in the whole mouse stomach muscular layers. We found that: 1) CGRP-IR axons formed extensive terminal networks in both ventral and dorsal stomachs. 2) CGRP-IR axons densely innervated the blood vessels. 3) CGRP-IR axons ran in parallel with the longitudinal and circular muscles. Some axons ran at angles through the muscular layers. 4) They also formed varicose terminal contacts with individual myenteric ganglion neurons. 5) CGRP-IR occurred in DiI-labeled gastric-projecting neurons in the dorsal root and vagal nodose ganglia, indicating CGRP-IR axons were visceral afferent axons. 6) CGRP-IR axons did not colocalize with tyrosine hydroxylase (TH) or vesicular acetylcholine transporter (VAChT) axons in the stomach, indicating CGRP-IR axons were not visceral efferent axons. 7) CGRP-IR axons were traced and integrated into a 3D stomach scaffold. For the first time, we provided a topographical distribution map of CGRP-IR axon innervation of the whole stomach muscular layers at the cellular/axonal/varicosity scale.
Collapse
|
3
|
Mistareehi A, Bendowski KT, Bizanti A, Madas J, Zhang Y, Kwiat AM, Nguyen D, Kogut N, Ma J, Chen J, Cheng ZJ. Topographical distribution and morphology of SP-IR axons in the antrum, pylorus, and duodenum of mice. Auton Neurosci 2023; 246:103074. [PMID: 36804650 PMCID: PMC10515648 DOI: 10.1016/j.autneu.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Substance-P (SP) is a commonly used marker of nociceptive afferent axons, and it plays an important role in a variety of physiological functions including the regulation of motility, gut secretion, and vascular flow. Previously, we found that SP-immunoreactive (SP-IR) axons densely innervated the pyloric antrum of the flat-mount of the mouse whole stomach muscular layer. However, the regional distribution and morphology of SP-IR axons in the submucosa and mucosa were not well documented. In this study, the mouse antrum-pylorus-duodenum (APD) were transversely and longitudinally sectioned. A Zeiss M2 imager was used to scan the serial sections of each APD (each section montage consisted of 50-100 all-in-focus maximal projection images). To determine the detailed structures of SP-IR axons and terminals, we used the confocal microscope to scan the regions of interest. We found that 1) SP-IR axons innervated the muscular, submucosal, and mucosal layers. 2) In the muscular layer, SP-IR varicose axons densely innervated the muscles and formed varicose terminals which encircled myenteric neurons. 3) In the submucosa, SP-IR axons innervated blood vessels and submucosal ganglia and formed a network in Brunner's glands. 4) In the mucosa, SP-IR axons innervated the muscularis mucosae. Some SP-IR axons entered the lamina propria. 5) The muscular layer of the antrum and duodenum showed a higher SP-IR axon density than the pyloric sphincter. 6) SP-IR axons were from extrinsic and intrinsic origins. This work provided a comprehensive view of the distribution and morphology of SP-IR axons in the APD at single cell/axon/varicosity scale. This data will be used to create a 3D scaffold of the SP-IR axon innervation of the APD.
Collapse
Affiliation(s)
- Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Nicole Kogut
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States of America.
| |
Collapse
|
4
|
Morphologies, dimensions and targets of gastric nitric oxide synthase neurons. Cell Tissue Res 2022; 388:19-32. [PMID: 35146560 PMCID: PMC8976817 DOI: 10.1007/s00441-022-03594-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
We investigated the distributions and targets of nitrergic neurons in the rat stomach, using neuronal nitric oxide synthase (NOS) immunohistochemistry and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Nitrergic neurons comprised similar proportions of myenteric neurons, about 30%, in all gastric regions. Small numbers of nitrergic neurons occurred in submucosal ganglia. In total, there were ~ 125,000 neuronal nitric oxide synthase (nNOS) neurons in the stomach. The myenteric cell bodies had single axons, type I morphology and a wide range of sizes. Five targets were identified, the longitudinal, circular and oblique layers of the external muscle, the muscularis mucosae and arteries within the gastric wall. The circular and oblique muscle layers had nitrergic fibres throughout their thickness, while the longitudinal muscle was innervated at its inner surface by fibres of the tertiary plexus, a component of the myenteric plexus. There was a very dense innervation of the pyloric sphincter, adjacent to the duodenum. The muscle strands that run between mucosal glands rarely had closely associated nNOS nerve fibres. Both nNOS immunohistochemistry and NADPH histochemistry showed that nitrergic terminals did not provide baskets of terminals around myenteric neurons. Thus, the nitrergic neuron populations in the stomach supply the muscle layers and intramural arteries, but, unlike in the intestine, gastric interneurons do not express nNOS. The large numbers of nNOS neurons and the density of innervation of the circular muscle and pyloric sphincter suggest that there is a finely graded control of motor function in the stomach by the recruitment of different numbers of inhibitory motor neurons.
Collapse
|
5
|
Chiocchetti R, Galiazzo G, Giancola F, Tagliavia C, Bernardini C, Forni M, Pietra M. Localization of the Serotonin Transporter in the Dog Intestine and Comparison to the Rat and Human Intestines. Front Vet Sci 2022; 8:802479. [PMID: 35071391 PMCID: PMC8766808 DOI: 10.3389/fvets.2021.802479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
6
|
Furness JB, Di Natale M, Hunne B, Oparija-Rogenmozere L, Ward SM, Sasse KC, Powley TL, Stebbing MJ, Jaffey D, Fothergill LJ. The identification of neuronal control pathways supplying effector tissues in the stomach. Cell Tissue Res 2020; 382:433-445. [PMID: 33156383 DOI: 10.1007/s00441-020-03294-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
The stomach acts as a buffer between the ingestion of food and its processing in the small intestine. It signals to the brain to modulate food intake and it in turn regulates the passage of a nutrient-rich fluid, containing partly digested food, into the duodenum. These processes need to be finely controlled, for example to restrict reflux into the esophagus and to transfer digesta to the duodenum at an appropriate rate. Thus, the efferent pathways that control gastric volume, gastric peristalsis and digestive juice production are critically important. We review these pathways with an emphasis on the identities of the final motor neurons and comparisons between species. The major types of motor neurons arising from gastric enteric ganglia are as follows: immunohistochemically distinguishable excitatory and inhibitory muscle motor neurons; four neuron types innervating mucosal effectors (parietal cells, chief cells, gastrin cells and somatostatin cells); and vasodilator neurons. Sympathetic efferent neurons innervate intramural arteries, myenteric ganglia and gastric muscle. Vagal efferent neurons with cell bodies in the brain stem do not directly innervate gastric effector tissues; they are pre-enteric neurons that innervate each type of gastric enteric motor neuron. The principal transmitters and co-transmitters of gastric motor neurons, as well as key immunohistochemical markers, are the same in rat, pig, human and other species.
Collapse
Affiliation(s)
- John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia. .,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia.
| | - Madeleine Di Natale
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| | - Billie Hunne
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia
| | | | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, NV, Reno, USA
| | - Kent C Sasse
- Sasse Surgical Associates, and Renown Regional Medical Center, NV, Reno, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Martin J Stebbing
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| | - Deborah Jaffey
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda J Fothergill
- Department of Anatomy & Neuroscience, University of Melbourne, VIC, 3010, Parkville, Australia.,Florey Institute of Neuroscience and Mental Health, VIC, 3010, Parkville, Australia
| |
Collapse
|
7
|
Dangerous Liaison: Helicobacter pylori, Ganglionitis, and Myenteric Gastric Neurons: A Histopathological Study. Anal Cell Pathol (Amst) 2019; 2019:3085181. [PMID: 32082967 PMCID: PMC7012220 DOI: 10.1155/2019/3085181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/17/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation induced by Helicobacter pylori (H. pylori) infection plays a major role in development of gastric cancer. However, recent findings suggested that progression of inflammation and neoplastic transformation in H. pylori infection are more complex than previously believed and could involve different factors that modulate gastric microenvironment and influence host-pathogen interaction. Among these factors, gastric myenteric plexus and its potential adaptive changes in H. pylori infection received little attention. This study is aimed at identifying the impact of H. pylori-associated gastritis on number and morphology of nerve cells in the stomach. The distribution of density, inflammation, and programmed cell death in neurons was immunohistochemically assessed in full-thickness archival tissue samples obtained from 40 patients with H. pylori infection who underwent surgery for gastric cancer and were compared with findings on samples collected from 40 age- and sex-matched subjects without bacteria. Overall, significant differences were noted between H. pylori-positive and H. pylori-negative patients. The analysis of tissue specimens obtained from those with infection revealed higher density and larger surface of the myenteric nervous plexus, as well as a significant increase in the number of gastric neuronal cell bodies and glial cells compared to controls. A predominant CD3-immunoreactive T cell infiltrate confined to the myenteric plexus was observed in infected subjects. The presence of mature B lymphocytes, plasma cells, and eosinophils was also noted, but to a lesser extent, within the ganglia. Myenteric ganglionitis was associated with degeneration and neuronal loss. Our results represent the first histopathological evidence supporting the hypothesis that H. pylori-induced gastric inflammation may induce morphological changes in myenteric gastric ganglia. These findings could help gain understanding of some still unclear aspects of pathogenesis of H. pylori infection, with the possibility of having broader implications for gastric cancer progression.
Collapse
|
8
|
Polidoro G, Giancola F, Fracassi F, Pietra M, Bettini G, Asti M, Chiocchetti R. Substance P and the neurokinin-1 receptor expression in dog ileum with and without inflammation. Res Vet Sci 2017. [PMID: 28628846 DOI: 10.1016/j.rvsc.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the gastrointestinal tract, the tachykinin Substance P (SP) is involved in motility, fluid and electrolyte secretion, and blood flow and regulation of immunoinflammatory response. SP exerts its biological activity on target cells by interacting mainly with the neurokinin-1 receptor (NK1R). The present study aims to quantify the percentage of SP-immunoreactive (SP-IR) enteric neurons and the density of SP-IR nerve fibers in the ileum of control dogs (CTRL-dogs; n=7) vs dogs with spontaneous ileal inflammation (INF-dogs; n=8). In addition, the percentage of enteric neurons bearing NK1R, and nitrergic neurons (nNOS-IR) expressing NK1R immunoreactivity were evaluated in both groups. The percentages of SP-IR neurons were similar in CTRL- and INF-dogs, in either the myenteric (MP) (15±8% vs. 16±7%, respectively) and submucosal plexus (SMP) (26±7% vs. 24±14%, respectively). In INF-dogs, the density of SP-IR mucosal nerve fibers showed a trend to decrease (P=0.07). Myenteric neurons of CTRL- and INF-dogs expressed similar percentages of NK1R-immunoreactivity (39±5% vs. 38±20%, respectively). Submucosal NK1R-IR neurons were occasionally observed in a CTRL-dog. MP nitrergic neurons bearing NK1R showed a trend to decrease in INF-dogs vs. CTRL- dogs (41±22% vs. 65±10%, respectively; P=0.11). In INF-dogs, muscle cells and immune cells overexpressed NK1R immunoreactivity. These findings should be taken as a warning for possible intestinal motility disorders, which might occur during administration of NK1R-antagonist drugs. Conversely, the strong expression of NK1R immunoreactivity observed in muscle and mucosal immune cells of inflamed tissues may provide a rationale for the use of NK1R antagonist drugs in the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Giulia Polidoro
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Martina Asti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
9
|
Schicho R, Schemann M, Pabst MA, Holzer P, Lippe ITH. Capsaicin-sensitive extrinsic afferents are involved in acid-induced activation of distinct myenteric neurons in the rat stomach. Neurogastroenterol Motil 2003; 15:33-44. [PMID: 12588467 DOI: 10.1046/j.1365-2982.2003.00384.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Challenge of the rat gastric mucosa with 0.5 mol L(-1) HCl activates nitrergic neurons in the myenteric plexus as visualized by c-Fos immunohistochemistry. In the present study, we characterized the activated neurons more extensively by their chemical coding and investigated whether a neural pathway that involves capsaicin-sensitive extrinsic afferents and/or cholinergic neurons transmitting via nicotinic receptors contributes to the activation of myenteric neurons. In multiple labelling experiments, c-Fos was examined for co-localization with nitric oxide synthase (NOS), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), enkephalin (ENK), gastrin-releasing peptide (GRP), substance P (SP), calbindin D-28k (CALB) and neurofilament 145 (NF 145). All c-Fos-positive neurons were immunoreactive for NOS, VIP, NPY and NF 145, but not for SP, ENK, GRP and CALB. Nerve fibres co-expressing NOS, VIP and NPY were predominantly found in the external muscle layer and in the muscularis mucosae but rarely in the mucosa. Pre-treatment with capsaicin or hexamethonium or a combination of both pre-treatments reduced HCl-induced c-Fos expression by 54, 66 and 63%, respectively. Acid challenge of the stomach, therefore, leads to activation of presumably inhibitory motor neurons responsible for muscle relaxation. Activation of these neurons is partly mediated by capsaicin-sensitive afferents and involves ganglionic transmission via nicotinic receptors.
Collapse
Affiliation(s)
- R Schicho
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria.
| | | | | | | | | |
Collapse
|
10
|
Yuan PQ, Yang H. Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia. Am J Physiol Endocrinol Metab 2002; 283:E436-48. [PMID: 12169436 PMCID: PMC8091863 DOI: 10.1152/ajpendo.00538.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duodenal myenteric/submucosal plexuses. A substantial number of insulin hypoglycemia-activated DMN and NTS neurons were choline acetyltransferase and tyrosine hydroxylase positive, respectively, whereas the activated enteric neurons included NADPH- and vasoactive intestinal peptide neurons. The numbers of Fos-positive cells in each above-named brain nucleus or in the gastric/duodenal myenteric plexus of insulin-treated rats were negatively correlated with serum glucose levels and significantly increased when glucose levels were lower than 80 mg/dl. Acute bilateral cervical vagotomy did not influence insulin hypoglycemia-induced Fos induction in the brain vagal-regulatory nuclei but completely and partially prevented this response in the gastric and duodenal enteric plexuses, respectively. These results revealed that brain-gut neurons regulating vagal outflow to the stomach/duodenum are sensitively responsive to insulin hypoglycemia.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, Division of Digestive Diseases and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90073, USA
| | | |
Collapse
|
11
|
Ericson AC, Kechagias S, Oqvist G, Sjöstrand SE. Morphological examination of the termination pattern of substance P-immunoreactive nerve fibers in human antral mucosa. REGULATORY PEPTIDES 2002; 107:79-86. [PMID: 12137969 DOI: 10.1016/s0167-0115(02)00066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The termination pattern of substance P (SP)-containing axons in human antral mucosa was examined using immunohistochemical techniques at the light and electron microscopic level. SP-immunoreactive (IR) axons were found to extend towards the pit region of the glands, where intraepithelial axons were observed. Electron microscopy showed immunostained axon profiles in close contact with the basement membrane of surface mucous cells. Membrane-to-membrane contacts between labeled axons and myofibroblast-like cells were identified, and SP-IR axons that were apposed to the epithelium were also in contact with subjacent myofibroblast-like cells. The anatomical relationship between SP-IR axons and the cells of the muscularis mucosae was investigated by light microscopy. Immunoreactivity for alpha-smooth muscle actin (alpha-sma) was used to visualize the smooth muscle cells, and the alpha-sma-IR cells were found to create a network that surrounded the gastric glands. Immunostained varicose axons ran alongside and in close apposition to the labeled muscle strands. Ultrastructural examination showed close contacts between SP-IR axon profiles and smooth muscle-like cells. In conclusion, SP-containing neurons may be important for sensory and secretomotor functions in the human antral mucosa.
Collapse
Affiliation(s)
- Ann Charlott Ericson
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, SE-581 85, Linköping, Sweden
| | | | | | | |
Collapse
|
12
|
Yuan PQ, Taché Y, Miampamba M, Yang H. Acute cold exposure induces vagally mediated Fos expression in gastric myenteric neurons in conscious rats. Am J Physiol Gastrointest Liver Physiol 2001; 281:G560-8. [PMID: 11447037 PMCID: PMC8086409 DOI: 10.1152/ajpgi.2001.281.2.g560] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute cold exposure-induced activation of gastric myenteric neurons in conscious rats was examined on longitudinal muscle-myenteric plexus whole mount preparations. Few Fos-immunoreactive (IR) cells (<1/ganglion) were observed in 24-h fasted rats semirestrained at room temperature. Cold exposure (4 degrees C) for 1-3 h induced a time-related increase of Fos-IR cells in corpus and antral myenteric ganglia with a maximal plateau response (17 +/- 3 and 18 +/- 3 cells/ganglion, respectively) occurring at 2 h. Gastric vagotomy partly prevented, whereas bilateral cervical vagotomy completely abolished, Fos expression in the myenteric cells induced by cold exposure (2 h). Hexamethonium (20 mg/kg) also prevented 3-h cold exposure-induced myenteric Fos expression by 76-80%, whereas atropine or bretylium had no effect. Double labeling revealed that cold (3 h)-induced Fos-IR myenteric cells were mainly neurons, including a substantial number of choline acetyltransferase-containing neurons and most NADPH-diaphorase-positive neurons. These results indicate that acute cold exposure activates cholinergic as well as nitrergic neurons in the gastric myenteric ganglia through vagal nicotinic pathways in conscious rats.
Collapse
Affiliation(s)
- P Q Yuan
- CURE: Digestive Diseases Research Center, Department of Veterans Affairs Greater Los Angeles Healthcare System, and Digestive Diseases Division, University of California, Los Angeles, California 90073, USA
| | | | | | | |
Collapse
|
13
|
Pfannkuche H, Firzlaff U, Sann H, Reiche D, Schemann M. Neurochemical coding and projection patterns of gastrin-releasing peptide-immunoreactive myenteric neurone subpopulations in the guinea-pig gastric fundus. J Chem Neuroanat 2000; 19:93-104. [PMID: 10936745 DOI: 10.1016/s0891-0618(00)00057-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this study was to characterise the projection and neurochemical coding patterns of gastrin-releasing peptide (GRP)-containing subpopulations of myenteric neurones in the guinea-pig gastric fundus. For this purpose, we used retrograde tracing with the dye DiI and immunohistochemistry against GRP, choline acetyltransferase (ChAT), enkephalin (ENK), substance P (SP) and neuropeptide Y (NPY). Cell counts revealed that 44% of the myenteric neurones were GRP-positive. Of the GRP-positive neurones, 92% were ChAT-positive and, hence, 8% were presumptively nitric oxide synthase positive (NOS). The GRP-positive subpopulations were ChAT/GRP (40% of all GRP neurones), ChAT/NPY/GRP (25%), ChAT/SP/GRP/+/-ENK (20%), ChAT/ENK/GRP (8%), NOS/NPY/GRP/+/-ENK (5%) and NOS/GRP (3%). The tracing experiments revealed the relative contributions of the various GRP-positive subpopulations to the innervation of the circular muscle and the mucosa. GRP immunoreactivity was detected in 46 and 38% of the DiI-labelled muscle and mucosa neurones, respectively. GRP was almost exclusively found in ascending ChAT-positive mucosa and muscle neurones. The populations encoded ChAT/SP/GRP/+/-ENK and ChAT/ENK/GRP projected predominantly to the circular muscle, whereas the ChAT/NPY/GRP and ChAT/GRP populations had primarily projections to the mucosa. GRP was colocalised with ChAT, ENK and/or SP in varicose nerve fibres innervating the circular muscle and the muscularis mucosae, whereas in the mucosal epithelium GRP was mainly present in nerve fibres containing ChAT and NPY. The data suggest that in the guinea-pig gastric fundus, the ChAT/SP/GRP/+/-ENK and ChAT/ENK/GRP neurones are ascending excitatory muscle motor neurones, whereas the ChAT/NPY/GRP and ChAT/GRP neurones are very likely involved in the regulation of mucosal functions.
Collapse
Affiliation(s)
- H Pfannkuche
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | | | | | | | | |
Collapse
|
14
|
Capetandes A, Di Salvo J, Ronan JJ, Thomas KA. Acidic fibroblast growth factor is present in the enteric nervous system of the large intestine. J Histochem Cytochem 2000; 48:407-14. [PMID: 10681394 DOI: 10.1177/002215540004800310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a heparin binding protein that displays pleiotropic activity. The purpose of this study was to document the presence of the translated aFGF product, its mRNA, and its location in the colon. mRNA was extracted from bovine large intestine and reverse transcribed to cDNA. Nested-primer PCR was used to determine the presence of mRNA using primers homologous to the previously published bovine aFGF cDNA. Purification of translated aFGF was performed using an established HPLC protocol. Western blot analysis of the HPLC fractions was performed using two epitope-independent antibodies against aFGF. Immunohistochemistry employed these antibodies to determine the locus of aFGF expression. The nested-primer PCR product of predicted size was homologous to the published bovine aFGF mRNA sequence, as determined by DNA sequencing. Intestinal aFGF had a mass similar to bovine aFGF isolated from other tissues, and immunocrossreacted with two peptide-based, epitope-independent anti-aFGF antisera on Western blotting. Immunohistochemical analysis of large intestine using these two independent antisera localized aFGF within the myenteric plexus. These data demonstrate that aFGF is present within the myenteric plexus of the enteric nervous system.
Collapse
Affiliation(s)
- A Capetandes
- Department of Biomedical Sciences, Long Island University/CW Post Campus, Greenvale, New York, USA
| | | | | | | |
Collapse
|
15
|
Reiche D, Schemann M. Mucosa of the guinea pig gastric corpus is innervated by myenteric neurones with specific neurochemical coding and projection preferences. J Comp Neurol 1999; 410:489-502. [PMID: 10404414 DOI: 10.1002/(sici)1096-9861(19990802)410:3<489::aid-cne10>3.0.co;2-s] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study identified and characterised myenteric neurones involved in the innervation of the gastric mucosa. We applied retrograde neuronal tracing methods by using the dye DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat) in combination with the immunohistochemical demonstration of choline acetyltransferase (ChAT), enkephalin (ENK), neuropeptide Y (NPY), nitric oxide synthase (NOS), substance P (SP), and vasoactive intestinal peptide (VIP). This method showed distinct neurochemical coding of DiI-labelled neurones with projections to the mucosa (mucosa neurones): ChAT/- (indicating the presence of ChAT only, 32%), ChAT/NPY/ +/- VIP (22%), NOS/NPY/ +/- VIP (19%), ChAT/SP/ +/- ENK (12%), NOS/- (indicating the presence of NOS only, 8%), or ChAT/ENK (4.6%). DiI-labelled mucosa neurones did not contain calretinin, serotonin, or somatostatin. All ChAT population had primarily ascending projections, whereas the NOS populations had mainly descending projections. Both were further classified as longitudinally and circumferentially projecting neurones, the latter having projection preferences towards the lesser or greater curvature. All subpopulations exhibited projection preferences. Nitrergic projections primarily arose from cell bodies located at the lesser curvature. ChAT/- projections, which dominated the cholinergic pathway, mainly arose from cell bodies located at the greater curvature. The other major cholinergic pathway with the code ChAT/NPY/ +/- VIP consisted of neurones located mainly at the lesser curvature. The results suggest specific coding of gastric myenteric neurones with projections to the mucosa. Polarised projections consisted of ascending cholinergic and descending nitrergic neurones; the additional presence of NPY/VIP was a prominent feature in both pathways. Chemical coding, polarity, and projection preferences of enteric pathways to the gastric mucosa are remarkably different from those of other regions in the gut.
Collapse
Affiliation(s)
- D Reiche
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
16
|
Reiche D, Schemann M. Ascending choline acetyltransferase and descending nitric oxide synthase immunoreactive neurones of the myenteric plexus project to the mucosa of the guinea pig gastric corpus. Neurosci Lett 1998; 241:61-4. [PMID: 9502216 DOI: 10.1016/s0304-3940(97)00968-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to reveal mucosal projections of myenteric neurones in the stomach by using the neuronal tracer DiI (1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorat) in combination with immunohistochemical detection of choline acetyltransferase (ChAT) and nitric oxide synthase (NOS). The mucosal application of one DiI coated glass bead (diameter 50-100 microm) labelled on average 167 +/- 58 neurones in the myenteric plexus (n = 9 preparations). Most labelled cells were ChAT-positive (74%), the remaining cells were NOS-positive (n = 6). The vast majority of ascending DiI-labelled neurones were ChAT-positive (94%), whereas most descending neurones were NOS-positive (75%). ChAT- and NOS-positive fibers were demonstrated in the mucosa. Results suggest that ascending and descending myenteric neuronal pathways releasing acetylcholine and nitric oxide, respectively, are involved in control of mucosal functions in the stomach.
Collapse
Affiliation(s)
- D Reiche
- Department of Physiology, School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
17
|
Wang YF, Mao YK, Fox-Threlkeld JE, McDonald TJ, Daniel EE. Colocalization of inhibitory mediators, NO, VIP and galanin, in canine enteric nerves. Peptides 1998; 19:99-112. [PMID: 9437742 DOI: 10.1016/s0196-9781(97)00262-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The colocalization of three putative inhibitory mediators of enteric nerves, vasoactive intestinal peptide (VIP), galanin (GAL) and nitric oxide synthase (nNOS), was examined in the myenteric plexus of canine antrum, intestine and colon. Many ileal and colonic neurons contained nNOS-immunoreactive (nNOS-IR) activity with some also containing VIP-IR; only a few neurons also contained GAL-IR. Ileal and colonic VIP-IR nerves often appeared to be interneurons innervating nNOS nerves. Many antral neurons contained VIP-IR with nearly all also containing GAL-IR. A few also contained nNOS-IR. The predominance of nNOS-IR neurons relative to VIP-IR and GAL-IR neurons in the ileal and colonic, but not the antral, myenteric plexus is consistent with NO being the primary inhibitory mediator in the intestine but not in the antrum.
Collapse
Affiliation(s)
- Y F Wang
- Department of Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, On., Canada
| | | | | | | | | |
Collapse
|
18
|
Cracco C, Filogamo G. Neuronal and non-neuronal plasticity in the rat following myenteric denervation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:159-69. [PMID: 9413573 DOI: 10.1007/978-1-4757-9551-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Cracco
- Department of Anatomy, Pharmacology, and Forensic Medicine, University of Torino, Italy
| | | |
Collapse
|
19
|
Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol Ther 1997; 73:219-63. [PMID: 9175156 DOI: 10.1016/s0163-7258(96)00196-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preprotachykinin-A gene-derived peptides substance (substance P; SP) and neurokinin (NK) A are expressed in intrinsic enteric neurons, which supply all layers of the gut, and extrinsic primary afferent nerve fibers, which innervate primarily the arterial vascular system. The actions of tachykinins on the digestive effector systems are mediated by three different types of tachykinin receptor, termed NK1, NK2 and NK3 receptors. Within the enteric nervous system, SP and NKA are likely to mediate, or comediate, slow synaptic transmission and to modulate neuronal excitability via stimulation of NK3 and NK1 receptors. In the intestinal mucosa, tachykinins cause net secretion of fluid and electrolytes, and it appears as if SP and NKA play a messenger role in intramural secretory reflex pathways. Secretory processes in the salivary glands and pancreas are likewise influenced by tachykinins. The gastrointestinal arterial system may be dilated or constricted by tachykinins, whereas constriction and an increase in the vascular permeability are the only effects seen in the venous system. Various gastrointestinal disorders are associated with distinct changes in the tachykinin system, and there is increasing evidence that tachykinins participate in the hypersecretory, vascular and immunological disturbances associated with infection and inflammatory bowel disease. In a therapeutic perspective, it would seem conceivable that tachykinin antagonists could be exploited as antidiarrheal, antiinflammatory and antinociceptive drugs.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria
| | | |
Collapse
|
20
|
Holzer P, Holzer-Petsche U. Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 1997; 73:173-217. [PMID: 9175155 DOI: 10.1016/s0163-7258(96)00195-7] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The preprotachykinin-A gene-derived peptides substance P and neurokinin (NK) A are expressed in distinct neural pathways of the mammalian gut. When released from intrinsic enteric or extrinsic primary afferent neurons, tachykinins have the potential to influence both nerve and muscle by way of interaction with three different types of tachykinin receptor, termed NK1, NK2 and NK3 receptors. Most prominent among the effects of tachykinins is their excitatory action on gastrointestinal motor activity, which is seen in virtually all regions and layers of the mammalian gut. This action depends not only on a direct activation of the muscle through NK1 and/or NK2 receptors, but also on stimulation of excitatory enteric motor pathways through NK3 and/or NK1 receptors. In addition, tachykinins can inhibit motor activity by stimulating either inhibitory neuronal pathways or interrupting excitatory relays. A synopsis of the available data indicates that endogenous substance P and NKA interact with other enteric transmitters in the physiological control of gastrointestinal motor activity. Derangement of the regulatory roles of tachykinins may be a factor in the gastrointestinal dysmotility associated with infection, inflammation, stress and pain. In a therapeutic perspective, it would seem conceivable, therefore, that tachykinin agonists and antagonists are adjuncts to the treatment of motor disorders that involve pathological disturbances of the gastrointestinal tachykinin system.
Collapse
MESH Headings
- Animals
- Esophagus/metabolism
- Gastric Mucosa/metabolism
- Gastrointestinal Diseases/etiology
- Gastrointestinal Diseases/metabolism
- Gastrointestinal Motility/physiology
- Humans
- Intestinal Mucosa/metabolism
- Nerve Fibers/metabolism
- Neurokinin A/genetics
- Neurokinin A/metabolism
- Neurokinin A/physiology
- Neurokinin-1 Receptor Antagonists
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Receptors, Neurokinin-1/agonists
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/agonists
- Receptors, Neurokinin-2/antagonists & inhibitors
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/antagonists & inhibitors
- Receptors, Neurokinin-3/metabolism
- Signal Transduction/physiology
- Substance P/genetics
- Substance P/metabolism
- Substance P/physiology
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, University of Graz, Austria
| | | |
Collapse
|
21
|
Nakamura T, Naruse S, Ozaki T, Kumada K. Calcitonin gene-related peptide is a potent intestinal, but not gastric, vasodilator in conscious dogs. REGULATORY PEPTIDES 1996; 65:211-7. [PMID: 8897644 DOI: 10.1016/0167-0115(96)00015-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of human alpha-calcitonin gene-related peptide (alpha-CGRP), beta-CGRP, and vasoactive intestinal polypeptide (VIP) on left gastric (LGA) and superior mesenteric arterial (SMA) blood flow, heart rate and systemic arterial blood pressure were investigated in 6 conscious beagle dogs. Both intravenous injections of alpha-CGRP and beta-CGRP (5-200 pmol/kg) and infusion of alpha-CGRP (25-100 pmol/kg per h) induced a dose-related increase in SMA flow and a dose-related decrease in its resistance. At lower doses, alpha-CGRP was more potent than beta-CGRP, but their maximal responses were the same. alpha-CGRP and beta-CGRP had little effect on LGA flow. However, alpha-CGRP at 200 pmol/kg, but not beta-CGRP, stimulated gastroduodenal contractions that were associated with a phasic increase of LGA flow. Atropine inhibited gastric, but not duodenal, motor and circulatory responses to alpha-CGRP. Tachycardia and hypotension induced by beta-CGRP were significantly less than those by alpha-CGRP. VIP, on the other hand, increased mainly LGA flow. These results suggest that blood vessels of the small intestine of dogs are more sensitive to CGRP than those of the stomach, while the sensitivity to VIP is reversed.
Collapse
Affiliation(s)
- T Nakamura
- National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- B Qian
- Dept. of Medicine University Hospital, Umeå, Sweden
| | | | | |
Collapse
|
23
|
Schemann M, Schaaf C, Mäder M. Neurochemical coding of enteric neurons in the guinea pig stomach. J Comp Neurol 1995; 353:161-78. [PMID: 7538152 DOI: 10.1002/cne.903530202] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate the neurochemical coding of myenteric neurons in the guinea pig gastric corpus by using immunohistochemical methods. Antibodies and antisera against calbindin (CALB), calretinin (CALRET), choline acetyltransferase (ChAT), calcitonin gene-related peptide (CGRP), dopamine beta-hydroxylase (DBH), beta-endorphin (ENK), neuropeptide Y (NPY), neuron-specific enolase (NSE), nitric oxide synthase (NOS), protein gene product 9.5 (PGP), parvalbumin (PARV), serotonin (5-HT), somatostatin (SOM), substance P (SP), tyrosine hydroxylase (TH), and vasoactive intestinal peptide (VIP) were used. Double- and triple-labeling studies revealed colocalization of certain transmitters and enabled the identification of distinct subpopulations of gastric enteric neurons. NPY/VIP/NOS/ENK were present in 28% of all neurons, whereas 11% had NPY/VIP/DBH/ChAT; NOS-only neurons made up 2% of the population. The combination SP/ChAT/ENK occurred in 21% of the population, whereas SP/ChAT/ENK/CALRET and SP/CHAT/SOM/ +/- CALRET was identified in 5% and 6% of all cells, respectively. 5-HT-containing neurons comprised 2% of all cells and could be further classified by the presence of additional antigens as 5-HT/SP/(ChAT) or 5-HT/VIP/(ChAT). Approximately 21% of all neurons contained only ChAT with no additional antigen present and are referred to as ChAT/-. Gastric myenteric ganglion cells were not immunoreactive for CALB, PARV, CGRP, or TH. The results of this study indicate that gastric myenteric neurons can be characterized on the basis of different chemical coding. Neurochemical coding of corpus myenteric neurons revealed some similarities and significant differences in comparison with other regions of the gut. These differences might reflect adaptation of enteric nerves according to regional specialization and the distinct functions of the proximal stomach as a gastric reservoir.
Collapse
Affiliation(s)
- M Schemann
- Max-Planck-Institut für Physiologische und Klinische Forschung, Bad Nauheim, Germany
| | | | | |
Collapse
|
24
|
Messenger JP, Bornstein JC, Furness JB. Electrophysiological and morphological classification of myenteric neurons in the proximal colon of the guinea-pig. Neuroscience 1994; 60:227-44. [PMID: 8052415 DOI: 10.1016/0306-4522(94)90217-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular recordings were made from myenteric neurons in the proximal colon of the guinea-pig. The electrical behaviour of the neurons in response to intracellular depolarizing current pulses, and to internodal strand stimulation, was recorded. The intracellular electrode contained the intracellular marker biocytin which was injected into impaled neurons for subsequent histochemistry. Proximal colon myenteric neurons displayed electrophysiological properties similar to myenteric neurons in the small intestine, and were classified as either AH- or S-neurons. AH-neurons were characterized by the presence of a slow afterhyperpolarization following an action potential. Internodal strand stimulation evoked slow excitatory synaptic potentials in five out of six AH-neurons tested, but did not evoke fast excitatory synaptic potentials in 26 AH-neurons tested. S-neurons lacked a slow afterhyperpolarization, but internodal strand stimulation evoked fast excitatory synaptic potentials in all 113 neurons and slow excitatory synaptic potentials in seven out of 17 tested. A subpopulation of AH-neurons displayed a rhythmic oscillation in membrane potential which could be triggered by an action potential. S-neurons could be subdivided into those that fired tonically and those that fired phasically in response to long depolarizing current pulses. About 80% of the AH-neurons were immunoreactive for calbindin, as were 10% of S-neurons. A further 17% of S-neurons, but no AH neurons, were calretinin immunoreactive. Morphological analysis of filled neurons revealed eight distinct classes. Neurons electrophysiologically classified as AH typically had a large, oval soma and several long tapering processes. Processes of AH-neurons branched into many adjacent ganglia. Almost all S-neurons were uniaxonal and many axons ended in an expansion bulb in the myenteric plexus. S-neurons typically had broad, lamellar processes, or short, spiny processes. Roughly equal proportions of S-neurons had oral or anal projection. However, almost all S-neurons that were immunoreactive for calbindin or calretinin projected orally. The results indicate that myenteric neurons in the proximal colon of the guinea-pig are electrophysiologically similar to myenteric neurons in the small intestine, but there are a greater number of morphological and chemical categories.
Collapse
Affiliation(s)
- J P Messenger
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
25
|
Abstract
This chapter has focused on many of the gut hormones that regulate gastric function. Gastrin remains the principal, and only, gastric hormone controlling gastric acid secretion during the cephalic, gastric and intestinal phases of secretion. Several other hormones, including cholecystokinin, peptide YY and secretin, released from intestinal endocrine cells in response to food substrates, have significant inhibitory effects on gastric acid secretion. Many of these hormones, including enteroglucagon and glucagon-like peptide, may act through paracrine release of somatostatin, which in turn acts as the final mediator of acid inhibition. In addition, several peptides contained in nerves, including gastrin releasing peptide and vasoactive intestinal peptide, have been shown to regulate gastric acid secretion and motor function. With the creation of specific monoclonal antibodies for use in in vivo immunoneutralization studies, and the development of selective chemical antagonists for use in receptor blockade experiments, the specific contributions of the different gut hormones in the regulation of gastric function, can be assessed.
Collapse
Affiliation(s)
- K C Lloyd
- Department of Medicine, Veterans Administration Medical Center, Los Angeles, CA
| |
Collapse
|
26
|
Sternini C, De Giorgio R, Furness JB. Calcitonin gene-related peptide neurons innervating the canine digestive system. REGULATORY PEPTIDES 1992; 42:15-26. [PMID: 1475404 DOI: 10.1016/0167-0115(92)90020-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pattern of nerve cells and fibers containing calcitonin gene-related peptide immunoreactivity (CGRP-IR) was investigated in the canine digestive tract by means of immunohistochemistry. CGRP-IR nerve fibers innervate all the layers of the gut, including the vasculature, with different densities depending on the region. CGRP-IR processes are sparse in the esophagus and stomach, where they are mostly confined to the enteric plexuses and vasculature. CGRP-IR fibers are quite abundant in the small and large intestine, where they form dense arborizations in the mucosa, and are numerous in the muscularis mucosae, deep muscular plexus and circular muscle. The myenteric and submucous plexuses of the intestine contain dense networks of CGRP-IR fibers and numerous CGRP-IR ganglion cells. On the other hand, in the enteric ganglia of the esophagus and stomach, in the intrapancreatic ganglia and in the ganglionated plexus of the gallbladder, CGRP-IR is restricted to non-varicose processes. A moderate density of CGRP-IR fibers supplies the endocrine and exocrine pancreas, and the fibromuscular layer and lamina propria of the gallbladder. The density of CGRP innervation in different regions can be summarized as follows: intestine >> pancreas and gallbladder > or = antrum > cardia > gastric corpus and distal esophagus. CGRP- and tachykinin (TK)-IRs are colocalized in a substantial population of fibers, particularly those distributed to the mucosa, muscularis mucosae and vasculature, whereas there was no evidence of colocalization in intrinsic ganglion cells. The present results suggest that (1) the CGRP innervation of the dog digestive system includes an intrinsic and an extrinsic component, and (2) CGRP- and TK-IRs are co-expressed in extrinsic nerve fibers. These findings extend previous observations in rats and guinea pigs and provide insights into the sites of action of CGRP in the digestive system of the dog, which has served as a model for CGRP functional studies.
Collapse
Affiliation(s)
- C Sternini
- Department of Medicine, UCLA School of Medicine
| | | | | |
Collapse
|