1
|
Chambers KR, Van de Wouw AP, Gardiner DM, Elliott CE, Idnurm A. A conserved Zn 2Cys 6 transcription factor, identified in a spontaneous mutant from in vitro passaging, is involved in pathogenicity of the blackleg fungus Leptosphaeria maculans. Fungal Biol 2021; 125:541-550. [PMID: 34140150 DOI: 10.1016/j.funbio.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/26/2022]
Abstract
Continuous passaging in vitro can lead to the accumulation of changes in DNA sequence that potentially affect the properties of microbes, making them different from the original isolates. The identification of such genetic alterations is rare in fungi. A set of insertional mutants in the plant pathogenic fungus Leptosphaeria maculans, all derived from the same transformation experiment, had independent Agrobacterium T-DNA insertions and reduced pathogenicity on canola (Brassica napus). None of the insertions co-segregated in progeny from crosses with the reduction in pathogenicity. Genome sequences of three strains were analysed, and a mutation identified in a gene (ptf1, for pathogenicity-associated transcription factor 1) encoding a putative Zn2(II)Cys6 transcription factor. Homologs are found in other ascomycetes, and are required for pathogenicity by Fusarium graminearum, Fusarium oxysporum and Magnaporthe oryzae. The mutation in the L. maculans ptf1 gene co-segregates in progeny from crosses with the reduction in pathogenicity, a strain with an independent mutant allele isolated using CRISPR-Cas9 editing has reduced pathogenicity, and addition of wild type copies of the gene restores pathogenicity. Thus, this work defines a base pair substitution that occurred during in vitro passaging of a fungus that contributed to an attenuation of pathogenicity.
Collapse
Affiliation(s)
- Kylie R Chambers
- School of BioSciences, The University of Melbourne, VIC, 3010, Australia; Department of Primary Industries and Regional Development, Northam, WA, 6401, Australia
| | | | - Donald M Gardiner
- CSIRO Agriculture and Food, St Lucia, Brisbane, QLD, 4067, Australia
| | - Candace E Elliott
- School of BioSciences, The University of Melbourne, VIC, 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, 3010, Australia.
| |
Collapse
|
2
|
Affiliation(s)
- Frank N. Martin
- Plant Pathology Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
3
|
Zhou L, Bailey K, Chen C, Keri M. Molecular and genetic analyses of geographic variation in isolates ofPhoma macrostomaused for biological weed control. Mycologia 2017. [DOI: 10.1080/15572536.2006.11832792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Mario Keri
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
| |
Collapse
|
4
|
Howlett BJ, Lowe RGT, Marcroft SJ, van de Wouw AP. Evolution of virulence in fungal plant pathogens: exploiting fungal genomics to control plant disease. Mycologia 2015; 107:441-51. [PMID: 25725000 DOI: 10.3852/14-317] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/25/2015] [Indexed: 11/10/2022]
Abstract
The propensity of a fungal pathogen to evolve virulence depends on features of its biology (e.g. mode of reproduction) and of its genome (e.g. amount of repetitive DNA). Populations of Leptosphaeria maculans, a pathogen of Brassica napus (canola), can evolve and overcome disease resistance bred into canola within three years of commercial release of a cultivar. Avirulence effector genes are key fungal genes that are complementary to resistance genes. In L. maculans these genes are embedded within inactivated transposable elements in genomic regions where they are readily mutated or deleted. The risk of resistance breakdown in the field can be minimised by monitoring disease severity of canola cultivars and virulence of fungal populations using high throughput molecular assays and by sowing canola cultivars with different resistance genes in subsequent years. This strategy has been exploited to avert yield losses due to blackleg disease in Australia.
Collapse
Affiliation(s)
| | - Rohan G T Lowe
- School of Botany, University of Melbourne, VIC 3010, Australia
| | - Stephen J Marcroft
- Marcroft Grains Pathology, Grains Innovation Park, Horsham, VIC 3400, Australia
| | | |
Collapse
|
5
|
Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. THE NEW PHYTOLOGIST 2013; 198:887-898. [PMID: 23406519 DOI: 10.1111/nph.12178] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 05/02/2023]
Abstract
Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.
Collapse
Affiliation(s)
- Marie-Hélène Balesdent
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Pascal Bally
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Jonathan Grandaubert
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Frédérique Eber
- INRA, UMR1349 IGEPP, BP35327, F-35653, Le Rheu Cedex, France
| | | | - Martine Leflon
- CETIOM, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
6
|
Akamatsu HO, Chilvers MI, Kaiser WJ, Peever TL. Karyotype polymorphism and chromosomal rearrangement in populations of the phytopathogenic fungus, Ascochyta rabiei. Fungal Biol 2012; 116:1119-33. [PMID: 23153803 DOI: 10.1016/j.funbio.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/02/2012] [Indexed: 01/12/2023]
Abstract
The fungus Ascochyta rabiei is the causal agent of Ascochyta blight of chickpea and the most serious threat to chickpea production. Little is currently known about the genome size or organization of A. rabiei. Given recent genome sequencing efforts, characterization of the genome at a population scale will provide a framework for genome interpretation and direction of future resequencing efforts. Electrophoretic karyotype profiles of 112 isolates from 21 countries revealed 12-16 chromosomes between 0.9 Mb and 4.6 Mb with an estimated genome size of 23 Mb-34 Mb. Three general karyotype profiles A, B, and C were defined by the arrangement of the largest chromosomes. Approximately one-third of isolates (group A) possessed a chromosome larger than 4.0 Mb that was absent from group B and C isolates. The ribosomal RNA gene (rDNA) cluster was assigned to the largest chromosome in all except four isolates (group C) whose rDNA cluster was located on the second largest chromosome (3.2 Mb). Analysis of progeny from an in vitro sexual cross between two group B isolates revealed one of 16 progeny with an rDNA-encoding chromosome larger than 4.0 Mb similar to group A isolates, even though a chromosome of this size was not present in either parent. No expansion of the rDNA cluster was detected in the progeny, indicating the increase in chromosome size was not due to an expansion in number of rDNA repeats. The karyotype of A. rabiei is relatively conserved when compared with published examples of asexual ascomycetes, but labile with the potential for large scale chromosomal rearrangements during meiosis. The results of this study will allow for the targeted sequencing of specific isolates to determine the molecular mechanisms of karyotype variation within this species.
Collapse
Affiliation(s)
- Hajime O Akamatsu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | |
Collapse
|
7
|
Fudal I, Ross S, Brun H, Besnard AL, Ermel M, Kuhn ML, Balesdent MH, Rouxel T. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in Leptosphaeria maculans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:932-41. [PMID: 19589069 DOI: 10.1094/mpmi-22-8-0932] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Three avirulence genes, AvrLm1, AvrLm6, and AvrLm4-7, were recently identified in Leptosphaeria maculans and found to be localized as solo genes within large noncoding, heterochromatin-like regions mainly composed of retrotransposons, truncated and degenerated by repeat-induced point mutation (RIP). The Rlm6 resistance gene has been overcome within 3 years in outdoor experiments in France and, here, we investigate the molecular basis of evolution toward virulence at the AvrLm6 locus. A region of 235 kb was sequenced in a virulent isolate and showed the deletion of AvrLm6 and three divergent mosaics of retrotransposons. AvrLm6 was found to be absent from 66% of 70 virulent isolates, with multiple events of deletion. The sequencing of virulent alleles in 24 isolates revealed a few cases of point mutations that had created stop codons in the sequence. The most frequent mutation events, however, were RIP, leading to the modification of 4 to 9% of the bases compared with the avirulent allele and generating 2 to 4 stop codons. Thus, RIP is described for the first time as an efficient mechanism leading to virulence and the multiple patterns of mutation observed suggest that multiple RIP events could occur independently in a single field population during 1 year.
Collapse
|
8
|
Aboukhaddour R, Cloutier S, Ballance GM, Lamari L. Genome characterization of Pyrenophora tritici-repentis isolates reveals high plasticity and independent chromosomal location of ToxA and ToxB. MOLECULAR PLANT PATHOLOGY 2009; 10:201-12. [PMID: 19236569 PMCID: PMC6640439 DOI: 10.1111/j.1364-3703.2008.00520.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The fungus Pyrenophora tritici-repentis (Died.) causes tan spot, an important leaf disease of wheat worldwide. Isolates of this pathogen have been collected and characterized into eight races on the basis of their ability to produce three different host-selective toxins. The karyotype of 47 isolates was determined by pulsed field gel electrophoresis. The collection originated from different parts of the world and included genotypes from all races. A single isolate was characterized for each of races 3, 4 and 6, whereas fourteen, five, nine, five and eleven isolates were karyotyped for races 1, 2, 5, 7 and 8, respectively. The survey showed that the chromosome number of P. tritici-repentis was highly variable, with some isolates having as few as eight chromosomes, but others having 11 or more. Similarly, the genome size ranged from 25.5 to 48.0 Mb, and individual chromosome sizes ranged from 1.3 to more than 5.7 Mb. Considerable variation was observed in karyotype patterns among the P. tritici-repentis isolates tested. A total of 29 different karyotypes was identified among the 47 isolates. These chromosome level variations were as variable for isolates within a race as for isolates across races. Southern blot analysis of the 47 isolates with ToxA and ToxB probes revealed that the toxin genes were always located on different chromosomes. Furthermore, with six chromosome-specific single-copy probes, the ToxA-carrying chromosome was shown to be homologous among the Ptr ToxA-producing isolates, with a related chromosome in the non-ToxA-producing isolates, suggesting that the chromosome on which ToxA generally resides is of an essential nature. Interestingly, a molecular rearrangement involving a translocation of ToxA to a different chromosome was identified in one isolate.
Collapse
Affiliation(s)
- R Aboukhaddour
- Department of Plant Science, 66 Dafoe Rd., University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | | | | |
Collapse
|
9
|
Gout L, Kuhn ML, Vincenot L, Bernard-Samain S, Cattolico L, Barbetti M, Moreno-Rico O, Balesdent MH, Rouxel T. Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environ Microbiol 2007; 9:2978-92. [DOI: 10.1111/j.1462-2920.2007.01408.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Rincones J, Mazotti GD, Griffith GW, Pomela A, Figueira A, Leal GA, Queiroz MV, Pereira JF, Azevedo RA, Pereira GAG, Meinhardt LW. Genetic variability and chromosome-length polymorphisms of the witches' broom pathogen Crinipellis perniciosa from various plant hosts in South America. ACTA ACUST UNITED AC 2006; 110:821-32. [PMID: 16876701 DOI: 10.1016/j.mycres.2006.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/22/2006] [Accepted: 05/07/2006] [Indexed: 11/30/2022]
Abstract
Crinipellis perniciosa has been classified into at least four known biotypes associated with members of unrelated plant families. In this study, genetic variability is shown for 27 C (Cacao), 4 S (Solanum), and 7 L biotype (Liana) isolates of C. perniciosa collected from different regions of Brazil and South America. The objective was to investigate the genetic variability of the pathogen in the cacao-producing region of Bahia, Brazil, and elsewhere, through microsatellite analysis, and attempt to identify possible correlations between host specificity and electrophoretic karyotypes. The PCR-banding patterns were found to vary both within and between the different biotypes, and a correlation was established between the PCR-banding patterns and the chromosomal-banding patterns of each isolate. Microsatellite and chromosomal patterns among all of the L and S biotype isolates were distinctly different from the C biotypes analysed. A higher degree of genetic and chromosomal variability was found among C biotype isolates from the Amazon in comparison with C biotype isolates from Bahia, which seems to be comprised of only two main genotypes. This finding has important implications to the current cacao-breeding programme in Brazil.
Collapse
Affiliation(s)
- Johana Rincones
- Laboratório de Genômica e Expressão, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, 13083-970, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Eckert M, Gout L, Rouxel T, Blaise F, Jedryczka M, Fitt B, Balesdent MH. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans. Curr Genet 2004; 47:37-48. [PMID: 15614492 DOI: 10.1007/s00294-004-0539-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 09/14/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
Leptosphaeria maculans causes phoma stem canker, the most serious disease of oilseed rape world-wide. Sexual recombination is important in the pathogen life cycle and increases the risk of plant resistance genes being overcome rapidly. Thus, there is a need to develop easy-to-use molecular markers suitable for large-scale population genetic studies. The minisatellite MinLm1, showing six alleles in natural populations, has previously been used as a marker to survey populations. Here, we report the characterization of five new minisatellites (MinLm2-MinLm6), of which four were identified by a systematic search for tandemly repeated polymorphic regions in BAC-end sequencing data from L. maculans. Of 782 BAC-end sequences analysed, 43 possessed putative minisatellite-type repeats and four of these (MinLm3-MinLm6) displayed both consistent PCR amplification and size polymorphism in a collection of L. maculans isolates of diverse origins. Cloning and sequencing of each allele confirmed that polymorphism was due to variation in the repeat number of a core motif ranging from 11 bp (MinLm3) to 51 bp (MinLm4). The number of alleles found for each minisatellite ranged from three (MinLm4) to nine (MinLm2), with eight, five and six for MinLm3, MinLm5 and MinLm6, respectively. MinLm2-MinLm6 are all single locus markers specific to L. maculans and share some common features, such as conservation of core motifs and incomplete direct repeats in the flanking regions. To our knowledge, L. maculans is the first fungal species for which six polymorphic single locus minisatellite markers have been reported.
Collapse
|
12
|
Mendes-Pereira E, Balesdent MH, Brun H, Rouxel T. Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. ACTA ACUST UNITED AC 2004; 107:1287-304. [PMID: 15000231 DOI: 10.1017/s0953756203008554] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leptosphaeria maculans (anamorph Phoma lingam), the ascomycete causing stem canker of crucifers, is a species complex that can be separated into at least seven distinct subgroups using a combination of biochemical and molecular criteria. In the present study sequences of the entire ITS region, including the 5.8S rDNA, of 38 isolates representing the seven subgroups, along with specimens from culture collections, were analysed, compared to those of closely related Leptosphaperia species, and the phylogeny inferred using parsimony and distance analyses. A well-supported clade encompassed all isolates of the seven subgroups along with L. conferta, a known saprobe of dried crucifer stems. The L. maculans isolates were further separated into two well-supported clades corresponding to L. maculans s. str. and the recently named L. biglobosa. Parsimony and distance analyses further separated groups within both species, usually corresponding to specific host plants or geographic origin, e.g. L. maculans 'brassicae' from cultivated Brassica, L. maculans 'lepidii'. from Lepidium sp., L. biglobosa 'brassicae', from various Brassica species, L. biglobosa 'thlaspii' from Thlaspi arvense, L. biglobosa 'erysimii' from Erysimum sp., and L. biglobosa 'canadensis' mostly found in central Canada. The oldest L. maculans specimens maintained in international collections clustered with either L. maculans 'brassicae', L. biglobosa 'brassicae', or a still different group closely related to L. biglobosa 'thlaspii'. The evolutionary relationships between the seven infraspecific groups are discussed in terms of phytopathological relevance and species isolation linked with specific life cycle, geographic isolation or host specificity.
Collapse
Affiliation(s)
- Edouard Mendes-Pereira
- Unité Phytopathologie et Méthodologies de la Détection Versailles, Institut National de la Recherche Agronomique, Route de Saint Cyr, F-78026 Versailles, France
| | | | | | | |
Collapse
|
13
|
Beadle J, Wright M, McNeely L, Bennett JW. Electrophoretic karyotype analysis in fungi. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:243-70. [PMID: 14696321 DOI: 10.1016/s0065-2164(03)53007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The resolution of chromosomal-sized DNAs by PFGE has many applications that include karyotyping, strain identification of similar species, characterization of transformed strains, building of linkage maps, and preparation of DNA for genomic analysis. Successful electrophoretic separation of chromosomes is an empiric process in which the initial concentration of intact chromosome-sized DNA and the optimization of electrophoretic parameters are the most important experimental variables. Nonetheless, inherent attributes of the genome architecture of certain species may thwart success. When a karyotype contains numerous chromosomes of the same size and/or many large (greater than 8 Mb) chromosomes, no amount of manipulation of the electrophoretic parameters will resolve individual chromosome bands using present technology. Further, fungi display a surprising amount of intraspecific variation in both chromosome number and size, making it difficult to establish a standard "reference" karyotype for many species. Although PFGE is not a panacea for bringing genetics to species that lack classical genetic systems, it often does provide a way for developing a molecular linkage map in the absence of a formal genetic system. It is far faster than parasexual analysis in the discovery of linkage relationships. For genomics projects, DNA can be recovered from pulsed field gels and used to prepare chromosome-specific libraries. Where whole genome sequencing strategies are used, chromosomes separated by PFGE provide an anchor for sequencing data. Electrophoretic karyotypes can be probed with anonymous pieces of DNA from bacterial artificial chromosome (BAC) contigs, thereby facilitating the building of physical maps. In conclusion, despite its shortcomings, the PFGE technique underlies much of our current understanding of the physical nature of the fungal genome.
Collapse
Affiliation(s)
- J Beadle
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
14
|
Rincones J, Meinhardt LW, Vidal BC, Pereira GA. Electrophoretic karyotype analysis of Crinipellis perniciosa, the causal agent of witches' broom disease of Theobroma cacao. MYCOLOGICAL RESEARCH 2003; 107:452-8. [PMID: 12825518 DOI: 10.1017/s0953756203007597] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pulse-field gel electrophoresis (PFGE) was used to determine the genome size and characterize karyotypic differences in isolates of the cacao biotype of Crinipellis perniciosa (C-biotype). The karyotype analysis of four isolates from Brazil revealed that this biotype could be divided into two genotypes: one presenting six chromosomal bands and the other presenting eight. The size of the chromosomes ranged from 2.7 to 5.3 Mb. The different genotypes correlate with telomere-based PCR analysis. The isolates with six chromosomal bands had two that appeared to be doublets, as shown by densitometric analysis, indicating that the haploid chromosome number for this biotype is eight. The size of the haploid genomes was estimated at approximately 30 Mb by both PFGE and Feulgen-image analysis. DNA hybridization revealed that the rDNA sequences are clustered on a single chromosome and these sequences were located on different chromosomes in an isolate dependent manner. This is the first report of genome size and chromosomal polymorphism for the C-biotype of C. perniciosa.
Collapse
Affiliation(s)
- Johana Rincones
- Laboratório de Genômica e Biotecnologia, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Caixa Postal 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
15
|
Lichter A, Gaventa JM, Ciuffetti LM. Chromosome-based molecular characterization of pathogenic and non-pathogenic wheat isolates of Pyrenophora tritici-repentis. Fungal Genet Biol 2002; 37:180-9. [PMID: 12409102 DOI: 10.1016/s1087-1845(02)00500-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.0 Mb chromosome. PCR-based subtraction was carried out with the ToxA chromosome as tester DNA and genomic DNA from a non-pathogenic isolate as driver DNA. Seven of 8 single-copy probes that originated from the 3.0 Mb chromosome could be assigned to a 2.75 Mb chromosome of a non-pathogenic isolate. Nine different repetitive DNA probes originated from the 3.0 Mb chromosome, including sequences that correspond to known fungal transposable elements. Two additional single-copy probes that originated from a 3.4 Mb chromosome were unique to the pathogens and they correspond to a peptide synthetase gene. Our findings suggest substantial differences between pathogenic and non-pathogenic isolates of P. tritici-repentis.
Collapse
Affiliation(s)
- Amnon Lichter
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
| | | | | |
Collapse
|
16
|
Balesdent MH, Attard A, Kühn ML, Rouxel T. New Avirulence Genes in the Phytopathogenic Fungus Leptosphaeria maculans. PHYTOPATHOLOGY 2002; 92:1122-33. [PMID: 18944223 DOI: 10.1094/phyto.2002.92.10.1122] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
ABSTRACT Leptosphaeria maculans, the causal agent of stem canker of oilseed rape (Brassica napus), develops gene-for-gene interactions with oilseed rape, and four L. maculans avirulence (AVR) genes (AvrLm1, AvrLm2, AvrLm4, and alm1) were previously genetically characterized. Based on the analysis of progeny of numerous in vitro crosses between L. maculans isolates showing either already characterized or new differential interactions, this work aims to provide an overview of the AVR genes that may specify incompatibility toward B. napus and the related species B. juncea and B. rapa. Two novel differential interactions were thus identified between L. maculans and B. napus genotypes, one of them corresponding to a complete resistance to European races of L. maculans. In both cases, a single gene control of avirulence was established (genes AvrLm3 and AvrLm7). Similarly, a single gene control of avirulence toward a B. rapa genotype, also resistant to European L. maculans isolates, was demonstrated (gene AvrLm8). Finally, a digenic control of avirulence toward B. juncea was established (genes AvrLm5 and AvrLm6). Linkage analyses demonstrated that at least four unlinked L. maculans genomic regions, including at least one AVR gene cluster (AvrLm1-AvrLm2-AvrLm6), are involved in host specificity. The AvrLm3-AvrLm4-AvrLm7 region may correspond either to a second AVR gene cluster or to a multiallelic AVR gene.
Collapse
|
17
|
Inheritance of chromosome-length polymorphisms in the phytopathogenic ascomycete Botryotinia fuckeliana (anam. Botrytis cinerea). ACTA ACUST UNITED AC 2002. [DOI: 10.1017/s0953756202006421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Attard A, Gout L, Gourgues M, Kühn ML, Schmit J, Laroche S, Ansan-Melayah D, Billault A, Cattolico L, Balesdent MH, Rouxel T. Analysis of molecular markers genetically linked to the Leptosphaeria maculans avirulence gene AvrLm1 in field populations indicates a highly conserved event leading to virulence on Rlm1 genotypes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:672-682. [PMID: 12118883 DOI: 10.1094/mpmi.2002.15.7.672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Map-based cloning of the avirulence gene AvrLm1 of Leptosphaeria maculans was initiated utilizing a genetic map of the fungus and a BAC library constructed from an AvrLm1 isolate. Seven polymorphic DNA markers closely linked to AvrLm1 were identified. Of these, two were shown to border the locus on its 5' end and were present, with size polymorphism, in both the virulent and the avirulent isolates. In contrast, three markers, J19-1.1, J53-1.3 (in coupling phase with avirulence), and Vir1 (in repulsion phase with avirulence), cosegregated with AvrLm1 in 312 progeny from five in vitro crosses. J19-1.1 and J53-1.3 were never amplified in the virulent parents or progeny, whereas Vir1 was never amplified in the avirulent parents or progeny. J19-1.1 and J53-1.3 were shown to be separated by 40 kb within a 184-kb BAC contig. In addition, the 1.6-cM genetic distance between J53-1.3 and the nearest recombinant marker corresponded to a 121-kb physical distance. When analyzing a European Union-wide collection of 192 isolates, J53-1.3, J19-1.1, and Vir1 were found to be closely associated with the AvrLm1 locus. The results of polymerase chain reaction amplification with primers for the three markers were in accordance with the interaction phenotype for 92.2% (J53-1.3), 90.6% (J19-1.1), and 88.0% (Vir1) of the isolates. In addition, genome organization of the AvrLm1 region was highly conserved in field isolates, because 89.1% of the avirulent isolates and 79.0% of the virulent isolates showed the same association of markers as that of the parents of in vitro crosses. The large-scale analysis of field isolates with markers originating from the genetic map therefore confirms (i) the physical proximity between the markers and the target locus and (ii) that AvrLm1 is located in (or close to) a recombination-deficient genome region. As a consequence, map-based markers provided us with high-quality markers for an overview of the occurrence of race "AvrLm1" at the field scale. These data were used to propose hypotheses on evolution towards virulence in field isolates.
Collapse
Affiliation(s)
- Agnès Attard
- Institute National de la Recherche Agronomique, Pathologie Végétale, Versailles, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Voigt K, Jedryczka M, Wöstemeyer J. Strain typing of polish Leptosphaeria maculans isolates supports at the genomic level the multi-species concept of aggressive and non-aggressive strains. Microbiol Res 2002; 156:169-77. [PMID: 11572457 DOI: 10.1078/0944-5013-00099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
47 Polish isolates of the blackleg fungus Leptosphaeria maculans (Phoma lingam) were compared with eight well-defined reference strains from Germany, France, Denmark, Australia and one Polish isolate of Phoma nigrificans. The isolates were tested (i) for growth characteristics, (ii) for their ability to form sirodesmins, (iii) for cellulolytic enzymes, and (iv) for pathotype-differentiating molecular markers generated by RAPD-PCR, PCR analysis with pathotype-specific primer pairs and PFGE. With two exceptions all Polish isolates do not form sirodesmins. grow rapidly without penetrating into the substrate and form in most cases yellow or brown pigments in Czapek-Dox liquid cultures. With respect to cellulase secretion and molecular fingerprinting Polish A strains (aggressive) fit into the general picture of the aggressive pathotype group, whereas the NA isolates (non-aggressive) display a higher degree of heterogeneity. This matches with inoculation tests on rape seedlings, which revealed a considerable number of isolates ranging in aggressivity between the conventional A and NA pathotype group. Molecular fingerprinting techniques unequivocally sorted intermediately aggressive isolates into the NA pathotype group. Isolate Ph Bial, which produces sirodesmin but groups within NA isolates according to molecular and physiological markers, may represent a novel third group besides A and NA strains with intermediate aggressivity (IA). We hybridized Southern blots of electrophoretically separated chromosomes with radioactively labelled PCR fragments used for differentiation between A and NA isolates. The specificity of diagnostic PCR amplicons is reflected at the genomic level. The A probe reveals a single hybridizing chromosome exclusively in A strains. The NA probe reveals several chromosomes and is specific for the NA pathotype group. Chromosomes from intermediately aggressive strains are equally well recognized by the NA probe as are Polish isolates with low aggressivity and give no signal with the A probe. Both diagnostic DNA sequences are highly specific for the pathotype group they were derived from. The lack of correspondence of both genetic elements between A and NA strains strongly supports the idea of ascribing the pathotype groups to different species. Whereas the A pathotype group is genetically homogeneous and congruent with the species Leptosphaeria maculans, the NA group needs to be revised taxonomically. NA isolates will presumably have to be split into several independent species.
Collapse
Affiliation(s)
- K Voigt
- Friedrich-Schiller-University Jena, Institute of Microbiology and Fungal Reference Centre, Department of General Microbiology and Microbial Genetics, Germany
| | | | | |
Collapse
|
20
|
Howlett BJ, Idnurm A, Pedras MS. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 2001; 33:1-14. [PMID: 11407881 DOI: 10.1006/fgbi.2001.1274] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The loculoascomycete Leptosphaeria maculans (anamorph: Phoma lingam) causes blackleg of Brassicas, including Brassica napus (canola or rapeseed). This fungus probably comprises several morphologically similar species; taxonomic relationships between them are being clarified and nomenclature is being revised. The pathotype ("A" group) responsible for major economic losses to canola has been studied in more detail than other members of this species complex and is the focus of this review. L. maculans is haploid, outcrossing, can be transformed, and has a genome size of about 34 Mb. Preliminary genetic and physical maps have been developed and three genes involved in host specificity have been mapped. As yet, few genes have been characterized. Chemical analysis of fungal secondary metabolites has aided understanding of taxonomic relationships and of the host-fungal interaction by the unraveling of pathways for detoxification of antimicrobial phytoalexins. Several phytotoxins (host and nonhost specific) have been identified and a complex pattern of regulation of their synthesis by fungal and host metabolites has been discovered.
Collapse
Affiliation(s)
- B J Howlett
- School of Botany, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | | |
Collapse
|
21
|
Enkerli J, Reed H, Briley A, Bhatt G, Covert SF. Physical map of a conditionally dispensable chromosome in Nectria haematococca mating population VI and location of chromosome breakpoints. Genetics 2000; 155:1083-94. [PMID: 10880471 PMCID: PMC1461165 DOI: 10.1093/genetics/155.3.1083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain isolates of the plant pathogenic fungus Nectria haematococca mating population (MP) VI contain a 1.6-Mb conditionally dispensable (CD) chromosome carrying the phytoalexin detoxification genes MAK1 and PDA6-1. This chromosome is structurally unstable during sexual reproduction. As a first step in our analysis of the mechanisms underlying this chromosomal instability, hybridization between overlapping cosmid clones was used to construct a map of the MAK1 PDA6-1 chromosome. The map consists of 33 probes that are linked by 199 cosmid clones. The polymerase chain reaction and Southern analysis of N. haematococca MP VI DNA digested with infrequently cutting restriction enzymes were used to close gaps and order the hybridization-derived contigs. Hybridization to a probe extended from telomeric repeats was used to anchor the ends of the map to the actual chromosome ends. The resulting map is estimated to cover 95% of the MAK1 PDA6-1 chromosome and is composed of two ordered contigs. Thirty-eight percent of the clones in the minimal map are known to contain repeated DNA sequences. Three dispersed repeats were cloned during map construction; each is present in five to seven copies on the chromosome. The cosmid clones representing the map were probed with deleted forms of the CD chromosome and the results were integrated into the map. This allowed the identification of chromosome breakpoints and deletions.
Collapse
Affiliation(s)
- J Enkerli
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
22
|
Poggeler, Masloff, Jacobsen, Kuck. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora. J Evol Biol 2000. [DOI: 10.1046/j.1420-9101.2000.00174.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Abstract
Both sexual and asexual fungi undergo chromosomal rearrangements, which are the main cause of karyotype variability among the populations. Different recombination processes can produce chromosomal reorganizations, both during mitosis and meiosis, but other mechanisms operate to limit the extent of the rearrangements; some of these mechanisms, such as the RIP (repeat-induced point mutations) of Neurospora crassa, have been well established for sexual fungi. In laboratory strains, treatments such as mutation and transformation enhance the appearance of chromosomal rearrangements. Different DNA sequences present in fungal genomes are able to promote these reorganizations; some of these sequences are involved in well-regulated processes (e.g., site-specific recombination) but most of them act simply as substrates for recombination events leading to DNA rearrangements. In Penicillium chrysogenum we have found that short specific DNA sequences are involved in tandem reiterations leading to amplification of the cluster of the penicillin biosynthesis genes. In some cases, specific chromosomal rearrangements have been associated with particular phenotypes (as occurs in adaptive-like mutants of Candida albicans and Candida stellatoidea), and they may play a role in genetic variability for environmental adaptation.
Collapse
Affiliation(s)
- F Fierro
- Faculty of Biology, University of León, Spain
| | | |
Collapse
|
24
|
Balesdent MH, Jedryczka M, Jain L, Mendes-Pereira E, Bertrandy J, Rouxel T. Conidia as a Substrate for Internal Transcribed Spacer-Based PCR Identification of Members of the Leptosphaeria maculans Species Complex. PHYTOPATHOLOGY 1998; 88:1210-1217. [PMID: 18944856 DOI: 10.1094/phyto.1998.88.11.1210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The blackleg disease of oilseed rape is caused by an ascomycete species complex termed Leptosphaeria maculans (anamorph Phoma lingam). L. maculans isolates collected worldwide were gathered in the International Blackleg of Crucifers Network (IBCN) collection. Representative IBCN isolates, along with one P. nigrificans isolate, were further analyzed using polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) region. ITS size polymorphism discriminated three groups: (i) P. nigrificans, (ii) Tox(+) and 'Lepidium' isolates, and (iii) NA1, NA2, NA3, 'Thlaspi', and 'Erysimum' isolates. Digestion of the ITS region with 19 selected endonucleases showed restriction site polymorphism between the different subgroups: digestion with RsaI could discriminate Tox(+) from 'Lepidium' isolates, whereas digestion with four enzymes, i.e., HaeIII, EcoRII, RsaI, and AluI, was needed to discriminate between NA1, NA2, NA3, 'Thlaspi', and 'Erysimum' isolates. No restriction site polymorphism was observed between isolates within the 'Thlaspi', Tox(+), NA1, and NA2 subgroups. Direct amplification of the ITS region could be achieved using intact conidia, collected either in axenic cultures or on leaf lesions, with only a 4-min 95 degrees C denaturation step prior to PCR reaction. A routine identification protocol requiring no DNA extraction and a sequential use of a few restriction enzymes following PCR has been used successfully for large-scale identification of French field isolates.
Collapse
|
25
|
Pongam P, Osborn TC, Williams PH. Genetic Analysis and Identification of Amplified Fragment Length Polymorphism Markers Linked to the alm1 Avirulence Gene of Leptosphaeria maculans. PHYTOPATHOLOGY 1998; 88:1068-1072. [PMID: 18944818 DOI: 10.1094/phyto.1998.88.10.1068] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT A gene-for-gene interaction was previously suggested by mapping of a single major locus (LEM 1) controlling cotyledon resistance to Leptosphaeria maculans isolate PHW1245 in Brassica napus cv. Major. In this study, we obtained further evidence of a gene-for-gene interaction by studying the inheritance of the corresponding avirulence gene in L. maculans isolate PHW1245. The analysis of segregating F(1) progenies and 14 test crosses suggested that a single major gene is involved in the interaction. This putative avirulence gene was designated alm1 after the resistance locus identified in B. napus. Amplified fragment length polymorphism (AFLP) markers were used to generate a rudimentary genetic linkage map of the L. maculans genome and to locate markers linked to the putative avirulence locus. Two flanking AFLP markers, AC/TCC-1 and AC/CAG-5, were linked to alm1 at 3.1 and 8.1 cM, respectively. Identification of markers linked to the avirulence gene indicated that the differential interaction is controlled by a single gene difference between parental isolates and provides further support for the gene-for-gene relationship in the Leptosphaeria-Brassica system.
Collapse
|
26
|
Abstract
The heterothallic ascomycete, Magnaporthe grisea, is the blast pathogen of rice and about 50 other grasses, and has potential for sexual and asexual reproduction. In most populations, data from mating type, fertility assays, and genotypic diversity strongly suggest that the pathogen is asexual. However, parasexual recombination cannot be ruled out. Chromosome length polymorphisms and translocations may prevent successful meiosis in most populations. Pathogens of millets and some grasses growing with rice appear to be largely genetically isolated, though some gene flow may occur. Sexual fertility has repeatedly been reported in rice pathogens from mountainous regions of South and East Asia. Several means by which sexual fertility may be lost in an agricultural setting are advanced.
Collapse
Affiliation(s)
- R S Zeigler
- Entomology and Plant Pathology Division, International Rice Research Institute, Manila, Philippines.
| |
Collapse
|
27
|
Mahuku GS, Goodwin PH, Hall R, Hsiang T. Variability in the highly virulent type ofLeptosphaeria maculanswithin and between oilseed rape fields. ACTA ACUST UNITED AC 1997. [DOI: 10.1139/b97-863] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathogenicity and random amplified polymorphic DNA (RAPD) markers were used to assess genetic diversity among 93 highly virulent isolates of Leptosphaeria maculans (Desm.) Ces. & de Not. collected from two oilseed rape (Brassica napus L.) fields located 20 km apart in southern Ontario. Using three differential host cultivars of B. napus (Westar, Quinta, and Glacier), isolates were separated into three pathogenicity groups (PG). Eighty percent of the isolates were in PG4, virulent on all cultivars, and 11% were in PG3, virulent on two cultivars. The remaining 9% were tentatively placed into a new PG, PG5, because they showed intermediate virulence on the three cultivars. There was no relationship between RAPD pattern and either PG or isolate collection site. Cluster analysis of RAPD patterns, based on estimates of genetic distance, grouped isolates into two populations, corresponding to the field of collection. Analysis of molecular variance attributed 45.5% of the total variance to differences between populations and 54.5% to differences among isolates. Every isolate was genetically distinct, suggesting that the populations of the fungus were produced mostly by sexual reproduction. We conclude that inoculum in the two fields consisted principally of ascopores, derived almost equally from sources that were common to both fields and sources that were distinct for each field. Key words: highly virulent, Leptosphaerla maculans, random amplified polymorphic DNA (RAPD), genetic variation.
Collapse
|
28
|
Howlett BJ, Rolls BD, Cozijnsen AJ. Organisation of ribosomal DNA in the ascomycete Leptosphaeria maculans. Microbiol Res 1997; 152:261-7. [PMID: 9352662 DOI: 10.1016/s0944-5013(97)80038-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the ascomycete Leptosphaeria maculans tandem repeats of ribosomal DNA (rDNA) are restricted to one or two particular chromosomes of the 15 chromosomes of 19 field isolates examined. Ribosomal DNA can account for size differences of 35% between homologous chromosomes in a particular tetrad. During crossing, no detectable recombination between blocks of tandem repeats, nor changes in their size occur. The organisation of rDNA in L. maculans differs from many other haploid fungi. Firstly, sequence heterogeneity occurs within tandem repeats of rDNA; regularly spaced Sal 1 sites (0.25 Mb apart) are present within a 1.4 Mb block of tandem repeats. Secondly, individual isolates have different-sized rDNA repeats; this variation occurs in the non-transcribed intergenic spacer region. Thirdly, there is a wide range in the copy number of the rDNA repeat (from 56 to 225) amongst only four field isolates examined.
Collapse
Affiliation(s)
- B J Howlett
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
29
|
Enkerli J, Bhatt G, Covert SF. Nht1, a transposable element cloned from a dispensable chromosome in Nectria haematococca. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:742-9. [PMID: 9245836 DOI: 10.1094/mpmi.1997.10.6.742] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Certain isolates of the plant-pathogenic fungus Nectria haematococca mating population VI (MPVI) contain dispensable chromosomes that are unstable during sexual reproduction. Several of these chromosomes carry genes for phytoalexin detoxification and thus contribute to the pathogenic potential of this organism. A repeated DNA sequence, Nht1, was cloned from one of these dispensable chromosomes in N. haematococca MPVI. One copy of the repeated element (Nht1A) was completely sequenced. It is 2,198 bp long and it possesses incomplete inverted terminal repeats (ITRs) at each end. Nht1B, a partially sequenced copy of Nht1, has complete ITRs. Nht1A appears to contain 2 introns and encodes a protein of 550 amino acids that is highly similar to the protein encoded by the Fusarium oxysporum transposon, Fot1. Due to the presence of ITRs, its repeated nature, and its similarity to Fot1, we conclude that Nht1 is a transposable element. Within North American N. Haematococca MPVI populations, Nht1 is distributed discontinuously. Its copy number in different field isolates varies from zero to approximately 100 copies per genome. The Nht1A source isolate is estimated to contain nine to 11 copies of Nht1; at least six are on the chromosome from which Nht1A was cloned.
Collapse
Affiliation(s)
- J Enkerli
- Department of Botany, University of Georgia, Athens 30602, USA
| | | | | |
Collapse
|
30
|
Howlett BJ. Genome analysis of the fungal plant pathogen, Leptosphaeria maculans using pulsed field gel electrophoresis. Electrophoresis 1997; 18:1544-7. [PMID: 9378119 DOI: 10.1002/elps.1150180910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulsed field gel electrophoresis (PFGE), or electrophoretic karyotyping, separates chromosomal-sized pieces of DNA in agarose gels where the orientation of the electric field is periodically altered. This technique has revealed that many fungi have a high degree of chromosomal length polymorphisms. Often the only isolates with identical karyotypes are derived from a single clone, thus PFGE provides a 'genetic fingerprint' for them. The size range and number of chromosomes within isolates of a particular species are usually constant, hence PFGE can distinguish between morphologically similar fungi. This technique can also be used to follow inheritance of chromosomal length polymorphisms and shows that in some fungi novel-sized chromosomes are produced during meiosis. As well as resolving the nuclear (A-type) chromosomes, it can also resolve dispensable (B-type) chromosomes and cytoplasmic genomes including mitochondrial DNA and linear plasmids. The application of this technique to Australian isolates of Leptosphaeria maculans, which causes blackleg disease of canola (Brassica napus), is discussed.
Collapse
Affiliation(s)
- B J Howlett
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Abstract
Electrophoretic karyotypes (EKs) of 83 isolates were variable within agricultural and natural populations of Sclerotinia sclerotiorum, as well as among S. sclerotiorum, Sclerotinia minor, and Sclerotinia trifoliorum. Variation in EKs was not observed within six mitotic or three meiotic lineages of isolates. EKs of 8 to 10 chromosome-sized DNAs were observed. Homologous and heterologous probes hybridized to four linkage groups.
Collapse
|
32
|
Patterson NA, Kapoor M. Detection of plasmid-like DNA and double-stranded RNA elements in some Canadian isolates of the oilseed rape pathogen Leptosphaeria maculans. Can J Microbiol 1996. [DOI: 10.1139/m96-126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nine Canadian isolates of Leptosphaeria maculans were examined for the presence of plasmid-like elements. A single extrachromosomal DNA element, with an estimated size of 9 kb, was detected in undigested genomic DNA of a virulent isolate, Fairview 1. This element was susceptible to hydrolysis by DNAse I and exonuclease III, and it was shown to hybridize to DNA of all virulent isolates. In addition, another virulent strain, Saskatoon 8, was observed to contain four double-stranded RNA (dsRNA) segments, ranging from approximately 500 bp to 2.4 kb. The latter segments (dsRNA) were resistant to DNAse I and exonuclease III treatment, and to RNAse A in high-ionic-strength buffer, but were susceptible to RNAse A in the presence of low-ionic-strength buffer.Key words: Leptosphaeria maculans, Canola, double-stranded RNA, plasmids.
Collapse
|
33
|
Heterogeneity in electrophoretic karyotype within and between anastomosis groups of Rhizoctonia solani. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0953-7562(96)80023-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Arima T, Okida T, Morinaga T. Behavior of chromosomes after meiosis in Coprinus cinereus. MYCOSCIENCE 1996. [DOI: 10.1007/bf02461334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Fraissinet-Tachet L, Reymond-Cotton P, Fèvre M. Molecular karyotype of the phytopathogenic fungus Sclerotinia sclerotiorum. Curr Genet 1996; 29:496-501. [PMID: 8625431 DOI: 10.1007/bf02221520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Molecular techniques have been used to characterize different field isolates of Sclerotinia sclerotiorum, an ubiquitous phytopathogen. Chromosomal DNA resolved by pulsed-field gel electrophoresis (PFGE) revealed that S. sclerotiorum contains at least 16 chromosomes ranging from 1.5 Mb to 4.0 Mb. The size of the haploid genome was estimated to be 43.5 Mb. Six field isolates with different levels of virulence on sunflower germlings or green beans were differentiated by random amplification of polymorphic DNA (RAPD), and analysed by clamped homogeneous electric field electrophoresis. This analysis revealed few chromosome-length polymorphisms among these strains. Chromosomal DNA hybridization indicated that the endopolygalacturonase-encoding pg1 gene is localized on the smallest chromosome of all the strains, whereas the ribosomal DNA mapped to different-sized chromosomes. The less-aggressive strain was characterized by the presence of a supernumary small band, presumably consisting of dsRNA. In contrast to numerous other phytopathogenic fungi, this study reveals a strong karyotypic stability among the strains of S. sclerotiorum which may be preserved by the sexual mode of reproduction of this species
Collapse
Affiliation(s)
- L Fraissinet-Tachet
- Laboratoire de Biologie Cellulaire Fongique, Centre de Génétique Móleculaire et Cellulaire-UMR CNRS 106, Université Claude Bernard Lyon I, 43, Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
36
|
Abstract
Pulsed-field gel electrophoresis and a chromosome-specific cosmid DNA library were used to determine the karyotypes of wild-type Aspergillus nidulans isolates from around the world. Overall, little structural variation was found, with a few major exceptions. One isolate possessed a non-essential B-chromosome of about 1.0 million base pairs (mb). Another isolate had undergone a non-reciprocal translocation of about 1.6 mb of chromosome VI onto chromosome VIII. Other than these chromosomal differences, these isolates appeared phenotypically normal. To analyze its effects on meiosis, the translocation isolate was outcrossed with another wild-type derivative that had a normal electrophoretic karyotype. This cross produced a range of phenotypes, including duplicated progeny that had a barren phenotype similar to that described for Neurospora partial disomics. The duplication was somewhat vegetatively unstable. This is the first association of sterility with chromosomal duplication in A. nidulans.
Collapse
Affiliation(s)
- D M Geiser
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
37
|
Filipp D, Filipp P, Nosek J, Hladká M. Electrophoretic karyotype of Dipodascus (Endomyces) magnusii: two main intraspecific chromosomal polymorphisms associated with the difference in total genome size. Curr Genet 1995; 29:81-7. [PMID: 8595662 DOI: 10.1007/bf00313197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study describes the karyotype of strain 270 of the yeast-like fungus Endomyces magnusii. It consists of 13 chromosomal DNA molecules, the size of which range between 1.2 and 5.7Mb producing a genome size of approximately 38Mb. By comparing the karyotype of six strains of E. magnusii, we revealed two main chromosome length polymorphisms (CLPs) associated with a pronounced difference in the total genome size (roughly 50%). Karyotype heterogeneity between two main CLPs was demonstrated by Southern analysis with three heterologous probes. The same species affiliation of six E. magnusii strains was confirmed by morphological and cytological studies, protein fingerprint comparisons, as well as restriction analysis of mitochondrial DNA and genomic Southern analysis.
Collapse
Affiliation(s)
- D Filipp
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Mlynská dolina B1, 842 15 Bratislava, Slovakia
| | | | | | | |
Collapse
|
38
|
Abstract
The examination of fungal chromosomes by pulsed-field gel electrophoresis has revealed that length polymorphism is widespread in both sexual and asexual species. This review summarizes characteristics of fungal chromosome-length polymorphism and possible mitotic and meiotic mechanisms of chromosome length change. Most fungal chromosome-length polymorphisms are currently uncharacterized with respect to content and origin. However, it is clear that long tandem repeats, such as tracts of rRNA genes, are frequently variable in length and that other chromosomal rearrangements are suppressed during normal mitotic growth. Dispensable chromosomes and dispensable chromosome regions, which have been well documented for some fungi, also contribute to the variability of the fungal karyotype. For sexual species, meiotic recombination increases the overall karyotypic variability in a population while suppressing genetic translocations. The range of karyotypes observed in fungi indicates that many karyotypic changes may be genetically neutral, at least under some conditions. In addition, new linkage combinations of genes may also be advantageous in allowing adaptation of fungi to new environments.
Collapse
Affiliation(s)
- M E Zolan
- Department of Biology, Indiana University, Bloomington 47405, USA
| |
Collapse
|
39
|
Plummer KM, Howlett BJ. Inheritance of chromosomal length polymorphisms in the ascomycete Leptosphaeria maculans. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:416-22. [PMID: 7770048 DOI: 10.1007/bf00293142] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pulsed field gel electrophoresis experiments show that chromosomal length polymorphisms are produced during meiosis in the ascomycetous plant pathogen Leptosphaeria maculans. Homologues in tetrads of L. maculans were identified on the basis of their binding to chromosome-specific probes that included beta-tubulin, nitrate reductase, 18S ribosomal DNA and two Random Amplified Polymorphic DNA (RAPD) markers. Changes in size of homologues were followed during meiosis. Significant karyotype variation was evident due to the random assortment of parental homologues of different sizes. In most cases, the progeny had the same-sized homologues as the parents; however, in some instances novel-sized homologues were detected that varied in size from those of the parents by up to 50 kb. Our results are consistent with the hypothesis that these novel chromosomal length polymorphisms are produced by reciprocal recombination between parental homologous chromosomes of unequal sizes.
Collapse
Affiliation(s)
- K M Plummer
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
40
|
Dewar K, Bernier L. Inheritance of chromosome-length polymorphisms in Ophiostoma ulmi (sensu lato). Curr Genet 1995; 27:541-9. [PMID: 7553939 DOI: 10.1007/bf00314445] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have investigated the mitotic and meiotic transmission of chromosome-length polymorphisms in Ophiostoma ulmi s.l., the causal agent of Dutch elm disease. The North-American aggressive (NAN) strain CESS16K has an atypical electrophoretic karyotype, carrying two chromosome-sized DNAs (chDNAs) that have not been observed in other members of the NAN biotype. Independent CESS16K chDNA preparations, even after repeated inoculation and recovery from the elm host, and analysis of 16 progeny strains after a cross between the NAN strains FG245Br-O and CESS16K, demonstrated that these unique chDNAs are integral components of the CESS16K genome. Analysis of the progeny, by electrophoretic karyotyping and hybridizations with probes specific to individual chDNAs, presented evidence that genome rearrangements can occur as a consequence of meiosis. Even though novel electrophoretic karyotypes and a novel-sized chromosome were observed in the karyotypes of the progeny strains, the low level of reassortment between the chromosomes carrying length polymorphisms presented evidence that there are constraints to genome plasticity for this fungus.
Collapse
Affiliation(s)
- K Dewar
- Centre de recherche en biologie forestière, Faculté de foresterie et de géomatique, Université Laval, Ste-Foy, Québec, Canada
| | | |
Collapse
|
41
|
Polymorphism of Tox0Leptosphaeria maculans isolates as revealed by soluble protein and isozyme electrophoresis. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0953-7562(09)80889-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Lim L, Howlett BJ. Linear plasmids, pLm9 and pLm10, can be isolated from the phytopathogenic ascomycete Leptosphaeria maculans by pulsed-field gel electrophoresis. Curr Genet 1994; 26:276-80. [PMID: 7859312 DOI: 10.1007/bf00309560] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two linear DNA plasmids (pLm9 and pLm10, sized 9 and 10 kb respectively) were isolated from the phytopathogenic ascomycete Leptosphaeria maculans, using pulsed-field gel electrophoresis. pLm9 and pLm10 are found only in aggressive isolates of L. maculans but, because aggressive and non-aggressive strains appear to be different species, these plasmids are probably not involved in pathogenicity. pLm9 and pLm10 copurify with a mitochondrially-enriched cell fraction, and do not hybridise to chromosomal or mitochondrial DNA, or to each other. Exonuclease digestions suggest that both these molecules contain covalently-bound proteins at their 5' termini. pLm9 hybridises to the RNA polymerase of a linear plasmid from the ascomycete Podospora anserina, and pLm10 hybridises to the DNA polymerase from the same P. anserina plasmid, suggesting that pLm9 and pLm10 encode their own replication and transcription enzymes.
Collapse
Affiliation(s)
- L Lim
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
43
|
Williams RS, Davis MA, Howlett BJ. Nitrate reductase of the ascomycetous fungus, Leptosphaeria maculans: gene sequence and chromosomal location. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:1-8. [PMID: 8041355 DOI: 10.1007/bf00280180] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrate reductase (niaD) gene was isolated from the phytopathogenic loculoascomycete Leptosphaeria maculans by screening a genomic DNA library with the Aspergillus nidulans niaD gene. The L. maculans niaD gene is the first protein-encoding gene characterised from this fungus. It encodes a predicted protein of 893 amino acids and contains four putative introns at positions in the gene equivalent to those of four of the six introns in the A. nidulans niaD gene. Mutants defective in niaD and molybdenum cofactor gene(s) of L. maculans have been isolated. Transformation of a L. maculans niaD mutant with a 3.8 kb SacII fragment containing the L. maculans niaD gene restored wild-type growth on nitrate as a sole nitrogen source. The niaD gene is present as a single copy on a chromosome which ranges in size from 2.6 to 2.8 Mb between the different L. maculans isolates examined.
Collapse
Affiliation(s)
- R S Williams
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
44
|
Cushion MT, Kaselis M, Stringer SL, Stringer JR. Genetic stability and diversity of Pneumocystis carinii infecting rat colonies. Infect Immun 1993; 61:4801-13. [PMID: 8406881 PMCID: PMC281237 DOI: 10.1128/iai.61.11.4801-4813.1993] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
There is increasing molecular and antigenic evidence that Pneumocystis carinii organisms isolated from humans, ferrets, and rats are different species. In contrast, little is known about the extent of genetic diversity among P. carinii strains found within a single mammalian species. In the present study, electrophoretic karyotypes were obtained from P. carinii prepared from 10 chronically immunosuppressed rat colonies to investigate diversity at the chromosomal level. Most organism preparations produced patterns with 13 to 15 bands, but as many as 24 bands were observed in a few preparations. All bands separated between 700 and 300 kbp. Four distinct karyotype forms emerged from among the 13- to 15-band karyotypes of the 10 colonies sampled. Form 1 was shared by five rat strains from two vendors; form 2 was shared by two rat strains from the same vendor; and forms 3 and 4 were unique to their vendor colonies. Within a given rat colony, most rats harbored the same P. carinii karyotype. A survey of selected rat colonies showed that the karyotype within a vendor colony could remain stable over a period of 2 to 3 years. Hybridization of the blotted karyotypes with a repetitive DNA element isolated from rat-derived P. carinii and with single-copy gene probes showed that every chromosome in the karyotypes contained some repetitive DNA, and there was a general size concordance among the chromosomes carrying the unique gene loci. Differences in gene sequences, electrophoretic karyotypes, and hybridization profiles suggested that the immunosuppressed rats were infected by genetically distinct P. carinii strains. A provisional system of nomenclature for P. carinii that will permit differentiation of P. carinii organisms from the same mammalian host is discussed. These data show that all rats were not infected by a single type of P. carinii, that pulsed-field gradient electrophoresis can detect sufficient genetic diversity among the organism preparations to allow for characterization of the organisms, and that the genome of the organism within the rat host is relatively stable over time.
Collapse
Affiliation(s)
- M T Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Ohio 45267-0560
| | | | | | | |
Collapse
|