1
|
Transcriptome-based Mining of the Constitutive Promoters for Tuning Gene Expression in Aspergillus oryzae. J Microbiol 2023; 61:199-210. [PMID: 36745334 DOI: 10.1007/s12275-023-00020-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation has been adopted for developing metabolic engineering tools. The regulatory promoter is a crucial genetic element for strain optimization. In this study, a gene set of Aspergillus oryzae with highly constitutive expression across different growth stages was identified through transcriptome data analysis. The candidate promoters were functionally characterized in A. oryzae by transcriptional control of β-glucuronidase (GUS) as a reporter. The results showed that the glyceraldehyde triphosphate dehydrogenase promoter (PgpdA1) of A. oryzae with a unique structure displayed the most robust strength in constitutively controlling the expression compared to the PgpdA2 and other putative promoters tested. In addition, the ubiquitin promoter (Pubi) of A. oryzae exhibited a moderate expression strength. The deletion analysis revealed that the 5' untranslated regions of gpdA1 and ubi with the length of 1028 and 811 nucleotides, counted from the putative translation start site (ATG), respectively, could efficiently drive the GUS expression. Interestingly, both promoters could function on various carbon sources for cell growth. Glucose was the best fermentable carbon source for allocating high constitutive expressions during cell growth, and the high concentrations (6-8% glucose, w/v) did not repress their functions. It was also demonstrated that the secondary metabolite gene coding for indigoidine could express under the control of PgpdA1 or Pubi promoter. These strong and moderate promoters of A. oryzae provided beneficial options in tuning the transcriptional expression for leveraging the metabolic control towards the targeted products.
Collapse
|
2
|
Zhang L, Liu Y, Zhong M, Li Z, Dong Y, Gedalanga P. Insights into enhanced biodegradation of sulfadimethoxine by catalyst: Transcriptomic responses and free radical interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145641. [PMID: 33609830 DOI: 10.1016/j.scitotenv.2021.145641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of sulfonamides in the environment is a severe global threat to public health due to the increasing prevalence of antibiotic selection pressure that may lead to the development of antibiotic resistance. We report an enhanced biodegradation of sulfadimethoxine (SDM) by Phanerochaete chrysosporium (Pc) with lignocellulosic biomass (Lb) using Fe3O4-ZSM-5 as a catalyst (Pc/Fe3O4-ZSM-5/Lb). SDM was completely degraded within 4 days at pH 7.0 in the Pc/Fe3O4-ZSM-5/Lb system. Transcriptomic, metabolites and free radical analyses were performed to explore the detailed molecular mechanisms of SDM degradation. A total of 246 genes of Pc in the Pc/Fe3O4-ZSM-5/Lb system exhibited significant upregulation compared to that in Pc alone. Upregulated genes encoding cellulases, cytochrome P450, cellobiose quinone oxidoreductase, and cellobiose dehydrogenase were involved in SDM degradation in the Pc/Fe3O4-ZSM-5/Lb system. In addition, genes encoding glutathione S-transferase and cytochrome P450 genes related to oxidative stress and detoxification were all significantly upregulated (P < 0.01). Electron paramagnetic resonance revealed the generation of OH suggesting a free radical pathway could be catalyzed by Fe3O4-ZSM-5 and the enzymes. These findings of catalyst-assisted SDM biodegradation will be valuable for remediation of antibiotics from contaminated wastewater.
Collapse
Affiliation(s)
- Lan Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yun Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| | - Ming Zhong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Phillip Gedalanga
- Department of Public Health, California State University, Fullerton. 800 N. State College Blvd, Fullerton, CA 92834, United States of America
| |
Collapse
|
3
|
Zhang L, Johnson NW, Liu Y, Miao Y, Chen R, Chen H, Jiang Q, Li Z, Dong Y, Mahendra S. Biodegradation mechanisms of sulfonamides by Phanerochaete chrysosporium - Luffa fiber system revealed at the transcriptome level. CHEMOSPHERE 2021; 266:129194. [PMID: 33316476 DOI: 10.1016/j.chemosphere.2020.129194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/11/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The overuse of antibiotics and subsequent enrichment of antibiotic resistant microbes in the natural and built environments is a severe threat to global public health. In this study, a Phanerochaete chrysosporium fungal-luffa fiber system was found to efficiently biodegrade two sulfonamides, sulfadimethoxine (SDM) and sulfadizine (SDZ), in cow urine wastewater. Biodegradation pathways were proposed on the basis of key metabolites identified using high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (HPLC-QqTOF-MS). Transcriptomic, metabolomic, and free radical analyses were performed to explore the functional groups and detailed molecular mechanisms of SDM and SDZ degradation. A total of 27 UniGene clusters showed significant differences between luffa fiber and luffa fiber-free systems, which were significantly correlated to cellulose catabolism, carbohydrate metabolism, and oxidoreductase activity. Carbohydrate-active enzymes and oxidoreductases appear to play particularly important roles in SDM and SDZ degradation. Electron paramagnetic resonance (EPR) spectroscopy revealed the generation and evolution of OH and R during the biodegradation of SDM and SDZ, suggesting that beyond enzymatic degradation, SDM and SDZ were also transformed through a free radical pathway. Luffa fiber also acts as a co-substrate to improve the activity of enzymes for the degradation of SDM and SDZ. This research provides a potential strategy for removing SDM and SDZ from agricultural and industrial wastewater using fungal-luffa fiber systems.
Collapse
Affiliation(s)
- Lan Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Nicholas W Johnson
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Yun Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yu Miao
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| | - Ruihuan Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Hong Chen
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Qian Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Zhongpei Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Yuanhua Dong
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
4
|
Chen N, Chen M, Wu T, Bian Y, Xu Z. The development of an efficient RNAi system based on Agrobacterium-mediated transformation approach for studying functional genomics in medical fungus Wolfiporia cocos. World J Microbiol Biotechnol 2020; 36:140. [PMID: 32803511 DOI: 10.1007/s11274-020-02916-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/24/2022]
Abstract
Genetic transformation methods reported for Wolfiporia cocos are limited. In this study, we describe an efficient RNA interference (RNAi) system based on Agrobacterium-mediated transformation approach in W. cocos for the first time. Actively growing mycelial plugs were used as recipients for transformation using endogenous orotidine-5'-phosphate decarboxylase gene (URA3) as both a selective marker and a silencing gene, under the control of the dual promoters of Legpd and Leactin from Lentinula edodes and the single promoter of Wcgpd from W. cocos, respectively. The results showed that both the two kinds of promoters effectively drive the expression of URA3 gene, and the URA3-silenced transformants could be selected on CYM medium containing 5'-fluoroorotic acid. In addition, silencing URA3 gene has no effect on the growth of W. cocos hyphae. The incomplete silencing of the URA3 locus was also observed in this study. This study will promote further study on the mechanism of substrate degradation, sclerotial formation, and biosynthesis network of pharmacological compounds in W. cocos.
Collapse
Affiliation(s)
- Naiyao Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengting Chen
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinbing Bian
- Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangyi Xu
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resource Comprehensive Utilization, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Zhang T, Cai L, Xu B, Li X, Qiu W, Fu C, Zheng C. Sulfadiazine biodegradation by Phanerochaete chrysosporium: Mechanism and degradation product identification. CHEMOSPHERE 2019; 237:124418. [PMID: 31369901 DOI: 10.1016/j.chemosphere.2019.124418] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Antibiotic contaminants have become a severe environmental problem in recent years and finding effective ways to deal with this issue is of great importance. In this study, Phanerochaete chrysosporium was used to degrade sulfadiazine (SDZ), which is frequently detected in the culture medium of isolates from soil and surface water systems. The results demonstrate that 10 mg L-1 SDZ can be completely degraded by P. chrysosporium under conditions of pH 5.7 and 30 °C within 6 days. The Q-Exactive-MS/MS analysis identified and confirmed several different SDZ degradation intermediates, and four proposed degradation pathways of SDZ were deduced. Moreover, enzyme activity tests revealed that manganese peroxidase and ligninolytic peroxidase played important roles in SDZ degradation. Moreover, a transcriptome analysis method was performed to explore the mechanism and pathways of SDZ degradation by P. chrysosporium in greater detail. The results of GO and KEGG analysis strongly suggest that the metabolism pathway is significantly activated and plays an important role in antibiotic degradation. Further, this is the first study to identify SDZ degradation intermediates and two main intermediates were found to be involved in possible SDZ degradation pathways. This study is also the first report results from RNA sequencing to evaluate genome-wide changes of P. chrysosporium to further explore SDZ degradation mechanism.
Collapse
Affiliation(s)
- Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ling Cai
- Third Institute of Oceanography, Ministry of Natural Resources, PR China, Xiamen, 361005, China
| | - Bentuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Xicheng Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Caixia Fu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Shang J, Yang R, Tang L, Li Y, Li Y, Mao W, Gong M, Wang Y, Honda Y, Bao D. Differential expression of two gpd genes in the cultivated mushroom Pleurotus eryngii using RNA sequencing analysis. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Herzog R, Solovyeva I, Bölker M, Lugones LG, Hennicke F. Exploring molecular tools for transformation and gene expression in the cultivated edible mushroom Agrocybe aegerita. Mol Genet Genomics 2019; 294:663-677. [PMID: 30778675 DOI: 10.1007/s00438-018-01528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Agrocybe aegerita is a cultivated edible mushroom in numerous countries, which also serves as a model basidiomycete to study fruiting body formation. Aiming to create an easily expandable customised molecular toolset for transformation and constitutive gene of interest expression, we first created a homologous dominant marker for transformant selection. Progeny monokaryons of the genome-sequenced dikaryon A. aegerita AAE-3 used here were identified as sensitive to the systemic fungicide carboxin. We cloned the wild-type gene encoding the iron-sulphur protein subunit of succinate dehydrogenase AaeSdi1 including its up- and downstream regions, and introduced a single-point mutation (His237 to Leu) to make it confer carboxin resistance. PEG-mediated transformation of protoplasts derived from either oidia or vegetative monokaryotic mycelium with the resulting carboxin resistance marker (CbxR) plasmid pSDI1E3 yielded carboxin-resistant transformants in both cases. Plasmid DNA linearised within the selection marker resulted in transformants with ectopic multiple insertions of plasmid DNA in a head-to-tail repeat-like fashion. When circular plasmid was used, ectopic single integration into the fungal genome was favoured, but also gene conversion at the homologous locus was seen in 1 out of 11 analysed transformants. Employing CbxR as selection marker, two versions of a reporter gene construct were assembled via Golden Gate cloning which allows easy recombination of its modules. These consisted of an eGFP expression cassette controlled by the native promoter PAaeGPDII and the heterologous terminator Tnos, once with and once without an intron in front of the eGFP start codon. After protoplast transformation with either construct as circular plasmid DNA, GFP fluorescence was detected with either transformants, indicating that expression of eGFP is intron-independent in A. aegerita. This paves the way for functional genetics approaches to A. aegerita, e.g., via constitutive expression of fruiting-related genes.
Collapse
Affiliation(s)
- Robert Herzog
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Environmental Biotechnology, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Irina Solovyeva
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Michael Bölker
- LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032, Marburg, Germany
| | - Luis G Lugones
- Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands
| | - Florian Hennicke
- Junior Research Group Genetics and Genomics of Fungi, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany. .,LOEWE Cluster of Integrative Fungal Research, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Department of Biology, Microbiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Rühl M, Lange K, Kües U. Laccase production and pellet morphology of Coprinopsis cinerea transformants in liquid shake flask cultures. Appl Microbiol Biotechnol 2018; 102:7849-7863. [PMID: 30032435 DOI: 10.1007/s00253-018-9227-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Laccase production and pellet formation of transformants of Coprinopsis cinerea strain FA2222 of C. cinerea laccase gene lcc1 subcloned behind the gpdII-promoter from Agaricus bisporus were compared with a control transformant carrying no extra laccase gene. At the optimum growth temperature of 37 °C, maximal laccase yields of 2.9 U/ml were obtained by the best lcc1 transformant pYSK7-26 in liquid shake flask cultures. Reduction in temperature to 25 °C increased laccase yields up to 9.2 U/ml. The control transformant had no laccase activities at 37 °C but native activity at 25 °C (3.5 U/ml). Changing the temperature had severe effects on the morphology of the mycelial pellets formed during cultivation, but links of distinct pellet morphologies to native or recombinant laccase production could not be established. Automated image analysis was used to characterise pellet formation and morphological parameters (pellet area, diameter, convexity and mycelial structure). Cross sections of selected pellets showed that they differentiated in an outer rind and an inner medulla of loosened hyphae. Pellets at 25 °C had a small and dense outer zone and adopted with time a smooth surface. Pellets at 37 °C had a broader outer zone and a fringy surface due to generation of more and larger protuberances in the rind that when released can serve for production of further pellets.
Collapse
Affiliation(s)
- Martin Rühl
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Karin Lange
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Büsgenweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
9
|
de Mattos-Shipley K, Ford K, Alberti F, Banks A, Bailey A, Foster G. The good, the bad and the tasty: The many roles of mushrooms. Stud Mycol 2016; 85:125-157. [PMID: 28082758 PMCID: PMC5220184 DOI: 10.1016/j.simyco.2016.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the "Forgotten Kingdom", fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or 'roles', for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category. Although this is in no way an exhaustive discussion of the importance of basidiomycetes, this review aims to give a broad overview of the importance of these organisms, exploring the various ways they can be exploited to the benefit of human society.
Collapse
Affiliation(s)
- K.M.J. de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - K.L. Ford
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - F. Alberti
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - A.M. Banks
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - A.M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - G.D. Foster
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
10
|
Sen K, Kinoshita H, Tazuke K, Maki Y, Yoshiura Y, Yakushi T, Shibai H, Kurosawa SI. Analysis of the sexual development-promoting region of Schizophyllum commune TRP1 gene. Biosci Biotechnol Biochem 2016; 80:2033-44. [PMID: 27296855 DOI: 10.1080/09168451.2016.1194179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aims to elucidate the mechanism of sexual development of basidiomycetous mushrooms from mating to fruit body formation. Sequencing analysis showed the TRP1 gene of basidiomycete Schizophyllum commune encoded an enzyme with three catalytic regions of GAT (glutamine amidotransferase), IGPS (indole-3-glycerol phosphate synthase), and PRAI (5-phosphoribosyl anthranilate isomerase); among these three regions, the trp1 mutant (Trp(-)) had a missense mutation (L→F) of a 338th amino acid residue of the TRP1 protein within the IGPS region. To investigate the function of IGPS region related to sexual development, dikaryons with high, usual, and no expression of the IGPS region of TRP1 gene were made. The dikaryotic mycelia with high expression of the IGPS formed mature fruit bodies earlier than those with usual and no expression of the IGPS. These results showed that the IGPS region in TRP1 gene promoted sexual development of S. commune.
Collapse
Affiliation(s)
- Kikuo Sen
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Hideki Kinoshita
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Kazuyuki Tazuke
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Yoshinori Maki
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Yumi Yoshiura
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Toshiharu Yakushi
- b Faculty of Agriculture, Department of Biological Chemistry , Yamaguchi University , Yamaguchi , Japan
| | - Hiroshiro Shibai
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Shin-Ichi Kurosawa
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| |
Collapse
|
11
|
Fleming-Archibald C, Ruggiero A, Grogan HM. Brown mushroom symptom expression following infection of an Agaricus bisporus crop with MVX associated dsRNAs. Fungal Biol 2015; 119:1237-1245. [DOI: 10.1016/j.funbio.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
|
12
|
Gonaus C, Kittl R, Sygmund C, Haltrich D, Peterbauer C. Transcription analysis of pyranose dehydrogenase from the basidiomycete Agaricus bisporus and characterization of the recombinantly expressed enzyme. Protein Expr Purif 2015; 119:36-44. [PMID: 26616098 DOI: 10.1016/j.pep.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/22/2015] [Accepted: 11/04/2015] [Indexed: 01/25/2023]
Abstract
Agaricus bisporus is a litter degrading basidiomycete commonly found in humic-rich environments. It is used as model organism and cultivated in large scale for food industry. Due to its ecological niche it produces a variety of enzymes for detoxification and degradation of humified plant litter. One of these, pyranose dehydrogenase, is thought to play a role in detoxification and lignocellulose degradation. It is a member of the glucose-methanol-choline family of flavin-dependent enzymes and oxidizes a wide range of sugars with concomitant reduction of electron acceptors like quinones. In this work, transcription of pdh in A. bisporus was investigated with real-time PCR revealing influence of the carbon source on pdh expression levels. The gene was isolated and heterologously expressed in Pichia pastoris. Characterization of the recombinant enzyme showed a higher affinity towards disaccharides compared to other tested pyranose dehydrogenases from related Agariceae. Homology modeling and sequence alignments indicated that two loops of high sequence variability at substrate access site could play an important role in modulating these substrate specificities.
Collapse
Affiliation(s)
- Christoph Gonaus
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roman Kittl
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Peterbauer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
13
|
Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortiz DA, Fernández F, Loske AM, Gómez-Lim MA. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2014; 98:9283-94. [PMID: 25269601 DOI: 10.1007/s00253-014-6105-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
The white-rot fungus Phanerochaete chrysosporium secretes extracellular oxidative enzymes during secondary metabolism, but lacks versatile peroxidase, an enzyme important in ligninolysis and diverse biotechnology processes. In this study, we report the genetic modification of a P. chrysosporium strain capable of co-expressing two endogenous genes constitutively, manganese peroxidase (mnp1) and lignin peroxidase (lipH8), and the codon-optimized vpl2 gene from Pleurotus eryngii. For this purpose, we employed a highly efficient transformation method based on the use of shock waves developed by our group. The expression of recombinant genes was verified by PCR, Southern blot, quantitative real-time PCR (qRT-PCR), and assays of enzymatic activity. The production yield of ligninolytic enzymes was up to four times higher in comparison to previously published reports. These results may represent significant progress toward the stable production of ligninolytic enzymes and the development of an effective fungal strain with promising biotechnological applications.
Collapse
Affiliation(s)
- Nancy Coconi-Linares
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Carretera Irapuato-León, 36821, Irapuato, Gto, Mexico
| | | | | | | | | | | |
Collapse
|
14
|
Zhang JJ, Shi L, Chen H, Sun YQ, Zhao MW, Ren A, Chen MJ, Wang H, Feng ZY. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus. Microbiol Res 2014; 169:741-8. [DOI: 10.1016/j.micres.2014.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
|
15
|
Tasaki Y, Sato R, Toyama S, Kasahara K, Ona Y, Sugawara M. Cloning of glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycete mushroom Pleurotus ostreatus and analysis of their expression during fruit-body development. MYCOSCIENCE 2014. [DOI: 10.1016/j.myc.2013.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Gausterer C, Penker M, Krisai-Greilhuber I, Stein C, Stimpfl T. Rapid genetic detection of ingested Amanita phalloides. Forensic Sci Int Genet 2013; 9:66-71. [PMID: 24528582 DOI: 10.1016/j.fsigen.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 11/17/2022]
Abstract
Mushrooms are often poorly digested by humans. Thus, their remains (tissues, spores) may persist in the gastrointestinal tract and can be detected in feces several days after mushroom consumption. In this report, we present protocols for the rapid PCR-based detection of fungal traces in a variety of complex samples. Novel primers were designed to amplify portions of ribosomal DNA from deadly poisonous European members of the genus Amanita, namely the death cap (A. phalloides), the destroying angel (A. virosa) and the fool's mushroom (A. verna), respectively. Assay sensitivity was sufficient to discover diluted DNA traces in amounts below the genomic content of a single target mushroom cell. Specificity testing was performed with DNA extracts from a variety of mushroom species. Template amplification was exclusively observed with intended targets and it was not compromised by a vast excess of non-target DNA (i.e. DNA from human and human fecal origin, respectively). A series of experiments was conducted with prepared specimens in order to follow the course of mushroom food processing and digestion. Amplification by direct PCR was successful with raw, fried and digested mixed mushrooms. To improve assay performance with fecal samples, a rapid protocol for sample pre-processing (including water-ether sedimentation and bead beating) and a modified PCR reaction mix were applied. Thereby, it was possible to detect the presence of A. phalloides DNA in spiked feces as well as in clinical samples (vomit, stool) from two independent cases of suspected mushroom poisoning.
Collapse
Affiliation(s)
- Christian Gausterer
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria.
| | - Martina Penker
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria; Department of Health, FH Campus Wien, University of Applied Sciences, Favoritenstraße 226, 1100 Vienna, Austria.
| | - Irmgard Krisai-Greilhuber
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | - Christina Stein
- FDZ-Forensisches DNA Zentrallabor GmbH, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria.
| | - Thomas Stimpfl
- Clinical Department of Laboratory Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Fan X, Zhou Y, Xiao Y, Bian Y. Cloning and characterization of two allelic glyceraldehyde-3-phosphate dehydrogenase genes in Auricularia auricula-judae. World J Microbiol Biotechnol 2013; 30:181-9. [PMID: 23877748 DOI: 10.1007/s11274-013-1436-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
Two allelic variants of the gpd gene, Gpd(a) and Gpd(b), were isolated based on a putative glyceraldehyde-3-phosphate dehydrogenase encoding sequence from the transcriptome of Auricularia auricula-judae strain Au916. The two alleles were found to have a 73 bp length discrepancy and 39 SNP variations. Both of the genomic DNA sequences of two alleles were interrupted by five introns, and encoded a same 340 aa protein. Intron positions analysis showed that the first intron was absent, but the last unique intron was gained in A. auricula-judae. Allele-specific expression analysis showed that the Gpd(a) and Gpd(b) were expressed with no significant difference in dikaryotic mycelia of A. auricula-judae. To the best of our knowledge, this is the first report about the detection of two allelic gpd genes in A. auricula-judae, as well as the application of allele-specific primers in gene expression analysis for this edible fungus.
Collapse
Affiliation(s)
- Xiuzhi Fan
- Institute of Applied Mycology, Huazhong Agricultural University, No. 1 Shizishan Rd., Wuhan, 430070, Hubei, China
| | | | | | | |
Collapse
|
18
|
Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 2012; 97:719-29. [DOI: 10.1007/s00253-012-4223-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 10/28/2022]
|
19
|
Asexual reproductive organ-specific expression of the glyceraldehyde-3-phosphate dehydrogenase 2 gene of Pilobolus crystallinus. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-011-0143-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Molecular cloning and sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase gene from the violet root rot fungus, Helicobasidium mompa. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Kubo H. Cloning and expression analysis of putative glyceraldehyde-3- phosphate dehydrogenase genes in Pilobolus crystallinus. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Agrobacterium tumefaciens-mediated transformation for investigation of somatic recombination in the fungal pathogen Armillaria mellea. Appl Environ Microbiol 2010; 76:7990-6. [PMID: 20952653 DOI: 10.1128/aem.01049-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus.
Collapse
|
23
|
Ding Y, Liang S, Lei J, Chen L, Kothe E, Ma A. Agrobacterium tumefaciens mediated fused egfp-hph gene expression under the control of gpd promoter in Pleurotus ostreatus. Microbiol Res 2010; 166:314-22. [PMID: 20869218 DOI: 10.1016/j.micres.2010.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/24/2010] [Accepted: 07/03/2010] [Indexed: 11/18/2022]
Abstract
A transformation system for the basidiomycete Pleurotus ostreatus was established using agrobacterium-mediated infection. Following P. ostreatus glyceraldehyde-3-phosphate dehydrogenase gene analysis, its promoter region including two introns was used as cis-regulatory element to drive expression of enhanced green fluorescent protein (eGFP). As a selection marker, the hygromycin phosphotransferase (hph) gene cassette was used in the binary vector pPEH. Mycelia without pretreatment were found to be the most efficient recipients in transformation experiments while fruiting body tissue or basidiospores showed lower transformation rates. A transformation efficiency of 75% was achieved. After subculturing, putative transformants were screened by PCR and Southern blot analysis showing the expected ectopic integration of the transforming DNA. At the same time, the promotor region was shown to drive expression of selection marker as well as eGFP that could be visualized, which will be helpful for future investigation using Agrobacterium tumefaciens mediated transformation for functional characterization of genes in the mushroom forming basidioymcete P. ostreatus.
Collapse
Affiliation(s)
- Yi Ding
- College of Food Science and Technology, Huazhong Agricultural University, 1 Lion Hill Road, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
24
|
Lima JO, Pereira JF, Rincones J, Barau JG, Araújo EF, Pereira GAG, Queiroz MV. The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthoraperniciosa, the causal agent of witches' broom disease of Theobroma cacao. Genet Mol Biol 2009; 32:362-6. [PMID: 21637692 PMCID: PMC3036943 DOI: 10.1590/s1415-47572009000200024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/05/2008] [Indexed: 11/21/2022] Open
Abstract
This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.
Collapse
Affiliation(s)
- Juliana O Lima
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Rogers CW, Challen MP, Muthumeenakshi S, Sreenivasaprasad S, Whipps JM. Disruption of the Coniothyrium minitans PIF1 DNA helicase gene impairs growth and capacity for sclerotial mycoparasitism. MICROBIOLOGY-SGM 2008; 154:1628-1636. [PMID: 18524917 DOI: 10.1099/mic.0.2008/017020-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A non-mycoparasitic restriction enzyme-mediated DNA integration (REMI) mutant of Coniothyrium minitans (R2427) contains two tandem plasmid copies integrated towards the 3' end of an ORF. The predicted polypeptide (845 aa) exhibits high similarity with DNA-helicase proteins from other filamentous fungi and yeasts that play a role in mitochondrial DNA maintenance and repair. Disruption of the C. minitans PIF1 DNA helicase gene results in altered morphology, reduced growth rates and a concomitant loss in ability to mycoparasitize sclerotia of Sclerotinia sclerotiorum. In infection bioassays, R2427 exhibited sparse mycelial growth on the surface of live sclerotia, but no mycelia were detected inside the sclerotia. Conversely, R2427 readily colonized autoclaved sclerotia. Complementation of the mutant with wild-type PIF1 restored normal mycelial growth and mycoparasitic capability, confirming a functional role in the host-pathogen interaction. The C. minitans PIF1 DNA helicase may maintain mitochondrial stability in response to reactive oxygen species, either produced endogenously within the mycoparasite, or exogenously from the sclerotial host.
Collapse
Affiliation(s)
| | - Michael P Challen
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| | | | | | - John M Whipps
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, UK
| |
Collapse
|
26
|
|
27
|
Kittl R, Sygmund C, Halada P, Volc J, Divne C, Haltrich D, Peterbauer CK. Molecular cloning of three pyranose dehydrogenase-encoding genes from Agaricus meleagris and analysis of their expression by real-time RT-PCR. Curr Genet 2007; 53:117-27. [DOI: 10.1007/s00294-007-0171-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|
28
|
Neveu B, Belzile F, Bélanger RR. Cloning of the glyceraldehyde-3-phosphate dehydrogenase gene from Pseudozyma flocculosa and functionality of its promoter in two Pseudozyma species. Antonie van Leeuwenhoek 2007; 92:245-55. [PMID: 17387629 DOI: 10.1007/s10482-007-9160-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Pseudozyma flocculosa is a yeast-like epiphyte recently classified as a basidiomycete related to the Ustilaginales. In this study, we report the cloning of its gene coding for a putative glyceraldehyde-3-phosphate dehydrogenase (GPD). This gene was selected on the premise that its transcripts are abundant during the growth phase of P. flocculosa. The complete sequence of this gene was found to contain two introns in the coding region and one in the 3'-untranslated region. This gene was present in a single copy in the genome of P. flocculosa. By comparing its deduced amino acid sequence with various sequences from basidiomycetous and ascomycetous fungi, we observed a stronger homology with the former group as predicted by the new classification of P. flocculosa. The promoter region lacked a typical TATA or CAAT box but contained a CT-rich region including the transcription start site. Although the GPD promoter showed a stronger affinity within P. flocculosa, it remained active across species as shown by expressing the green fluorescent protein in Pseudozyma antarctica. The cloning of this gene and its promoter brings new and versatile options to the limited genetic tools currently available for the study of the recently defined Pseudozyma genus.
Collapse
Affiliation(s)
- Bertrand Neveu
- Département de Phytologie, Centre de Recherche en Horticulture, Université Laval, Pavillon Envirotron, Quebec, QC, Canada, G1K 7P4
| | | | | |
Collapse
|
29
|
Burns C, Leach KM, Elliott TJ, Challen MP, Foster GD, Bailey A. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol Biotechnol 2006; 32:129-38. [PMID: 16444014 DOI: 10.1385/mb:32:2:129] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.
Collapse
Affiliation(s)
- C Burns
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | | | | | | | | | | |
Collapse
|
30
|
Kilaru S, Hoegger PJ, Kües U. The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 2006; 50:45-60. [PMID: 16775746 DOI: 10.1007/s00294-006-0074-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Seventeen non-allelic laccase genes and one gene footprint are present in the genome of Coprinopsis cinerea. Two gene subfamilies were defined by intron positions and similarity of deduced gene products, one with 15 members (lcc1-lcc15) and one with 2 members (lcc16, lcc17). The first subfamily divides in the phylogenetic tree of deduced proteins into smaller clusters that probably reflect recent gene duplication events. Different laccase genes diverged from each other both by frequent synonymous and non-synonymous codon changes. Mainly synonymous codon changes accumulate in alleles, with up to 12% total codon differences between given pairs of alleles. Overexpression of the 17 laccase genes under the control of a constitutive promoter identified nine active enzymes from subfamily 1. All of these showed laccase activities with DMP (2,6-dimethoxy phenol) as substrate but only eight of them also with ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. Lcc16 and Lcc17 share certain sequence features with ferroxidases but enzyme assays failed to show such activity. Lcc15 is expected to be non-functional in laccase activity due to an internal deletion of about 150 amino acids. Transcripts were obtained from all genes but splice junctions for three genes were not congruent with translation into a functional protein.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Molecular Wood Biotechnology, Institute of Forest Botany, Georg-August-University of Göttingen, Germany
| | | | | |
Collapse
|
31
|
Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U. Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycetous promoters. Appl Microbiol Biotechnol 2005; 71:200-10. [PMID: 16158283 DOI: 10.1007/s00253-005-0128-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 07/28/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
Coprinopsis cinerea laccase gene lcc1 was expressed in this basidiomycete under naturally non-inductive conditions using various homologous and heterologous promoters. Laccase expression was achieved in solid and liquid media with promoter sequences from the C. cinerea tub1 gene, the Agaricus bisporus gpdII gene, the Lentinus edodes priA gene and the Schizophyllum commune Sc3 gene. As measured by enzyme activity in liquid cultures, a 277-bp gpdII promoter fragment, followed by a 423-bp priA fragment, was most efficient. A shorter priA sequence of 372 bp was inactive. tub1 promoter fragments were reasonably active, whereas the S. commune Sc3 promoter sequence was less active, in comparison. Irrespective of the promoter used, addition of copper to the medium increased enzymatic activities for highly active transformants by 10- to 50-fold and for less active transformants for 2- to 7-fold. The highest enzymatic activities (3 U/ml) were reached with the gpdII promoter in the presence of 0.1 mM CuSO(4).
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Molecular Wood Biotechnology, Institute of Forest Botany, Georg-August-University Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Grimaldi B, de Raaf MA, Filetici P, Ottonello S, Ballario P. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics. Curr Genet 2005; 48:69-74. [PMID: 15868150 DOI: 10.1007/s00294-005-0579-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/11/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
Mycorrhizal ascomycetes are ecologically and commercially important fungi that have proved impervious to genetic transformation so far. We report here on the successful transient transformation of Tuber borchii, an ectomycorrhizal ascomycete that colonizes a variety of trees and produces highly prized hypogeous fruitbodies known as "truffles". A hypervirulent Agrobacterium tumefaciens strain bearing the binary plasmid pBGgHg was used for transformation. The genes for hygromycin resistance and the enhanced green fluorescent protein (EGFP), both under the control of vector-borne promoters, were employed as selection markers. Patches of dark and fluorescent hyphae were observed upon fluorescence microscopic examination of hygromycin-resistant mycelia. The presence of EGFP was confirmed by both confocal microscopy and PCR analysis. The lack in the transformed mycelia of the DNA coding for kanamicin resistance (a trait encoded by a vector-borne gene located outside of the T-DNA region) indicates that Agrobacterium-mediated gene transfer correctly occurred in T. borchii.
Collapse
Affiliation(s)
- Benedetto Grimaldi
- Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma "La Sapienza", P. le Aldo Moro 5, Roma 00185, Italy
| | | | | | | | | |
Collapse
|
33
|
Alves AMCR, Record E, Lomascolo A, Scholtmeijer K, Asther M, Wessels JGH, Wösten HAB. Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Appl Environ Microbiol 2005; 70:6379-84. [PMID: 15528495 PMCID: PMC525127 DOI: 10.1128/aem.70.11.6379-6384.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An efficient transformation and expression system was developed for the industrially relevant basidiomycete Pycnoporus cinnabarinus. This was used to transform a laccase-deficient monokaryotic strain with the homologous lac1 laccase gene placed under the regulation of its own promoter or that of the SC3 hydrophobin gene or the glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of Schizophyllum commune. SC3-driven expression resulted in a maximal laccase activity of 107 nkat ml(-1) in liquid shaken cultures. This value was about 1.4 and 1.6 times higher in the cases of the GPD and lac1 promoters, respectively. lac1-driven expression strongly increased when 25 g of ethanol liter(-1) was added to the medium. Accordingly, laccase activity increased to 1,223 nkat ml(-1). These findings agree with the fact that ethanol induces laccase gene expression in some fungi. Remarkably, lac1 mRNA accumulation and laccase activity also strongly increased in the presence of 25 g of ethanol liter(-1) when lac1 was expressed behind the SC3 or GPD promoter. In the latter case, a maximal laccase activity of 1,393 nkat ml(-1) (i.e., 360 mg liter(-1)) was obtained. Laccase production was further increased in transformants expressing lac1 behind its own promoter or that of GPD by growth in the presence of 40 g of ethanol liter(-1). In this case, maximal activities were 3,900 and 4,660 nkat ml(-1), respectively, corresponding to 1 and 1.2 g of laccase per liter and thus representing the highest laccase activities reported for recombinant fungal strains. These results suggest that P. cinnabarinus may be a host of choice for the production of other proteins as well.
Collapse
Affiliation(s)
- Alexandra M C R Alves
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, Challen MP, Bailey A, Foster GD. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol 2005; 42:191-9. [PMID: 15707840 DOI: 10.1016/j.fgb.2004.11.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 10/18/2004] [Accepted: 11/12/2004] [Indexed: 11/24/2022]
Abstract
We have developed a "Molecular Toolkit" comprising interchangeable promoters and marker genes to facilitate transformation of homobasidiomycete mushrooms. We describe the evaluation of a range of promoters in the homobasidiomycetes Agaricus bisporus and Coprinus cinereus using green fluorescent protein (GFP) as a reporter gene; the C. cinereus trp1 promoter and A. bisporus trp2 and gpdII promoters proving successful in driving expression in C. cinereus, with the gpdII promoter also functioning in A. bisporus. Our investigations demonstrate that a prerequisite for GFP expression in C. cinereus and A. bisporus is the presence of an intron. This is the first reported expression of GFP in either C. cinereus or A. bisporus.
Collapse
Affiliation(s)
- C Burns
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecular cloning of the promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene that contributes to the construction of a new transformation system in Coriolus versicolor. MYCOSCIENCE 2004. [DOI: 10.1007/s10267-003-0164-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Assmann EM, Ottoboni LMM, Ferraz A, Rodríguez J, De Mello MP. Iron-responsive genes of Phanerochaete chrysosporium isolated by differential display reverse transcription polymerase chain reaction. Environ Microbiol 2003; 5:777-86. [PMID: 12919413 DOI: 10.1046/j.1462-2920.2003.00475.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
White-rot fungus Phanerochaete chrysosporium, a ligninolytic basidiomycete, was studied to identify iron-responsive genes. Using the differential display reverse transcription PCR technique (DDRT-PCR), a total of 97 differentially expressed cDNA fragments were identified by comparing band intensities among fingerprints obtained from mycelia cultivated in iron-deficient and iron-replete media. Transcripts induced under iron-starvation exhibited homologies to: a modular polyketide synthase, a TonB protein, a probable transmembrane protein, a putative ABC transporter permease and a HSP70-related heat-shock protein. Modular polyketide synthase and TonB proteins are normally expressed under iron-starvation and are known to be involved in biosynthesis and transport of siderophores respectively. Also, a deduced protein with 96% similarity to a precursor of the well-known P. chrysosporium lignin peroxidase was identified under iron-deficiency. Two DDRT-PCR products confirmed their iron-induced expression. One was homologue to the CNOT3, which is a global regulator of RNA polymerase II transcription and has been implicated in multiple roles in the control of mRNA metabolism. The other was similar to the Schizosaccharomyces pombe putative proteasome maturation factor upm1. In conclusion, the majority of iron-responsive P. chrysosporium transcripts isolated in the DDRT-PCR encode proteins involved in iron acquisition, especially members of biosynthesis and transport of iron chelators.
Collapse
Affiliation(s)
- Eliana Maria Assmann
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Caixa Postal 6010, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Yamagishi K, Kimura T, Suzuki M, Shinmoto H. Suppression of fruit-body formation by constitutively active G-protein alpha-subunits ScGP-A and ScGP-C in the homobasidiomycete Schizophyllum commune. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2797-2809. [PMID: 12213926 DOI: 10.1099/00221287-148-9-2797] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heterotrimeric G-protein alpha-subunit family plays multiple roles in eukaryotic cells, such as the regulation of growth and development, of pathogenicity and of the transmission of pheromone stimulation. In the homobasidiomycete Schizophyllum commune, some genes encoding heterotrimeric G-protein alpha-subunits (SCGPalpha1, SCGPalpha2, ScGP-A, ScGP-B and ScGP-C) have been reported. In this study, constitutively active mutants of ScGP-A, ScGP-B and ScGP-C were generated by site-directed mutagenesis and introduced into the S. commune monokaryon strain to investigate the function of each gene. Northern analysis showed that the mutated genes were strongly expressed when compared with endogenous G-proteins in many clones. Upon macroscopic examination, some transformed clones expressing ScGP-A (Q207R) and ScGP-C (Q204R) mutant genes exhibited a slight suppression of aerial-hyphae formation in the monokaryon strain. In contrast to the slight suppression of aerial-hyphae formation in the monokaryon, most clones expressing mutated ScGP-A or ScGP-C genes failed to form fruit-bodies in the dikaryon strain. This observation indicated that ScGP-A and ScGP-C played a role in suppressing fruit-body formation in the dikaryon. Furthermore, these phenotypes were similar to the phenotype of the thn mutant in S. commune to some extent. Since the thn-1 gene encodes a putative regulator of the G-protein signalling protein (RGS), ScGP-A and ScGP-C might be targets of thn-1.
Collapse
Affiliation(s)
- Kenji Yamagishi
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Toshiyuki Kimura
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Masahiro Suzuki
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| | - Hiroshi Shinmoto
- National Agricultural Research Centre for Tohoku Region, National Agricultural Research Organization, Arai, Fukushima, 960-2156, Japan1
| |
Collapse
|
38
|
Kurihara H, Wariishi H, Tanaka H. Chemical stress-responsive genes from the lignin-degrading fungus Phanerochaete chrysosporium exposed to dibenzo-p-dioxin. FEMS Microbiol Lett 2002; 212:217-20. [PMID: 12113937 DOI: 10.1111/j.1574-6968.2002.tb11269.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The stress-responsive genes expressed against the exogenous addition of dibenzo-p-dioxin from the lignin-degrading basidiomycete, Phanerochaete chrysosporium, were determined utilizing a differential display reverse transcription-PCR technique. Six cDNA fragments, exhibiting a high homology with various proteins from other microorganisms, were identified via a BLAST search; that is, NADH-ubiquinone oxidoreductase (NUO), ATP/ADP carrier, uric acid-xanthine permease, manganese superoxide dismutase, 3-hydroxybutyryl-coenzyme A dehydrogenase, and cytoskeletal protein. The expression of NUO was also up-regulated by catechol and trihydroxybenzene but not by dibenzofuran, suggesting that NUO expression was initiated by the formation of quinone products through the reaction of extracellular one-electron oxidizing enzymes with dibenzo-p-dioxin.
Collapse
Affiliation(s)
- Hiroyuki Kurihara
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakokzaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
39
|
Wolff AM, Arnau J. Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (Syn. racemosus) and use of the gpd1 promoter for recombinant protein production. Fungal Genet Biol 2002; 35:21-9. [PMID: 11860262 DOI: 10.1006/fgbi.2001.1313] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three genes (gpd1, gpd2, and gpd3) encoding glyceraldehyde-3-phosphate dehydrogenase were isolated from the dimorphic zygomycete Mucor circinelloides by PCR using degenerated primers. Transcription of gpd1 could be detected during vegetative growth under both aerobic and anaerobic conditions, whereas neither gpd2 nor gpd3 transcription was detected, indicating that gpd1 is the major transcribed gpd gene. The transcription of gpd1 was regulated by carbon source. The gpd1 promoter was successfully used for recombinant expression of genes of both homologous (crgA encoding a regulator of carotene biosynthesis) and heterologous (gox1 from Aspergillus niger encoding glucose oxidase; GOX) nature. Growth of a gox1 transformant strain resulted in the secretion of enzymatically active GOX. The potential advantages of using a dimorphic fungus for heterologous protein production are discussed.
Collapse
Affiliation(s)
- Anne Mette Wolff
- Department of Fungal Biotechnology, Biotechnological Institute, Kogle Allé 2, Hørsholm, DK-2970, Denmark
| | | |
Collapse
|
40
|
Deveze-Alvarez M, Garcı A-Soto J, Martı Nez-Cadena G. Glyceraldehyde-3-phosphate dehydrogenase is negatively regulated by ADP-ribosylation in the fungus Phycomyces blakesleeanus. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2579-2584. [PMID: 11535798 DOI: 10.1099/00221287-147-9-2579] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dormant spores of Phycomyces blakesleeanus contain a 37 kDa protein that is endogenously mono-ADP-ribosylated. This protein was purified and identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by N-terminal sequencing and homology analysis. GAPDH enzymic activity changed dramatically upon spore germination, being maximal at stages where ADP-ribosylation was nearly undetectable. The presence of glyceraldehyde 3-phosphate in this reaction affected the [(32)P]ADP-ribosylation of the GAPDH. ADP-ribosylation of the GAPDH occurred by transfer of the ADP-ribose moiety from NAD to an arginine residue. A model for the regulation of GAPDH activity and its role in spore germination in P. blakesleeanus is proposed.
Collapse
Affiliation(s)
- Martha Deveze-Alvarez
- Instituto de Investigación en Biologı́a Experimental, Facultad de Quı́mica, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto, 36000, Mexico1
| | - Jesús Garcı A-Soto
- Instituto de Investigación en Biologı́a Experimental, Facultad de Quı́mica, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto, 36000, Mexico1
| | - Guadalupe Martı Nez-Cadena
- Instituto de Investigación en Biologı́a Experimental, Facultad de Quı́mica, Universidad de Guanajuato, Apdo. postal 187, Guanajuato, Gto, 36000, Mexico1
| |
Collapse
|
41
|
Abstract
The types, economic significance and methods of production of the principal cultivated mushrooms are described in outline. These organisms are all less than ideal for conventional genetic analysis and breeding, so molecular methods afford a particular opportunity to advance our understanding of their biology and potentially give the prospect of improvement by gene manipulation. The sequences described are limited to those found in GenBank by August 1999. The gene sequences isolated from the white button mushroom Agaricus bisporus, the shiitake Lentinula edodes, the oyster mushrooms Pleurotus spp., the paddy straw mushroom Volvariella volvacea and the enotake Flammulina velutipes are described. The largest group are genes from A. bisporus, which includes 29 for intracellular proteins and 12 for secreted proteins. In comparison, only a total of 26 sequences can be reported for the other cultivated species. A. bisporus is also the only cultivated species for which molecular karyotyping is already supported by reliable markers for all 13 of its chromosomes.
Collapse
Affiliation(s)
- J R Whiteford
- Division of Life Sciences, King's College London, UK
| | | |
Collapse
|
42
|
Ma B, Mayfield MB, Gold MH. The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol 2001; 67:948-55. [PMID: 11157267 PMCID: PMC92671 DOI: 10.1128/aem.67.2.948-955.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Accepted: 11/03/2000] [Indexed: 11/20/2022] Open
Abstract
The enhanced green fluorescent protein (GFP) gene (egfp) was used as a reporter of gene expression driven by the glyceraldehyde-p-dehydrogenase (gpd) gene promoter and the manganese peroxidase isozyme 1 (mnp1) gene promoter in Phanerochaete chrysosporium. Four different constructs were prepared. pUGGM3' and pUGiGM3' contain the P. chrysosporium gpd promoter fused upstream of the egfp coding region, and pUMGM3' and pUMiGM3' contain the P. chrysosporium mnp1 promoter fused upstream of the egfp gene. In all constructs, the egfp gene was followed by the mnp1 gene 3' untranslated region. In pUGGM3' and pUMGM3', the promoters were fused directly with egfp, whereas in pUGiGM3' and pUMiGM3', following the promoters, the first exon (6 bp), the first intron (55 bp), and part of the second exon (9 bp) of the gpd gene were inserted at the 5' end of the egfp gene. All constructs were ligated into a plasmid containing the ura1 gene of Schizophyllum commune as a selectable marker and were used to transform a Ural1 auxotrophic strain of P. chrysosporium to prototrophy. Crude cell extracts were examined for GFP fluorescence, and where appropriate, the extracellular fluid was examined for MnP activity. The transformants containing a construct with an intron 5' of the egfp gene (pUGiGM3' and pUMiGM3') exhibited maximal fluorescence under the appropriate conditions. The transformants containing constructs with no introns exhibited minimal or no fluorescence. Northern (RNA) blots indicated that the insertion of a 5' intron resulted in more egfp RNA than was found in transformants carrying an intronless egfp. These results suggest that the presence of a 5' intron affects the expression of the egfp gene in P. chrysosporium. The expression of GFP in the transformants carrying pUMiGM3' paralled the expression of endogenous mnp with respect to nitrogen and Mn levels, suggesting that this construct will be useful in studying cis-acting elements in the mnp1 gene promoter.
Collapse
Affiliation(s)
- B Ma
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|
43
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Balestrini R, Mainieri D, Soragni E, Garnero L, Rollino S, Viotti A, Ottonello S, Bonfante P. Differential expression of chitin synthase III and IV mRNAs in ascomata of Tuber borchii Vittad. Fungal Genet Biol 2000; 31:219-32. [PMID: 11273683 DOI: 10.1006/fgbi.2000.1242] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A full-length genomic clone encoding a class III chitin synthase (CHS) and one DNA fragment corresponding to a class IV CHS were isolated from the mycorrhizal fungus Tuber borchii and used for an extensive expression analysis, together with a previously identified DNA fragment corresponding to a class II CHS. All three Chs mRNAs are constitutively expressed in vegetative mycelia, regardless of the age, mode of growth, and proliferation capacity of the hyphae. A strikingly different situation was observed in ascomata, where class III and IV, but not class II, mRNAs are differentially expressed in a maturation stage-dependent manner and accumulate, respectively, in sporogenic and vegetative hyphae. These data, the first on the expression of distinct Chs mRNAs during fruitbody development, point to the different cellular roles that can be played by distinct chitin synthases in the differentiation of spores of sexual origin (CHS III) or in ascoma enlargement promoted by the growth of vegetative hyphae (CHS IV).
Collapse
Affiliation(s)
- R Balestrini
- Centro di Studio sulla Micologia del Terreno, CNR, University of Torino, V.le Mattioli 25, 10125 Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 2000; 66:4510-3. [PMID: 11010906 PMCID: PMC92332 DOI: 10.1128/aem.66.10.4510-4513.2000] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species.
Collapse
Affiliation(s)
- X Chen
- Department of Plant Pathology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
46
|
KOTŁOWSKI ROMAN, MYJAK PRZEMYSŁAW, KUR JÓZEF. SPECIFIC DETECTION OF AMANITA PHALLOIDES MYCELIUM AND SPORES BY PCR AMPLIFICATION OF THE GPD (GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE) GENE FRAGMENT. J Food Biochem 2000. [DOI: 10.1111/j.1745-4514.2000.tb00696.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Tarkka MT, Vasara R, Gorfer M, Raudaskoski M. Molecular characterization of actin genes from homobasidiomycetes: two different actin genes from Schizophyllum commune and Suillus bovinus. Gene 2000; 251:27-35. [PMID: 10863093 DOI: 10.1016/s0378-1119(00)00195-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The actin-encoding genes Scact1 and Scact2 of the homobasidiomycete Schizophyllum commune are the first actin genes isolated from higher filamentous fungi. Their isolation shows that homobasidiomycetes have two actin encoding genes instead of one typical to yeasts and filamentous ascomycetes. This result was further confirmed by cloning two actin encoding genes, Sbact1 and Sbact2, from another homobasidiomycete Suillus bovinus. The comparison of the genomic and cDNA sequences of the actin genes showed that Scact1 and Scact2 genes of S. commune contain seven introns, five of which are at the same position in the two genes while S. bovinus actin genes contain nine similarly positioned introns. In the four genes, five intron positions are shared, which indicates a close relationship between the actin encoding genes from S. commune and S. bovinus. Northern hybridization and analysis of two-dimensional immunoblots showed a difference in the expression levels between the two actin genes in each fungus. No actin protein could be detected from S. commune Scact2. The deduced amino acid sequence of the Scact2 gene also differs considerably from any other known actin protein. These data suggest that the Scact2 gene either has a special as yet unidentified function in S. commune life cycle or is a transcribed but no longer translated pseudogene. Scact2 gene has a putative microORF (short open reading frame) and Scact1 gene an intron in the 5'-untranslated region, which could reduce the translational efficiency and increase the transcriptional efficiency of the Scact2 and Scact1 genes, respectively. During mating in S. commune or at formation of ectomycorrhiza in S. bovinus, the expression of actin genes was similar to that in vegetative hyphae. This result suggests that the reorganization of actin cytoskeleton in response to extra- and intracellular signals in higher filamentous fungi could be directly regulated by members of signalling pathways well characterized in yeast and mammalian cells.
Collapse
MESH Headings
- Actins/genetics
- Amino Acid Sequence
- Base Sequence
- Basidiomycota/genetics
- Blotting, Northern
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Gene Expression Regulation, Fungal
- Genes, Fungal/genetics
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic
- Protein Isoforms/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- Schizophyllum/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- M T Tarkka
- Department of Biosciences, Division of Plant Physiology, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
48
|
Ospina-Giraldo MD, Collopy PD, Romaine CP, Royse DJ. Classification of sequences expressed during the primordial and basidiome stages of the cultivated mushroom Agaricus bisporus. Fungal Genet Biol 2000; 29:81-94. [PMID: 10919377 DOI: 10.1006/fgbi.2000.1189] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two complementary DNA (cDNA) libraries were constructed from tissues isolated from primordia and basidiomes of Agaricus bisporus to characterize genes involved in mushroom development. Using single-pass sequencing of 869 cDNA clones, we found 477 expressed sequence tags (ESTs), including 466 not previously described in the databases for A. bisporus. A BLASTX search revealed that 374 ESTs had similarities with protein sequences available from databases; 193 of these ESTs were categorized according to their putative function. Most ESTs were assigned to one of four roles: metabolism (23%), cell structure (15%), cell growth and division (12%), and protein destination and storage (10%). The remaining ESTs with putative homologues were classified in 10 additional categories. Many ESTs could not be functionally assigned. Based on redundancy levels, at least 4 ESTs were preferentially expressed in each tissue type. Sequence analysis also suggested the presence of paralog tyrosinase genes in the A. bisporus genome.
Collapse
Affiliation(s)
- M D Ospina-Giraldo
- Department of Plant Pathology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
49
|
Saito T, Tanaka N. Cloning and sequence analysis of the glyceraldehyde-3- phosphate dehydrogenase gene from the ectomycorrhizal basidiomycete Lyophyllum shimeji. MYCOSCIENCE 1999. [DOI: 10.1007/bf02461029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Abstract
Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales).
Collapse
Affiliation(s)
- J Guarro
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | | | | |
Collapse
|