1
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
2
|
Liu X, Lin S, Liu T, Zhou Y, Wang W, Yao J, Guo Y, Tang K, Chen R, Benedik MJ, Wang X. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021; 49:3427-3440. [PMID: 33693785 PMCID: PMC8034616 DOI: 10.1093/nar/gkab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Brandi A, Giangrossi M, Fabbretti A, Falconi M. The hns Gene of Escherichia coli Is Transcriptionally Down-Regulated by (p)ppGpp. Microorganisms 2020; 8:microorganisms8101558. [PMID: 33050410 PMCID: PMC7601328 DOI: 10.3390/microorganisms8101558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
Second messenger nucleotides, such as guanosine penta- or tetra-phosphate, commonly referred to as (p)ppGpp, are powerful signaling molecules, used by all bacteria to fine-tune cellular metabolism in response to nutrient availability. Indeed, under nutritional starvation, accumulation of (p)ppGpp reduces cell growth, inhibits stable RNAs synthesis, and selectively up- or down- regulates the expression of a large number of genes. Here, we show that the E. coli hns promoter responds to intracellular level of (p)ppGpp. hns encodes the DNA binding protein H-NS, one of the major components of bacterial nucleoid. Currently, H-NS is viewed as a global regulator of transcription in an environment-dependent mode. Combining results from relA (ppGpp synthetase) and spoT (ppGpp synthetase/hydrolase) null mutants with those from an inducible plasmid encoded RelA system, we have found that hns expression is inversely correlated with the intracellular concentration of (p)ppGpp, particularly in exponential phase of growth. Furthermore, we have reproduced in an in vitro system the observed in vivo (p)ppGpp-mediated transcriptional repression of hns promoter. Electrophoretic mobility shift assays clearly demonstrated that this unusual nucleotide negatively affects the stability of RNA polymerase-hns promoter complex. Hence, these findings demonstrate that the hns promoter is subjected to an RNA polymerase-mediated down-regulation by increased intracellular levels of (p)ppGpp.
Collapse
|
4
|
Zamora M, Ziegler CA, Freddolino L, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
5
|
Meenakshi S, Karthik M, Munavar MH. A putative curved DNA region upstream of rcsA in Escherichia coli plays a key role in transcriptional regulation by H-NS. FEBS Open Bio 2018; 8:1209-1218. [PMID: 30087827 PMCID: PMC6070653 DOI: 10.1002/2211-5463.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022] Open
Abstract
It is well established that in Escherichia coli, the histone‐like nucleoid structuring (H‐NS) protein also functions as negative regulator of rcsA transcription. However, the exact mode of regulation of rcsA transcription by H‐NS has not been studied extensively. Here, we report the multicopy effect of dominant‐negative hns alleles on the transcription of rcsA based on expression of cps‐lac transcriptional fusion in ∆lon, ∆lon rpoB12, ∆lon rpoB77 and lon+ strains. Our results indicate that H‐NS defective in recognizing curved DNA fails to repress rcsA transcription significantly, while nonoligomeric H‐NS molecules still retain the repressor activity to an appreciable extent. Together with bioinformatics analysis, our study envisages a critical role for the putative curved DNA region present upstream of rcsA promoter in the transcriptional regulation of rcsA by H‐NS.
Collapse
Affiliation(s)
- Shanmugaraja Meenakshi
- Department of Molecular Biology School of Biological Sciences Centre for Advanced Studies in Functional and Organismal Genomics Madurai Kamaraj University [University with Potential for Excellence] Madurai India
| | - Maruthan Karthik
- Department of Molecular Biology School of Biological Sciences Centre for Advanced Studies in Functional and Organismal Genomics Madurai Kamaraj University [University with Potential for Excellence] Madurai India
| | - M Hussain Munavar
- Department of Molecular Biology School of Biological Sciences Centre for Advanced Studies in Functional and Organismal Genomics Madurai Kamaraj University [University with Potential for Excellence] Madurai India
| |
Collapse
|
6
|
Despotović D, Brandis A, Savidor A, Levin Y, Fumagalli L, Tawfik DS. Diadenosine tetraphosphate (Ap4A) - an E. coli alarmone or a damage metabolite? FEBS J 2017; 284:2194-2215. [PMID: 28516732 DOI: 10.1111/febs.14113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022]
Abstract
Under stress, metabolism is changing: specific up- or down-regulation of proteins and metabolites occurs as well as side effects. Distinguishing specific stress-signaling metabolites (alarmones) from side products (damage metabolites) is not trivial. One example is diadenosine tetraphosphate (Ap4A) - a side product of aminoacyl-tRNA synthetases found in all domains of life. The earliest observations suggested that Ap4A serves as an alarmone for heat stress in Escherichia coli. However, despite 50 years of research, the signaling mechanisms associated with Ap4A remain unknown. We defined a set of criteria for distinguishing alarmones from damage metabolites to systematically classify Ap4A. In a nutshell, no indications for a signaling cascade that is triggered by Ap4A were found; rather, we found that Ap4A is efficiently removed in a constitutive, nonregulated manner. Several fold perturbations in Ap4A concentrations have no effect, yet accumulation at very high levels is toxic due to disturbance of zinc homeostasis, and also because Ap4A's structural overlap with ATP can result in spurious binding and inactivation of ATP-binding proteins. Overall, Ap4A met all criteria for a damage metabolite. While we do not exclude any role in signaling, our results indicate that the damage metabolite option should be considered as the null hypothesis when examining Ap4A and other metabolites whose levels change upon stress.
Collapse
Affiliation(s)
- Dragana Despotović
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Laura Fumagalli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Mangalappalli-Illathu AK, Korber DR. Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrob Agents Chemother 2006; 50:3588-96. [PMID: 16940079 PMCID: PMC1635200 DOI: 10.1128/aac.00573-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/02/2006] [Accepted: 08/18/2006] [Indexed: 01/05/2023] Open
Abstract
The development of adaptive resistance of Salmonella enterica serovar Enteritidis ATCC 4931 biofilms following exposure to benzalkonium chloride (BC) either continuously (1 microg ml(-1)) or intermittently (10 microg ml(-1) for 10 min daily) was examined. Biofilms adapted to BC over a 144-h period could survive a normally lethal BC challenge (500 microg ml(-1) for 10 min) and then regrow, as determined by increases in biofilm thickness, total biomass, and the ratio of the viable biomass to the nonviable biomass. Exposure of untreated control biofilms to the lethal BC challenge resulted in biofilm erosion and cell death. Proteins found to be up-regulated following BC adaptation were those involved in energy metabolism (TpiA and Eno), amino acid and protein biosynthesis (WrbA, TrxA, RplL, Tsf, Tuf, DsbA, and RpoZ), nutrient binding (FruB), adaptation (CspA), detoxification (Tpx, SodB, and a probable peroxidase), and degradation of 1,2-propanediol (PduJ and PduA). A putative universal stress protein (YnaF) was also found to be up-regulated. Proteins involved in proteolysis (DegQ), cell envelope formation (RfbH), adaptation (UspA), heat shock response (DnaK), and broad regulatory functions (Hns) were found to be down-regulated following adaptation. An overall increase in cellular protein biosynthesis was deduced from the significant up-regulation of ribosomal subunit proteins, translation elongation factors, and amino acid biosynthesis protein and down-regulation of serine endoprotease. The cold shock response, stress response, and detoxification are suggested to play roles in the adaptive resistance of Salmonella serovar Enteritidis biofilms to BC.
Collapse
Affiliation(s)
- Anil K Mangalappalli-Illathu
- Department of Applied Microbiology and Food Science, 51 Campus Dr., University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | |
Collapse
|
8
|
Falconi M, Higgins NP, Spurio R, Pon CL, Gualerzi CO. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 2006; 10:273-282. [PMID: 28776853 DOI: 10.1111/j.1365-2958.1993.tb01953.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of a promoterless cat gene fused to a DNA fragment of approximately 400 bp, beginning at -313 of Escherichia coli hns, was significantly repressed in E. coli and Salmonella typhimurium strains with wild-type hns but not in mutants carrying hns alleles. CAT expression from fusions containing a shorter (110 bp) segment of hns was essentially unaffected in the same genetic backgrounds. The stage of growth was found to influence the extent of repression which was maximum (approximately 75%) in mid-log cultures and negligible in cells entering the stationary phase. The level of repression in early-log phase was lower than in mid-log phase cultures, probably because of the presence of high levels of Fis protein, which counteracts the H-NS inhibition by stimulating hns transcription. The effects observed in vivo were mirrored by similar results obtained in vitro upon addition of purified H-NS and Fis protein to transcriptional systems programmed with the same hns caf fusions. Electrophoretic gel shift assays, DNase I footprinting and cyclic permutation get analyses revealed that H-NS binds preferentially to the upstream region of its own gene recognizing two rather extended segments of DNA on both sides of a bend centred around -150. When these sites are filled by H-NS, an additional site between approximately -20 and -65, which partly overlaps the promoter, is also occupied. Binding of H-NS to this site is probably the ultimate cause of transcriptional auto-repression.
Collapse
Affiliation(s)
- Maurizio Falconi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - N Patrick Higgins
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Roberto Spurio
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Cynthia L Pon
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| | - Claudio O Gualerzi
- Department of Biology, University of Camerino, 62032 Camerino (MC), Italy.Department of Biochemistry, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Will WR, Frost LS. Characterization of the opposing roles of H-NS and TraJ in transcriptional regulation of the F-plasmid tra operon. J Bacteriol 2006; 188:507-14. [PMID: 16385041 PMCID: PMC1347297 DOI: 10.1128/jb.188.2.507-514.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The transfer (tra) operon of the conjugative F plasmid of Escherichia coli is a polycistronic 33-kb operon which encodes most of the proteins necessary for F-plasmid transfer. Here, we report that transcription from PY, the tra operon promoter, is repressed by the host nucleoid-associated protein, H-NS. Electrophoretic mobility shift assays indicate that H-NS binds preferentially to the tra promoter region, while Northern blot and transcriptional fusion analyses indicate that transcription of traY, the first gene in the tra operon, is derepressed in an hns mutant throughout growth. The plasmid-encoded regulatory protein TraJ is essential for transcription of the tra operon in wild-type Escherichia coli; however, TraJ is not necessary for plasmid transfer or traY operon transcription in an hns mutant. This indicates that H-NS represses transcription from PY directly and not indirectly via its effects on TraJ levels. These results suggest that TraJ functions to disrupt H-NS silencing at PY, allowing transcription of the tra operon.
Collapse
Affiliation(s)
- William R Will
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | |
Collapse
|
10
|
Will WR, Lu J, Frost LS. The role of H-NS in silencing F transfer gene expression during entry into stationary phase. Mol Microbiol 2004; 54:769-82. [PMID: 15491366 DOI: 10.1111/j.1365-2958.2004.04303.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conjugative ability of the F plasmid of Escherichia coli is highly growth phase dependent, with plasmid transfer efficiency dropping rapidly as donor cells progress through the growth cycle towards stationary phase. Transfer is dependent on the expression of the plasmid transfer (tra) genes, which are controlled by three plasmid-encoded regulatory proteins: TraJ, TraY and TraM. Here, we show that the nucleoid-associated host protein, H-NS, acts to repress the expression of traM and traJ as cells enter stationary phase, thereby decreasing mating ability to barely detectable levels. Sequence analysis identified regions of predicted intrinsic curvature, to which H-NS preferentially binds, at the promoters of both traM and traJ. H-NS binding at these regions was then confirmed by electrophoretic mobility shift and DNase I protection footprinting assays. Immunoblot assays displayed a significant increase in TraJ and TraM levels in an hns mutant strain. These findings were further supported by Northern and primer extension analyses which showed that whereas both genes were only expressed in early exponential phase in wild-type cells, hns mutant cells exhibited drastic derepression throughout the growth cycle. Transcriptional fusion studies of the individual promoters demonstrated that H-NS-mediated repression was observed when the promoters of both traM and traJ were present in cis to each other. This suggests that H-NS may bind to an extended region of the F plasmid, acting as a regional silencer of promoters for traJ and traM.
Collapse
Affiliation(s)
- William R Will
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G2E9, Canada
| | | | | |
Collapse
|
11
|
Lee CY, Panicker G, Bej AK. Detection of pathogenic bacteria in shellfish using multiplex PCR followed by CovaLink NH microwell plate sandwich hybridization. J Microbiol Methods 2003; 53:199-209. [PMID: 12654491 DOI: 10.1016/s0167-7012(03)00032-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Outbreak of diseases associated with consumption of raw shellfish especially oysters is a major concern to the seafood industry and public health agencies. A multiplex PCR amplification of targeted gene segments followed by DNA-DNA sandwich hybridization was optimized to detect the etiologic agents. First, a multiplex PCR amplification of hns, spvB, vvh, ctx and tl was developed enabling simultaneous detection of total Salmonella enterica serotype Typhimurium, Vibrio vulnificus, Vibrio cholerae and Vibrio parahaemolyticus from both pure cultures and seeded oysters. Amplicons were then subjected to a colorimetric CovaLink NH microwell plate sandwich hybridization using phosphorylated and biotinlylated oligonucleotide probes, the nucleotide sequences of which were located internal to the amplified DNA. The results from the hybridization with the multiplexed PCR amplified DNA exhibited a high signal/noise ratio ranging between 14.1 and 43.2 measured at 405 nm wavelength. The sensitivity of detection for each pathogen was 10(2) cells/g of oyster tissue homogenate. The results from this study showed that the combination of the multiplex PCR with a colorimetric microwell plate sandwich hybridization assay permits a specific, sensitive, and reproducible system for the detection of the microbial pathogens in shellfish, thereby improving the microbiological safety of shellfish to consumers.
Collapse
Affiliation(s)
- Chi-Ying Lee
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | |
Collapse
|
12
|
Haack KR, Robinson CL, Miller KJ, Fowlkes JW, Mellies JL. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect Immun 2003; 71:384-92. [PMID: 12496188 PMCID: PMC143144 DOI: 10.1128/iai.71.1.384-392.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Revised: 05/07/2002] [Accepted: 09/18/2002] [Indexed: 01/28/2023] Open
Abstract
The genome of enteropathogenic Escherichia coli (EPEC) encodes a global regulator, Ler (locus of enterocyte effacement [LEE]-encoded regulator), which activates expression of several polycistronic operons within the 35.6-kb LEE pathogenicity island, including the LEE2-LEE3 divergent operon pair containing overlapping -10 regions and the LEE5 (tir) operon. Ler is a predicted 15-kDa protein that exhibits amino acid similarity with the nucleoid protein H-NS. In order to study Ler-mediated activation of virulence operons in EPEC, we used a molecular approach to characterize the interactions of purified Ler protein with the upstream regulatory sequences of the LEE5 operon. We determined the cis-acting DNA sequences necessary for Ler binding at LEE5 by mobility shift and DNase I protection assays, demonstrating that Ler acts directly at LEE5 by binding sequences between positions -190 and -73 in relation to the transcriptional start site. Based on the molecular weight of Ler, the similarity to H-NS, and the extended region of protection observed in a DNase I footprint at LEE5, we hypothesized that multiple Ler proteins bind upstream of the LEE5 promoter to increase transcriptional activity from a distance. Using an hns deletion strain, we demonstrated that like the LEE2-LEE3 operon pair, H-NS represses LEE5 transcription. We describe a model in which Ler activates transcription at both divergent overlapping paired and single promoters by displacing H-NS, which results in the disruption of a repressing nucleoprotein complex.
Collapse
Affiliation(s)
- Kenneth R Haack
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | | | | | | | | |
Collapse
|
13
|
Esposito D, Petrovic A, Harris R, Ono S, Eccleston JF, Mbabaali A, Haq I, Higgins CF, Hinton JCD, Driscoll PC, Ladbury JE. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol 2002; 324:841-50. [PMID: 12460581 DOI: 10.1016/s0022-2836(02)01141-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
H-NS plays a role in condensing DNA in the bacterial nucleoid. This 136 amino acid protein comprises two functional domains separated by a flexible linker. High order structures formed by the N-terminal oligomerization domain (residues 1-89) constitute the basis of a protein scaffold that binds DNA via the C-terminal domain. Deletion of residues 57-89 or 64-89 of the oligomerization domain precludes high order structure formation, yielding a discrete dimer. This dimerization event represents the initial event in the formation of high order structure. The dimers thus constitute the basic building block of the protein scaffold. The three-dimensional solution structure of one of these units (residues 1-57) has been determined. Activity of these structural units is demonstrated by a dominant negative effect on high order structure formation on addition to the full length protein. Truncated and site-directed mutant forms of the N-terminal domain of H-NS reveal how the dimeric unit self-associates in a head-to-tail manner and demonstrate the importance of secondary structure in this interaction to form high order structures. A model is presented for the structural basis for DNA packaging in bacterial cells.
Collapse
Affiliation(s)
- Diego Esposito
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Landini P, Zehnder AJB. The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating expression of flagellar genes and lipopolysaccharide production. J Bacteriol 2002; 184:1522-9. [PMID: 11872702 PMCID: PMC134881 DOI: 10.1128/jb.184.6.1522-1529.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial binding of bacterial cells to a solid surface is a critical and essential step in biofilm formation. In this report we show that stationary-phase cultures of Escherichia coli W3100 (a K-12 strain) can efficiently attach to sand columns when they are grown in Luria broth medium at 28 degrees C in fully aerobic conditions. In contrast, growth in oxygen-limited conditions results in a sharp decrease in adhesion to hydrophilic substrates. We show that the production of lipopolysaccharide (LPS) and of flagella, as well as the transcription of the fliC gene, encoding the major flagellar subunit, increases under oxygen-limited conditions. Inactivation of the global regulatory hns gene counteracts increased production of LPS and flagella in response to anoxia and allows E. coli W3100 to attach to sand columns even when it is grown under oxygen-limited conditions. We propose that increased production of the FliC protein and of LPS in response to oxygen limitation results in the loss of the ability of E. coli W3100 to adhere to hydrophilic surfaces. Indeed, overexpression of the fliC gene results in a decreased adhesion to sand even when W3100 is grown in fully aerobic conditions. Our observations strongly suggest that anoxia is a negative environmental signal for adhesion in E. coli.
Collapse
Affiliation(s)
- Paolo Landini
- Department of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute of Environmental Technology (EAWAG), CH-8600 Dübendorf, Switzerland.
| | | |
Collapse
|
15
|
Yoshida M, Kashiwagi K, Kawai G, Ishihama A, Igarashi K. Polyamine enhancement of the synthesis of adenylate cyclase at the translational level and the consequential stimulation of the synthesis of the RNA polymerase sigma 28 subunit. J Biol Chem 2001; 276:16289-95. [PMID: 11278825 DOI: 10.1074/jbc.m011059200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of polyamines on the synthesis of various final sigma subunits of RNA polymerase were studied using Western blot analysis. Synthesis of final sigma(28) was stimulated 4.0-fold and that of final sigma(38) was stimulated 2.3-fold by polyamines, whereas synthesis of other final sigma subunits was not influenced by polyamines. Stimulation of final sigma(28) synthesis was due to an increase in the level of cAMP, which occurred through polyamine stimulation of the synthesis of adenylate cyclase at the level of translation. Polyamines were found to increase the translation of adenylate cyclase mRNA by facilitating the UUG codon-dependent initiation. Analysis of RNA secondary structure suggests that exposure of the Shine-Dalgarno sequence of mRNA is a prerequisite for polyamine stimulation of the UUG codon-dependent initiation.
Collapse
Affiliation(s)
- M Yoshida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
16
|
Shiga Y, Sekine Y, Kano Y, Ohtsubo E. Involvement of H-NS in transpositional recombination mediated by IS1. J Bacteriol 2001; 183:2476-84. [PMID: 11274106 PMCID: PMC95163 DOI: 10.1128/jb.183.8.2476-2484.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IS1, the smallest active transposable element in bacteria, encodes a transposase that promotes inter- and intramolecular transposition. Host-encoded factors, e.g., histone-like proteins HU and integration host factor (IHF), are involved in the transposition reactions of some bacterial transposable elements. Host factors involved in the IS1 transposition reaction, however, are not known. We show that a plasmid with an IS1 derivative that efficiently produces transposase did not generate miniplasmids, the products of intramolecular transposition, in mutants deficient in a nucleoid-associated DNA-binding protein, H-NS, but did generate them in mutants deficient in histone-like proteins HU, IHF, Fis, and StpA. Nor did IS1 transpose intermolecularly to the target plasmid in the H-NS-deficient mutant. The hns mutation did not affect transcription from the indigenous promoter of IS1 for the expression of the transposase gene. These findings show that transpositional recombination mediated by IS1 requires H-NS but does not require the HU, IHF, Fis, or StpA protein in vivo. Gel retardation assays of restriction fragments of IS1-carrying plasmid DNA showed that no sites were bound preferentially by H-NS within the IS1 sequence. The central domain of H-NS, which is involved in dimerization and/or oligomerization of the H-NS protein, was important for the intramolecular transposition of IS1, but the N- and C-terminal domains, which are involved in the repression of certain genes and DNA binding, respectively, were not. The SOS response induced by the IS1 transposase was absent in the H-NS-deficient mutant strain but was present in the wild-type strain. We discuss the possibility that H-NS promotes the formation of an active IS1 DNA-transposase complex in which the IS1 ends are cleaved to initiate transpositional recombination through interaction with IS1 transposase.
Collapse
Affiliation(s)
- Y Shiga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
17
|
Giangrossi M, Gualerzi CO, Pon CL. Mutagenesis of the downstream region of the Escherichia coli hns promoter. Biochimie 2001; 83:251-9. [PMID: 11278076 DOI: 10.1016/s0300-9084(01)01233-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The promoter of hns, the structural gene for the abundant nucleoid-associated protein H-NS of Escherichia coli, contains, downstream of the initiation site, two four bp-long 'CG clamps', one of which overlaps the potential target sequence (CCAAT) of CspA, the cold-shock transcriptional enhancer of this gene. To establish the role of these potential regulatory signals during the cold-shock activation of hns, the CCCCAAT sequence has been subjected to mutagenesis, weakening the strength of the CG clamp and scrambling or inverting the CCAAT sequence. The resulting mutated hns promoters were placed in front of a reporter gene (cat) and their activity was studied in cells subjected to cold-shock under conditions where the increase in the concentration of CspA is either large or small. Our results allow us to conclude that although not essential, the CCCCAAT sequence, mainly due to the presence of the CG clamp, may play an important role in the CspA-mediated regulation of hns expression at both transcriptional and translational levels.
Collapse
Affiliation(s)
- M Giangrossi
- Laboratory of Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino (MC), Italy
| | | | | |
Collapse
|
18
|
Sherburne CK, Lawley TD, Gilmour MW, Blattner FR, Burland V, Grotbeck E, Rose DJ, Taylor DE. The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res 2000; 28:2177-86. [PMID: 10773089 PMCID: PMC105367 DOI: 10.1093/nar/28.10.2177] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Revised: 03/20/2000] [Accepted: 03/20/2000] [Indexed: 11/14/2022] Open
Abstract
Salmonella typhi, the causative agent of typhoid fever, annually infects 16 million people and kills 600 000 world wide. Plasmid-encoded multiple drug resistance in S. typhi is always encoded by plasmids of incompatibility group H (IncH). The complete DNA sequence of the large temperature-sensitive conjugative plasmid R27, the prototype for the IncHI1 family of plasmids, has been compiled and analyzed. This 180 kb plasmid contains 210 open reading frames (ORFs), of which 14 have been previously identified and 56 exhibit similarity to other plasmid and prokaryotic ORFs. A number of insertion elements were found, including the full Tn 10 transposon, which carries tetracycline resistance genes. Two transfer regions, Tra1 and Tra2, are present, which are separated by a minimum of 64 kb. Homologs of the DNA-binding proteins TlpA and H-NS that act as temperature-regulated repressors in other systems have been located in R27. Sequence analysis of transfer and replication regions supports a mosaic-like structure for R27. The genes responsible for conjugation and plasmid maintenance have been identified and mechanisms responsible for thermosensitive transfer are discussed.
Collapse
Affiliation(s)
- C K Sherburne
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tendeng C, Badaut C, Krin E, Gounon P, Ngo S, Danchin A, Rimsky S, Bertin P. Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J Bacteriol 2000; 182:2026-32. [PMID: 10715012 PMCID: PMC101921 DOI: 10.1128/jb.182.7.2026-2032.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the last decade, the hns gene and its product, the H-NS protein, have been extensively studied in Escherichia coli. H-NS-like proteins seem to be widespread in gram-negative bacteria. However, unlike in E. coli and in Salmonella enterica serovar Typhimurium, little is known about their role in the physiology of those organisms. In this report, we describe the isolation of vicH, an hns-like gene in Vibrio cholerae, the etiological agent of cholera. This gene was isolated from a V. cholerae genomic library by complementation of different phenotypes associated with an hns mutation in E. coli. It encodes a 135-amino-acid protein showing approximately 50% identity with both H-NS and StpA in E. coli. Despite a low amino acid conservation in the N-terminal part, VicH is able to cross-react with anti-H-NS antibodies and to form oligomers in vitro. The vicH gene is expressed as a single gene from two promoters in tandem and is induced by cold shock. A V. cholerae wild-type strain expressing a vicHDelta92 gene lacking its 3' end shows pleiotropic alterations with regard to mucoidy and salicin metabolism. Moreover, this strain is unable to swarm on semisolid medium. Similarly, overexpression of the vicH wild-type gene results in an alteration of swarming behavior. This suggests that VicH could be involved in the virulence process in V. cholerae, in particular by affecting flagellum biosynthesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Base Sequence
- Benzyl Alcohols/metabolism
- Cloning, Molecular
- Cold Temperature
- Cross Reactions
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Genes, Regulator
- Genetic Complementation Test
- Glucosides
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Polysaccharides, Bacterial/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Sequence Alignment
- Vibrio cholerae/cytology
- Vibrio cholerae/genetics
- Vibrio cholerae/pathogenicity
- Vibrio cholerae/physiology
Collapse
Affiliation(s)
- C Tendeng
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, F-75724 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ceschini S, Lupidi G, Coletta M, Pon CL, Fioretti E, Angeletti M. Multimeric self-assembly equilibria involving the histone-like protein H-NS. A thermodynamic study. J Biol Chem 2000; 275:729-34. [PMID: 10625601 DOI: 10.1074/jbc.275.2.729] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermodynamic parameters affecting protein-protein multimeric self-assembly equilibria of the histone-like protein H-NS were quantified by "large zone" gel-permeation chromatography. The abundance of the different association states (monomer, dimer, and tetramer) were found to be strictly dependent on the monomeric concentration and affected by physical (temperature) and chemical (cations) parameters. On the basis of the results obtained in this study and the available structural information concerning this protein, a mechanism is proposed to explain the association behavior also in relation to the functional properties of the protein.
Collapse
Affiliation(s)
- S Ceschini
- Department of Molecular, Cellular and Animal Biology, Post-Graduate School in Clinical Biochemistry, University of Camerino, 62032 Camerino (MC) Italy
| | | | | | | | | | | |
Collapse
|
21
|
Shindo H, Ohnuki A, Ginba H, Katoh E, Ueguchi C, Mizuno T, Yamazaki T. Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 1999; 455:63-9. [PMID: 10428473 DOI: 10.1016/s0014-5793(99)00862-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The DNA binding domain of H-NS protein was studied with various N-terminal deletion mutant proteins and identified by gel retardation assay and heteronuclear 2D- and 3D-NMR spectroscopies. It was shown from gel retardation assay that DNA binding affinity of the mutant proteins relative to that of native H-NS falls in the range from 1/6 to 1/25 for H-NS(60-137), H-NS(70-137) and H-NS(80-137), whereas it was much weaker for H-NS(91-137). Thus, the DNA binding domain was defined to be the region from residue A80 to the C-terminus. Sequential nuclear Overhauser effect (NOE) connectivities and those of medium ranges revealed that the region of residues Q60-R93 in mutant protein H-NS(60-137) forms a long stretch of disordered, flexible chain, and also showed that the structure of the C-terminal region (residues A95-Q137) in mutant H-NS(60-137) was nearly identical to that of H-NS(91-137). 1H and 15N chemical shift perturbations induced by complex formation of H-NS(60-137) with an oligonucleotide duplex 14-mer demonstrated that two loop regions, i.e. residues A80-K96 and T110-A117, play an essential role in DNA binding.
Collapse
Affiliation(s)
- H Shindo
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
De Biase D, Tramonti A, Bossa F, Visca P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999; 32:1198-211. [PMID: 10383761 DOI: 10.1046/j.1365-2958.1999.01430.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Inducible bacterial amino acid decarboxylases are expressed at the end of active cell division to counteract acidification of the extracellular environment during fermentative growth. It has been proposed that acid resistance in some enteric bacteria strictly relies on a glutamic acid-dependent system. The Escherichia coli chromosome contains distinct genes encoding two biochemically identical isoforms of glutamic acid decarboxylase, GadA and GadB. The gadC gene, located downstream of gadB, has been proposed to encode a putative antiporter implicated in the export of gamma-aminobutyrate, the glutamic acid decarboxylation product. In the present work, we provide in vivo evidence that gadC is co-transcribed with gadB and that the functional glutamic acid-dependent system requires the activities of both GadA/B and GadC. We also found that expression of gad genes is positively regulated by acidic shock, salt stress and stationary growth phase. Mutations in hns, the gene for the histone-like protein H-NS, cause derepressed expression of the gad genes, whereas the rpoS mutation abrogates gad transcription even in the hns background. According to our results, the master regulators H-NS and RpoS are hierarchically involved in the transcriptional control of gad expression: H-NS prevents gad expression during the exponential growth whereas the alternative sigma factor RpoS relieves H-NS repression during the stationary phase, directly or indirectly accounting for transcription of gad genes.
Collapse
Affiliation(s)
- D De Biase
- Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli' and Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Università di Roma 'La Sapienza', Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | |
Collapse
|
23
|
Afflerbach H, Schröder O, Wagner R. Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli RrnB P1 promoter activity. J Mol Biol 1999; 286:339-53. [PMID: 9973555 DOI: 10.1006/jmbi.1998.2494] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The two proteins FIS and H-NS had previously been shown to regulate ribosomal RNA (rRNA) transcription by interacting with the promoter upstream DNA. FIS is known as an activator whereas H-NS had been demonstrated to function as a repressor. Details of the antagonistic control mechanisms are not yet solved. Here, we have addressed the question how the two proteins cooperate to exert both, positive and negative control of rRNA transcription. By mobility shift experiments and footprinting studies we show that FIS and H-NS binding sites partially overlap but appear to interact with different sites of a curved DNA helix. Although not mutually exclusive, the two proteins compete each other for binding. Both proteins, by changing the DNA curvature, effect circularization reactions of DNA fragments in different ways. Our results imply that binding of the proteins induces alternate DNA conformations with favourable or unfavourable topology for the formation of active transcription complexes. Together the findings presented here help to answer some of the open questions about the concerted molecular mechanism of transcription factors for the regulation of stable RNA synthesis.
Collapse
MESH Headings
- Bacterial Proteins
- Binding, Competitive
- Carrier Proteins/physiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Factor For Inversion Stimulation Protein
- Gene Expression Regulation, Bacterial
- Integration Host Factors
- Models, Molecular
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Binding
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- H Afflerbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität D usseldorf, Universitätsstr. 1, Düsseldorf, D-40225, Germany
| | | | | |
Collapse
|
24
|
Bertin P, Benhabiles N, Krin E, Laurent-Winter C, Tendeng C, Turlin E, Thomas A, Danchin A, Brasseur R. The structural and functional organization of H-NS-like proteins is evolutionarily conserved in gram-negative bacteria. Mol Microbiol 1999; 31:319-29. [PMID: 9987132 DOI: 10.1046/j.1365-2958.1999.01176.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structural gene of the H-NS protein, a global regulator of bacterial metabolism, has been identified in the group of enterobacteria as well as in closely related bacteria, such as Erwinia chrysanthemi and Haemophilus influenzae. Isolated outside these groups, the BpH3 protein of Bordetella pertussis exhibits a low amino acid conservation with H-NS, particularly in the N-terminal domain. To obtain information on the structure, function and/or evolution of H-NS, we searched for other H-NS-related proteins in the latest databases. We found that HvrA, a trans-activator protein in Rhodobacter capsulatus, has a low but significant similarity with H-NS and H-NS-like proteins. This Gram-negative bacterium is phylogenetically distant from Escherichia coli. Using theoretical analysis (e.g. secondary structure prediction and DNA binding domain modelling) of the amino acid sequence of H-NS, StpA (an H-NS-like protein in E. coli), BpH3 and HvrA and by in vivo and in vitro experiments (e.g. complementation of various H-NS-related phenotypes and competitive gel shift assay), we present evidence that these proteins belong to the same class of DNA binding proteins. In silico analysis suggests that this family also includes SPB in R. sphaeroides, XrvA in Xanthomonas oryzae and VicH in Vibrio cholerae. These results demonstrate that proteins structurally and functionally related to H-NS are widespread in Gram-negative bacteria.
Collapse
Affiliation(s)
- P Bertin
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 1998; 17:7033-43. [PMID: 9843508 PMCID: PMC1171051 DOI: 10.1093/emboj/17.23.7033] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expression of plasmid-borne virF of Shigella encoding a transcriptional regulator of the AraC family, is required to initiate a cascade of events resulting in activation of several operons encoding invasion functions. H-NS, one of the main nucleoid-associated proteins, controls the temperature-dependent expression of the virulence genes by repressing the in vivo transcription of virF only below a critical temperature (approximately 32 degrees C). This temperature-dependent transcriptional regulation has been reproduced in vitro and the targets of H-NS on the virF promoter were identified as two sites centred around -250 and -1 separated by an intrinsic DNA curvature. H-NS bound cooperatively to these two sites below 32 degrees C, but not at 37 degrees C. DNA supercoiling within the virF promoter region did not influence H-NS binding but was necessary for the H-NS-mediated transcriptional repression. Electrophoretic analysis between 4 and 60 degrees C showed that the virF promoter fragment, comprising the two H-NS sites, undergoes a specific and temperature-dependent conformational transition at approximately 32 degrees C. Our results suggest that this modification of the DNA target may modulate a cooperative interaction between H-NS molecules bound at two distant sites in the virF promoter region and thus represents the physical basis for the H-NS-dependent thermoregulation of virulence gene expression.
Collapse
Affiliation(s)
- M Falconi
- Laboratorio di Genetica, Dipartimento di Biologia MCA, Università di Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
26
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
27
|
Abstract
The Escherichia coli resident mobile element IS30 has pronounced target specificity. Upon transposition, the element frequently inserts exactly into the same position of a preferred target sequence. Insertion sites in phages, plasmids and in the genome of E. coli are characterized by an exceptionally long palindromic consensus sequence that provides strong specificity for IS30 insertions, despite a relatively high level of degeneracy. This 24-bp-long region alone determines the attractiveness of the target DNA and the exact position of IS30 insertion. The divergence of a target site from the consensus and the occurrence of 'non-permitted' bases in certain positions influence the target activity. Differences in attractiveness are emphasized if two targets are present in the same replicon, as was demonstrated by quantitative analysis. In a system of competitive targets, the oligonucleotide sequence representing the consensus of genomic IS30 insertion sites proved to be the most efficient target. Having compared the known insertion sites, we suppose that IS30-like target specificity, which may represent an alternative strategy in target selection among mobile elements, is characteristic of the insertion sequences IS3, IS6 and IS21, too.
Collapse
Affiliation(s)
- F Olasz
- Biozentrum der Universität Basel, Abteilung Mikrobiologie, Basle, Switzerland.
| | | | | | | | | | | |
Collapse
|
28
|
Cusick ME, Belfort M. Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA. Mol Microbiol 1998; 28:847-57. [PMID: 9643551 DOI: 10.1046/j.1365-2958.1998.00848.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli regulatory protein StpA bears striking similarity to the chromatin-associated protein H-NS. These two proteins have many structural, functional and mechanistic parallels. Although H-NS is more abundant in the cell, both proteins act as transcriptional regulators, both bind to curved DNA and both restrain DNA supercoils. However, StpA is better able to promote RNA annealing and trans-splicing in vitro. In this study, phylogenetic analyses and experiments to examine the protease sensitivity of StpA and H-NS suggest a similar structure for the two proteins. Both proteins consist of two structured domains separated by an exposed protease-sensitive linker. The N-terminal (StpA-NterL) and C-terminal (StpA-CterL) domains of StpA, as well as the full-length StpA and H-NS proteins, were cloned, overproduced in E. coli and purified to homogeneity. StpA-CterL, but not StpA-NterL, promotes strand annealing of complementary RNA oligonucleotides and in vitro trans-splicing of a model group I intron. Both StpA and StpA-CterL exhibited stronger RNA-modulating activity than H-NS. Phylogenetic analyses showed that the N-terminal and C-terminal domains can exist autonomously. The phylogenetic and experimental data are compatible with a two-domain model for StpA and H-NS, with independently functioning modules joined by a non-conserved linker, and with the observed RNA-related activities residing entirely within the C-terminal domain.
Collapse
Affiliation(s)
- M E Cusick
- Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, 12201-2002, USA
| | | |
Collapse
|
29
|
Prosseda G, Fradiani PA, Di Lorenzo M, Falconi M, Micheli G, Casalino M, Nicoletti M, Colonna B. A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. Res Microbiol 1998; 149:15-25. [PMID: 9766205 DOI: 10.1016/s0923-2508(97)83619-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have investigated the role of H-NS, one of the major components of the bacterial nucleoid, in the expression of the virF gene present on the large virulence plasmid of Shigella and enteroinvasive Escherichia coli in response to different environmental conditions. VirF is an AraC-like protein which activates at least two promoters, virB and virG, both repressed by H-NS. Band shift experiments reveal that the affinity of H-NS for the virF and virB promoters is comparable, while the affinity for the virG promoter is higher. Polyacrylamide gel electrophoresis of three DNA fragments containing the virF, the virB and the VirG promoters demonstrates, in agreement with computer predictions, that they have an intrinsically curved structure, confirming the preference of H-NS for bent DNA. In vivo transcriptional analysis of virF mRNA shows that H-NS negatively controls the expression of virF at 30 degrees C. The expression of a virF-lacZ translational fusion in E.coli wild type and in an hns-defective derivative grown at 30 degrees or 37 degrees C and at pH 6.0 or 7.0 indicates that, in the absence of H-NS, virF expression becomes insensitive to temperature and to limited pH changes. Our results strongly suggest that H-NS controls virF expression by binding to the virF promoter and by repressing its expression at low temperature and at low pH.
Collapse
Affiliation(s)
- G Prosseda
- Dip.Biologia Cellulare e dello Sviluppo, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu S, Collins CM. Temperature regulation of the streptococcal pyrogenic exotoxin A-encoding gene (speA). Infect Immun 1996; 64:5399-402. [PMID: 8945594 PMCID: PMC174536 DOI: 10.1128/iai.64.12.5399-5402.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The gene encoding the bacterial superantigen streptococcal pyrogenic exotoxin A is often found in streptococcal strains associated with the recently described streptococcal toxic shock syndrome. Here we demonstrate that this gene is expressed at approximate fourfold higher levels in cells grown at 37 degrees C when compared to cells grown at 26 degrees C. This suggests there is increased production of this toxin when Streptococcus pyogenes is found in infections of the soft tissues and bloodstream, as opposed to S. pyogenes that have not breached the epithelial layers and are living on the surface of the skin.
Collapse
Affiliation(s)
- S Xu
- Department of Microbiology and Immunology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
31
|
Schnetz K, Wang JC. Silencing of the Escherichia coli bgl promoter: effects of template supercoiling and cell extracts on promoter activity in vitro. Nucleic Acids Res 1996; 24:2422-8. [PMID: 8710516 PMCID: PMC145935 DOI: 10.1093/nar/24.12.2422] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regulation of the Escherichia coli bgl promoter involves the catabolite gene activator protein (CAP) and silencer elements that are located upstream and downstream of the promoter and its CAP binding site. The promoter is kept in a repressed state by the silencer elements and other normally active CAP-dependent or -independent promoters are repressed as well when flanked by these elements. To assess the mechanism of promoter repression, single round in vitro transcription was carried out with plasmids bearing either the wild-type bgl promoter or one of two derivatives that escape repression in vivo by different mechanisms: C234 by improving the CAP binding site of the promoter and delta1 by a deletion within the upstream silencer sequence. Repression of the bgl promoter in vitro was shown to depend on template topology and the presence of cellular factors. With negatively supercoiled templates, all three promoters are transcribed to similar extents by purified E. coli RNA polymerase and no CAP dependence is apparent; with relaxed templates, transcription is CAP dependent, but the levels of transcription of the three promoters are comparable. Addition of crude cell extract to the simple transcription system leads to repression of all three promoter alleles in the absence of CAP. Repression of the mutant alleles but not of the wild-type promoter is completely relieved in the presence of the CAP-cAMP complex. The topology of the DNA template is also important in the differential regulation of these promoters. In the case of C234, repression by cell extract is completely relieved by CAP-cAMP on relaxed or negatively supercoiled templates, while complete derepression of delta1 by CAP-cAMP occurs on negatively supercoiled templates only. Repression by cell extract requires the presence of the histone-like protein H-NS. However, H-NS alone does not appear to be sufficient for specific silencing of the wild-type promoter, since repression of all three promoter alleles caused by purified H-NS protein is completely relieved by the CAP-cAMP complex. These data suggest that template topology, H-NS and other cellular factors are involved in the formation of a specific nucleoprotein structure in the bgl promoter-silencer region; the formation of this nucleoprotein structure keeps an otherwise active promoter in an inactive state.
Collapse
Affiliation(s)
- K Schnetz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
32
|
Ueguchi C, Mizuno T. Purification of H-NS protein and its regulatory effect on transcription in vitro. Methods Enzymol 1996; 274:271-6. [PMID: 8902811 DOI: 10.1016/s0076-6879(96)74023-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C Ueguchi
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | |
Collapse
|
33
|
Abstract
Expression of the pyelonephritis-associated pilus (pap) operon in Escherichia coli is regulated by a complex epigenetic phase-variation mechanism involving the formation of differential DNA-methylation patterns. This review discusses how DNA-methylation patterns are formed by protein-DNA interactions and how methylation patterns, in turn, control pap gene expression.
Collapse
Affiliation(s)
- M van der Woude
- Dept of Pathology, Health Sciences Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
34
|
Tippner D, Wagner R. Fluorescence analysis of the Escherichia coli transcription regulator H-NS reveals two distinguishable complexes dependent on binding to specific or nonspecific DNA sites. J Biol Chem 1995; 270:22243-7. [PMID: 7673203 DOI: 10.1074/jbc.270.38.22243] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report a structural investigation of the transcription factor H-NS and its DNA interaction. H-NS has a general effect on transcription by compacting DNA; but for a number of specific genes, it is known to act directly as repressor or activator. The homodimeric protein binds to the major groove of DNA in a sequence-nonspecific manner, recognizing a curved conformation of the target DNA. H-NS consists of 136 amino acids with a single tryptophanyl residue at position 108. To overcome the apparent lack of any other structural details, we took advantage of the intrinsic fluorescence of Trp-108. Static and dynamic quenching constants obtained with the neutral quencher molecule acrylamide are consistent with a hydrophilic environment and high degree of solvent exposure for Trp-108. In addition, quenching studies in the presence of the anionic quencher iodide indicate a positively charged microenvironment for the same amino acid residue. Specific and nonspecific H-NS.DNA complexes were studied by gel retardation and fluorescence analysis. While specific H-NS.DNA complex formation is accompanied by a clear enhancement of the tryptophanyl fluorescence intensity, interaction in the presence of the nonspecific competitor DNA poly(dI-dC) decreases the fluorescence quantum yield.
Collapse
Affiliation(s)
- D Tippner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
35
|
Dorman CJ. 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 6):1271-1280. [PMID: 7670631 DOI: 10.1099/13500872-141-6-1271] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College,Dublin 2,Republic of Ireland
| |
Collapse
|
36
|
Shindo H, Iwaki T, Ieda R, Kurumizaka H, Ueguchi C, Mizuno T, Morikawa S, Nakamura H, Kuboniwa H. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett 1995; 360:125-31. [PMID: 7875316 DOI: 10.1016/0014-5793(95)00079-o] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The three-dimensional structure of the C-terminal domain (47 residues) obtained from the hydrolysis of H-NS protein with bovine trypsin was determined by NMR measurements and distance geometry calculations. It is composed of an antiparallel beta-sheet, an alpha-helix and a 3(10)-helix which form a hydrophobic core, stabilizing the whole structure. This domain has been found to bind to DNA. Possible DNA binding sites are discussed on the basis of the solution structure of the C-terminal domain of H-NS.
Collapse
Affiliation(s)
- H Shindo
- Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shi X, Bennett GN. Plasmids bearing hfq and the hns-like gene stpA complement hns mutants in modulating arginine decarboxylase gene expression in Escherichia coli. J Bacteriol 1994; 176:6769-75. [PMID: 7961433 PMCID: PMC197037 DOI: 10.1128/jb.176.21.6769-6775.1994] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Biodegradative arginine decarboxylase is inducible by acid and is derepressed in an hns mutant. Several plasmids from an Escherichia coli library that could complement the hns phenotype were characterized and placed into groups. One group includes plasmids that contain the hns gene and are considered true complements. Another group was found to carry the hfq gene, which encodes the host factor HF-1 for bacteriophage Q beta replication. Plasmids of the third group contain inserts that mapped at 60.2 min on the E. coli chromosome. We identified an open reading frame (stpA) with a deduced amino acid sequence showing more than 60% identity with the sequences of H-NS proteins from several species as being responsible for the hns complementing phenotype of the third group.
Collapse
Affiliation(s)
- X Shi
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | | |
Collapse
|
38
|
Green J, Guest JR. Regulation of transcription at the ndh promoter of Escherichia coli by FNR and novel factors. Mol Microbiol 1994; 12:433-44. [PMID: 8065261 DOI: 10.1111/j.1365-2958.1994.tb01032.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
FNR is a transcriptional regulator that controls gene expression in response to oxygen limitation in Escherichia coli. The NADH dehydrogenase II gene (ndh) is repressed by FNR under anaerobic conditions. Repression is not simply due to occlusion of the promoter (-35 and -10) region by FNR because adjacent pairs of FNR monomers were found to bind at two sites centred at -50.5 and -94.5 in the ndh promoter region without preventing RNA polymerase binding. However, contact between RNA polymerase and the -132 to -62 region of the non-coding strand of ndh DNA, and RNA polymerase-mediated open complex formation, were prevented by bound FNR. The upstream FNR-binding site (-94.5) was needed for efficient FNR-dependent repression of ndh transcription in vitro, and also for repression of an ndh-lacZ fusion in vivo. Anaerobic ndh repression may thus involve the binding of two pairs of FNR monomers upstream of the -35 region, which prevents essential RNA polymerase-DNA contacts in the upstream region as well as inhibiting RNA polymerase function by direct FNR interaction. Expression of the ndh-lacZ fusion in an fnr deletion strain was enhanced by anaerobic growth in rich medium or minimal medium supplemented with amino acids. Furthermore, two proteins (M(r) 12,000 and 35,000) which interact with and may activate transcription from the ndh promoter under these conditions were detected by gel retardation analysis. These putative amino acid-responsive activators may thus offset FNR-mediated repression and maintain a low level of anaerobic ndh expression for regulating the NAD+/NADH ratio during growth in rich media.
Collapse
Affiliation(s)
- J Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | |
Collapse
|
39
|
Tippner D, Afflerbach H, Bradaczek C, Wagner R. Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis. Mol Microbiol 1994; 11:589-604. [PMID: 7512187 DOI: 10.1111/j.1365-2958.1994.tb00339.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a small Escherichia coli protein which stably interacts with ribosomal RNA P1 promoter DNA. We present evidence showing that the protein is identical to the histone-like E. coli protein, H-NS (H1). Binding of H-NS to the P1 promoter region is dependent on the DNA curvature. Mapping the H-NS-DNA contact sites by nuclease protection and high-resolution footprinting techniques reveal three H-NS-binding domains, and contacts of the protein in the major groove of the bent DNA. The binding region extends from position -18 to -89, relative to the P1 transcription start site, and shows an overlap with the known binding sites for Fis, another E. coli protein, which acts as transcriptional activator of P1. The binding of H-NS does not displace Fis; instead, heterologous complexes are formed. Apparently, H-NS and Fis bind to separated curved DNA segments, with the planes of the curves pointing into different directions. In vitro transcriptional analyses demonstrate that H-NS represses rRNA P1 promoter-directed transcription. Repression is most pronounced in the presence of Fis. Thus, H-NS seems specifically to antagonize Fis-dependent activation. No comparable inactivation is observed for the second rRNA promoter P2.
Collapse
Affiliation(s)
- D Tippner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- R Wagner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| |
Collapse
|
41
|
Brandi A, Pon CL, Gualerzi CO. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie 1994; 76:1090-8. [PMID: 7748932 DOI: 10.1016/0300-9084(94)90035-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli protein CS7.4 (CspA), homologous to the class of eukaryotic Y-box DNA-binding proteins, is a cold shock transcriptional activator of at least two genes, hns and gyrA. It was demonstrated that all or nearly all the elements necessary for the stimulation of hns transcription by CS7.4 protein are located in the proximal 110 bp DNA fragment of this gene with no additional elements being present in a longer fragment (660 bp) extending further upstream from the hns promoter. Protein CS7.4 bound strongly to the 110 bp segment of the hns promoter in crude extracts of cold shocked cells, but the purified protein displayed a weak interaction with the same DNA fragment. Purified CS7.4 protein also caused increased or decreased accessibility to DNase I at different sites of the 110 bp fragment of hns but the majority of these effects was seen only in the presence of RNA polymerase. Since gel shift experiments showed that protein CS7.4 stimulated the binding of RNA polymerase to the promoter of hns and since it is known that there are similarities between CS7.4 and ssDNA-binding proteins, we suggest that formation of the open complex by the RNA polymerase or protein-protein contacts between CS7.4 and the RNA polymerase are prerequisites for and/or the effects of the interaction of CS7.4 with its DNA target. The presence of a conserved CCAAT element in the hns promoter region, on the other hand, was found not to be stringently required for cold shock activation since expression of E coli of an hns-cat fusion containing the Proteus vulgaris hns promoter lacking a CCAAT box increased over four-fold after cold shock.
Collapse
Affiliation(s)
- A Brandi
- Department of Biology MCA, University of Camerino, Italy
| | | | | |
Collapse
|
42
|
Ussery DW, Hinton JC, Jordi BJ, Granum PE, Seirafi A, Stephen RJ, Tupper AE, Berridge G, Sidebotham JM, Higgins CF. The chromatin-associated protein H-NS. Biochimie 1994; 76:968-80. [PMID: 7748941 DOI: 10.1016/0300-9084(94)90022-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
H-NS is a major component of chromatin in enteric bacteria. H-NS plays a structural role in organising the chromosome, and influences DNA rearrangements as well as the expression of many genes. The biochemical and functional characteristics of H-NS are distinct from those of 'typical' DNA-binding proteins and much remains to be learned about the mechanism(s) by which H-NS acts. In this article we review our current understanding of the role of H-NS, and describe possible models by which H-NS might influence DNA structure and gene expression.
Collapse
Affiliation(s)
- D W Ussery
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bösl MR. Genetic map of the tyrT region of Escherichia coli from 27.1 to 27.7 minutes based exclusively on sequence data. J Bacteriol 1993; 175:7751-3. [PMID: 8244954 PMCID: PMC206944 DOI: 10.1128/jb.175.23.7751-7753.1993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- M R Bösl
- Institut für Biochemie, Universität Erlangen-Nürnberg, Germany
| |
Collapse
|
44
|
Yoshida T, Ueguchi C, Yamada H, Mizuno T. Function of the Escherichia coli nucleoid protein, H-NS: molecular analysis of a subset of proteins whose expression is enhanced in a hns deletion mutant. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:113-22. [PMID: 8455549 DOI: 10.1007/bf00282791] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of numerous Escherichia coli cellular proteins was previously demonstrated to be greatly enhanced in a hns deletion background, relative to the levels in wild-type cells. In this study, a subset of such proteins, expression of which is affected by H-NS, was partially purified, and the genes coding for some of the proteins were identified and characterized. Two of the proteins thus characterized, 19K and 17K, were found to be encoded by previously predicted genes that are located adjacent to, and downstream of, the trpABCDE operon (27.6 min on the E. coli genetic map). The genes coding for the other two proteins, 10K-L and 10K-S, are located at 77.5 min on the genetic map. Their nucleotide sequences were determined and revealed that they may constitute an operon. To characterize the putative promoters for these genes, a set of promoter-lacZ transcriptional fusion genes was constructed on the E. coli chromosome. The results of such promoter-probe analyses indicated that H-NS represses the expression of these genes at the transcriptional level. Furthermore, H-NS appeared to exhibit relatively strong affinity for the putative promoter sequences in vitro. These results are compatible with the hypothesis that H-NS functions as a transcriptional repressor.
Collapse
Affiliation(s)
- T Yoshida
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
45
|
Olsén A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 1993; 7:523-36. [PMID: 8459772 DOI: 10.1111/j.1365-2958.1993.tb01143.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Curli encoded by the curlin subunit gene, csgA, are fibronectin- and laminin-binding fibres expressed by many natural Escherichia coli and E. coli K-12 strains in response to low temperature, low osmolarity and stationary-phase growth conditions. Curli expression is dependent on RpoS, a sigma factor that controls many stationary phase-inducible genes. Many commonly used K-12 strains carry an amber mutation in rpoS. Strains able to form curli carry an amber suppressor whereas curli-negative E. coli K-12 strains, in general, are sup0. Introduction of SupD, SupE, or supF suppressors into sup0 strains resulted in expression of temperature-regulated curli. In curli-deficient, RpoS- E. coli K-12 strains, csgA is transcriptionally activated by mutations in hns, which encodes the histone-like protein H-NS. Curli expression, fibronectin binding, and csgA transcription remain temperature- and osmoregulated in such double mutants. Our data suggest that RpoS+ strains, and hence curli-proficient strains of E. coli K-12, are relieved for the transcriptional repression mediated by the H-NS protein upon accumulating RpoS as cells reach stationary phase.
Collapse
Affiliation(s)
- A Olsén
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093
| | | | | | | | | |
Collapse
|
46
|
Shi X, Waasdorp BC, Bennett GN. Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli. J Bacteriol 1993; 175:1182-6. [PMID: 8381784 PMCID: PMC193036 DOI: 10.1128/jb.175.4.1182-1186.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Biodegradative arginine decarboxylase and lysine decarboxylase, encoded by adi and cadA, respectively, are induced to maximal levels when Escherichia coli is grown anaerobically in rich medium at acidic pH. Mutants formed by transposon mutagenesis, namely, GNB725, GNB729, GNB88, GNB824, and GNB837, exhibited considerably elevated expression at pH 8.0 compared with the corresponding parental strain. Southern hybridization and chromosome mapping showed that the above mutants contained a transposon within the hns gene. Several plasmids from an E. coli library able to complement these mutants by restoring normal pH induction were independently isolated and were found to contain the hns gene. These results suggest a role for the DNA-binding protein H-NS in affecting the activation of these acid-induced genes.
Collapse
Affiliation(s)
- X Shi
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| | | | | |
Collapse
|
47
|
Ueguchi C, Kakeda M, Mizuno T. Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein: H-NS functions as a repressor of its own transcription. MOLECULAR & GENERAL GENETICS : MGG 1993; 236:171-8. [PMID: 8437561 DOI: 10.1007/bf00277109] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Escherichia coli nucleoid protein, H-NS (or H1a), appears to influence the regulation of a variety of unrelated E. coli genes and operons. To gain an insight into the regulation of the hns gene itself, we constructed in this study a hns-lacZ transcriptional fusion gene and inserted a single copy at the att lambda locus on the E. coli chromosome. Expression of hns transcription appeared to be moderately regulated in a growth phase-dependent manner. It also emerged that hns transcription is under negative autoregulation, at least in the logarithmic growth phase. The results of in vitro transcription experiments confirmed that H-NS functions as a repressor for its own transcription. Thus, H-NS was shown to exhibit relatively high affinity for the DNA sequence encompassing the hns promoter region, as compared with a non-specific sequence. These results support the view that the nucleoid protein, H-NS, can function as a transcriptional regulator.
Collapse
Affiliation(s)
- C Ueguchi
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
48
|
Zhang A, Belfort M. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. Nucleic Acids Res 1992; 20:6735. [PMID: 1480493 PMCID: PMC334595 DOI: 10.1093/nar/20.24.6735] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- A Zhang
- Wadsworth Center for Laboratories and Research, New York State Department of Health and School of Public Health, State University of New York, Albany 1201-0509
| | | |
Collapse
|
49
|
Qoronfleh MW, Debouck C, Keller J. Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bacteriol 1992; 174:7902-9. [PMID: 1334067 PMCID: PMC207524 DOI: 10.1128/jb.174.24.7902-7909.1992] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Escherichia coli promoters that are more active at low temperature (15 to 20 degrees C) than at 37 degrees C were identified by using the transposon Tn5-lac to generate promoter fusions expressing beta-galactosidase (beta-Gal). Tn5-lac insertions that resulted in low-temperature-regulated beta-Gal expression were isolated by selecting kanamycin-resistant mutants capable of growth on lactose minimal medium at 15 degrees C but which grew poorly at 37 degrees C on this medium. Seven independent mutants were selected for further studies. In one such strain, designated WQ11, a temperature shift from 37 degrees C to either 20 or 15 degrees C resulted in a 15- to 24-fold induction of beta-Gal expression. Extended growth at 20 or 15 degrees C resulted in 36- to 42-fold-higher beta-Gal expression over that of cells grown at 37 degrees C. Treatment of WQ11 with streptomycin, reported to induce a response similar to heat shock, failed to induce beta-Gal expression. In contrast, treatment with either chloramphenicol or tetracycline, which mimics a cold shock response, resulted in a fourfold induction of beta-Gal expression in strain WQ11. Hfr genetic mapping studies complemented by physical mapping indicated that in at least three mutants (WQ3, WQ6, and WQ11), Tn5-lac insertions mapped at unique sites where no known cold shock genes have been reported. The Tn5-lac insertions of these mutants mapped to 81, 12, and 34 min on the E. coli chromosome, respectively. The cold-inducible promoters from two of the mutants (WQ3 and WQ11) were cloned and sequenced, and their temperature regulation was examined. Comparison of the nucleotide sequences of these two promoters with the regulatory elements of other known cold shock genes identified the sequence CCAAT as a putative conserved motif.
Collapse
Affiliation(s)
- M W Qoronfleh
- Department of Biological Process Sciences, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406
| | | | | |
Collapse
|
50
|
Hromockyj AE, Tucker SC, Maurelli AT. Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA (tRNA1(Tyr)). Mol Microbiol 1992; 6:2113-24. [PMID: 1406252 DOI: 10.1111/j.1365-2958.1992.tb01385.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
virR is the central regulatory locus required for coordinate temperature-regulated virulence gene expression in the human enteric pathogens of Shigella species. Detailed characterization of VirR+ clones revealed that virR consisted of a 411 bp open reading frame (ORF) that mapped to a chromosomally located 1.8kb EcoRI-AccI DNA fragment from Shigella flexneri. Insertional inactivation of the virR ORF at a unique HpaI restriction site resulted in a loss of VirR+ activity. The virR ORF nucleotide sequence was virtually identical to the Escherichia coli hns gene, which encodes the histone-like protein, H-NS. Based on the predicted amino acid sequence of E. coli H-NS, only a single conservative base-pair change was identified in the virR gene. An additional clone, designated VirRP, which only partially complemented the virR mutation, was also characterized and determined by Southern hybridization and nucleotide sequence analysis to be unique from virR. Subclone mapping of this clone indicated that the VirRP phenotype was a result of the multiple copy expression of the S. flexneri gene for tRNA(Tyr). These data constitute the first direct genetic evidence that virR is an analogue of the E. coli hns gene, and suggest a model for temperature regulation of Shigella species virulence via the bacterial translational machinery.
Collapse
Affiliation(s)
- A E Hromockyj
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | |
Collapse
|