1
|
Salazar-Cerezo S, de Vries RP, Garrigues S. Strategies for the Development of Industrial Fungal Producing Strains. J Fungi (Basel) 2023; 9:834. [PMID: 37623605 PMCID: PMC10455633 DOI: 10.3390/jof9080834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The use of microorganisms in industry has enabled the (over)production of various compounds (e.g., primary and secondary metabolites, proteins and enzymes) that are relevant for the production of antibiotics, food, beverages, cosmetics, chemicals and biofuels, among others. Industrial strains are commonly obtained by conventional (non-GMO) strain improvement strategies and random screening and selection. However, recombinant DNA technology has made it possible to improve microbial strains by adding, deleting or modifying specific genes. Techniques such as genetic engineering and genome editing are contributing to the development of industrial production strains. Nevertheless, there is still significant room for further strain improvement. In this review, we will focus on classical and recent methods, tools and technologies used for the development of fungal production strains with the potential to be applied at an industrial scale. Additionally, the use of functional genomics, transcriptomics, proteomics and metabolomics together with the implementation of genetic manipulation techniques and expression tools will be discussed.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands (R.P.d.V.)
| | - Sandra Garrigues
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, VLC, Spain
| |
Collapse
|
2
|
Hassing B, Candy A, Eaton CJ, Fernandes TR, Mesarich CH, Di Pietro A, Scott B. Localisation of phosphoinositides in the grass endophyte Epichloë festucae and genetic and functional analysis of key components of their biosynthetic pathway in E. festucae symbiosis and Fusarium oxysporum pathogenesis. Fungal Genet Biol 2022; 159:103669. [PMID: 35114379 DOI: 10.1016/j.fgb.2022.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
Abstract
Phosphoinositides (PI) are essential components of eukaryotic membranes and function in a large number of signaling processes. While lipid second messengers are well studied in mammals and yeast, their role in filamentous fungi is poorly understood. We used fluorescent PI-binding molecular probes to localize the phosphorylated phosphatidylinositol species PI[3]P, PI[3,5]P2, PI[4]P and PI[4,5]P2 in hyphae of the endophyte Epichloë festucae in axenic culture and during interaction with its grass host Lolium perenne. We also analysed the roles of the phosphatidylinositol-4-phosphate 5-kinase MssD and the predicted phosphatidylinositol-3,4,5-triphosphate 3-phosphatase TepA, a homolog of the mammalian tumour suppressor protein PTEN. Deletion of tepA in E. festucae and in the root-infecting tomato pathogen Fusarium oxysporum had no impact on growth in culture or the host interaction phenotype. However, this mutation did enable the detection of PI[3,4,5]P3 in septa and mycelium of E. festucae and showed that TepA is required for chemotropism in F. oxysporum. The identification of PI[3,4,5]P3 in ΔtepA strains suggests that filamentous fungi are able to generate PI[3,4,5]P3 and that fungal PTEN homologs are functional lipid phosphatases. The F. oxysporum chemotropism defect suggests a conserved role of PTEN homologs in chemotaxis across protists, fungi and mammals.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Alyesha Candy
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand
| | - Tania R Fernandes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carl H Mesarich
- Bio-Protection Research Centre, New Zealand; School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Bio-Protection Research Centre, New Zealand.
| |
Collapse
|
3
|
Noorifar N, Savoian MS, Ram A, Lukito Y, Hassing B, Weikert TW, Moerschbacher BM, Scott B. Chitin Deacetylases Are Required for Epichloë festucae Endophytic Cell Wall Remodeling During Establishment of a Mutualistic Symbiotic Interaction with Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1181-1192. [PMID: 34058838 DOI: 10.1094/mpmi-12-20-0347-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network and also grows as an epiphyte. However, little is known about the cell wall-remodeling mechanisms required to avoid host defense and maintain intercalary growth within the host. Here, we use a suite of molecular probes to show that the E. festucae cell wall is remodeled by conversion of chitin to chitosan during infection of L. perenne seedlings, as the hyphae switch from free-living to endophytic growth. When hyphae transition from endophytic to epiphytic growth, the cell wall is remodeled from predominantly chitosan to chitin. This conversion from chitin to chitosan is catalyzed by chitin deacetylase. The genome of E. festucae encodes three putative chitin deacetylases, two of which (cdaA and cdaB) are expressed in planta. Deletion of either of these genes results in disruption of fungal intercalary growth in the intercellular spaces of plants infected with these mutants. These results establish that these two genes are required for maintenance of the mutualistic symbiotic interaction between E. festucae and L. perenne.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Tobias W Weikert
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, Westfälische Wilhelms-Universität, Münster, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- Bioprotection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
Lukito Y, Lee K, Noorifar N, Green KA, Winter DJ, Ram A, Hale TK, Chujo T, Cox MP, Johnson LJ, Scott B. Regulation of host-infection ability in the grass-symbiotic fungus Epichloë festucae by histone H3K9 and H3K36 methyltransferases. Environ Microbiol 2020; 23:2116-2131. [PMID: 33350014 DOI: 10.1111/1462-2920.15370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have identified key genes that control the symbiotic interaction between Epichloë festucae and Lolium perenne. Here we report on the identification of specific E. festucae genes that control host infection. Deletion of setB, which encodes a homologue of the H3K36 histone methyltransferase Set2/KMT3, reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homologue of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect L. perenne. Alleles that complement the culture and plant phenotypes of both mutants also complement the histone methylation defects. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.
Collapse
Affiliation(s)
- Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Kate Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tetsuya Chujo
- Research and Development Center, Mayekawa Mfg. Co., Ltd, Tokyo, Japan
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Tanaka A, Kamiya S, Ozaki Y, Kameoka S, Kayano Y, Saikia S, Akano F, Uemura A, Takagi H, Terauchi R, Maruyama J, Hammadeh HH, Fleissner A, Scott B, Takemoto D. A nuclear protein NsiA from
Epichloë festucae
interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion. Mol Microbiol 2020; 114:626-640. [DOI: 10.1111/mmi.14568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Shota Kamiya
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yoshino Ozaki
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Shinichi Kameoka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka Kayano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Sanjay Saikia
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Fumitake Akano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center Kitakami Japan
| | | | | | | | - Hamzeh Haj Hammadeh
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - André Fleissner
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - Barry Scott
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
6
|
Green KA, Berry D, Feussner K, Eaton CJ, Ram A, Mesarich CH, Solomon P, Feussner I, Scott B. Lolium perenne apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus Epichloë festucae. THE NEW PHYTOLOGIST 2020; 227:559-571. [PMID: 32155669 PMCID: PMC7317419 DOI: 10.1111/nph.16528] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
Epichloë festucae is an endophytic fungus that forms a symbiotic association with Lolium perenne. Here we analysed how the metabolome of the ryegrass apoplast changed upon infection of this host with sexual and asexual isolates of E. festucae. A metabolite fingerprinting approach was used to analyse the metabolite composition of apoplastic wash fluid from uninfected and infected L. perenne. Metabolites enriched or depleted in one or both of these treatments were identified using a set of interactive tools. A genetic approach in combination with tandem MS was used to identify a novel product of a secondary metabolite gene cluster. Metabolites likely to be present in the apoplast were identified using MarVis in combination with the BioCyc and KEGG databases, and an in-house Epichloë metabolite database. We were able to identify the known endophyte-specific metabolites, peramine and epichloëcyclins, as well as a large number of unknown markers. To determine whether these methods can be applied to the identification of novel Epichloë-derived metabolites, we deleted a gene encoding a NRPS (lgsA) that is highly expressed in planta. Comparative MS analysis of apoplastic wash fluid from wild-type- vs mutant-infected plants identified a novel Leu/Ile glycoside metabolite present in the former.
Collapse
Affiliation(s)
- Kimberly A. Green
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Daniel Berry
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Kirstin Feussner
- Department of Plant BiochemistryAlbrecht von Haller Institute for Plant SciencesUniversity of GoettingenD‐37077GoettingenGermany
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
| | - Carla J. Eaton
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Arvina Ram
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Carl H. Mesarich
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
- School of Agriculture and EnvironmentMassey UniversityPalmerston North4442New Zealand
| | - Peter Solomon
- Research School of BiologyAustralian National UniversityCanberraACT0200Australia
| | - Ivo Feussner
- Department of Plant BiochemistryAlbrecht von Haller Institute for Plant SciencesUniversity of GoettingenD‐37077GoettingenGermany
- Service Unit for Metabolomics and LipidomicsGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
- Department of Plant BiochemistryGoettingen Center for Molecular Biosciences (GZMB)University of GoettingenD‐37077GoettingenGermany
| | - Barry Scott
- School of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
7
|
Purev E, Kondo T, Takemoto D, Niones JT, Ojika M. Identification of ε-Poly-L-lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal ε-PL Synthetase Gene. Molecules 2020; 25:molecules25051032. [PMID: 32106587 PMCID: PMC7179176 DOI: 10.3390/molecules25051032] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/18/2022] Open
Abstract
The endophytic fungus Epichloë festucae is known to produce bioactive metabolites, which consequently protect the host plants from biotic and abiotic stresses. We previously found that the overexpression of vibA (a gene for transcription factor) in E. festucae strain E437 resulted in the secretion of an unknown fungicide. In the present study, the active substance was purified and chemically identified as ε-poly-L-lysine (ε-PL), which consisted of 28–34 lysine units. The productivity was 3.7-fold compared with that of the wild type strain E437. The isolated ε-PL showed inhibitory activity against the spore germination of the plant pathogens Drechslera erythrospila, Botrytis cinerea, and Phytophthora infestans at 1–10 μg/mL. We also isolated the fungal gene “epls” encoding ε-PL synthetase Epls. Overexpression of epls in the wild type strain E437 resulted in the enhanced production of ε-PL by 6.7-fold. Interestingly, overexpression of epls in the different strain E. festucae Fl1 resulted in the production of shorter ε-PL with 8–20 lysine, which exhibited a comparable antifungal activity to the longer one. The results demonstrate the first example of ε-PL synthetase gene from the eukaryotic genomes and suggest the potential of enhanced expression of vibA or/and epls genes in the Epichloë endophyte for constructing pest-tolerant plants.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Tatsuhiko Kondo
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
| | - Daigo Takemoto
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
| | - Jennifer T. Niones
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (D.T.); (J.T.N.)
- Philippine Rice Research Institute, Science City of Munoz, Nueva Ecija 3119, Philippines
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan; (E.P.); (T.K.)
- Correspondence: ; Tel.: +81-52-789-4116; Fax: +81-52-789-4118
| |
Collapse
|
8
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
9
|
Green KA, Eaton CJ, Savoian MS, Scott B. A homologue of the fungal tetraspanin Pls1 is required for Epichloë festucae expressorium formation and establishment of a mutualistic interaction with Lolium perenne. MOLECULAR PLANT PATHOLOGY 2019; 20:961-975. [PMID: 31008572 PMCID: PMC6589725 DOI: 10.1111/mpp.12805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Epichloë festucae is an endophytic fungus that forms a mutualistic symbiotic association with the grass host Lolium perenne. Endophytic hyphae exit the host by an appressorium-like structure known as an expressorium. In plant-pathogenic fungi, the tetraspanin Pls1 and the NADPH oxidase component Nox2 are required for appressorium development. Previously we showed that the homologue of Nox2, NoxB, is required for E. festucae expressorium development and establishment of a mutualistic symbiotic interaction with the grass host. Here we used a reverse genetics approach to functionally characterize the role of the E. festucae homologue of Pls1, PlsA. The morphology and growth of ΔplsA in axenic culture was comparable to wild-type. The tiller length of plants infected with ΔplsA was significantly reduced. Hyphae of ΔplsA had a proliferative pattern of growth within the leaves of L. perenne with increased colonization of the intercellular spaces and the vascular bundles. The ΔplsA mutant was also defective in expressorium development although the phenotype was not as severe as for ΔnoxB, highlighting potentially distinct roles for PlsA and NoxB in signalling through the NoxB complex. Hyphae of ΔplsA proliferate below the cuticle surface but still occasionally form an expressorium-like structure that enables the mutant hyphae to exit the leaf to grow on the surface. These expressoria still form a septin ring-like structure at the point of cuticle exit as found in the wild-type strain. These results establish that E. festucae PlsA has an important, but distinct, role to NoxB in expressorium development and plant symbiosis.
Collapse
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Carla J. Eaton
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Matthew S. Savoian
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
10
|
Lukito Y, Chujo T, Hale TK, Mace W, Johnson LJ, Scott B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol Microbiol 2019; 112:837-853. [DOI: 10.1111/mmi.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Lukito
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Tetsuya Chujo
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tracy K. Hale
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Wade Mace
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
11
|
Complex epigenetic regulation of alkaloid biosynthesis and host interaction by heterochromatin protein I in a fungal endophyte-plant symbiosis. Fungal Genet Biol 2019; 125:71-83. [DOI: 10.1016/j.fgb.2019.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/10/2023]
|
12
|
Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, Scott B. Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 2019; 14:e0209463. [PMID: 30759164 PMCID: PMC6374014 DOI: 10.1371/journal.pone.0209463] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
Epichloë festucae is an endophyte of the agriculturally important perennial ryegrass. This species systemically colonises the aerial tissues of this host where its growth is tightly regulated thereby maintaining a mutualistic symbiotic interaction. Recent studies have suggested that small secreted proteins, termed effectors, play a vital role in the suppression of host defence responses. To date only a few effectors with important roles in mutualistic interactions have been described. Here we make use of the fully assembled E. festucae genome and EffectorP to generate a suite of 141 effector candidates. These were analysed with respect to their genome location and expression profiles in planta and in several symbiosis-defective mutants. We found an association between effector candidates and a class of transposable elements known as MITEs, but no correlation with other dynamic features of the E. festucae genome, such as transposable element-rich regions. Three effector candidates and a small GPI-anchored protein were chosen for functional analysis based on their high expression in planta compared to in culture and their differential regulation in symbiosis defective E. festucae mutants. All three candidate effector proteins were shown to possess a functional signal peptide and two could be detected in the extracellular medium by western blotting. Localization of the effector candidates in planta suggests that they are not translocated into the plant cell, but rather, are localized in the apoplastic space or are attached to the cell wall. Deletion and overexpression of the effector candidates, as well as the putative GPI-anchored protein, did not affect the plant growth phenotype or restrict growth of E. festucae mutants in planta. These results indicate that these proteins are either not required for the interaction at the observed life stages or that there is redundancy between effectors expressed by E. festucae.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Küehn-Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Carl H. Mesarich
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Carla J. Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Mitic M, Berry D, Brasell E, Green K, Young CA, Saikia S, Rakonjac J, Scott B. Disruption of calcineurin catalytic subunit (cnaA) in Epichloë festucae induces symbiotic defects and intrahyphal hyphae formation. MOLECULAR PLANT PATHOLOGY 2018; 19:1414-1426. [PMID: 28990722 PMCID: PMC6638138 DOI: 10.1111/mpp.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 05/30/2023]
Abstract
Calcineurin is a conserved calcium/calmodulin-dependent protein phosphatase, consisting of a catalytic subunit A and a regulatory subunit B, which is involved in calcium-dependent signalling and regulation of various important cellular processes. In this study, we functionally characterized the catalytic subunit A (CnaA) of the endophytic fungus Epichloë festucae which forms a symbiotic association with the grass host Lolium perenne. We deleted the CnaA-encoding gene cnaA in E. festucae and examined its role in hyphal growth, cell wall integrity and symbiosis. This ΔcnaA strain had a severe growth defect with loss of radial growth and hyper-branched hyphae. Transmission electron microscopy and confocal microscopy analysis of the mutant revealed cell wall defects, aberrant septation and the formation of intrahyphal hyphae, both in culture and in planta. The mutant strain also showed a reduced infection rate in planta. The fluorescence of mutant hyphae stained with WGA-AF488 was reduced, indicating reduced chitin accessibility. Together, these results show that E. festucae CnaA is required for fungal growth, maintaining cell wall integrity and host colonization.
Collapse
Affiliation(s)
- Milena Mitic
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| | - Daniel Berry
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Emma Brasell
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Kimberly Green
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| | | | - Sanjay Saikia
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Jasna Rakonjac
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey UniversityPalmerston North4442New Zealand
- BioProtection Research Centre, Massey UniversityPalmerston North4442New Zealand
| |
Collapse
|
14
|
Development of an Expression Vector to Overexpress or Downregulate Genes in Curvularia protuberata. J Fungi (Basel) 2018; 4:jof4020054. [PMID: 29734743 PMCID: PMC6023383 DOI: 10.3390/jof4020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Curvularia protuberata, an endophytic fungus in the Ascomycota, provides plants with thermotolerance only when it carries a mycovirus known as Curvularia thermotolerance virus (CThTV), and forms a three-way symbiotic relationship among these organisms. Under heat stress, several genes are expressed differently between virus-free C. protuberata (VF) and C. protuberata carrying CThTV (AN). We developed an expression vector, pM2Z-fun, carrying a zeocin resistance gene driven by the ToxA promoter, to study gene functions in C. protuberata to better understand this three-way symbiosis. Using this new 3.7-kb vector, five genes that are differentially expressed in C. protuberata—including genes involved in the trehalose, melanin, and catalase biosynthesis pathways—were successfully overexpressed or downregulated in VF or AN C. protuberata strains, respectively. The VF overexpression lines showed higher metabolite and enzyme activity than in the control VF strain. Furthermore, downregulation of expression of the same genes in the AN strain resulted in lower metabolite and enzyme activity than in the control AN strain. The newly generated expression vector, pM2Z-fun, has been successfully used to express target genes in C. protuberata and will be useful in further functional expression studies in other Ascomycota fungi.
Collapse
|
15
|
Kayano Y, Tanaka A, Takemoto D. Two closely related Rho GTPases, Cdc42 and RacA, of the en-dophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLoS Pathog 2018; 14:e1006840. [PMID: 29370294 PMCID: PMC5785021 DOI: 10.1371/journal.ppat.1006840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Epichloë festucae is an endophytic fungus which systemically colonizes temperate grasses to establish symbiotic associations. Maintaining symptomless infection is a key requirement for endophytes, a feature that distinguishes them from pathogenic fungi. While pathogenic fungi extend their hyphae by tip growth, hyphae of E. festucae systemically colonize the intercellular space of expanding host leaves via a unique mechanism of hyphal intercalary growth. This study reports that two homologous Rho GTPases, Cdc42 and RacA, have distinctive roles in the regulation of E. festucae growth in planta. Here we highlight the vital role of Cdc42 for intercalary hyphal growth, as well as involvement of RacA in regulation of hyphal network formation, and demonstrate the consequences of mutations in these genes on plant tissue infection. Functions of Cdc42 and RacA are mediated via interactions with BemA and NoxR respectively, which are expected components of the ROS producing NOX complex. Symbiotic defects found in the racA mutant were rescued by introduction of a Cdc42 with key amino acids substitutions crucial for RacA function, highlighting the significance of the specific interactions of these GTPases with BemA and NoxR for their functional differentiation in symbiotic infection.
Collapse
Affiliation(s)
- Yuka Kayano
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
16
|
Efficient targeted mutagenesis in Epichloë festucae using a split marker system. J Microbiol Methods 2017; 134:62-65. [DOI: 10.1016/j.mimet.2016.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
|
17
|
Green KA, Becker Y, Tanaka A, Takemoto D, Fitzsimons HL, Seiler S, Lalucque H, Silar P, Scott B. SymB and SymC, two membrane associated proteins, are required forEpichloë festucaehyphal cell-cell fusion and maintenance of a mutualistic interaction withLolium perenne. Mol Microbiol 2016; 103:657-677. [DOI: 10.1111/mmi.13580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| | - Yvonne Becker
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Leibniz Institute of Vegetable and Ornamental Crops; Großbeeren 14979 Germany
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Helen L. Fitzsimons
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
| | - Stephan Seiler
- Freiburg Institute for Advanced Studies, Albert-Ludwigs Universität Freiburg; Freiburg Germany
| | - Hervé Lalucque
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| |
Collapse
|
18
|
Green KA, Becker Y, Fitzsimons HL, Scott B. An Epichloë festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. MOLECULAR PLANT PATHOLOGY 2016; 17:1480-1492. [PMID: 27277141 PMCID: PMC5132070 DOI: 10.1111/mpp.12443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 05/13/2023]
Abstract
In both Sordaria macrospora and Neurospora crassa, components of the conserved STRIPAK (striatin-interacting phosphatase and kinase) complex regulate cell-cell fusion, hyphal network development and fruiting body formation. Interestingly, a number of Epichloë festucae genes that are required for hyphal cell-cell fusion, such as noxA, noxR, proA, mpkA and mkkA, are also required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. To determine whether MobC, a homologue of the STRIPAK complex component MOB3 in S. macrospora and N. crassa, is required for E. festucae hyphal fusion and symbiosis, a mobC deletion strain was generated. The ΔmobC mutant showed reduced rates of hyphal cell-cell fusion, formed intrahyphal hyphae and exhibited enhanced conidiation. Plants infected with ΔmobC were severely stunted. Hyphae of ΔmobC showed a proliferative pattern of growth within the leaves of Lolium perenne with increased colonization of the intercellular spaces and vascular bundles. Although hyphae were still able to form expressoria, structures allowing the colonization of the leaf surface, the frequency of formation was significantly reduced. Collectively, these results show that the STRIPAK component MobC is required for the establishment of a mutualistic symbiotic association between E. festucae and L. perenne, and plays an accessory role in the regulation of hyphal cell-cell fusion and expressorium development in E. festucae.
Collapse
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Yvonne Becker
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Helen L. Fitzsimons
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey UniversityPalmerston North 4442New Zealand
| |
Collapse
|
19
|
Voisey CR, Christensen MT, Johnson LJ, Forester NT, Gagic M, Bryan GT, Simpson WR, Fleetwood DJ, Card SD, Koolaard JP, Maclean PH, Johnson RD. cAMP Signaling Regulates Synchronised Growth of Symbiotic Epichloë Fungi with the Host Grass Lolium perenne. FRONTIERS IN PLANT SCIENCE 2016; 7:1546. [PMID: 27833620 PMCID: PMC5082231 DOI: 10.3389/fpls.2016.01546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
The seed-transmitted fungal symbiont, Epichloë festucae, colonizes grasses by infecting host tissues as they form on the shoot apical meristem (SAM) of the seedling. How this fungus accommodates the complexities of plant development to successfully colonize the leaves and inflorescences is unclear. Since adenosine 3', 5'-cyclic monophosphate (cAMP)-dependent signaling is often essential for host colonization by fungal pathogens, we disrupted the cAMP cascade by insertional mutagenesis of the E. festucae adenylate cyclase gene (acyA). Consistent with deletions of this gene in other fungi, acyA mutants had a slow radial growth rate in culture, and hyphae were convoluted and hyper-branched suggesting that fungal apical dominance had been disrupted. Nitro blue tetrazolium (NBT) staining of hyphae showed that cAMP disruption mutants were impaired in their ability to synthesize superoxide, indicating that cAMP signaling regulates accumulation of reactive oxygen species (ROS). Despite significant defects in hyphal growth and ROS production, E. festucae ΔacyA mutants were infectious and capable of forming symbiotic associations with grasses. Plants infected with E. festucae ΔacyA were marginally less robust than the wild-type (WT), however hyphae were hyper-branched, and leaf tissues heavily colonized, indicating that the tight regulation of hyphal growth normally observed in maturing leaves requires functional cAMP signaling.
Collapse
Affiliation(s)
- Christine R. Voisey
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Michael T. Christensen
- Formally of Forage Improvement, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Linda J. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Natasha T. Forester
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Milan Gagic
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Gregory T. Bryan
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Wayne R. Simpson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Damien J. Fleetwood
- Biotelliga Ltd., Institute for Innovation in BiotechnologyAuckland, New Zealand
| | - Stuart D. Card
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - John P. Koolaard
- Bioinformatics and Statistics Team, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| | - Paul H. Maclean
- Bioinformatics and Statistics Team, AgResearch Ltd., Lincoln Research CentreChristchurch, New Zealand
| | - Richard D. Johnson
- Forage Science, AgResearch Ltd., Grasslands Research CentrePalmerston North, New Zealand
| |
Collapse
|
20
|
Becker M, Becker Y, Green K, Scott B. The endophytic symbiont Epichloë festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. THE NEW PHYTOLOGIST 2016; 211:240-54. [PMID: 26991322 PMCID: PMC5069595 DOI: 10.1111/nph.13931] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/07/2016] [Indexed: 05/16/2023]
Abstract
Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network. E. festucae also grows as an epiphyte, but the mechanism for leaf surface colonization is not known. Here we identify an appressorium-like structure, which we call an expressorium that allows endophytic hyphae to penetrate the cuticle from the inside of the leaf to establish an epiphytic hyphal net on the surface of the leaf. We used a combination of scanning electron, transmission electron and confocal laser scanning microscopy to characterize this novel fungal structure and determine the composition of the hyphal cell wall using aniline blue and wheat germ agglutinin labelled with Alexafluor-488. Expressoria differentiate immediately below the cuticle in the leaf blade and leaf sheath intercalary cell division zones where the hyphae grow by tip growth. Differentiation of this structure requires components of both the NoxA and NoxB NADPH oxidase complexes. Major remodelling of the hyphal cell wall occurs following exit from the leaf. These results establish that the symbiotic association of E. festucae with L. perenne involves an interconnected hyphal network of both endophytic and epiphytic hyphae.
Collapse
Affiliation(s)
- Matthias Becker
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- IGZ – Leibniz Institute of Vegetable and Ornamental Crops14979GroßbeerenGermany
| | - Yvonne Becker
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- IGZ – Leibniz Institute of Vegetable and Ornamental Crops14979GroßbeerenGermany
| | - Kimberly Green
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- Bioprotection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
21
|
McKernan K, Spangler J, Zhang L, Tadigotla V, Helbert Y, Foss T, Smith D. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Res 2015; 4:1422. [PMID: 27303623 PMCID: PMC4897766 DOI: 10.12688/f1000research.7507.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 11/21/2022] Open
Abstract
The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the fungal communities found in dispensary based Cannabis flowers by ITS2 sequencing, and demonstrate the sensitive detection of several toxigenic Penicillium and Aspergillus species, including P. citrinum and P. paxilli, that were not detected by one or more culture-based methods currently in use for safety testing.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, USA
| | | | | | | | | |
Collapse
|
22
|
McKernan K, Spangler J, Zhang L, Tadigotla V, Helbert Y, Foss T, Smith D. Cannabis microbiome sequencing reveals several mycotoxic fungi native to dispensary grade Cannabis flowers. F1000Res 2015; 4:1422. [PMID: 27303623 PMCID: PMC4897766 DOI: 10.12688/f1000research.7507.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 05/31/2024] Open
Abstract
The Center for Disease Control estimates 128,000 people in the U.S. are hospitalized annually due to food borne illnesses. This has created a demand for food safety testing targeting the detection of pathogenic mold and bacteria on agricultural products. This risk extends to medical Cannabis and is of particular concern with inhaled, vaporized and even concentrated Cannabis products . As a result, third party microbial testing has become a regulatory requirement in the medical and recreational Cannabis markets, yet knowledge of the Cannabis microbiome is limited. Here we describe the first next generation sequencing survey of the microbial communities found in dispensary based Cannabis flowers and demonstrate the limitations in the culture-based regulations that are being superimposed from the food industry.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Medicinal Genomics Corporation, Woburn, MA, USA
| | | | | | | | | |
Collapse
|
23
|
Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae. Fungal Genet Biol 2015; 85:25-37. [DOI: 10.1016/j.fgb.2015.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022]
|
24
|
Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B. The Fungal Cell-Wall Integrity MAPK Cascade Is Crucial for Hyphal Network Formation and Maintenance of Restrictive Growth of Epichloë festucae in Symbiosis With Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:69-85. [PMID: 25303335 DOI: 10.1094/mpmi-06-14-0183-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.
Collapse
|
25
|
Niones JT, Takemoto D. VibA, a homologue of a transcription factor for fungal heterokaryon incompatibility, is involved in antifungal compound production in the plant-symbiotic fungus Epichloë festucae. EUKARYOTIC CELL 2015; 14:13-24. [PMID: 24906411 PMCID: PMC4279024 DOI: 10.1128/ec.00034-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/30/2014] [Indexed: 01/12/2023]
Abstract
Symbiotic association of epichloae endophytes (Epichloë/Neotyphodium species) with cool-season grasses of the subfamily Pooideae confers bioprotective benefits to the host plants against abiotic and biotic stresses. While the production of fungal bioprotective metabolites is a well-studied mechanism of host protection from insect herbivory, little is known about the antibiosis mechanism against grass pathogens by the mutualistic endophyte. In this study, an Epichloë festucae mutant defective in antimicrobial substance production was isolated by a mutagenesis approach. In an isolated mutant that had lost antifungal activity, the exogenous DNA fragment was integrated into the promoter region of the vibA gene, encoding a homologue of the transcription factor VIB-1. VIB-1 in Neurospora crassa is a regulator of genes essential in vegetative incompatibility and promotion of cell death. Here we show that deletion of the vibA gene severely affected the antifungal activity of the mutant against the test pathogen Drechslera erythrospila. Further analyses showed that overexpressing vibA enhanced the antifungal activity of the wild-type isolate against test pathogens. Transformants overexpressing vibA showed an inhibitory activity on test pathogens that the wild-type isolate could not. Moreover, overexpressing vibA in a nonantifungal E. festucae wild-type Fl1 isolate enabled the transformant to inhibit the mycelial and spore germination of D. erythrospila. These results demonstrate that enhanced expression of vibA is sufficient for a nonantifungal isolate to obtain antifungal activity, implicating the critical role of VibA in antifungal compound production by epichloae endophytes.
Collapse
Affiliation(s)
- Jennifer T Niones
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Cartwright GM, Tanaka A, Eaton CJ, Scott B. Formation of arthroconidia during regeneration and selection of transformed Epichloë festucae protoplasts. Fungal Biol 2014; 118:462-71. [PMID: 24863475 DOI: 10.1016/j.funbio.2014.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/05/2014] [Accepted: 03/08/2014] [Indexed: 12/01/2022]
Abstract
Transformation is an essential tool for modern fungal research and has played a fundamental role in gaining insight into gene function. Polyethylene glycol (PEG)-mediated transformation of protoplasts is the most commonly used method for genetic transformation of filamentous fungi. Selectable marker genes, that confer resistance to antibiotics, are generally incorporated with the DNA of interest, allowing transformed cells to grow through the antibiotic overlay. Colonies arising from transformed fungal cells are sub-cultured and further analysed. However, the morphological state of the fungal cells during the transformation procedure has been largely overlooked. We investigated the morphological appearance of transformed fungal cells prior to their emergence through the antibiotic overlay. Hyphae appeared to segment and bulge, reminiscent of arthroconidia, an asexual spore typically produced by segmentation of pre-existing hyphae. Selective expression of eGFP under the control of a spore specific promoter, PcatA, in these cells confirmed their spore-like nature. Reducing the oxygen availability to surface-grown cultures partially recapitulated this morphological form. A GFP fusion to the cell wall integrity MAP kinase MpkA localised to the arthroconidia nuclei suggesting the cell wall integrity signalling pathway modulates cell wall stress responses in arthroconidia. This dramatic morphological change was also observed in transformed Magnaporthe oryzae cells suggesting it may be a more general phenomenon in filamentous fungi. Given the changes in cellular structure and spore-like appearance, these observations may have technical implications for deleting genes involved in these processes in Epichloë festucae and, more broadly, a range of fungal species.
Collapse
Affiliation(s)
- Gemma Maree Cartwright
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Carla Jane Eaton
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
27
|
Chujo T, Scott B. Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis. Mol Microbiol 2014; 92:413-34. [PMID: 24571357 DOI: 10.1111/mmi.12567] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 12/17/2022]
Abstract
Epichloё festucae is a filamentous fungus that forms a mutually beneficial symbiotic association with Lolium perenne. This endophyte synthesizes bioprotective lolitrems (ltm) and ergot alkaloids (eas) in planta but the mechanisms regulating expression of the corresponding subtelomeric gene clusters are not known. We show here that the status of histone H3 lysine 9 and lysine 27 trimethylation (H3K9me3/H3K27me3) at these alkaloid gene loci are critical determinants of transcriptional activity. Using ChIP-qPCR we found that levels of H3K9me3 and H3K27me3 were reduced at these loci in plant infected tissue compared to axenic culture. Deletion of E. festucae genes encoding the H3K9- (ClrD) or H3K27- (EzhB) methyltransferases led to derepression of ltm and eas gene expression under non-symbiotic culture conditions and a further enhancement of expression in the double deletion mutant. These changes in gene expression were matched by corresponding reductions in H3K9me3 and H3K27me3 marks. Both methyltransferases are also important for the symbiotic interaction between E. festucae and L. perenne. Our results show that the state of H3K9 and H3K27 trimethylation of E. festucae chromatin is an important regulatory layer controlling symbiosis-specific expression of alkaloid bioprotective metabolites and the ability of this symbiont to form a mutualistic interaction with its host.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
28
|
Tanaka A, Cartwright GM, Saikia S, Kayano Y, Takemoto D, Kato M, Tsuge T, Scott B. ProA, a transcriptional regulator of fungal fruiting body development, regulates leaf hyphal network development in the Epichloë festucae-Lolium perenne symbiosis. Mol Microbiol 2013; 90:551-68. [PMID: 23998652 DOI: 10.1111/mmi.12385] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Transcription factors containing a Zn(II)2 Cys6 binuclear cluster DNA-binding domain are unique to fungi and are key regulators of fungal growth and development. The C6-Zn transcription factor, Pro1, in Sordaria macrospora is crucial for maturation of sexual fruiting bodies. In a forward genetic screen to identify Epichloë festucae symbiosis genes we identified a mutant with an insertion in proA. Plants infected with the proA mutant underwent premature senescence. Hyphae of ΔproA had a proliferative pattern of growth within the leaves of Lolium perenne. Targeted deletion of proA recapitulated this phenotype and introduction of a wild-type gene complemented the mutation. ΔproA was defective in hyphal fusion. qPCR analysis of E. festucae homologues of S. macrospora genes differentially expressed in Δpro1 identified esdC, encoding a glycogen-binding protein, as a target of ProA. Electrophoretic mobility shift assay analysis identified two binding sites for ProA in the intergenic region of esdC and a divergently transcribed gene, EF320. Both esdC and EF320 are highly expressed in a wild-type E. festucae-grass association but downregulated in a proA-mutant association. These results show that ProA is a key regulator of in planta specific growth of E. festucae, and therefore crucial for maintaining a mutualistic symbiotic interaction.
Collapse
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Scott B, Young CA, Saikia S, McMillan LK, Monahan BJ, Koulman A, Astin J, Eaton CJ, Bryant A, Wrenn RE, Finch SC, Tapper BA, Parker EJ, Jameson GB. Deletion and gene expression analyses define the paxilline biosynthetic gene cluster in Penicillium paxilli. Toxins (Basel) 2013; 5:1422-46. [PMID: 23949005 PMCID: PMC3760044 DOI: 10.3390/toxins5081422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/22/2013] [Accepted: 08/02/2013] [Indexed: 11/16/2022] Open
Abstract
The indole-diterpene paxilline is an abundant secondary metabolite synthesized by Penicillium paxilli. In total, 21 genes have been identified at the PAX locus of which six have been previously confirmed to have a functional role in paxilline biosynthesis. A combination of bioinformatics, gene expression and targeted gene replacement analyses were used to define the boundaries of the PAX gene cluster. Targeted gene replacement identified seven genes, paxG, paxA, paxM, paxB, paxC, paxP and paxQ that were all required for paxilline production, with one additional gene, paxD, required for regular prenylation of the indole ring post paxilline synthesis. The two putative transcription factors, PP104 and PP105, were not co-regulated with the pax genes and based on targeted gene replacement, including the double knockout, did not have a role in paxilline production. The relationship of indole dimethylallyl transferases involved in prenylation of indole-diterpenes such as paxilline or lolitrem B, can be found as two disparate clades, not supported by prenylation type (e.g., regular or reverse). This paper provides insight into the P. paxilli indole-diterpene locus and reviews the recent advances identified in paxilline biosynthesis.
Collapse
Affiliation(s)
- Barry Scott
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-6-350-5168; Fax: +64-6-350-5688
| | - Carolyn A. Young
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
- The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Sanjay Saikia
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Lisa K. McMillan
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Brendon J. Monahan
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Albert Koulman
- AgResearch, Grasslands Research Centre, Private Bag 11 008, Palmerston North 4442, New Zealand; E-Mails: (A.K.); (B.A.T.)
| | - Jonathan Astin
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Carla J. Eaton
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Andrea Bryant
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Ruth E. Wrenn
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Sarah C. Finch
- AgResearch, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton 3214, New Zealand; E-Mail:
| | - Brian A. Tapper
- AgResearch, Grasslands Research Centre, Private Bag 11 008, Palmerston North 4442, New Zealand; E-Mails: (A.K.); (B.A.T.)
| | - Emily J. Parker
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| | - Geoffrey B. Jameson
- Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand; E-Mails: (C.A.Y.); (S.S.) (L.K.M.); (B.J.M.); (J.A.); (C.J.E.); (A.B.); (R.E.W.); (E.J.P.); (G.B.J.)
| |
Collapse
|
30
|
Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae. EUKARYOTIC CELL 2013; 12:1335-48. [PMID: 23893078 DOI: 10.1128/ec.00129-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.
Collapse
|
31
|
Kayano Y, Tanaka A, Akano F, Scott B, Takemoto D. Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloë festucae. Fungal Genet Biol 2013; 56:87-97. [PMID: 23684536 DOI: 10.1016/j.fgb.2013.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 01/17/2023]
Abstract
The endophytic fungus Epichloë festucae systemically colonizes the intercellular spaces of temperate grasses to establish mutualistic symbiotic associations. We have previously shown that reactive oxygen species produced by a specific NADPH oxidase isoform, NoxA, and associated regulators, NoxR and RacA, have a critical role in regulating hyphal growth in the host plant to maintain a mutualistic symbiotic interaction. We also identified BemA and Cdc24, homologues of polarity establishment proteins of yeast, as interactors of NoxR. In this study, we investigated culture developmental phenotypes of 'knockout' mutants of noxA and noxB and their associated regulators, noxR, racA and bemA. On nutrient-rich medium, all of the mutants except racA, which had undulating hyphae, hyphal swellings and increased branching, had a colony growth phenotype similar to the wild type strain. In contrast, on water agar, noxA, noxR and bemA mutants had disorganized hyphal growth and distorted instead of straight hyphae. These changes in hyphal growth characteristics indicate that NoxA and associated regulators have a crucial role in polarized growth under conditions of nutrient starvation. Conidiation in the noxA mutant was greater than wild type, and further enhanced in the noxA/noxB double mutant suggesting ROS negatively regulates asexual development. In contrast, deletion of noxR had no effect on conidiation. Hyphae of the wild type and noxB mutant of E. festucae had frequent vegetative hyphal fusions, whereas noxA, noxR and racA mutants totally lost this ability and fusions in the bemA mutant were significantly reduced. These results indicate that NoxA, NoxB and their associated regulators have distinct or overlapping functions for the regulation of different hyphal morphogenesis processes.
Collapse
Affiliation(s)
- Yuka Kayano
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
32
|
Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, Forester N, Johnson RD, Bryan GT, Rasmussen S. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathog 2013; 9:e1003332. [PMID: 23658520 PMCID: PMC3642064 DOI: 10.1371/journal.ppat.1003332] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN) encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N(5)-trans-anhydromevalonyl-N(5)-hydroxyornithine (trans-AMHO), displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass) with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction.
Collapse
Affiliation(s)
- Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Saikia S, Takemoto D, Tapper BA, Lane GA, Fraser K, Scott B. Functional analysis of an indole-diterpene gene cluster for lolitrem B biosynthesis in the grass endosymbiont Epichloë festucae. FEBS Lett 2012; 586:2563-9. [PMID: 22750140 DOI: 10.1016/j.febslet.2012.06.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/20/2012] [Indexed: 11/28/2022]
Abstract
Epichloë festucae Fl1 in association with Lolium perenne synthesizes a diverse range of indole-diterpene bioprotective metabolites, including lolitrem B, a potent tremorgen. The ltm genes responsible for the synthesis of these metabolites are organized in three clusters at a single sub-telomeric locus in the genome of E. festucae. Here we resolve the genetic basis for the remarkable indole-diterpene diversity observed in planta by analyzing products that accumulate in associations containing ltm deletion mutants of E. festucae and in cells of Penicillium paxilli containing copies of these genes under the control of a P. paxilli biosynthetic gene promoter. We propose a biosynthetic scheme to account for this metabolic diversity.
Collapse
Affiliation(s)
- Sanjay Saikia
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
34
|
Saikia S, Scott B. Functional analysis and subcellular localization of two geranylgeranyl diphosphate synthases from Penicillium paxilli. Mol Genet Genomics 2009; 282:257-71. [PMID: 19529962 PMCID: PMC2729982 DOI: 10.1007/s00438-009-0463-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/28/2009] [Indexed: 10/26/2022]
Abstract
The filamentous fungus Penicillium paxilli contains two distinct geranylgeranyl diphosphate (GGPP) synthases, GgsA and GgsB (PaxG). PaxG and its homologues in Neotyphodium lolii and Fusarium fujikuroi are associated with diterpene secondary metabolite gene clusters. The genomes of other filamentous fungi including Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae and Fusarium graminearum also contain two or more copies of GGPP synthase genes, although the diterpene metabolite capability of these fungi is not known. The objective of this study was to understand the biological significance of the presence of two copies of GGPP synthases in P. paxilli by investigating their subcellular localization. Using a carotenoid complementation assay and gene deletion analysis, we show that P. paxilli GgsA and PaxG have GGPP synthase activities and that paxG is required for paxilline biosynthesis, respectively. In the DeltapaxG mutant background ggsA was unable to complement paxilline biosynthesis. A GgsA-EGFP fusion protein was localized to punctuate organelles and the EGFP-GRV fusion protein, containing the C-terminus tripeptide GRV of PaxG, was localized to peroxisomes. A truncated PaxG mutant lacking the C-terminus tripeptide GRV was unable to complement a DeltapaxG mutant demonstrating that the tripeptide is functionally important for paxilline biosynthesis.
Collapse
Affiliation(s)
- Sanjay Saikia
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
35
|
Gifford TD, Cooper CR. Karyotype determination and gene mapping in two clinical isolates ofPenicillium marneffei. Med Mycol 2009; 47:286-95. [DOI: 10.1080/13693780802291437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Tanaka A, Takemoto D, Hyon GS, Park P, Scott B. NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 2008; 68:1165-78. [PMID: 18399936 DOI: 10.1111/j.1365-2958.2008.06217.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small GTPases of the Rac group play a key regulatory role in NADPH oxidase catalysed production of reactive oxygen species (ROS) in mammals and plants, but very little evidence is available for a corresponding role in fungi. We recently showed that ROS produced by a specific fungal NADPH oxidase isoform, NoxA, are crucial in regulating hyphal morphogenesis and growth in the mutualistic symbiotic interaction between Epichloë festucae and perennial ryegrass. We demonstrate here that E. festucae RacA is required for NoxA activation and regulated production of ROS to maintain a symbiotic interaction. Deletion of racA resulted in decreased ROS production, reduction of radial growth and hyper-branching of the hyphae in culture. In contrast, in planta the racA mutant showed extensive colonization of the host plant, resulting in stunting and precocious senescence of the host plants. Strains expressing a dominant active (DA) allele of RacA had increased ROS production, increased aerial hyphae and reduced radial growth. These results demonstrate that RacA plays a crucial role in regulating ROS production by NoxA, in order to control hyphal morphogenesis and growth of the endophyte in planta.
Collapse
Affiliation(s)
- Aiko Tanaka
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
37
|
Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simpson WR, Koolaard JP, Nickless EM, Voisey CR. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 2008; 45:84-93. [DOI: 10.1016/j.fgb.2007.07.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
|
38
|
May KJ, Bryant MK, Zhang X, Ambrose B, Scott B. Patterns of expression of a lolitrem biosynthetic gene in the Epichloë festucae-perennial ryegrass symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:188-197. [PMID: 18184063 DOI: 10.1094/mpmi-21-2-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lolitrem B is synthesized by Epichloë festucae in associations with Pooid grasses. A complex cluster of at least 10 genes (ltm genes) is required for its synthesis. An early step in this pathway is catalyzed by ltmM, a symbiosis-expressed gene. PltmM-gusA reporter gene analysis was used to monitor ltmM gene expression patterns in planta. The minimum promoter length required for high-level gusA expression in infected seedlings is in the range of 480 to 782 bp. gusA was expressed by the endophyte in all infected vegetative plant tissues and in epiphyllous hyphae. Spikelets from reproductive tillers were analyzed at different developmental stages. During pre-anthesis, gusA expression was observed in all infected floral organs except the immature gynoecium. In post-anthesis florets, gene expression occurred almost exclusively in the gynoecium. Expression of gusA by the endophyte was observed in germinating seeds 24 h postimbibition and seedlings older than 6 days postimbibition in hyphae from the mesocotyl to the tip of the emerging first leaf. This work provides a detailed analysis of the spatial and temporal expression patterns of a symbiosis-expressed gene in planta.
Collapse
Affiliation(s)
- Kimberley J May
- Centre for Functional Genomics, Institute of Molecular Bioscience, Massey University, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
39
|
Saikia S, Nicholson MJ, Young C, Parker EJ, Scott B. The genetic basis for indole-diterpene chemical diversity in filamentous fungi. ACTA ACUST UNITED AC 2008; 112:184-99. [DOI: 10.1016/j.mycres.2007.06.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/24/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
|
40
|
Eaton CJ, Jourdain I, Foster SJ, Hyams JS, Scott B. Functional analysis of a fungal endophyte stress-activated MAP kinase. Curr Genet 2008; 53:163-74. [PMID: 18188569 DOI: 10.1007/s00294-007-0174-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/25/2022]
Abstract
The ability of fungi to sense and respond rapidly to environmental stress is crucial for their survival in the wild. One of the most important pathways involved in this response is the stress-activated MAP (mitogen-activated protein) kinase pathway. We report here on the isolation of the stress-activated MAP kinase, sakA, from the fungal endophyte Epichloë festucae. Complementation of the stress sensitivity and cell cycle defects of an Schizosaccharomyces pombe sty1Delta mutant with sakA confirmed it encodes a functional MAP kinase. Analysis of an E. festucae DeltasakA mutant revealed sakA is essential for growth under conditions of temperature and osmotic stress in culture, and for sensitivity to the fungicide fludioxonil. However, the DeltasakA mutant shows no increased sensitivity to hydrogen peroxide. Given sakA can rescue the sty1Delta mutant from sensitivity to oxidative stress, SakA has the potential to sense and transduce oxidative stress signals. The DeltasakA mutant is also defective in conidia formation, suggesting a role for SakA in asexual development of E. festucae. The detection of elevated hydrogen peroxide production in the DeltasakA mutant suggests there may be a link between MAP kinase and ROS (reactive oxygen species) signalling pathways in E. festucae.
Collapse
Affiliation(s)
- Carla J Eaton
- Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
41
|
Bryant MK, May KJ, Bryan GT, Scott B. Functional analysis of a β-1,6-glucanase gene from the grass endophytic fungus Epichloë festucae. Fungal Genet Biol 2007; 44:808-17. [PMID: 17303450 DOI: 10.1016/j.fgb.2006.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/07/2006] [Accepted: 12/20/2006] [Indexed: 11/19/2022]
Abstract
beta-1,6-glucanases degrade the polysaccharide beta-1,6-glucan, a cell wall component in some filamentous fungi. A single copy of a beta-1,6-glucanase gene, designated gcnA, was identified in each of the grass endophytic fungi Neotyphodium lolii and Epichloë festucae. Phylogenetic analysis indicates that the GcnA protein is a member of glycosyl hydrolase family 5, and is closely related to fungal beta-1,6-glucanases implicated in mycoparasitism. The E. festucae gcnA gene was expressed in mycelium grown in culture and in both vegetative and reproductive tissues of perennial ryegrass. A gcnA replacement mutant had reduced beta-1,6-glucanase activity when grown in media containing pustulan as the major carbon source. beta-1,6-glucanase activity was restored in the replacement mutant by introducing multiple copies of the gcnA gene. Growth of DeltagcnA and gcnA-overexpressing strains in vegetative grass tissues was indistinguishable from wild type strains.
Collapse
Affiliation(s)
- Michelle K Bryant
- Centre for Functional Genomics, Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
42
|
Saikia S, Parker EJ, Koulman A, Scott B. Defining paxilline biosynthesis in Penicillium paxilli: functional characterization of two cytochrome P450 monooxygenases. J Biol Chem 2007; 282:16829-37. [PMID: 17428785 DOI: 10.1074/jbc.m701626200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Indole diterpenes are a large, structurally and functionally diverse group of secondary metabolites produced by filamentous fungi. Biosynthetic schemes have been proposed for these metabolites but until recently none of the proposed steps had been validated by biochemical or genetic studies. Using Penicillium paxilli as a model experimental system to study indole diterpene biosynthesis we previously showed by deletion analysis that a cluster of seven genes is required for paxilline biosynthesis. Two of these pax genes, paxP and paxQ (encoding cytochrome P450 monooxygenases), are required in the later steps in this pathway. Here, we describe the function of paxP and paxQ gene products by feeding proposed paxilline intermediates to strains lacking the pax cluster but containing ectopically integrated copies of paxP or paxQ. Transformants containing paxP converted paspaline into 13-desoxypaxilline as the major product and beta-PC-M6 as the minor product. beta-PC-M6, but not alpha-PC-M6, was also a substrate for PaxP and was converted to 13-desoxypaxilline. paxQ-containing transformants converted 13-desoxypaxilline into paxilline. These results confirm that paspaline, beta-PC-M6, and 13-desoxypaxilline are paxilline intermediates and that paspaline and beta-PC-M6 are substrates for PaxP, and 13-desoxypaxilline is a substrate for PaxQ. PaxP and PaxQ also utilized beta-paxitriol and alpha-PC-M6 as substrates converting them to paxilline and alpha-paxitriol, respectively. These findings have allowed us to delineate clearly the biosynthetic pathway for paxilline for the first time.
Collapse
Affiliation(s)
- Sanjay Saikia
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
43
|
Takemoto D, Tanaka A, Scott B. A p67Phox-like regulator is recruited to control hyphal branching in a fungal-grass mutualistic symbiosis. THE PLANT CELL 2006; 18:2807-21. [PMID: 17041146 PMCID: PMC1626622 DOI: 10.1105/tpc.106.046169] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Key requirements for microbes to initiate and establish mutualistic symbiotic interactions with plants are evasion of potential host defense responses and strict control of microbial growth. Reactive oxygen species (ROS) produced by a specific NADPH oxidase isoform, NoxA, regulate hyphal growth in the mutualistic interaction between the fungal endophyte Epichloë festucae and its grass host Lolium perenne. Unlike mammalian systems, little is known about the fungal NADPH oxidase complex and its response to differentiation signals. We identify an E. festucae p67(phox)-like regulator, NoxR, dispensable in culture but essential in planta for the symbiotic interaction. Plants infected with a noxR deletion mutant show severe stunting and premature senescence, whereas hyphae in the meristematic tissues show increased branching leading to increased fungal colonization of pseudostem and leaf blade tissue. Inhibition of ROS production or overexpression of noxR recapitulates the hyperbranching phenotype in culture. NoxR interacts in vitro with the small GTP binding protein RacA and requires a functional RacA binding site to complement the noxR mutant and restore the wild-type plant interaction phenotype. These results show that NoxR is a key regulator of NoxA in symbiosis, where it acts together with RacA to spatially regulate ROS production and control hyphal branching and patterning.
Collapse
Affiliation(s)
- Daigo Takemoto
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | |
Collapse
|
44
|
Zhang N, Scott V, Al-Samarrai TH, Tan YY, Spiering MJ, McMillan LK, Lane GA, Scott DB, Christensen MJ, Schmid J. Transformation of the ryegrass endophyte Neotyphodium lolii can alter its in planta mycelial morphology. ACTA ACUST UNITED AC 2006; 110:601-11. [PMID: 16769511 DOI: 10.1016/j.mycres.2006.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 12/08/2005] [Accepted: 01/24/2006] [Indexed: 11/29/2022]
Abstract
The fungus Neotyphodium lolii grows in the intercellular spaces of perennial ryegrass as a mutualistic endosymbiont. One of the benefits it conveys to the plant is the production of alkaloids toxic to herbivores. We wanted to determine in planta expression patterns of the N. lolii 3-hydroxy-3-methylglutaryl-CoA reductase (HMG CoA reductase) gene, believed to be involved in the synthesis of two of these alkaloid toxins, lolitrem B and ergovaline. We transformed the N. lolii strain Lp19 with plasmids, in which DNA fragments upstream of the open reading frame of the N. lolii HMG CoA reductase gene controlled expression of the GUS (gusA; Escherichia coli beta-glucuronidase) reporter gene. In exponentially growing cultures, the GUS gene was not expressed if the length of upstream sequence was less than 400 bp, and >1100 bp were required for maximum expression. When reintroduced into ryegrass plants, transformants often showed highly increased hyphal branching compared to the wild-type parent strain, although in culture their growth kinetics and morphology were indistinguishable from that of the wild-type. Deterioration of hyphae and the hypha-plant interface occurred and in one transformant reduced tillering (formation of new plants, referred to in agronomy as tillers) and death of infected plants. We found no evidence that these abnormalities were caused by interference of the construct with the function of the native gene, as judged by analysis of the site of integration of the promoter-GUS cassette, expression of the native gene and lolitrem B and ergovaline levels in infected plants. However, there was some correlation between GUS expression and the degree of hyphal branching, suggesting that high levels of beta-glucuronidase may disturb the symbiotic interaction. Levels of another alkaloid, peramine, were also not significantly affected by transformation. In previous studies increased in planta branching of the endophyte has been shown to be associated with a severe reduction of alkaloid production. Our results show that a plant-endophyte association in which increased branching occurs is still able to produce alkaloids.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. THE PLANT CELL 2006; 18:1052-66. [PMID: 16517760 PMCID: PMC1425850 DOI: 10.1105/tpc.105.039263] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although much is known about the signals and mechanisms that lead to pathogenic interactions between plants and fungi, comparatively little is known about fungus-plant mutualistic symbioses. We describe a novel role for reactive oxygen species (ROS) in regulating the mutualistic interaction between a clavicipitaceous fungal endophyte, Epichloë festucae, and its grass host, Lolium perenne. In wild-type associations, E. festucae grows systemically in intercellular spaces of leaves as infrequently branched hyphae parallel to the leaf axis. A screen to identify symbiotic genes isolated a fungal mutant that altered the interaction from mutualistic to antagonistic. This mutant has a single-copy plasmid insertion in the coding region of a NADPH oxidase gene, noxA. Plants infected with the noxA mutant lose apical dominance, become severely stunted, show precocious senescence, and eventually die. The fungal biomass in these associations is increased dramatically, with hyphae showing increased vacuolation. Deletion of a second NADPH oxidase gene, noxB, had no effect on the E. festucae-perennial ryegrass symbiosis. ROS accumulation was detected cytochemically in the endophyte extracellular matrix and at the interface between the extracellular matrix and host cell walls of meristematic tissue in wild-type but not in noxA mutant associations. These results demonstrate that fungal ROS production is critical in maintaining a mutualistic fungus-plant interaction.
Collapse
Affiliation(s)
- Aiko Tanaka
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
46
|
Tanaka A, Tapper BA, Popay A, Parker EJ, Scott B. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol Microbiol 2005; 57:1036-50. [PMID: 16091042 DOI: 10.1111/j.1365-2958.2005.04747.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While much is known about the biosynthesis of secondary metabolites by filamentous fungi their biological role is often less clear. The assumption is these pathways have adaptive value to the organism but often the evidence to support this role is lacking. We provide the first genetic evidence that the fungal produced secondary metabolite, peramine, protects a host plant from insect herbivory. Peramine is a potent insect feeding deterrent synthesized by Epichloë/Neotyphodium mutualistic endophytes in association with their grass hosts. The structure of peramine, a pyrrolopyrazine, suggests that it is the product of a reaction catalysed by a two-module non-ribosomal peptide synthetase (NRPS). Candidate sequences for a peramine synthetase were amplified by reverse transcription polymerase chain reaction. Four unique NRPS products were identified, two of which were preferentially expressed in planta. One of these hybridized to known peramine producing strains. This clone was used to isolate an Epichloë festucae cosmid that contained a two-module NRPS, designated perA. Nine additional genes, which show striking conservation of microsynteny with Fusarium graminearum and other fungal genomes, were identified on the perA-containing cosmid. Associations between perennial ryegrass and an E. festucae mutant deleted for perA lack detectable levels of peramine. A wild-type copy of perA complemented the deletion mutant, confirming that perA is a NRPS required for peramine biosynthesis. In a choice bioassay, plant material containing the perA mutant was as susceptible to Argentine stem weevil (ASW) (Listronotus bonariensis) feeding damage as endophyte-free plants confirming that peramine is the E. festucae metabolite responsible for ASW feeding deterrent activity.
Collapse
Affiliation(s)
- Aiko Tanaka
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
47
|
Young CA, Bryant MK, Christensen MJ, Tapper BA, Bryan GT, Scott B. Molecular cloning and genetic analysis of a symbiosis-expressed gene cluster for lolitrem biosynthesis from a mutualistic endophyte of perennial ryegrass. Mol Genet Genomics 2005; 274:13-29. [PMID: 15991026 DOI: 10.1007/s00438-005-1130-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/11/2005] [Indexed: 11/25/2022]
Abstract
Lolitrems are potent tremorgenic mycotoxins that are synthesised by clavicipitaceous fungal endophytes of the Epichloë/Neotyphodium group in association with grasses. These indole-diterpenes confer major ecological benefits on the grass-endophyte symbiotum. A molecular signature for diterpene biosynthesis is the presence of two geranylgeranyl diphosphate (GGPP) synthases. Using degenerate primers for conserved domains of fungal GGPP synthases, we cloned two such genes, ltmG and ggsA, from Neotyphodium lolii. Adjacent to ltmG are two genes, ltmM and ltmK, that are predicted to encode an FAD-dependent monooxygenase and a cytochrome P450 monooxygenase, respectively. The cluster of ltm genes is flanked by AT-rich retrotransposon DNA that appears to have undergone extensive repeat induced point (RIP) mutation. Epichloë festucae, the sexual ancestor of N. lolii, contains an identical ltm gene cluster, but lacks the retrotransposon "platform'' on the right flank. Associations established between perennial ryegrass and an E. festucae mutant deleted for ltmM lack detectable levels of lolitrems. A wild-type copy of ltmM complemented this phenotype, as did paxM from Penicillium paxilli. Northern hybridization and RT-PCR analysis showed that all three genes are weakly expressed in culture but strongly induced in planta. The relative endophyte biomass in these associations was estimated by real-time PCR to be between 0.3 and 1.9%. Taking this difference into account, the steady-state levels of the ltm transcripts are about 100-fold greater than the levels of the endogenous ryegrass beta-tubulin (beta -Tub1) and actin (Act1) RNAs. Based on these results we propose that ltmG, ltmM and ltmK are members of a set of genes required for lolitrem biosynthesis in E. festucae and N. lolii.
Collapse
Affiliation(s)
- C A Young
- Centre for Functional Genomics, Institute of Molecular BioSciences, College of Sciences, Massey University, Private Bag 11 222 Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
48
|
Zhang S, Monahan BJ, Tkacz JS, Scott B. Indole-diterpene gene cluster from Aspergillus flavus. Appl Environ Microbiol 2004; 70:6875-83. [PMID: 15528556 PMCID: PMC525135 DOI: 10.1128/aem.70.11.6875-6883.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aflatrem is a potent tremorgenic mycotoxin produced by the soil fungus Aspergillus flavus and is a member of a large structurally diverse group of secondary metabolites known as indole-diterpenes. By using degenerate primers for conserved domains of fungal geranylgeranyl diphosphate synthases, we cloned two genes, atmG and ggsA (an apparent pseudogene), from A. flavus. Adjacent to atmG are two other genes, atmC and atmM. These three genes have 64 to 70% amino acid sequence similarity and conserved synteny with a cluster of orthologous genes, paxG, paxC, and paxM, from Penicillium paxilli which are required for indole-diterpene biosynthesis. atmG, atmC, and atmM are coordinately expressed, with transcript levels dramatically increasing at the onset of aflatrem biosynthesis. A genomic copy of atmM can complement a paxM deletion mutant of P. paxilli, demonstrating that atmM is a functional homolog of paxM. Thus, atmG, atmC, and atmM are necessary, but not sufficient, for aflatrem biosynthesis by A. flavus. This provides the first genetic evidence for the biosynthetic pathway of aflatrem in A. flavus.
Collapse
Affiliation(s)
- Shuguang Zhang
- Centre for Functional Genomics, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
49
|
McMillan LK, Carr RL, Young CA, Astin JW, Lowe RGT, Parker EJ, Jameson GB, Finch SC, Miles CO, McManus OB, Schmalhofer WA, Garcia ML, Kaczorowski GJ, Goetz M, Tkacz JS, Scott B. Molecular analysis of two cytochrome P450 monooxygenase genes required for paxilline biosynthesis in Penicillium paxilli, and effects of paxilline intermediates on mammalian maxi-K ion channels. Mol Genet Genomics 2003; 270:9-23. [PMID: 12884010 DOI: 10.1007/s00438-003-0887-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 06/11/2003] [Indexed: 11/26/2022]
Abstract
The gene cluster required for paxilline biosynthesis in Penicillium paxilli contains two cytochrome P450 monooxygenase genes, paxP and paxQ. The primary sequences of both proteins are very similar to those of proposed cytochrome P450 monooxygenases from other filamentous fungi, and contain several conserved motifs, including that for a haem-binding site. Alignment of these sequences with mammalian and bacterial P450 enzymes of known 3-D structure predicts that there is also considerable conservation at the level of secondary structure. Deletion of paxP and paxQ results in mutant strains that accumulate paspaline and 13-desoxypaxilline, respectively. These results confirm that paxP and paxQ are essential for paxilline biosynthesis and that paspaline and 13-desoxypaxilline are the most likely substrates for the corresponding enzymes. Chemical complementation of paxilline biosynthesis in paxG (geranygeranyl diphosphate synthase) and paxP, but not paxQ, mutants by the external addition of 13-desoxypaxilline confirms that PaxG and PaxP precede PaxQ, and are functionally part of the same biosynthetic pathway. A pathway for the biosynthesis of paxilline is proposed on the basis of these and earlier results. Electrophysiological experiments demonstrated that 13-desoxypaxilline is a weak inhibitor of mammalian maxi-K channels (Ki=730 nM) compared to paxilline (Ki=30 nM), indicating that the C-13 OH group of paxilline is crucial for the biological activity of this tremorgenic mycotoxin. Paspaline is essentially inactive as a channel blocker, causing only slight inhibition at concentrations up to 1 microM.
Collapse
Affiliation(s)
- L K McMillan
- Centre for Functional Genomics, Institute of Molecular BioSciences, College of Sciences, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shibayama M, Ooi K, Johnson R, Scott B, Itoh Y. Suppression of tandem-multimer formation during genetic transformation of the mycotoxin-producing fungus Penicillium paxilli by disrupting an orthologue of Aspergillus nidulans uvsC. Curr Genet 2002; 42:59-65. [PMID: 12420147 DOI: 10.1007/s00294-002-0330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 08/14/2002] [Accepted: 08/14/2002] [Indexed: 11/27/2022]
Abstract
An orthologue of Aspergillus nidulans uvsC and Saccharomyces cerevisiae RAD51 was cloned from the filamentous fungus, Penicillium paxilli. A mutation in uvsC causes UV sensitivity during germination. The product of RAD51 is involved in meiotic recombination and DNA damage repair. The deduced amino acid sequence of the product of this gene (Pprad51) shared 92% identity with UVSC. Site-specific disruption of pprad51 showed a significant effect for extra-cellular DNA integration. Transformation of the null mutant with pII99, which confers geneticin resistance, resulted in a shift from a predominance of direct repeats at a single site to single copies when compared with a control strain. A copy-number effect of integrated pII99 for geneticin selection was suggested as the frequency of direct repeat formation was less when selected at a lower concentration in the control strain. However, such an effect was not observed in the null mutant, further supporting an involvement of Pprad51 in direct repeat formation.
Collapse
Affiliation(s)
- Mayumi Shibayama
- Department of Biological Sciences, Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan
| | | | | | | | | |
Collapse
|