1
|
Morales JA, Gonzalez-Kantun WA, Rodriguez-Zapata LC, Ramón-Ugalde J, Castano E. The effect of plant stress on phosphoinositides. Cell Biochem Funct 2019; 37:553-559. [PMID: 31478243 DOI: 10.1002/cbf.3432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/20/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023]
Abstract
Phosphoinositides are very versatile molecules with a plethora of functions such as cytokinesis, chemotaxis, cell survival, and cell death. Their functions depend on the proteins with which they interact. Thus, when interacting with phospholipases, phosphatases, or kinases, they can be precursors of second messengers in different signalling pathways. They could be second messengers themselves and interact directly with other proteins to modulate their functions trough changing its localization and activity or enhancing its synthesis rate. Because they are more abundant in animal cells and their importance in diseases such as cancer has taken priority, the study of the phosphoinositides in plants has not evolved to the same extent. Nevertheless, several studies have shown the significance of these lipids in plant cells viability and environmental response. This review focuses on phosphoinositides response to abiotic and biotic stress, showing their implication in plant survival during different stages of development. SIGNIFICANCE OF THE STUDY: This review is focused on plant PIPs functions in stress, highlighting in the main differences between plant and mammal PIPs and the novel interactions that could be extrapolated to animal models to contribute in a better understanding of these pivotal molecules.
Collapse
Affiliation(s)
- Javier Adrian Morales
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Wilma A Gonzalez-Kantun
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | | | - Julio Ramón-Ugalde
- Centro de Selección y Reproducción Ovina (CeSyRO), Instituto Tecnológico de Conkal (ITC), Mérida, Mexico
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| |
Collapse
|
2
|
Sen Gupta A, Joshi G, Pawar S, Sengupta K. Nucleolin modulates compartmentalization and dynamics of histone 2B-ECFP in the nucleolus. Nucleus 2018; 9:350-367. [PMID: 29943658 PMCID: PMC6165600 DOI: 10.1080/19491034.2018.1471936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Eukaryotic cells have 2 to 3 discrete nucleoli required for ribosome synthesis. Nucleoli are phase separated nuclear sub-organelles. Here we examined the role of nuclear Lamins and nucleolar factors in modulating the compartmentalization and dynamics of histone 2B (H2B-ECFP) in the nucleolus. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) of labelled H2B, showed that the depletion of Lamin B1, Fibrillarin (FBL) or Nucleostemin (GNL3), enhances H2B-ECFP mobility in the nucleolus. Furthermore, Nucleolin knockdown significantly decreases H2B-ECFP compartmentalization in the nucleolus, while H2B-ECFP residence and mobility in the nucleolus was prolonged upon Nucleolin overexpression. Co-expression of N-terminal and RNA binding domain (RBD) deletion mutants of Nucleolin or inhibiting 45S rRNA synthesis reduces the sequestration of H2B-ECFP in the nucleolus. Taken together, these studies reveal a crucial role of Nucleolin-rRNA complex in modulating the compartmentalization, stability and dynamics of H2B within the nucleolus.
Collapse
Affiliation(s)
- Ayantika Sen Gupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Gaurav Joshi
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Sumit Pawar
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
3
|
Rodriguez-Corona U, Pereira-Santana A, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Novel Ribonuclease Activity Differs between Fibrillarins from Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1878. [PMID: 29163603 PMCID: PMC5674935 DOI: 10.3389/fpls.2017.01878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/16/2017] [Indexed: 05/09/2023]
Abstract
Fibrillarin is one of the most important nucleolar proteins that have been shown as essential for life. Fibrillarin localizes primarily at the periphery between fibrillar center and dense fibrillar component as well as in Cajal bodies. In most plants there are at least two different genes for fibrillarin. In Arabidopsis thaliana both genes show high level of expression in transcriptionally active cells. Here, we focus on two important differences between A. thaliana fibrillarins. First and most relevant is the enzymatic activity by AtFib2. The AtFib2 shows a novel ribonuclease activity that is not seen with AtFib1. Second is a difference in the ability to interact with phosphoinositides and phosphatidic acid between both proteins. We also show that the novel ribonuclease activity as well as the phospholipid binding region of fibrillarin is confine to the GAR domain. The ribonuclease activity of fibrillarin reveals in this study represents a new role for this protein in rRNA processing.
Collapse
Affiliation(s)
- Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
| | - Alejandro Pereira-Santana
- Biosystematics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico
- *Correspondence: Enrique Castano,
| |
Collapse
|
4
|
Rodriguez-Corona U, Sobol M, Rodriguez-Zapata LC, Hozak P, Castano E. Fibrillarin from Archaea to human. Biol Cell 2015; 107:159-74. [PMID: 25772805 DOI: 10.1111/boc.201400077] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/05/2015] [Indexed: 12/19/2022]
Abstract
Fibrillarin is an essential protein that is well known as a molecular marker of transcriptionally active RNA polymerase I. Fibrillarin methyltransferase activity is the primary known source of methylation for more than 100 methylated sites involved in the first steps of preribosomal processing and required for structural ribosome stability. High expression levels of fibrillarin have been observed in several types of cancer cells, particularly when p53 levels are reduced, because p53 is a direct negative regulator of fibrillarin transcription. Here, we show fibrillarin domain conservation, structure and interacting molecules in different cellular processes as well as with several viral proteins during virus infection.
Collapse
Affiliation(s)
- Ulises Rodriguez-Corona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Luis Carlos Rodriguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Mérida, Yucatan, Mexico
| |
Collapse
|
5
|
Petrovská B, Šebela M, Doležel J. Inside a plant nucleus: discovering the proteins. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1627-40. [PMID: 25697798 DOI: 10.1093/jxb/erv041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nuclear proteins are a vital component of eukaryotic cell nuclei and have a profound effect on the way in which genetic information is stored, expressed, replicated, repaired, and transmitted to daughter cells and progeny. Because of the plethora of functions, nuclear proteins represent the most abundant components of cell nuclei in all eukaryotes. However, while the plant genome is well understood at the DNA level, information on plant nuclear proteins remains scarce, perhaps with the exception of histones and a few other proteins. This lack of knowledge hampers efforts to understand how the plant genome is organized in the nucleus and how it functions. This review focuses on the current state of the art of the analysis of the plant nuclear proteome. Previous proteome studies have generally been designed to search for proteins involved in plant response to various forms of stress or to identify rather a modest number of proteins. Thus, there is a need for more comprehensive and systematic studies of proteins in the nuclei obtained at individual phases of the cell cycle, or isolated from various tissue types and stages of cell and tissue differentiation. All this in combination with protein structure, predicted function, and physical localization in 3D nuclear space could provide much needed progress in our understanding of the plant nuclear proteome and its role in plant genome organization and function.
Collapse
Affiliation(s)
- Beáta Petrovská
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 783 71 Olomouc, Czech Republic
| |
Collapse
|
6
|
Durut N, Sáez-Vásquez J. Nucleolin: dual roles in rDNA chromatin transcription. Gene 2015; 556:7-12. [PMID: 25225127 DOI: 10.1016/j.gene.2014.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/17/2023]
Abstract
Nucleolin is a major nucleolar protein conserved in all eukaryotic organisms. It is a multifunctional protein involved in different cellular aspects like chromatin organization and stability, DNA and RNA metabolism, assembly of ribonucleoprotein complexes, cytokinesis, cell proliferation and stress response. The multifunctionality of nucleolin is linked to its tripartite structure, post-translational modifications and its ability of shuttling from and to the nucleolus/nucleoplasm and cytoplasm. Nucleolin has been now studied for many years and its activities and properties have been described in a number of excellent reviews. Here, we overview the role of nucleolin in RNA polymerase I (RNAPI) transcription and describe recent results concerning its functional interaction with rDNA chromatin organization. For a long time, nucleolin has been associated with rRNA gene expression and pre-rRNA processing. However, the functional connection between nucleolin and active versus inactive rRNA genes is still not fully understood. Novel evidence indicates that the nucleolin protein might be required for controlling the transcriptional ON/OFF states of rDNA chromatin in both mammals and plants.
Collapse
Affiliation(s)
- Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France; Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France; Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France.
| |
Collapse
|
7
|
Nucleolin, a major conserved multifunctional nucleolar phosphoprotein of proliferating cells. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0017-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Rosby R, Cui Z, Rogers E, deLivron MA, Robinson VL, DiMario PJ. Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 2009; 20:4424-34. [PMID: 19710426 DOI: 10.1091/mbc.e08-06-0592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian nucleostemin (NS) is a nucleolar guanosine triphosphate-binding protein implicated in cell cycle progression, stem cell proliferation, and ribosome assembly. Drosophila melanogaster contains a four-member nucleostemin family (NS1-4). NS1 is the closest orthologue to human NS; it shares 33% identity and 67% similarity with human NS. We show that NS1 has intrinsic GTPase and ATPase activity and that it is present within nucleoli of most larval and adult cells. Endogenous NS1 and lightly expressed green fluorescent protein (GFP)-NS1 enrich within the nucleolar granular regions as expected, whereas overexpressed GFP-NS1 localized throughout the nucleolus and nucleoplasm, and to several transcriptionally active interbands of polytene chromosomes. Severe overexpression correlated with the appearance of melanotic tumors and larval/pupal lethality. Depletion of 60% of NS1 transcripts also lead to larval and pupal lethality. NS1 protein depletion>95 correlated with the loss of imaginal island (precursor) cells in the larval midgut and to an apparent block in the nucleolar release of large ribosomal subunits in terminally differentiated larval midgut polyploid cells. Ultrastructural examination of larval Malpighian tubule cells depleted for NS1 showed a loss of cytoplasmic ribosomes and a concomitant appearance of cytoplasmic preautophagosomes and lysosomes. We interpret the appearance of these structures as indicators of cell stress response.
Collapse
Affiliation(s)
- Raphyel Rosby
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | | | | | | | | | |
Collapse
|
9
|
Stepiński D. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery. PROTOPLASMA 2009; 235:77-89. [PMID: 19241118 DOI: 10.1007/s00709-009-0033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 01/19/2009] [Indexed: 05/03/2023]
Abstract
The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.
Collapse
Affiliation(s)
- Dariusz Stepiński
- Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231, Łódź, Poland.
| |
Collapse
|
10
|
Sobol MA, González-Camacho F, Kordyum EL, Medina FJ. Nucleolar proteins change in altered gravity. J Appl Biomed 2007. [DOI: 10.32725/jab.2007.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Makimoto Y, Yano H, Kaneta T, Sato Y, Sato S. Molecular cloning and gene expression of a fibrillarin homolog of tobacco BY-2 cells. PROTOPLASMA 2006; 229:53-62. [PMID: 17019528 DOI: 10.1007/s00709-006-0183-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 11/02/2005] [Indexed: 05/12/2023]
Abstract
Fibrillarin is known to play an important role in precursor ribosomal RNA processing and ribosome assembly. The present study describes a fibrillarin homolog gene isolated from tobacco BY-2 cells and its expression during the cell cycle. The cDNA for a fibrillarin homolog, named NtFib1, was first cloned in Nicotiana tabacum with degenerate primers. It encodes 314 amino acids and the deduced amino acid sequence has some highly conserved functional domains, such as the glycine and arginine-rich (GAR) domain for nucleolar localization and the RNA-binding motif. The C-terminal region is highly conserved and has 7 beta-sheets and 7 alpha-helices which are peculiar to fibrillarin. Thus, it is suggested that the fibrillarin homolog of this plant species functions in the same way as the fibrillarin already known from human and yeast cells. Northern blot analysis of BY-2 cells synchronized with aphidicolin or a combination of aphidicolin and propyzamide showed that the histone H4 gene was specifically expressed in the S phase but NtFib1 mRNA remained at high levels during the cell cycle. Examination of the localization of NtFib1 protein tagged with green-fluorescent protein (GFP) suggested that some persisting in the mitotic apparatus was eventually incorporated into reconstructed nucleoli in late telophase. Newly synthesized GFP-tagged NtFib1 protein in the cytoplasm was added to the recycled protein in early mitosis. Highly concentrated actinomycin D completely inhibited the transcription of genes coding for rRNA (rDNA) but did not significantly suppress the amount of either NtFib1 mRNA or protein, although the NtFib1 protein was reversibly dislocated from nucleoli. Although hypoxic shock completely prohibited rDNA transcription, NtFib1 mRNA remained at the same level as in the control experiment, even after the 4 h treatment. These results indicate that the transcription of NtFib1 mRNA is not related to rDNA transcription and NtFib1 mRNA is resistant to disrupting factors during the cell cycle.
Collapse
MESH Headings
- Amino Acid Sequence
- Aphidicolin/pharmacology
- Benzamides/pharmacology
- Blotting, Northern
- Cell Cycle/genetics
- Cells, Cultured
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Dactinomycin/pharmacology
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Nicotiana/cytology
- Nicotiana/drug effects
- Nicotiana/genetics
Collapse
Affiliation(s)
- Y Makimoto
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | | | | | | | | |
Collapse
|
12
|
Sobol M, Gonzalez-Camacho F, Rodríguez-Vilariño V, Kordyum E, Medina FJ. Subnucleolar location of fibrillarin and NopA64 in Lepidium sativum root meristematic cells is changed in altered gravity. PROTOPLASMA 2006; 228:209-19. [PMID: 16838080 DOI: 10.1007/s00709-006-0157-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 10/11/2005] [Indexed: 05/10/2023]
Abstract
Fibrillarin and the plant nucleolin homolog NopA64 are two important nucleolar proteins involved in pre-rRNA processing. In order to determine the effects of the altered gravity environment on the nucleolus, we have investigated the location of fibrillarin and NopA64 in nucleolar subcomponents of cress (Lepidium sativum L.) root meristematic cells grown under clinorotation, which reproduces an important feature of microgravity, namely, the absence of the orienting action of a gravity vector, and compared it to the location in control cells grown in normal 1 g conditions. Prior to these experiments, we report here the characterization of cress fibrillarin as a 41 kDa protein which can be isolated from meristematic cells in three nuclear fractions, namely, the soluble ribonucleoprotein fraction, the chromatin fraction, and the nuclear-matrix fraction. Furthermore, as reported for other species, the location of both fibrillarin and NopA64 in the cress cell nucleolus was in zones known to contain complex ribonucleoprotein particles involved in early pre-rRNA processing, i.e., processomes. Under altered gravity, a decrease in the quantity of both fibrillarin and NopA64 compared to controls was observed in the transition zone between fibrillar centers and the dense fibrillar component, as well as in the bulk of the dense fibrillar component. These data suggest that altered (reduced) gravity results in a lowered level of functional activity in the nucleolus.
Collapse
Affiliation(s)
- M Sobol
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
González-Camacho F, Medina FJ. The nucleolar structure and the activity of NopA100, a nucleolin-like protein, during the cell cycle in proliferating plant cells. Histochem Cell Biol 2006; 125:139-53. [PMID: 16217651 DOI: 10.1007/s00418-005-0081-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
For the purpose of gaining knowledge of the relationships between cell proliferation and ribosome biogenesis, as two fundamental mutually interconnected cellular processes, studies were performed on cell populations synchronized in their cell-cycle progression by treatment with hydroxyurea, followed by sampling at different times after its removal. A structural rearrangement of the nucleolus was observed throughout the interphase, along with changes in the relative amounts of different nucleolar subcomponents. A structural model of nucleolar organization was associated with each interphase period. Throughout interphase, the nucleolin-like protein, NopA100, was immunodetected in the dense fibrillar component of the nucleolus, preferentially near fibrillar centers and its levels were shown to increase from G1 to G2. A western blotting analysis of soluble nuclear protein extracts with anti-NopA100 antibody resulted in the intense labeling of a 100-kDa band, but also of a series of proteins related to it, suggesting that NopA100 undergoes a physiological process of proteolytic maturation, similar to that described for mammalian nucleolin, but not reported in other biological model systems. Physiological proteolysis of NopA100, related to cell-cycle progression, was confirmed after the nuclei extracted from synchronized cells were treated with the protease inhibitor, leupeptin, which resulted in an increase of the 100-kDa band at the expenses of the decrease of some other bands, according to the cell-cycle stages. We therefore conclude that there is a relationship between the increase in nucleolar activity, cell-cycle progression, nucleolar structure, the activity of NopA100, and the proteolysis of this nucleolin-like protein.
Collapse
|
14
|
González-Camacho F, Medina FJ. The nucleolar structure and nucleolar proteins as indicators of cell proliferation events in plants. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
15
|
Lería F, Marco R, Medina FJ. Structural and antigenic preservation of plant samples by microwave-enhanced fixation, using dedicated hardware, minimizing heat-related effects. Microsc Res Tech 2004; 65:86-100. [PMID: 15570593 DOI: 10.1002/jemt.20109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We explored the use of microwave technology in fixation with the objective of achieving quicker fixation regimes, lower concentrations of toxic and volatile reagents, and enhanced antigen detection. We used a modified domestic microwave oven (900 W) and a low-power (5 W) microwave bench. The work was done on plant materials. The oven was supplemented with a cooling device, a stirring system, and a record of the sample temperature and the time of effective irradiation. The sample, immersed in a fixative solution of 1% paraformaldehyde (PFA) in PBS, was irradiated for only 10 minutes. The sample temperature did not exceed 37 degrees C. In these mild conditions, the quality of the (ultra)structural preservation of the samples, morphometrically assessed, was at the same level as obtained with the same fixative, using conventional methods. On the contrary, samples fixed in the same conditions without irradiation showed a poor structural preservation. The antigenic preservation of the irradiated samples was excellent, since the labeling levels of two nucleolar proteins, detected by immunogold, were three times higher than in conventionally fixed samples. In the so-called microwave bench, the pathway of microwaves is guided, so that low-power microwaves directly hit the sample and there is no dispersion of energy. Temperature of fixative did not increase after microwave irradiation. Fixation in the bench with either 4% PFA, or 1% PFA, for 20 minutes resulted in structural preservation of samples similar in quality as obtained with conventional fixation and in a similar or better level of antigen preservation. Therefore, controlling temperature and effective irradiation is crucial in order to obtain optimal structural and antigen preservation with microwave-enhanced fixation. The dramatic differences observed between microwave-irradiated samples and samples fixed in the same conditions without irradiation, strongly support the existence of specific effects of microwaves on fixation, independent from the mere heating of the samples.
Collapse
Affiliation(s)
- Francisca Lería
- Centro de Investigaciones Biológicas (CSIC), E-28040 Madrid, Spain
| | | | | |
Collapse
|
16
|
Hemleben V, Volkov RA, Zentgraf U, Medina FJ. Molecular Cell Biology: Organization and Molecular Evolution of rDNA, Nucleolar Dominance, and Nucleolus Structure. PROGRESS IN BOTANY 2004. [DOI: 10.1007/978-3-642-18819-0_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Long H, Zeng X, Jiao M, Hu B, Sun H, Liu Z, Zhang L, Hao S. Analysis of nucleolar pre-rRNA processing sites in pea (Pisum sativum). SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2003; 46:58-66. [PMID: 20213362 DOI: 10.1007/bf03182685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Indexed: 11/28/2022]
Abstract
The location of rRNA processing was analyzed by using in situ hybridization with ITS1 probe and immunolabeling of anti-fibrillarin mAb in pea (Pisum sativum) root pole cells. The results showed that rRNA processing sites were in dense fibrillar components (DFCs) and granular components (GCs), but not in fibrillar centers (FCs). Low doses of actinomycin D (AMD) treatment can selectively suppress pre-rRNA synthesis but cannot disturb the processing of preformed pre-rRNAs. With AMD treatment prolonged, the density of labeled signals gradually decreased, indicating the preformed pre-rRNAs were gradually processed.
Collapse
Affiliation(s)
- Hong Long
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Baran V, Vignon X, LeBourhis D, Renard JP, Fléchon JE. Nucleolar changes in bovine nucleotransferred embryos. Biol Reprod 2002; 66:534-43. [PMID: 11804972 DOI: 10.1095/biolreprod66.2.534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study focused on nucleolar changes in bovine embryos reconstructed from enucleated mature oocytes fused with blastomeres of morulae or with cultured, serum unstarved bovine fetal skin fibroblasts (embryonic vs. somatic cloning). The nucleotransferred (NT) embryos were collected and fixed at time intervals of 1-2 h (early 1-cell stage), 10-15 h (late 1-cell stage), 22-24 h (2-cell stage), 37-38 h (4-cell stage), 40-41 h (early 8-cell stage), 47-48 h (late 8-cell stage), and 55 h (16-cell stage) after fusion. Immunocytochemistry by light and electron microscopy was used for structure-function characterization of nucleolar components. Antibodies against RNA, protein B23, protein C23, and fibrillarin were applied. In addition, DNA was localized by the terminal deoxynucleotidyl transferase (TdT) technique, and the functional organization of chromatin was determined with the nick-translation immunogold approach. The results show that fully reticulated (active) nucleoli observed in donor cells immediately before fusion as well as in the early 1-cell stage after fusion were progressively transformed into nucleolar bodies displaying decreasing numbers of vacuoles from the 2- to 4-cell stage in both types of reconstructed embryos. At the late 8-cell stage, morphological signs of resuming nucleolar activity were detected. Numerous new small vacuoles appeared, and chromatin blocks reassociated with the nucleolar body. During this period, nick-translation technique revealed numerous active DNA sites in the periphery of chromatin blocks associated with the nucleolar body. Fully reticulated nucleoli were again observed as early as the 16-cell stage of embryonic cloned embryos. In comparison, the embryos obtained by fetal cloning displayed a lower tendency to develop, mainly during the first cell cycle and during the period of presumed reactivation. Correlatively, the changes in nucleolar morphology (desegregation and rebuilding) were at least delayed in many somatic NT embryos in comparison with the embryonic NT group. It is concluded that complete reprogramming of rRNA gene expression is part of the general nuclear reprogramming necessary for development after NT.
Collapse
Affiliation(s)
- V Baran
- Institut National de la Recherche Agronomique, Biologie du Développement et Biotechnologies, 78352 Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
19
|
Chan HY, Brogna S, O'Kane CJ. Dribble, the Drosophila KRR1p homologue, is involved in rRNA processing. Mol Biol Cell 2001; 12:1409-19. [PMID: 11359931 PMCID: PMC34593 DOI: 10.1091/mbc.12.5.1409] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila dribble (dbe) gene encodes a KH domain protein, homologous to yeast KRR1p. Expression of dbe transcripts is ubiquitous during embryogenesis. Overexpressed Dribble protein is localized in the nucleus and in some cell types in a subregion of the nucleolus. Homozygous dbe mutants die at first instar larval stage. Clonal analyses suggest that dbe(+) is required for survival of dividing cells. In dbe mutants, a novel rRNA-processing defect is found and accumulation of an abnormal rRNA precursor is detected.
Collapse
Affiliation(s)
- H Y Chan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, England, United Kingdom
| | | | | |
Collapse
|
20
|
Barneche F, Steinmetz F, Echeverrı́a M. Fibrillarin Genes Encode Both a Conserved Nucleolar Protein and a Novel Small Nucleolar RNA Involved in Ribosomal RNA Methylation inArabidopsis thaliana. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61499-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Pih KT, Yi MJ, Liang YS, Shin BJ, Cho MJ, Hwang I, Son D. Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. PLANT PHYSIOLOGY 2000; 123:51-8. [PMID: 10806224 PMCID: PMC58981 DOI: 10.1104/pp.123.1.51] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/1999] [Accepted: 01/29/2000] [Indexed: 05/17/2023]
Abstract
Fibrillarin is a nucleolar protein known to be involved in the processing of ribosomal RNA precursors. We isolated AtFbr1, a cDNA encoding a homolog of fibrillarin in Arabidopsis. The cDNA is 1.2 kb in size and encodes a polypeptide of 310 amino acid residues with a molecular mass of 33 kD. AtFbr1 is expressed at high levels in the flower and root tissue and at a slightly lower level in leaf tissue, whereas it was nearly undetectable in siliques. Expression of AtFbr1 was compared with that of the FLP (fibrillarin-like protein) gene identified by the Arabidopsis genome project. Abscisic acid treatment resulted in the down-regulation of the expression of both AtFbr1 and FLP genes in seedlings, although the degree of suppression was higher for FLP than for AtFbr1. In addition, the expression level of FLP decreased with the age of the seedlings, whereas AtFbr1 did not exhibit any detectable change. The subcellular localization of AtFbrl was studied with an in vivo targeting approach using a fusion protein, and was found to be correctly targeted to the nucleolus in protoplasts when expressed as a green fluorescent fusion protein (GFP). Deletion experiments showed that the N-terminal glycine- and arginine-rich region is necessary and sufficient to target AtFbr1 to the nucleolus.
Collapse
Affiliation(s)
- K T Pih
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Chinju 660-701, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
de Carcer G, Medina FJ. Simultaneous localization of transcription and early processing markers allows dissection of functional domains in the plant cell nucleolus. J Struct Biol 1999; 128:139-51. [PMID: 10600568 DOI: 10.1006/jsbi.1999.4187] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleolar transcription in isolated onion cell nuclei was visualized, after Br-UTP incorporation, under the conventional fluorescence microscope, the confocal microscope, and the transmission electron microscope. The confocal microscopy study of transcription was combined with immunodetection of fibrillarin, a component of the RNP complex involved in the early processing of pre-rRNA. Superposition of transcription and fibrillarin images from the same optical section showed some small "black holes" in the nucleolus, around which a lateral and radial differentiation of labeling was observed: laterally, zones corresponding to transcription labeling alternated with zones of fibrillarin labeling; radially, areas of transcription gradually became areas of colocalization of transcription and fibrillarin, and, further outward, of fibrillarin alone, which occupied the major part of the labeled nucleolar area. Three-dimensional reconstruction of the nucleolar transcription labeling, from confocal optical sections, showed clusters of foci arranged around an area of low or no labeling. Thin labeled extensions, connecting single foci, were observed. Visualization of transcription at the ultrastructural level identified the black holes as fibrillar centers, in view of their size and the absence of labeling in them. In fact, most of the labeling was observed in discrete areas of the dense fibrillar component, near fibrillar centers, including the transition area between these two components. This observation was supported by a quantitative study. Otherwise, the outline of fibrillar centers did not appear entirely surrounded by particles, and a minor proportion of particles was detected dispersed throughout the dense fibrillar component. As a complementary study, the transcription factor upstream binding factor (UBF) and the protein NopA64, a plant nucleolin homologue, were immunolocalized. Small foci of UBF localization alone and other foci in which the two protein markers overlapped were observed. The outer areas of the nucleolus showed the exclusive presence of NopA64. Under the electron microscope, UBF labeling, quantitatively assessed, appeared as clusters of particles, most of them surrounding fibrillar centers. A graphic model is presented to give a molecular interpretation of these data.
Collapse
Affiliation(s)
- G de Carcer
- Centro de Investigaciones Biol¿ogicas, (CSIC), Vel¿azquez 144, Madrid, E-28006, Spain
| | | |
Collapse
|
23
|
Abstract
A model is proposed in which U3 small nucleolar RNA (snoRNA) is recruited from an inactive, stored form in the dense fibrillar component (DFC) of the nucleolus to an active form that is associated with the initial ribosomal RNA (rRNA) precursor. The initial steps of rRNA processing occur in the DFC, and then it is proposed that the U3 snoRNA moves with intermediates in rRNA processing from the DFC to the granular component (GC) of the nucleolus. The nucleolar protein fibrillarin is located primarily in the DFC, and it is suggested that the complex of fibrillarin and U3 snoRNA dissociates when U3 snoRNA transits to the GC. Finally, when U3 snoRNA is released from the processed rRNA, the tether holding the rRNA in the nucleolus is broken and rRNA can then be exported from the nucleolus to the cytoplasm. U3 snoRNA is hypothesized to recycle back from the GC to the DFC where it is stored until future association with another initial rRNA precursor. Data supporting this model are summarized. U3 snoRNA is also stored in the coiled body of interphase cells and in the nucleolar remnants and prenucleolar bodies of mitotic cells, and there may be some similarity in the binding sites for stored U3 snoRNA in the DFC and in these structures.
Collapse
Affiliation(s)
- S A Gerbi
- Brown University, Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, RI 02912, USA.
| | | |
Collapse
|
24
|
Lazdins IB, Delannoy M, Sollner-Webb B. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma 1997; 105:481-95. [PMID: 9211976 DOI: 10.1007/bf02510485] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the cytological localization of rRNA synthesis, transport, and processing events within the mammalian cell nucleolus by double-label fluorescent in situ hybridization analysis using probes for small selected segments of pre-rRNA, which have known half-lives. In particular, a probe for an extremely short-lived 5' region that is not found separate of the pre-rRNA identifies nascent transcripts within the nucleolus of an intact active cell, while other characterized probes identify molecules at different stages in the rRNA processing pathway. Through these studies, visualized by confocal and normal light microscopy, we (1) confirm that rDNA transcription occurs in small foci within nucleoli, (2) show that the nascent pre-rRNA transcripts and most likely also the rDNA templates are surprisingly extended in the nucleolus, (3) provide evidence that the 5' end of the nascent rRNA transcript moves more rapidly away from the template DNA than does the 3' end of the newly released transcript, and (4) demonstrate that the various subsequent rRNA processing steps occur sequentially further from the transcription site, with each early processing event taking place in a distinct nucleolar subdomain. These last three points are contrary to the generally accepted paradigms of nucleolar organization and function. Our findings also imply that the nucleolus is considerably more complex than the conventional view, inferred from electron micrographs, of only three kinds of regions - fibrillar centers, dense fibrillar components, and granular components - for the dense fibrillar component evidently consists of several functionally distinct sub-domains that correlate with different steps of ribosome biogenesis.
Collapse
Affiliation(s)
- I B Lazdins
- Departments of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
25
|
Shah SB, Terry CD, Wells DA, DiMario PJ. Structural changes in oocyte nucleoli of Xenopus laevis during oogenesis and meiotic maturation. Chromosoma 1996; 105:111-21. [PMID: 8753701 DOI: 10.1007/bf02509521] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunoelectron microscopy with anti-nucleolin defined substructures within the multiple nucleoli of biosynthetically active stage II-III oocytes and within the nucleoli of relatively quiescent stage VI oocytes of Xenopus laevis. Dense fibrillar components (DFCs) of nucleoli from stage II-III oocytes consisted of nucleolonemas that radiated from a continuous DFC sheath surrounding fibrillar centers (FCs). Discernible granular regions (GRs) were absent in these same nucleoli. Conversely, stage VI oocyte nucleoli displayed compacted DFCs and prominent GRs. Immunofluorescence microscopy then tracked fibrillarin, nucleolin, and condensed DNA through oogenesis and into progesterone-induced meiotic maturation and nuclear breakdown. In stage II-III oocyte nucleoli, fibrillarin was enriched near the FC-DFC boundaries, while nucleolin was distributed throughout these same DFCs. Both proteins were enriched within the compacted DFCs of stage VI oocyte nucleoli. Staining with (DAPI) 4',6-diamidino-2-phenylindole showed condensed DNA within nucleolar FCs of both stage II-III and stage VI oocyte. Upon nuclear breakdown, we found fibrillarin and nucleolin in small particles and in the surrounding cytoplasm. Although we saw no trace of fibrillarin or nucleolin in nuclear remnants prepared just minutes later, DAPI-stained particles remained within these preparations, thus suggesting that FCs were at least slow to disassemble.
Collapse
Affiliation(s)
- S B Shah
- Department of Biochemistry, Louisiana State University, Baton Rouge, LA 70803-1806, USA
| | | | | | | |
Collapse
|
26
|
Beven AF, Lee R, Razaz M, Leader DJ, Brown JW, Shaw PJ. The organization of ribosomal RNA processing correlates with the distribution of nucleolar snRNAs. J Cell Sci 1996; 109 ( Pt 6):1241-51. [PMID: 8799814 DOI: 10.1242/jcs.109.6.1241] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the organization of pre-rRNA processing by confocal microscopy in pea root cell nucleoli using a variety of probes for fluorescence in situ hybridization and immunofluorescence. Our results show that transcript processing within the nucleolus is spatially highly organized. Probes to the 5' external transcribed spacer (ETS) and first internal transcribed spacer (ITS1) showed that the excision of the ETS occurred in a sub-region of the dense fibrillar component (DFC), whereas the excision of ITS1 occurred in the surrounding region, broadly corresponding to the granular component. In situ labelling with probes to the snoRNAs U3 and U14, and immunofluorescence labelling with antibodies to fibrillarin and SSB1 showed a high degree of coincidence with the ETS pattern, confirming that ETS cleavage and 18 S rRNA production occur in the DFC. ETS, U14, fibrillarin and SSB1 showed a fine substructure within the DFC comprising closely packed small foci, whereas U3 appeared more diffuse throughout the DFC. A third snoRNA, 7-2/MRP, was localised to the region surrounding the ETS, in agreement with its suggested role in ITS1 cleavage. All three snoRNAs were also frequently observed in numerous small foci in the nucleolar vacuoles, but none was detectable in coiled bodies. Antibodies to fibrillarin and SSB1 labelled coiled bodies strongly, though neither protein was detected in the nucleolar vacuoles. During mitosis, all the components analyzed, including pre-rRNA, were dispersed through the cell at metaphase, then became concentrated around the periphery of all the chromosomes at anaphase, before being localized to the developing nucleoli at late telophase. Pre-rRNA (ETS and ITS1 probes), U3 and U14 were also concentrated into small bodies, presumed to be pre-nucleolar bodies at anaphase.
Collapse
Affiliation(s)
- A F Beven
- Department of Cell Biology, John Innes Centre, Colney, Norwich, UK
| | | | | | | | | | | |
Collapse
|
27
|
Echeverria M, Lahmy S. Identification of a 67 kDa protein that binds specifically to the pre-rRNA primary processing site in a higher plant. Nucleic Acids Res 1995; 23:4963-70. [PMID: 8559652 PMCID: PMC307500 DOI: 10.1093/nar/23.24.4963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In radish pre-rRNA primary processing cleavage occurs at a UUUUCGCGC element (motif P) mapped in the 5'-external transcribed spacer (Delcasso-Tremousaygue et al., 1988). Significantly, motif P is part of a cluster of homologous elements including three UUUUCCGG elements (motifs A123) and a single UUUUGCCCC element (motif B). Here we used the EMSA to identify in radish extracts an RNA-binding activity, NF C, that specifically interacts with the pre-rRNA A123BP sequence. Using different RNA probes and competitors we show that NF C recognises a 38 base RNA sequence including the 3'-end of motif A3 and motifs B and P. NF C binds to poly U, but not to poly A, poly C or poly G. Therefore we used poly (U) Sepharose chromatography as a final step to obtain pure NF C fractions. These, analysed by SDS-PAGE, revealed two major polypeptides of 67 and 60 kDa. According to UV cross-linking analysis the 67 kDa polypeptide corresponds to NF C activity, while the 60 kDa species is a proteolysed form of this protein. We also showed that NF C is enriched in nuclear extracts. Based on its stringent RNA substrate specificity and its nuclear localisation we propose that NF C is involved in pre-rRNA primary processing in plants.
Collapse
Affiliation(s)
- M Echeverria
- Laboratoire de Physiologie et Biologie Moléculaire Végétale, Université de Perpignan, URA CNRS 565, France
| | | |
Collapse
|