1
|
Humaira Z, Cho D, Peng Y, Avila F, Park YL, Kim CY, Lee J. Demequina capsici sp. nov., a novel plant growth-promoting actinomycete isolated from the rhizosphere of bell pepper (Capsicum annuum). Sci Rep 2024; 14:15830. [PMID: 38982145 PMCID: PMC11233565 DOI: 10.1038/s41598-024-66202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.
Collapse
Affiliation(s)
- Zalfa Humaira
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Donghyun Cho
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Yuxin Peng
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Forbes Avila
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
- Human and Environmental Toxicology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea
| | - Yu Lim Park
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Cha Young Kim
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Jiyoung Lee
- Korean Collection for Type Cultures (KCTC), Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Yuseong, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Stutts L, Latimer S, Batyrshina Z, Dickinson G, Alborn H, Block AK, Basset GJ. The evolution of strictly monofunctional naphthoquinol C-methyltransferases is vital in cyanobacteria and plastids. THE PLANT CELL 2023; 35:3686-3696. [PMID: 37477936 PMCID: PMC10533327 DOI: 10.1093/plcell/koad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Prenylated quinones are membrane-associated metabolites that serve as vital electron carriers for respiration and photosynthesis. The UbiE (EC 2.1.1.201)/MenG (EC 2.1.1.163) C-methyltransferases catalyze pivotal ring methylations in the biosynthetic pathways of many of these quinones. In a puzzling evolutionary pattern, prokaryotic and eukaryotic UbiE/MenG homologs segregate into 2 clades. Clade 1 members occur universally in prokaryotes and eukaryotes, excluding cyanobacteria, and include mitochondrial COQ5 enzymes required for ubiquinone biosynthesis; Clade 2 members are specific to cyanobacteria and plastids. Functional complementation of an Escherichia coli ubiE/menG mutant indicated that Clade 1 members display activity with both demethylbenzoquinols and demethylnaphthoquinols, independently of the quinone profile of their original taxa, while Clade 2 members have evolved strict substrate specificity for demethylnaphthoquinols. Expression of the gene-encoding bifunctional Arabidopsis (Arabidopsis thaliana) COQ5 in the cyanobacterium Synechocystis or its retargeting to Arabidopsis plastids resulted in synthesis of a methylated variant of plastoquinone-9 that does not occur in nature. Accumulation of methylplastoquinone-9 was acutely cytotoxic, leading to the emergence of suppressor mutations in Synechocystis and seedling lethality in Arabidopsis. These data demonstrate that in cyanobacteria and plastids, co-occurrence of phylloquinone and plastoquinone-9 has driven the evolution of monofunctional demethylnaphthoquinol methyltransferases and explains why plants cannot capture the intrinsic bifunctionality of UbiE/MenG to simultaneously synthesize their respiratory and photosynthetic quinones.
Collapse
Affiliation(s)
- Lauren Stutts
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Scott Latimer
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhaniya Batyrshina
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Gabriella Dickinson
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Hans Alborn
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, ARS, USDA, Gainesville, FL 32608, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Abstract
Aminoglycosides (AG) have been used against Gram-negative bacteria for decades. Yet, how bacterial metabolism and environmental conditions modify AG toxicity is poorly understood. Here, we show that the level of AG susceptibility varies depending on the nature of the respiratory chain that Escherichia coli uses for growth, i.e., oxygen, nitrate, or fumarate. We show that all components of the fumarate respiratory chain, namely, hydrogenases 2 and 3, the formate hydrogenlyase complex, menaquinone, and fumarate reductase are required for AG-mediated killing under fumarate respiratory conditions. In addition, we show that the AAA+ ATPase RavA and its Von Wildebrand domain-containing partner, ViaA, are essential for AG to act under fumarate respiratory conditions. This effect was true for all AG that were tested but not for antibiotics from other classes. In addition, we show that the sensitizing effect of RavA-ViaA is due to increased gentamicin uptake in a proton motive force-dependent manner. Interestingly, the sensitizing effect of RavA-ViaA was prominent in poor energy conservation conditions, i.e., with fumarate, but dispensable under high energy conservation conditions, i.e., in the presence of nitrate or oxygen. We propose that RavA-ViaA can facilitate uptake of AG across the membrane in low-energy cellular states. IMPORTANCE Antibiotic resistance is a major public health, social, and economic problem. Aminoglycosides (AG) are known to be highly effective against Gram-negative bacteria, but their use is limited to life-threatening infections because of their nephrotoxicity and ototoxicity at therapeutic dose. Elucidation of AG-sensitization mechanisms in bacteria would allow reduced effective doses of AG. Here, we have identified the molecular components involved in anaerobic fumarate respiration that are required for AG to kill. In addition to oxidoreductases and menaquinone, this includes new molecular players, RavA, an AAA+ ATPase, and ViaA, its partner that has the VWA motif. Remarkably, the influence of RavA-ViaA on AG susceptibility varies according to the type of bioenergetic metabolism used by E. coli. This is a significant advance because anaerobiosis is well known to reduce the antibacterial activity of AG. This study highlights the critical importance of the relationship between culture conditions, metabolism, and antibiotic susceptibility.
Collapse
|
4
|
Mechanistic and structural diversity between cytochrome bd isoforms of Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2114013118. [PMID: 34873041 DOI: 10.1073/pnas.2114013118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
The treatment of infectious diseases caused by multidrug-resistant pathogens is a major clinical challenge of the 21st century. The membrane-embedded respiratory cytochrome bd-type oxygen reductase is a critical survival factor utilized by pathogenic bacteria during infection, proliferation and the transition from acute to chronic states. Escherichia coli encodes for two cytochrome bd isoforms that are both involved in respiration under oxygen limited conditions. Mechanistic and structural differences between cydABX (Ecbd-I) and appCBX (Ecbd-II) operon encoded cytochrome bd variants have remained elusive in the past. Here, we demonstrate that cytochrome bd-II catalyzes oxidation of benzoquinols while possessing additional specificity for naphthoquinones. Our data show that although menaquinol-1 (MK1) is not able to directly transfer electrons onto cytochrome bd-II from E. coli, it has a stimulatory effect on its oxygen reduction rate in the presence of ubiquinol-1. We further determined cryo-EM structures of cytochrome bd-II to high resolution of 2.1 Å. Our structural insights confirm that the general architecture and substrate accessible pathways are conserved between the two bd oxidase isoforms, but two notable differences are apparent upon inspection: (i) Ecbd-II does not contain a CydH-like subunit, thereby exposing heme b 595 to the membrane environment and (ii) the AppB subunit harbors a structural demethylmenaquinone-8 molecule instead of ubiquinone-8 as found in CydB of Ecbd-I Our work completes the structural landscape of terminal respiratory oxygen reductases of E. coli and suggests that structural and functional properties of the respective oxidases are linked to quinol-pool dependent metabolic adaptations in E. coli.
Collapse
|
5
|
Monnoyer R, Eftedal I, Hjelde A, Deb S, Haugum K, Lautridou J. Functional Profiling Reveals Altered Metabolic Activity in Divers' Oral Microbiota During Commercial Heliox Saturation Diving. Front Physiol 2021; 12:702634. [PMID: 34721054 PMCID: PMC8548618 DOI: 10.3389/fphys.2021.702634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The extreme environment in saturation diving affects all life forms, including the bacteria that reside on human skin and mucosa. The oral cavity alone is home to hundreds of different bacteria. In this study, we examined the metabolic activity of oral bacteria from healthy males during commercial heliox saturation diving. We focused on environmentally induced changes that might affect the divers’ health and fitness. Methods: We performed pathway abundance analysis using PICRUSt2, a bioinformatics software package that uses marker gene data to compute the metabolic activity of microbial communities. The analysis is based on 16S rRNA metagenomic data generated from the oral microbiota of 23 male divers before, during, and after 4weeks of commercial heliox saturation diving. Environmentally induced changes in bacterial metabolism were computed from differences in predicted pathway abundances at baseline before, versus during, and immediately after saturation diving. Results and Conclusion: The analysis predicted transient changes that were primarily associated with the survival and growth of bacteria in oxygenated environments. There was a relative increase in the abundance of aerobic metabolic pathways and a concomitant decrease in anaerobic metabolic pathways, primarily comprising of energy metabolism, oxidative stress responses, and adenosylcobalamin biosynthesis. Adenosylcobalamin is a bioactive form of vitamin B12 (vitB12), and a reduction in vitB12 biosynthesis may hypothetically affect the divers’ physiology. While host effects of oral bacterial vitamin metabolism are uncertain, this is a finding that concurs with the existing recommendations for vitB12 supplements as part of the divers’ diet, whether to boost antioxidant defenses in bacteria or their host or to improve oxygen transport during saturation diving.
Collapse
Affiliation(s)
- Roxane Monnoyer
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Astrid Hjelde
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sanjoy Deb
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Nutraceuticals, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Kjersti Haugum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jacky Lautridou
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Cerqueda-García D, Améndola-Pimenta M, Zamora-Briseño JA, González-Penagos CE, Árcega-Cabrera F, Ceja-Moreno V, Rodríguez-Canul R. Effects of chronic exposure to water accommodated fraction (WAF) of light crude oil on gut microbiota composition of the lined sole (Achirus lineatus). MARINE ENVIRONMENTAL RESEARCH 2020; 161:105116. [PMID: 32861142 DOI: 10.1016/j.marenvres.2020.105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine fish to hydrocarbon compounds from crude oil can cause physiological and ecological alterations that can result in several cytotoxic, genotoxic, and teratogenic damages. One consequence of this exposure is the dysbiosis of the gut microbiota, where the normal bacterial composition is modified. Herein, we assessed the effect of the exposure to water accommodated fraction (WAF) of a light crude oil into the gut microbiota of a native species, the lined sole Achirus lineatus, a benthonic fish widely distributed in the Gulf of Mexico (GoM). We performed a chronic bioassay using two WAF concentrations (5 and 10% v/v), collecting lined sole entire gastrointestinal tracts for microbiota analyses at two timepoints, 14 and 28 days. Changes in the gut microbiota composition were determined by high throughput amplicon sequencing of the gene 16S rRNA. Diversity analyses showed that WAF exposure produced similar changes in the microbiota composition at both concentrations. Metagenomic functional prediction showed that these alterations could result in a shift in the gut redox status, towards a more anoxygenic environment. Enrichment of bacteria capable of use hydrocarbon as carbon source seems to be fast regardless time of exposure or WAF concentrations. Our results suggest that chronic WAF exposure can cause a dysbiosis in this benthic native species from the GoM.
Collapse
Affiliation(s)
- Daniel Cerqueda-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| | - Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Víctor Ceja-Moreno
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México. Puerto de Abrigo S/N, Sisal Yucatán, 97356, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN)-Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
7
|
Szyttenholm J, Chaspoul F, Bauzan M, Ducluzeau AL, Chehade MH, Pierrel F, Denis Y, Nitschke W, Schoepp-Cothenet B. The controversy on the ancestral arsenite oxidizing enzyme; deducing evolutionary histories with phylogeny and thermodynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148252. [PMID: 32569664 DOI: 10.1016/j.bbabio.2020.148252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/07/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.
Collapse
Affiliation(s)
- Julie Szyttenholm
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | - Florence Chaspoul
- Aix Marseille Univ., CNRS, IRD, IMBE UMR 7263, Faculté de Pharmacie, 13005 Marseille, France
| | - Marielle Bauzan
- Aix-Marseille Univ., CNRS, Plateforme Fermentation, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Anne-Lise Ducluzeau
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA
| | | | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Yann Denis
- Aix-Marseille Univ., CNRS, Plateforme Transcriptomique, FR3479, IMM, 13402 Marseille Cedex 20, France
| | - Wolfgang Nitschke
- Aix-Marseille Univ., CNRS, BIP UMR 7281, FR 3479, IMM, 13402 Marseille Cedex 20, France
| | | |
Collapse
|
8
|
Xu W, Yao J, Liu L, Ma X, Li W, Sun X, Wang Y. Improving squalene production by enhancing the NADPH/NADP + ratio, modifying the isoprenoid-feeding module and blocking the menaquinone pathway in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:68. [PMID: 30962822 PMCID: PMC6437923 DOI: 10.1186/s13068-019-1415-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Squalene is currently used widely in the food, cosmetics, and medicine industries. It could also replace petroleum as a raw material for fuels. Microbial fermentation processes for squalene production have been emerging over recent years. In this study, to study the squalene-producing potential of Escherichia coli (E. coli), we employed several increasing strategies for systematic metabolic engineering. These include the expression of human truncated squalene synthase, the overexpression of rate-limiting enzymes in isoprenoid pathway, the modification of isoprenoid-feeding module and the blocking of menaquinone pathway. RESULTS Herein, human truncated squalene synthase was engineered in Escherichia coli to create a squalene-producing bacterial strain. To increase squalene yield, we employed several metabolic engineering strategies. A fivefold squalene titer increase was achieved by expressing rate-limiting enzymes (IDI, DXS, and FPS) involved in the isoprenoid pathway. Pyridine nucleotide transhydrogenase (UdhA) was then expressed to improve the cellular NADPH/NADP+ ratio, resulting in a 59% increase in squalene titer. The Embden-Meyerhof pathway (EMP) was replaced with the Entner-Doudoroff pathway (EDP) and pentose phosphate pathway (PPP) to feed the isoprenoid pathway, along with the overexpression of zwf and pgl genes which encode rate-limiting enzymes in the EDP and PPP, leading to a 104% squalene content increase. Based on the blocking of menaquinone pathway, a further 17.7% increase in squalene content was achieved. Squalene content reached a final 28.5 mg/g DCW and 52.1 mg/L. CONCLUSIONS This study provided novel strategies for improving squalene yield and demonstrated the potential of producing squalene by E. coli.
Collapse
Affiliation(s)
- Wen Xu
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Jia Yao
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Lijun Liu
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Xi Ma
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Wei Li
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Xiaojing Sun
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| | - Yang Wang
- The Molecular Virology and Viral Immunology Laboratory, Xi’an Medical University, Xi’an, 710021 Shaanxi China
| |
Collapse
|
9
|
Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:12-21. [DOI: 10.1016/j.bbabio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022]
|
10
|
Förster AH, Beblawy S, Golitsch F, Gescher J. Electrode-assisted acetoin production in a metabolically engineered Escherichia coli strain. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:65. [PMID: 28293295 PMCID: PMC5348906 DOI: 10.1186/s13068-017-0745-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/28/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND This paper describes the metabolic engineering of Escherichia coli for the anaerobic fermentation of glucose to acetoin. Acetoin has well-established applications in industrial food production and was suggested to be a platform chemical for a bio-based economy. However, the biotechnological production is often hampered by the simultaneous formation of several end products in the absence of an electron acceptor. Moreover, typical production strains are often potentially pathogenic. The goal of this study was to overcome these limitations by establishing an electrode-assisted fermentation process in E. coli. Here, the surplus of electrons released in the production process is transferred to an electrode as anoxic and non-depletable electron acceptor. RESULTS In a first step, the central metabolism was steered towards the production of pyruvate from glucose by deletion of genes encoding for enzymes of central reactions of the anaerobic carbon metabolism (ΔfrdA-D ΔadhE ΔldhA Δpta-ack). Thereafter, the genes for the acetolactate synthase (alsS) and the acetolactate decarboxylase (alsD) were expressed in this strain from a plasmid. Addition of nitrate as electron acceptor led to an anaerobic acetoin production with a yield of up to 0.9 mol acetoin per mol of glucose consumed (90% of the theoretical maximum). In a second step, the electron acceptor nitrate was replaced by a carbon electrode. This interaction necessitated the further expression of c-type cytochromes from Shewanella oneidensis and the addition of the soluble redox shuttle methylene blue. The interaction with the non-depletable electron acceptor led to an acetoin formation with a yield of 79% of the theoretical maximum (0.79 mol acetoin per mol glucose). CONCLUSION Electrode-assisted fermentations are a new strategy to produce substances of biotechnological value that are more oxidized than the substrates. Here, we show for the first time a process in which the commonly used chassis strain E. coli was tailored for an electrode-assisted fermentation approach branching off from the central metabolite pyruvate. At this early stage, we see promising results regarding carbon and electron recovery and will use further strain development to increase the anaerobic metabolic turnover rate.
Collapse
Affiliation(s)
- Andreas H. Förster
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Frederik Golitsch
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Department of Microbiology of Natural and Technical Interfaces, Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Sheng L, Kovács K, Winzer K, Zhang Y, Minton NP. Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:5. [PMID: 28066509 PMCID: PMC5210280 DOI: 10.1186/s13068-016-0692-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/17/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The thermophile Geobacillus thermoglucosidasius has considerable attraction as a chassis for the production of chemicals and fuels. It utilises a wide range of sugars and oligosaccharides typical of those derived from lignocellulose and grows at elevated temperatures. The latter improves the rate of feed conversion, reduces fermentation cooling costs and minimises the risks of contamination. Full exploitation of its potential has been hindered by a dearth of effective gene tools. RESULTS Here we designed and tested a collection of vectors (pMTL60000 series) in G. thermoglucosidasius NCIMB 11955 equivalent to the widely used clostridial pMTL80000 modular plasmid series. By combining a temperature-sensitive replicon and a heterologous pyrE gene from Geobacillus kaustophilus as a counter-selection marker, a highly effective and rapid gene knock-out/knock-in system was established. Its use required the initial creation of uracil auxotroph through deletion of pyrE using allele-coupled exchange (ACE) and selection for resistance to 5-fluoroorotic acid. The turnaround time for the construction of further mutants in this pyrE minus strain was typically 5 days. Following the creation of the desired mutant, the pyrE allele was restored to wild type, within 3 days, using ACE and selection for uracil prototrophy. Concomitant with this process, cargo DNA (pheB) could be readily integrated at the pyrE locus. The system's utility was demonstrated through the generation in just 30 days of three independently engineered strains equivalent to a previously constructed ethanol production strain, TM242. This involved the creation of two in-frame deletions (ldh and pfl) and the replacement of a promoter region of a third gene (pdh) with an up-regulated variant. In no case did the production of ethanol match that of TM242. Genome sequencing of the parental strain, TM242, and constructed mutant derivatives suggested that NCIMB 11955 is prone to the emergence of random mutations which can dramatically affect phenotype. CONCLUSIONS The procedures and principles developed for clostridia, based on the use of pyrE alleles and ACE, may be readily deployed in G. thermoglucosidasius. Marker-less, in-frame deletion mutants can be rapidly generated in 5 days. However, ancillary mutations frequently arise, which can influence phenotype. This observation emphasises the need for improved screening and selection procedures at each step of the engineering processes, based on the generation of multiple, independent strains and whole-genome sequencing.
Collapse
Affiliation(s)
- Lili Sheng
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Ying Zhang
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Nigel Peter Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
12
|
Hinks J, Han EJY, Wang VB, Seviour TW, Marsili E, Loo JSC, Wuertz S. Naphthoquinone glycosides for bioelectroanalytical enumeration of the faecal indicator Escherichia coli. Microb Biotechnol 2016; 9:746-757. [PMID: 27364994 PMCID: PMC5072191 DOI: 10.1111/1751-7915.12373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/01/2022] Open
Abstract
Microbial water quality monitoring for the presence of faecal indicator bacteria (FIB) is a mandatory activity in many countries and is key in public health protection. Despite technological advances and a need for methodological improvements, chromogenic and fluorogenic enzymatic techniques remain the mainstays of water quality monitoring for both public health agencies and regulated utilities. We demonstrated that bioelectroanalytical approaches to FIB enumeration are possible and can be achieved using commercially available enzyme-specific resorufin glycosides, although these are expensive, not widely available or designed for purpose. Following this, we designed two naphthoquinone glycosides which performed better, achieving Escherichia coli detection in the range 5.0 × 102 to 5.0 × 105 CFU ml-1 22-54% quicker than commercially available resorufin glycosides. The molecular design of the naphthoquinone glycosides requires fewer synthetic steps allowing them to be produced for as little as US$50 per kg. Tests with environmental samples demonstrated the low tendency for abiotic interference and that, despite specificity being maintained between β-glucuronidase and β-galactosidase, accurate enumeration of E. coli in environmental samples necessitates development of a selective medium. In comparison to a commercially available detection method, which has U.S. Environmental Protection Agency (EPA) approval, our approach performed better at high organism concentrations, detecting 500 organisms in 9 h compared with 13.5 h for the commercial method. Bioelectroanalytical detection is comparable to current approved methods and with further development could result in improved detection times. A recent trend for low-cost open-source hardware means that automated, potentiostatically controlled E. coli detection systems could be constructed for less than US$100 per channel.
Collapse
Affiliation(s)
- Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
| | - Evelina J Y Han
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Victor B Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Thomas W Seviour
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Enrico Marsili
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Joachim S C Loo
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551.
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798.
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Balagurunathan B, Jain VK, Tear CJY, Lim CY, Zhao H. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol. Bioprocess Biosyst Eng 2016; 40:361-372. [PMID: 27796571 DOI: 10.1007/s00449-016-1703-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Integrated approaches using in silico model-based design and advanced genetic tools have enabled efficient production of fuels, chemicals and functional ingredients using microbial cell factories. In this study, using a recently developed genome-scale metabolic model for Escherichia coli iJO1366, a mutant strain has been designed in silico for the anaerobic growth-coupled production of a simple polyol, glycerol. Computational complexity was significantly reduced by systematically reducing the target reactions used for knockout simulations. One promising penta knockout E. coli mutant (E. coli ΔadhE ΔldhA ΔfrdC ΔtpiA ΔmgsA) was selected from simulation study and was constructed experimentally by sequentially deleting five genes. The penta mutant E. coli bearing the Saccharomyces cerevisiae glycerol production pathway was able to grow anaerobically and produce glycerol as the major metabolite with up to 90% of theoretical yield along with stoichiometric quantities of acetate and formate. Using the penta mutant E. coli strain we have demonstrated that the ATP formation from the acetate pathway was essential for growth under anaerobic conditions. The general workflow developed can be easily applied to anaerobic production of other platform chemicals using E. coli as the cell factory.
Collapse
Affiliation(s)
- Balaji Balagurunathan
- Bioprocess Engineering Center, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Vishist Kumar Jain
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Crystal Jing Ying Tear
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Chan Yuen Lim
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Hua Zhao
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore.
| |
Collapse
|
14
|
Unden G, Strecker A, Kleefeld A, Kim OB. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth. EcoSal Plus 2016; 7. [PMID: 27415771 PMCID: PMC11575717 DOI: 10.1128/ecosalplus.esp-0021-2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
C4-dicarboxylates and the C4-dicarboxylic amino acid l-aspartate support aerobic and anaerobic growth of Escherichia coli and related bacteria. In aerobic growth, succinate, fumarate, D- and L-malate, L-aspartate, and L-tartrate are metabolized by the citric acid cycle and associated reactions. Because of the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of C4-dicarboxylates depends on fumarate reduction to succinate (fumarate respiration). In some related bacteria (e.g., Klebsiella), utilization of C4-dicarboxylates, such as tartrate, is independent of fumarate respiration and uses a Na+-dependent membrane-bound oxaloacetate decarboxylase. Uptake of the C4-dicarboxylates into the bacteria (and anaerobic export of succinate) is achieved under aerobic and anaerobic conditions by different sets of secondary transporters. Expression of the genes for C4-dicarboxylate metabolism is induced in the presence of external C4-dicarboxylates by the membrane-bound DcuS-DcuR two-component system. Noncommon C4-dicarboxylates like l-tartrate or D-malate are perceived by cytoplasmic one-component sensors/transcriptional regulators. This article describes the pathways of aerobic and anaerobic C4-dicarboxylate metabolism and their regulation. The citric acid cycle, fumarate respiration, and fumarate reductase are covered in other articles and discussed here only in the context of C4-dicarboxylate metabolism. Recent aspects of C4-dicarboxylate metabolism like transport, sensing, and regulation will be treated in more detail. This article is an updated version of an article published in 2004 in EcoSal Plus. The update includes new literature, but, in particular, the sections on the metabolism of noncommon C4-dicarboxylates and their regulation, on the DcuS-DcuR regulatory system, and on succinate production by engineered E. coli are largely revised or new.
Collapse
Affiliation(s)
- Gottfried Unden
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexander Strecker
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Alexandra Kleefeld
- Institute for Microbiology und Wine Research, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ok Bin Kim
- Department of Life Sciences, Ewha Womans University, 120-750 Seoul, Korea
| |
Collapse
|
15
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 6. [PMID: 26442941 DOI: 10.1128/ecosalplus.esp-0005-2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Escherichia coli contains a versatile respiratory chain that oxidizes 10 different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. A large number of respiratory pathways can be established by combining different electron donors and acceptors. The respiratory dehydrogenases use quinones as the electron acceptors that are oxidized by the terminal reductase and oxidases. The enzymes vary largely with respect to their composition, architecture, membrane topology, and the mode of energy conservation. Most of the energy-conserving dehydrogenases (FdnGHI, HyaABC, HybCOAB, and others) and the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox-loop mechanism. Two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases and terminal reductases do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known or can be predicted. The H+/2e- ratios for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and the respiratory chains is described and related to the H+/2e- ratios.
Collapse
|
16
|
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:198-213. [PMID: 26545610 DOI: 10.1016/j.bbabio.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Axel Magalon
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France.
| | - François Alberge
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France
| |
Collapse
|
17
|
The Aerobic and Anaerobic Respiratory Chain of Escherichia coli and Salmonella enterica: Enzymes and Energetics. EcoSal Plus 2015; 3. [PMID: 26443736 DOI: 10.1128/ecosalplus.3.2.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Escherichia coli contains a versatile respiratory chain which oxidizes ten different electron donor substrates and transfers the electrons to terminal reductases or oxidases for the reduction of six different electron acceptors. Salmonella is able to use even two more electron acceptors. The variation is further increased by the presence of isoenzymes for some substrates. Various respiratory pathways can be established by combining the oxidation of different electron donors and acceptors which are linked by respiratory quinones. The enzymes vary largely with respect to architecture, membrane topology, and mode of energy conservation. Most of the energy-conserving dehydrogenases (e.g., FdnGHI, HyaABC, and HybCOAB) and of the terminal reductases (CydAB, NarGHI, and others) form a proton potential (Δp) by a redox loop mechanism. Only two enzymes (NuoA-N and CyoABCD) couple the redox energy to proton translocation by proton pumping. A large number of dehydrogenases (e.g., Ndh, SdhABCD, and GlpD) and of terminal reductases (e.g., FrdABCD and DmsABC) do not conserve the redox energy in a proton potential. For most of the respiratory enzymes, the mechanism of proton potential generation is known from structural and biochemical studies or can be predicted from sequence information. The H+/2e- ratios of proton translocation for most respiratory chains are in the range from 2 to 6 H+/2e-. The energetics of the individual redox reactions and of the respiratory chains is described. In contrast to the knowledge on enzyme function are physiological aspects of respiration such as organization and coordination of the electron transport and the use of alternative respiratory enzymes, not well characterized.
Collapse
|
18
|
Abstract
Escherichia coli is a versatile facultative anaerobe that can respire on a number of terminal electron acceptors, including oxygen, fumarate, nitrate, and S- and N-oxides. Anaerobic respiration using S- and N-oxides is accomplished by enzymatic reduction of these substrates by dimethyl sulfoxide reductase (DmsABC) and trimethylamine N-oxide reductase (TorCA). Both DmsABC and TorCA are membrane-associated redox enzymes that couple the oxidation of menaquinol to the reduction of S- and N-oxides in the periplasm. DmsABC is membrane bound and is composed of a membrane-extrinsic dimer with a 90.4-kDa catalytic subunit (DmsA) and a 23.1-kDa electron transfer subunit (DmsB). These subunits face the periplasm and are held to the membrane by a 30.8-kDa membrane anchor subunit (DmsC). The enzyme provides the scaffold for an electron transfer relay composed of a quinol binding site, five [4Fe-4S] clusters, and a molybdo-bis(molybdopterin guanine dinucleotide) (present nomenclature: Mo-bis-pyranopterin) (Mo-bisMGD) cofactor. TorCA is composed of a soluble periplasmic subunit (TorA, 92.5 kDa) containing a Mo-bis-MGD. TorA is coupled to the quinone pool via a pentaheme c subunit (TorC, 40.4 kDa) in the membrane. Both DmsABC and TorCA require system-specific chaperones (DmsD or TorD) for assembly, cofactor insertion, and/or targeting to the Tat translocon. In this chapter, we discuss the complex regulation of the dmsABC and torCAD operons, the poorly understood paralogues, and what is known about the assembly and translocation to the periplasmic space by the Tat translocon.
Collapse
|
19
|
Abstract
C4-dicarboxylates, like succinate, fumarate, L- and D-malate, tartrate, and the C4-dicarboxylic amino acid aspartate, support aerobic and anaerobic growth of Escherichia coli and related bacteria and can serve as carbon and energy sources. In aerobic growth, the C4-dicarboxylates are oxidized in the citric acid cycle. Due to the interruption of the citric acid cycle under anaerobic conditions, anaerobic metabolism of the C4-dicarboxylates depends on fumarate reduction to succinate. In some related bacteria (e.g., Klebsiella), degradation of C4-dicarboxylates, like tartrate, uses a different mechanism and pathway. It requires the functioning of an Na+-dependent and membrane-associated oxaloacetate decarboxylase. Due to the incomplete function of the citric acid cycle in anaerobic growth, succinate supports only aerobic growth of E. coli. This chapter describes the pathways of and differences in aerobic and anaerobic C4-dicarboxylate metabolism and the physiological consequences. The citric acid cycle, fumarate respiration, and fumarate reductase are discussed here only in the context of aerobic and anaerobic C4-dicarboxylate metabolism. Some recent aspects of C4-dicarboxylate metabolism, such as transport and sensing of C4-dicarboxylates, and their relationships are treated in more detail.
Collapse
|
20
|
Demethylmenaquinol is a substrate of Escherichia coli nitrate reductase A (NarGHI) and forms a stable semiquinone intermediate at the NarGHI quinol oxidation site. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:739-47. [DOI: 10.1016/j.bbabio.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/23/2022]
|
21
|
Xu W, Yang S, Zhao J, Su T, Zhao L, Liu J. Improving coenzyme Q8 production in Escherichia coli employing multiple strategies. ACTA ACUST UNITED AC 2014; 41:1297-303. [DOI: 10.1007/s10295-014-1458-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/08/2014] [Indexed: 11/28/2022]
Abstract
Abstract
Coenzyme Q (CoQ) is a medically valuable compound and a high yielding strain for CoQ will have several benefits for the industrial production of CoQ. To increase the CoQ8 content of E. coli, we blocked the pathway for the synthesis of menaquinone by deleting the menA gene. The blocking of menaquinone pathway increased the CoQ8 content by 81 % in E. coli (ΔmenA). To study the CoQ producing potential of E. coli, we employed previous known increasing strategies for systematic metabolic engineering. These include the supplementation with substrate precursors and the co-expression of rate-limiting genes. The co-expression of dxs-ubiA and the supplementation with substrate precursors such as pyruvate (PYR) and parahydroxybenzoic acid (pHBA) increased the content of CoQ8 in E. coli (ΔmenA) by 125 and 59 %, respectively. Moreover, a 180 % increase in the CoQ8 content in E. coli (ΔmenA) was realized by the combination of the co-expression of dxs-ubiA and the supplementation with PYR and pHBA. All in all, CoQ8 content in E. coli increased 4.06 times by blocking the menaquinone pathway, dxs-ubiA co-expression and the addition of sodium pyruvate and parahydroxybenzoic acid to the medium. Results suggested a synergistic effect among different metabolic engineering strategies.
Collapse
Affiliation(s)
- Wen Xu
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| | - Shuiyun Yang
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| | - Junchao Zhao
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| | - Tingting Su
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| | - Liangrui Zhao
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| | - Jiankang Liu
- grid.43169.39 0000000105991243 Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education School of Life Science and Technology, Xi’an Jiao tong University 710049 Xi’an Shaanxi China
| |
Collapse
|
22
|
Vergara-Irigaray M, Fookes MC, Thomson NR, Tang CM. RNA-seq analysis of the influence of anaerobiosis and FNR on Shigella flexneri. BMC Genomics 2014; 15:438. [PMID: 24907032 PMCID: PMC4229854 DOI: 10.1186/1471-2164-15-438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 05/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. Results We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. Conclusions Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-438) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Christoph M Tang
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| |
Collapse
|
23
|
Fedor JG, Rothery RA, Giraldi KS, Weiner JH. Q-site occupancy defines heme heterogeneity in Escherichia coli nitrate reductase A (NarGHI). Biochemistry 2014; 53:1733-41. [PMID: 24592999 DOI: 10.1021/bi500121x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating histidine-66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate, rendering the EPR spectrum of the heme bD sensitive to Q-site occupancy. As such, we hypothesize that the heterogeneity in the heme bD EPR signal arises from the differential occupancy of the Q-site. In agreement with this, the heterogeneity is dependent upon growth conditions but is still apparent when NarGHI is expressed in a strain lacking cardiolipin. Furthermore, this heterogeneity is sensitive to Q-site variants, NarI-G65A and NarI-K86A, and is collapsible by the binding of inhibitors. We found that the two main gz components of heme bD exhibit differences in reduction potential and pH dependence, which we posit is due to differential Q-site occupancy. Specifically, in a quinone-bound state, heme bD exhibits an Em,8 of -35 mV and a pH dependence of -40 mV pH(-1). In the quinone-free state, however, heme bD titrates with an Em,8 of +25 mV and a pH dependence of -59 mV pH(-1). We hypothesize that quinone binding modulates the electrochemical properties of heme bD as well as its EPR properties.
Collapse
Affiliation(s)
- Justin G Fedor
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta , Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
24
|
Núñez-Oreza LA, Georgellis D, Álvarez AF. ArcB: El sensor del estado redox en bacterias. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)72088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Evans RM, Parkin A, Roessler MM, Murphy BJ, Adamson H, Lukey MJ, Sargent F, Volbeda A, Fontecilla-Camps JC, Armstrong FA. Principles of sustained enzymatic hydrogen oxidation in the presence of oxygen--the crucial influence of high potential Fe-S clusters in the electron relay of [NiFe]-hydrogenases. J Am Chem Soc 2013; 135:2694-707. [PMID: 23398301 DOI: 10.1021/ja311055d] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
"Hyd-1", produced by Escherichia coli , exemplifies a special class of [NiFe]-hydrogenase that can sustain high catalytic H(2) oxidation activity in the presence of O(2)-an intruder that normally incapacitates the sulfur- and electron-rich active site. The mechanism of "O(2) tolerance" involves a critical role for the Fe-S clusters of the electron relay, which is to ensure the availability-for immediate transfer back to the active site-of all of the electrons required to reduce an attacking O(2) molecule completely to harmless H(2)O. The unique [4Fe-3S] cluster proximal to the active site is crucial because it can rapidly transfer two of the electrons needed. Here we investigate and establish the equally crucial role of the high potential medial [3Fe-4S] cluster, located >20 Å from the active site. A variant, P242C, in which the medial [3Fe-4S] cluster is replaced by a [4Fe-4S] cluster, is unable to sustain steady-state H(2) oxidation activity in 1% O(2). The [3Fe-4S] cluster is essential only for the first stage of complete O(2) reduction, ensuring the supply of all three electrons needed to form the oxidized inactive state "Ni-B" or "Ready" (Ni(III)-OH). Potentiometric titrations show that Ni-B is easily reduced (E(m) ≈ +0.1 V at pH 6.0); this final stage of the O(2)-tolerance mechanism regenerates active enzyme, effectively completing a competitive four-electron oxidase cycle and is fast regardless of alterations at the proximal or medial clusters. As a consequence of all these factors, the enzyme's response to O(2), viewed by its electrocatalytic activity in protein film electrochemistry (PFE) experiments, is merely to exhibit attenuated steady-state H(2) oxidation activity; thus, O(2) behaves like a reversible inhibitor rather than an agent that effectively causes irreversible inactivation. The data consolidate a rich picture of the versatile role of Fe-S clusters in electron relays and suggest that Hyd-1 can function as a proficient hydrogen oxidase.
Collapse
|
26
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
27
|
Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A. Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1937-49. [PMID: 22561115 DOI: 10.1016/j.bbabio.2012.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
28
|
Identification of a novel gene for biosynthesis of a bacteroid-specific electron carrier menaquinone. PLoS One 2011; 6:e28995. [PMID: 22194970 PMCID: PMC3237581 DOI: 10.1371/journal.pone.0028995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
Ubiquinone (UQ) has been considered as an electron mediator in electron transfer that generates ATP in Rhizobium under both free-living and symbiosis conditions. When mutated, the dmtH gene has a symbiotic phenotype of forming ineffective nodules on Astragalus sinicus. The gene was isolated from a Mesorhizobium huakuii 7653R transposon-inserted mutant library. The DNA sequence and conserved protein domain analyses revealed that dmtH encodes demethylmenaquinone (DMK) methyltransferase, which catalyzes the terminal step of menaquinone (MK) biosynthesis. Comparative analysis indicated that dmtH homologs were present in only a few Rhizobia. Real-time quantitative PCR showed dmtH is a bacteroid-specific gene. The highest expression was seen at 25 days after inoculation of strain 7653R. Gene disruption and complementation tests demonstrated that the dmtH gene was essential for bacteroid development and symbiotic nitrogen fixation ability. MK and UQ were extracted from the wild type strain 7653R and mutant strain HK116. MK-7 was accumulated under microaerobic condition and UQ-10 was accumulated under aerobic condition in M. huakuii 7653R. The predicted function of DmtH protein was confirmed by the measurement of methyltransferase activity in vitro. These results revealed that MK-7 was used as an electron carrier instead of UQ in M. huakuii 7653R bacteroids.
Collapse
|
29
|
Jones SA, Gibson T, Maltby RC, Chowdhury FZ, Stewart V, Cohen PS, Conway T. Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 2011; 79:4218-26. [PMID: 21825069 PMCID: PMC3187261 DOI: 10.1128/iai.05395-11] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/26/2011] [Indexed: 12/23/2022] Open
Abstract
The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine.
Collapse
Affiliation(s)
- Shari A. Jones
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | - Terri Gibson
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | - Rosalie C. Maltby
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | - Fatema Z. Chowdhury
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| | - Valley Stewart
- Section of Microbiology, University of California, Davis, Davis, California 95616-8665
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881
| | - Tyrrell Conway
- Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|
30
|
Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli. Curr Microbiol 2011; 62:1374-85. [PMID: 21259006 PMCID: PMC3069315 DOI: 10.1007/s00284-011-9869-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
Phage shock proteins (Psp) and their homologues are found in species from the three domains of life: Bacteria, Archaea and Eukarya (e.g. higher plants). In enterobacteria, the Psp response helps to maintain the proton motive force (PMF) of the cell when the inner membrane integrity is impaired. The presumed ability of ArcB to sense redox changes in the cellular quinone pool and the strong decrease of psp induction in ΔubiG or ΔarcAB backgrounds suggest a link between the Psp response and the quinone pool. The authors now provide evidence indicating that the physiological signal for inducing psp by secretin-induced stress is neither the quinone redox state nor a drop in PMF. Neither the loss of the H(+)-gradient nor the dissipation of the electrical potential alone is sufficient to induce the Psp response. A set of electron transport mutants differing in their redox states due to the lack of a NADH dehydrogenase and a quinol oxidase, but retaining a normal PMF displayed low levels of psp induction inversely related to oxidised ubiquinone levels under microaerobic growth and independent of PMF. In contrast, cells displaying higher secretin induced psp expression showed increased levels of ubiquinone. Taken together, this study suggests that not a single but likely multiple signals are needed to be integrated to induce the Psp response.
Collapse
|
31
|
Jiang M, Chen M, Guo ZF, Guo Z. A bicarbonate cofactor modulates 1,4-dihydroxy-2-naphthoyl-coenzyme a synthase in menaquinone biosynthesis of Escherichia coli. J Biol Chem 2010; 285:30159-69. [PMID: 20643650 DOI: 10.1074/jbc.m110.147702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase-fold protein catalyzing an intramolecular Claisen condensation in the menaquinone biosynthetic pathway. We have characterized this enzyme from Escherichia coli and found that it is activated by bicarbonate in a concentration-dependent manner. The bicarbonate binding site has been identified in the crystal structure of a virtually identical ortholog (96.8% sequence identity) from Salmonella typhimurium through comparison with a bicarbonate-insensitive orthologue. Kinetic properties of the enzyme and its site-directed mutants of the bicarbonate binding site indicate that the exogenous bicarbonate anion is essential to the enzyme activity. With this essential catalytic role, the simple bicarbonate anion is an enzyme cofactor, which is usually a small organic molecule derived from vitamins, a metal ion, or a metal-containing polyatomic anionic complex. This finding leads to classification of the DHNA-CoA synthases into two evolutionarily conserved subfamilies: type I enzymes that are bicarbonate-dependent and contain a conserved glycine at the bicarbonate binding site; and type II enzymes that are bicarbonate-independent and contain a conserved aspartate at the position similar to the enzyme-bound bicarbonate. In addition, the unique location of the enzyme-bound bicarbonate allows it to be proposed as a catalytic base responsible for abstraction of the α-proton of the thioester substrate in the enzymatic reaction, suggesting a unified catalytic mechanism for all DHNA-CoA synthases.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Chemistry, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
32
|
Kurosu M, Begari E. Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 2010; 15:1531-53. [PMID: 20335999 PMCID: PMC6257245 DOI: 10.3390/molecules15031531] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/11/2010] [Accepted: 03/03/2010] [Indexed: 01/01/2023] Open
Abstract
Aerobic and anaerobic respiratory systems allow cells to transport the electrons to terminal electron acceptors. The quinone (ubiquinone or menaquinone) pool is central to the electron transport chain. In the majority of gram-positive bacteria, vitamin K2 (menaquinone) is the sole quinone in the electron transport chain, and thus, the bacterial enzymes catalyzing the synthesis of menaquinone are potential targets for the development of novel antibacterial drugs. This manuscript reviews the role of vitamin K in bacteria and humans, and especially emphasizes on recent aspects of menaquinones in bacterial electron transport chain and on discoveries of inhibitor molecules targeting bacterial electron transport systems for new antibacterial agents.
Collapse
Affiliation(s)
- Michio Kurosu
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523-1682, USA.
| | | |
Collapse
|
33
|
Bekker M, Kramer G, Hartog AF, Wagner MJ, de Koster CG, Hellingwerf KJ, Teixeira de Mattos MJ. Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. Microbiology (Reading) 2007; 153:1974-1980. [PMID: 17526854 DOI: 10.1099/mic.0.2007/006098-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquinones (UQs) and menaquinones (MKs) perform distinct functions in Escherichia coli. Whereas, in general, UQs are primarily involved in aerobic respiration, the MKs serve as electron carriers in anaerobic respiration. Both UQs and MKs can accept electrons from various dehydrogenases, and may donate electrons to different oxidases. Hence, they play a role in maintaining metabolic flexibility in E. coli whenever this organism has to adapt to conditions with changing redox characteristics, such as oxygen availability. Here, the authors report on the changes in both the size and the redox state of the quinone pool when the environment changes from being well aerated to one with low oxygen availability. It is shown that such transitions are accompanied by a rapid increase in the demethylmenaquinone pool, and a slow increase in the MK pool. Moreover, in exponentially growing cultures in a well-shaken Erlenmeyer flask, it is observed that the assumption of a pseudo-steady state does not hold with respect to the redox state of the quinone pool.
Collapse
Affiliation(s)
- M Bekker
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - G Kramer
- Biological Mass-Spectrometry Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - A F Hartog
- Biomolecular Synthesis Group, Van't Hoff Institute for Molecular Sciences, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands
| | - M J Wagner
- Molecular Cell Physiology Group, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - C G de Koster
- Biological Mass-Spectrometry Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - K J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | - M J Teixeira de Mattos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, BioCentrum, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Thummer R, Klimmek O, Schmitz RA. Biochemical Studies of Klebsiella pneumoniae NifL Reduction Using Reconstituted Partial Anaerobic Respiratory Chains of Wolinella succinogenes. J Biol Chem 2007; 282:12517-26. [PMID: 17329251 DOI: 10.1074/jbc.m609826200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the diazotroph Klebsiella pneumoniae the flavoprotein NifL inhibits the activity of the nif-specific transcriptional activator NifA in response to molecular oxygen and combined nitrogen. Sequestration of reduced NifL to the cytoplasmic membrane under anaerobic and nitrogen-limited conditions impairs inhibition of cytoplasmic NifA by NifL. To analyze whether NifL is reduced by electrons directly derived from the reduced menaquinone pool, we studied NifL reduction using artificial membrane systems containing purified components of the anaerobic respiratory chain of Wolinella succinogenes. In this in vitro assay using proteoliposomes containing purified formate dehydrogenase and purified menaquinone (MK(6)) or 8-methylmenaquinone (MMK(6)) from W. succinogenes, reduction of purified NifL was achieved by formate oxidation. Furthermore, the respective reduction rates, which were determined using equal amounts of NifL, have been shown to be directly dependent on the concentration of both formate dehydrogenase and menaquinones incorporated into the proteoliposomes, demonstrating a direct electron transfer from menaquinone to NifL. When purified hydrogenase and MK(6) from W. succinogenes were inserted into the proteoliposomes, NifL was reduced with nearly the same rate by hydrogen oxidation. In both cases reduced NifL was found to be highly associated to the proteoliposomes, which is in accordance with our previous findings in vivo. On the bases of these experiments, we propose that the redox state of the menaquinone pool is the redox signal for nif regulation in K. pneumoniae by directly transferring electrons onto NifL under anaerobic conditions.
Collapse
Affiliation(s)
- Robert Thummer
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | |
Collapse
|
35
|
Nilavongse A, Brondijk THC, Overton TW, Richardson DJ, Leach ER, Cole JA. The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. MICROBIOLOGY-SGM 2007; 152:3227-3237. [PMID: 17074894 DOI: 10.1099/mic.0.29157-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The periplasmic nitrate reductase of Escherichia coli is important during anaerobic growth in low-nitrate environments. The nap operon encoding this nitrate reductase comprises seven genes including a gene, napF, that encodes a putative cytoplasmic iron-sulphur protein of uncertain subcellular location and function. In this study, N-terminal sequence analysis, cell fractionation coupled with immunoblotting and construction of LacZ and PhoA fusion proteins were used together to establish that NapF is located in the E. coli cytoplasm. A bacterial two-hybrid protein-protein interaction system was used to demonstrate that NapF interacted in the cytoplasm with the terminal oxidoreductase NapA, but that it did not self-associate or interact with other electron-transport components of the Nap system, NapC, NapG or NapH, or with another cytoplasmic component, NapD. NapF, purified as a His(6)-tagged protein, exhibited spectral properties characteristic of an iron-sulphur protein. This protein was able to pull down NapA from soluble extracts of E. coli. A growth-based assay for NapF function in intact cell cultures was developed and applied to assess the effect of mutation of a number of conserved amino acids. It emerged that neither a highly conserved N-terminal double-arginine motif, nor a conserved proline motif, is essential for NapF-dependent growth. The combined data indicate that NapF plays one or more currently unidentified roles in the post-translational modification of NapA prior to the export of folded NapA via the twin-arginine translocation pathway into the periplasm.
Collapse
Affiliation(s)
| | | | - Tim W Overton
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Emily R Leach
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey A Cole
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Malpica R, Sandoval GRP, Rodríguez C, Franco B, Georgellis D. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 2006; 8:781-95. [PMID: 16771670 DOI: 10.1089/ars.2006.8.781] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Arc two-component system is a complex signal transduction system that plays a key role in regulating energy metabolism at the level of transcription in bacteria. This system comprises the ArcB protein, a tripartite membrane-associated sensor kinase, and the ArcA protein, a typical response regulator. Under anoxic growth conditions, ArcB autophosphorylates and transphosphorylates ArcA, which in turn represses or activates the expression of its target operons. Under aerobic conditions, ArcB acts as a phosphatase that catalyzes the dephosphorylation of ArcA-P and thereby releasing its transcriptional regulation. The events for Arc signaling, including signal reception and kinase regulation, signal transmission, amplification, as well as signal output and decay are discussed.
Collapse
Affiliation(s)
- Roxana Malpica
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | |
Collapse
|
37
|
Takahashi YH, Inaba K, Ito K. Characterization of the Menaquinone-dependent Disulfide Bond Formation Pathway of Escherichia coli. J Biol Chem 2004; 279:47057-65. [PMID: 15347648 DOI: 10.1074/jbc.m407153200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the protein disulfide-introducing system of Escherichia coli, plasma membrane-integrated DsbB oxidizes periplasmic DsbA, the primary disulfide donor. Whereas the DsbA-DsbB system utilizes the oxidizing power of ubiquinone (UQ) under aerobic conditions, menaquinone (MK) is believed to function as an immediate electron acceptor under anaerobic conditions. Here, we characterized MK reactivities with DsbB. In the absence of UQ, DsbB was complexed with MK8 in the cell. In vitro studies showed that, by binding to DsbB in a manner competitive with UQ, MK specifically oxidized Cys41 and Cys44 of DsbB and activated its catalytic function to oxidize reduced DsbA. In contrast, menadione used in earlier studies proved to be a more nonspecific oxidant of DsbB. During catalysis, MK8 underwent a spectroscopic transition to develop a visible violet color (lambdamax = 550 nm), which required a reduced state of Cys44 as shown previously for UQ color development (lambdamax = 500 nm) on DsbB. In an in vitro reaction system of MK8-dependent oxidation of DsbA at 30 degrees C, two reaction components were observed, one completing within minutes and the other taking >1 h. Both of these reaction modes were accompanied by the transition state of MK, for which the slower reaction proceeded through the disulfide-linked DsbA-DsbB(MK) intermediate. The MK-dependent pathway provides opportunities to further dissect the quinone-dependent DsbA-DsbB redox reactions.
Collapse
Affiliation(s)
- Yoh-hei Takahashi
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
38
|
Biel S, Simon J, Gross R, Ruiz T, Ruitenberg M, Kröger A. Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1974-83. [PMID: 11952800 DOI: 10.1046/j.1432-1033.2002.02842.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.
Collapse
Affiliation(s)
- Simone Biel
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Dietrich W, Klimmek O. The function of methyl-menaquinone-6 and polysulfide reductase membrane anchor (PsrC) in polysulfide respiration of Wolinella succinogenes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1086-95. [PMID: 11856339 DOI: 10.1046/j.0014-2956.2001.02662.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wolinella succinogenes grows by oxidative phosphorylation with polysulfide as terminal electron acceptor and either H2 or formate as electron donor (polysulfide respiration). The function of the respiratory chains catalyzing these reactions was investigated. Proteoliposomes containing polysulfide reductase (Psr) and either hydrogenase or formate dehydrogenase isolated from the membrane fraction of Wolinella succinogenes catalyzed polysulfide respiration, provided that methyl-menaquinone-6 isolated from W. succinogenes was also present. The specific activities of electron transport were commensurate with those of the bacterial membrane fraction. Using site-directed mutagenesis, certain residues were substituted in PsrC, the membrane anchor of polysulfide reductase. Replacement of Y23, D76, Y159, D218, E225 or R305 caused nearly full inhibition of polysulfide respiration without affecting the activity of Psr, which was still bound to the membrane. These residues are predicted to be located in hydrophobic helices of PsrC, or next to them. Substitution of 13 other residues of PsrC either caused partial inhibition ofblankpolysulfide respiration or had no effect. The function of methyl-menaquinone-6, which is thought to be bound to PsrC, is discussed.
Collapse
Affiliation(s)
- Wiebke Dietrich
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
40
|
Buss K, Müller R, Dahm C, Gaitatzis N, Skrzypczak-Pietraszek E, Lohmann S, Gassen M, Leistner E. Clustering of isochorismate synthase genes menF and entC and channeling of isochorismate in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:151-7. [PMID: 11779629 DOI: 10.1016/s0167-4781(01)00325-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There are two isochorismate synthase genes entC and menF in Escherichia coli. They encode enzymes (isochorismate synthase, EC 5.4.99.6) which reversibly synthesize isochorismic acid from chorismic acid. The genes share a 24.2% identity but are differently regulated. Activity of the MenF isochorismate synthase is significantly increased under anaerobic conditions whereas the activity of the EntC isochorismate synthase is greatly stimulated during growth in an iron deficient medium. Isochorismic acid synthesized by EntC is mainly channeled into enterobactin synthesis whereas isochorismic acid synthesized by MenF is mainly channeled into menaquinone synthesis. When menF or entC were separately placed onto overexpression plasmids and the plasmids introduced into a menF(-)/entC(-) double mutant in two separate experiments, the isochorismate formed was fed into both, the menaquinone and the enterobactin pathway. Moreover, in spite of a high isochorismate synthase activity menaquinone and enterobactin formation were not fully restored, indicating that isochorismate was lost by diffusion. Thus, under these conditions channeling was not observed. We conclude that in E. coli the chromosomal position of both menF and entC in their respective clusters is a prerequisite for channeling of isochorismate in both pathways.
Collapse
Affiliation(s)
- K Buss
- Institut für Pharmazeutische Biologie der Rheinischen Friedrich-Wilhelms-Universität, Nussallee 6, D-53115, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Maklashina E, Berthold DA, Cecchini G. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J Bacteriol 1998; 180:5989-96. [PMID: 9811659 PMCID: PMC107675 DOI: 10.1128/jb.180.22.5989-5996.1998] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth of E. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth of E. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.
Collapse
Affiliation(s)
- E Maklashina
- Molecular Biology Division (151-S), VA Medical Center, San Francisco, California 94121, USA
| | | | | |
Collapse
|
42
|
Dahm C, Müller R, Schulte G, Schmidt K, Leistner E. The role of isochorismate hydroxymutase genes entC and menF in enterobactin and menaquinone biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1425:377-86. [PMID: 9795253 DOI: 10.1016/s0304-4165(98)00089-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Klebsiella pneumoniae 62-1, a triple mutant impaired in aromatic amino acid biosynthesis (Phe-, Tyr-, Trp-), excretes chorismic acid into the culture broth. When transformed with plasmids harbouring Escherichia coli genes entC or menF the mutant excretes a mixture of both chorismic and isochorismic acid indicating that not only entC but also menF encodes an isochorismate hydroxymutase (isochorismate synthase, EC 5.4.99.6) enzyme. These enzymes catalyze the first step in enterobactin or menaquinone biosynthesis, respectively. Although both gene products (EntC and MenF) catalyze the same reaction, they play distinct roles in the biosynthesis of menaquinone (MK8) and enterobactin. An E. coli mutant (PBB7) with an intact menF but a disrupted entC produced menaquinone (MK8) but no enterobactin, whereas a mutant (PBB9) with an intact entC but a disrupted menF produced enterobactin and only a trace of menaquinone (MK8). When both menF and entC were disrupted (mutant PBB8) neither menaquinone (MK8) nor enterobactin was detectable. Our previous assumption that entC is responsible for both menaquinone and enterobactin biosynthesis is inconsistent with these mutant studies and has to be revised. The presence in the promoter region of menF of a putative cAMP receptor protein binding site indicates that menF is regulated differently from entC. The menF gene was overexpressed as a fusion gene and its product (6xHis-tagged MenF) isolated. The enzyme catalyzed the formation of isochorismic from chorismic acid and as opposed to a previous publication also the reverse reaction. The enzyme was characterized and its kinetic data determined.
Collapse
Affiliation(s)
- C Dahm
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, Nussallee 6, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
43
|
Suvarna K, Stevenson D, Meganathan R, Hudspeth ME. Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli. J Bacteriol 1998; 180:2782-7. [PMID: 9573170 PMCID: PMC107237 DOI: 10.1128/jb.180.10.2782-2787.1998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key reaction in the biosynthesis of menaquinone involves the conversion of the soluble bicyclic naphthalenoid compound 1, 4-dihydroxy-2-naphthoic acid (DHNA) to the membrane-bound demethylmenaquinone. The enzyme catalyzing this reaction, DHNA-octaprenyltransferase, attaches a 40-carbon side chain to DHNA. The menA gene encoding this enzyme has been cloned and localized to a 2.0-kb region of the Escherichia coli genome between cytR and glpK. DNA sequence analysis of the cloned insert revealed a 308-codon open reading frame (ORF), which by deletion analyses was shown to restore anaerobic growth of a menA mutant. Reverse-phase high-performance liquid chromatography analysis of quinones extracted from the orf-complemented cells independently confirmed the restoration of menaquinone biosynthesis, and similarly, analyses of isolated cell membranes for DHNA octaprenyltransferase activity confirmed the introduction of the menA product into the orf-complemented menA mutant. The validity of an ORF-associated putative promoter sequence was confirmed by primer extension analyses.
Collapse
Affiliation(s)
- K Suvarna
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
44
|
Giordani R, Buc J, Cornish-Bowden A, Cárdenas ML. Kinetics of membrane-bound nitrate reductase A from Escherichia coli with analogues of physiological electron donors--different reaction sites for menadiol and duroquinol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:567-77. [PMID: 9428711 DOI: 10.1111/j.1432-1033.1997.0567a.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have compared the steady-state kinetics of wild-type nitrate reductase A and two mutant forms with altered beta subunits. To mimic conditions in vivo as closely as possible, we used analogues of the physiological quinols as electron donors and membranes with overexpressed nitrate reductase A in preference to a purified alpha beta gamma complex. With the wild-type enzyme both menadiol and duroquinol supply their electrons for the reduction of nitrate at rates that depend on the square of the quinol concentration, menadiol having the higher catalytic constant. The results as a whole are consistent with a substituted-enzyme mechanism for the reduction of nitrate by the quinols. Kinetic experiments suggest that duroquinol and menadiol deliver their electrons at different sites on nitrate reductase, with cross-inhibition. Menadiol inhibits the duroquinol reaction strongly, suggesting that menaquinol may be the preferred substrate in vivo. To examine whether electron transfer from menadiol and duroquinol for nitrate reduction requires the presence of all of the Fe-S centres, we have studied the steady-state kinetics of mutants with beta subunits that lack an Fe-S centre. The loss of the highest-potential Fe-S centre results in an enzyme without menadiol activity, but retaining duroquinol activity; the kinetic parameters are within a factor of two of those of the wild-type enzyme, indicating that this centre is not required for the duroquinol activity. The loss of a low-potential Fe-S centre affects the activity with both quinols: the enzyme is still active but the catalytic constants for both quinols are decreased by about 75%, indicating that this centre is important but not essential for the activity. The existence of a specific site of reaction on nitrate reductase for each quinol, together with the differences in the effects on the two quinols produced by the loss of the Fe-S centre of +80 mV, suggests that the pathways for transfer of electrons from duroquinol and menadiol are not identical.
Collapse
Affiliation(s)
- R Giordani
- Laboratoire de Chimie Bactérienne, Institut Fédératif Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, Marseille, France
| | | | | | | |
Collapse
|
45
|
Søballe B, Poole RK. Aerobic and anaerobic regulation of the ubiCA operon, encoding enzymes for the first two committed steps of ubiquinone biosynthesis in Escherichia coli. FEBS Lett 1997; 414:373-6. [PMID: 9315722 DOI: 10.1016/s0014-5793(97)01041-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ubiCA operon of Escherichia coli encodes enzymes for the first two steps of ubiquinone biosynthesis. A monolysogen (ubiC-lacZ operon fusion) was constructed to study ubiCA regulation. Expression was higher during aerobic growth than anaerobically, and increased with rate of oxygen supply. Although ubiquinone is implicated in antioxidant roles, ubiC expression was not elevated in response to hydrogen peroxide or the redox cycling agent, paraquat. Glucose repressed expression and mutation of cya (encoding adenylate cyclase) increased expression. Anaerobically utilised electron acceptors (nitrite, nitrate, fumarate) did not affect expression. ubiC expression appears to be negatively regulated by Fnr and IHF.
Collapse
Affiliation(s)
- B Søballe
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, UK
| | | |
Collapse
|
46
|
Unden G, Bongaerts J. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:217-34. [PMID: 9230919 DOI: 10.1016/s0005-2728(97)00034-0] [Citation(s) in RCA: 515] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The electron-transport chains of Escherichia coli are composed of many different dehydrogenases and terminal reductases (or oxidases) which are linked by quinones (ubiquinone, menaquinone and demethylmenaquinone). Quinol:cytochrome c oxido-reductase ('bc1 complex') is not present. For various electron acceptors (O2, nitrate) and donors (formate, H2, NADH, glycerol-3-P) isoenzymes are present. The enzymes show great variability in membrane topology and energy conservation. Energy is conserved by conformational proton pumps, or by arrangement of substrate sites on opposite sides of the membrane resulting in charge separation. Depending on the enzymes and isoenzymes used, the H+/e- ratios are between 0 and 4 H+/e- for the overall chain. The expression of the terminal reductases is regulated by electron acceptors. O2 is the preferred electron acceptor and represses the terminal reductases of anaerobic respiration. In anaerobic respiration, nitrate represses other terminal reductases, such as fumarate or DMSO reductases. Energy conservation is maximal with O2 and lowest with fumarate. By this regulation pathways with high ATP or growth yields are favoured. The expression of the dehydrogenases is regulated by the electron acceptors, too. In aerobic growth, non-coupling dehydrogenases are expressed and used preferentially, whereas in fumarate or DMSO respiration coupling dehydrogenases are essential. Coupling and non-coupling isoenzymes are expressed correspondingly. Thus the rationale for expression of the dehydrogenases is not maximal energy yield, but could be maximal flux or growth rates. Nitrate regulation is effected by two-component signal transfer systems with membraneous nitrate/nitrite sensors (NarX, NarQ) and cytoplasmic response regulators (NarL, NarP) which communicate by protein phosphorylation. O2 regulates by a two-component regulatory system consisting of a membraneous sensor (ArcB) and a response regulator (ArcA). ArcA is the major regulator of aerobic metabolism and represses the genes of aerobic metabolism under anaerobic conditions. FNR is a cytoplasmic O2 responsive regulator with a sensory and a regulatory DNA-binding domain. FNR is the regulator of genes required for anaerobic respiration and related pathways. The binding sites of NarL, NarP, ArcA and FNR are characterized for various promoters. Most of the genes are regulated by more than one of the regulators, which can act in any combination and in a positive or negative mode. By this the hierarchical expression of the genes in response to the electron acceptors is achieved. FNR is located in the cytoplasm and contains a 4Fe4S cluster in the sensory domain. The regulatory concentrations of O2 are 1-5 mbar. Under these conditions O2 diffuses to the cytoplasm and is able to react directly with FNR without involvement of other specific enzymes or protein mediators. By oxidation of the FeS cluster, FNR is converted to the inactive state in a reversible process. Reductive activation could be achieved by cellular reductants in the absence of O2. In addition, O2 may cause destruction and loss of the FeS cluster. It is not known whether this process is required for regulation of FNR function.
Collapse
Affiliation(s)
- G Unden
- Institut für Mikrobiologie und Weinforschung, Universität Mainz, Germany.
| | | |
Collapse
|
47
|
Kwon O, Hudspeth ME, Meganathan R. Anaerobic biosynthesis of enterobactin Escherichia coli: regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin K2) biosynthesis. J Bacteriol 1996; 178:3252-9. [PMID: 8655506 PMCID: PMC178078 DOI: 10.1128/jb.178.11.3252-3259.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.
Collapse
Affiliation(s)
- O Kwon
- Department of Biological Sciences, Northern Illinois University, De Kalb, 60115, USA
| | | | | |
Collapse
|
48
|
Abstract
The pivotal step in enterobactin and menaquinone biosynthesis is the conversion of chorismate to isochorismate. Circumstantial evidence pointed to Escherichia coli isochorismate hydroxymutase isogenes being responsible for this conversion. While the gene involved in enterobactin synthesis (entC) was known, the corresponding gene for menaquinone biosynthesis (menF) was not but has now been identified and sequenced. The amino acid sequence of MenF is 23.5% identical and 57.8% similar to that of EntC.
Collapse
Affiliation(s)
- R Müller
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | | | | | | |
Collapse
|
49
|
Cecchini G, Sices H, Schröder I, Gunsalus RP. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J Bacteriol 1995; 177:4587-92. [PMID: 7642483 PMCID: PMC177221 DOI: 10.1128/jb.177.16.4587-4592.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.
Collapse
Affiliation(s)
- G Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA
| | | | | | | |
Collapse
|
50
|
Unden G, Becker S, Bongaerts J, Holighaus G, Schirawski J, Six S. O2-Sensing and O2-dependent gene regulation in facultatively anaerobic bacteria. Arch Microbiol 1995. [DOI: 10.1007/bf02525312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|