1
|
Gautier V, Levert E, Giraud T, Silar P. Important role of melanin for fertility in the fungus Podospora anserina. G3 (BETHESDA, MD.) 2021; 11:jkab159. [PMID: 33974074 PMCID: PMC8763234 DOI: 10.1093/g3journal/jkab159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022]
Abstract
Melanins are pigments used by fungi to withstand various stresses and to strengthen vegetative and reproductive structures. In Sordariales fungi, their biosynthesis starts with a condensation step catalyzed by an evolutionary-conserved polyketide synthase. Here we show that complete inactivation of this enzyme in the model ascomycete Podospora anserina through targeted deletion of the PaPks1 gene results in reduced female fertility, in contrast to a previously analyzed nonsense mutation in the same gene that retains full fertility. We also show the utility of PaPks1 mutants for detecting rare genetic events in P. anserina, such as parasexuality and possible fertilization and/or apomixis of nuclei devoid of mating-type gene.
Collapse
Affiliation(s)
- Valérie Gautier
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), 75205 Paris, France
| | - Emilie Levert
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), 75205 Paris, France
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Philippe Silar
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), 75205 Paris, France
| |
Collapse
|
2
|
Haedens V, Malagnac F, Silar P. Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 2005; 42:564-77. [PMID: 15869888 DOI: 10.1016/j.fgb.2005.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/04/2005] [Accepted: 03/29/2005] [Indexed: 11/26/2022]
Abstract
Filamentous fungi frequently present degenerative processes, whose molecular basis is very often unknown. Here, we present three mutant screens that result in the identification of 29 genes that directly or indirectly control Crippled Growth (CG), an epigenetic cell degeneration of the filamentous ascomycete Podospora anserina. Two of these genes were previously shown to encode a MAP kinase kinase kinase and an NADPH oxidase involved in a signal transduction cascade that participates in stationary phase differentiations, fruiting body development and defence against fungal competitors. The numerous genes identified can be incorporated in a model in which CG results from the sustained activation of the MAP kinase cascade. Our data also emphasize the complex regulatory network underlying three interconnected processes in P. anserina: sexual reproduction, defence against competitors, and cell degeneration.
Collapse
Affiliation(s)
- Vicki Haedens
- Institut de Génétique et Microbiologie, UMR 8621 CNRS UPS, 91405 Orsay cedex, France
| | | | | |
Collapse
|
3
|
Kicka S, Silar P. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 2004; 166:1241-52. [PMID: 15082544 PMCID: PMC1470766 DOI: 10.1534/genetics.166.3.1241] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MAPKKK are kinases involved in cell signaling. In fungi, these kinases are known to regulate development, pathogenicity, and the sensing of external conditions. We show here that Podospora anserina strains mutated in PaASK1, a MAPKKK of the MEK family, are impaired in the development of crippled growth, a cell degeneration process caused by C, a nonconventional infectious element. They also display defects in mycelium pigmentation, differentiation of aerial hyphae, and making of fruiting bodies, three hallmarks of cell differentiation during stationary phase in P. anserina. Overexpression of PaASK1 results in exacerbation of crippled growth. PaASK1 is a large protein of 1832 amino acids with several domains, including a region rich in proline and a 60-amino-acid-long polyglutamine stretch. Deletion analysis reveals that the polyglutamine stretch is dispensable for PaASK1 activity, whereas the region that contains the prolines is essential but insufficient to promote full activity. We discuss a model based on the hysteresis of a signal transduction cascade to account for the role of PaASK1 in both cell degeneration and stationary-phase cell differentiation.
Collapse
Affiliation(s)
- Sébastien Kicka
- Institut de Génétique et Microbiologie, Université de Paris XI, 91405 Orsay Cedex, France
| | | |
Collapse
|
4
|
Contamine V, Zickler D, Picard M. The Podospora rmp1 gene implicated in nucleus-mitochondria cross-talk encodes an essential protein whose subcellular location is developmentally regulated. Genetics 2004; 166:135-50. [PMID: 15020413 PMCID: PMC1470695 DOI: 10.1534/genetics.166.1.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been previously reported that, at the time of death, the Podospora anserina AS1-4 mutant strains accumulate specific deleted forms of the mitochondrial genome and that their life spans depend on two natural alleles (variants) of the rmp1 gene: AS1-4 rmp1-2 strains exhibit life spans strikingly longer than those of AS1-4 rmp1-1. Here, we show that rmp1 is an essential gene. In silico analyses of eight rmp1 natural alleles present in Podospora isolates and of the putative homologs of this orphan gene in other filamentous fungi suggest that rmp1 evolves rapidly. The RMP1 protein is localized in the mitochondrial and/or the cytosolic compartment, depending on cell type and developmental stage. Strains producing RMP1 without its mitochondrial targeting peptide are viable but exhibit vegetative and sexual defects.
Collapse
Affiliation(s)
- Véronique Contamine
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR 8621, Orsay, France
| | | | | |
Collapse
|
5
|
Silar P, Barreau C, Debuchy R, Kicka S, Turcq B, Sainsard-Chanet A, Sellem CH, Billault A, Cattolico L, Duprat S, Weissenbach J. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing. Fungal Genet Biol 2003; 39:250-63. [PMID: 12892638 DOI: 10.1016/s1087-1845(03)00025-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.
Collapse
MESH Headings
- Amino Acid Sequence
- Centromere/chemistry
- Centromere/genetics
- Chromosomes, Artificial, Bacterial
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/ultrastructure
- DNA, Intergenic/analysis
- Gene Rearrangement
- Genes, Fungal
- Genes, rRNA
- Genome, Fungal
- Genomic Library
- Introns
- Molecular Sequence Data
- Physical Chromosome Mapping
- RNA, Transfer/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Sordariales/genetics
- Synteny
Collapse
Affiliation(s)
- Philippe Silar
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université de Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dequard-Chablat M, Allandt C. Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. EUKARYOTIC CELL 2002; 1:503-13. [PMID: 12455999 PMCID: PMC118004 DOI: 10.1128/ec.1.4.503-513.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the filamentous fungus Podospora anserina, two degenerative processes which result in growth arrest are associated with mitochondrial genome (mitochondrial DNA [mtDNA]) instability. Senescence is correlated with mtDNA rearrangements and amplification of specific regions (senDNAs). Premature death syndrome is characterized by the accumulation of specific mtDNA deletions. This accumulation is due to indirect effects of the AS1-4 mutation, which alters a cytosolic ribosomal protein gene. The mthmg1 gene has been identified as a double-copy suppressor of premature death. It greatly delays premature death and the accumulation of deletions when it is present in two copies in an ASI-4 context. The duplication of mthmg1 has no significant effect on the wild-type life span or on senDNA patterns. In anAS1+ context, deletion of the mthmg1 gene alters germination, growth, and fertility and reduces the life span. The deltamthmg1 senescent strains display a particular senDNA pattern. This deletion is lethal in an AS1-4 context. According to its physical properties (very basic protein with putative mitochondrial targeting sequence and HMG-type DNA-binding domains) and the cellular localization of an mtHMG1-green fluorescent protein fusion, mtHMG1 appears to be a mitochondrial protein possibly associated with mtDNA. It is noteworthy that it is the first example of a protein combining the two DNA-binding domains, AT-hook motif and HMG-1 boxes. It may be involved in the stability and/or transmission of the mitochondrial genome. To date, no structural homologues have been found in other organisms. However, mtHMG1 displays functional similarities with the Saccharomyces cerevisiae mitochondrial HMG-box protein Abf2.
Collapse
Affiliation(s)
- Michelle Dequard-Chablat
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 400, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | |
Collapse
|
7
|
Silar P, Lalucque H, Haedens V, Zickler D, Picard M. eEF1A Controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina. Genetics 2001; 158:1477-89. [PMID: 11514440 PMCID: PMC1461745 DOI: 10.1093/genetics/158.4.1477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antisuppressor mutations in the eEF1A gene of Podospora anserina were previously shown to impair ascospore formation, to drastically increase life span, and to permit the development of the Crippled Growth degenerative process. Here, we show that eEF1A controls ascospore formation through accuracy level maintenance. Examination of antisuppressor mutant perithecia reveals two main cytological defects, mislocalization of spindle and nuclei and nuclear death. Antisuppression levels are shown to be highly dependent upon both the mutation site and the suppressor used, precluding any correlation between antisuppression efficiency and severity of the sporulation impairment. Nevertheless, severity of ascospore differentiation defect is correlated with resistance to paromomycin. We also show that eEF1A controls fruiting body formation and longevity through a mechanism(s) different from accuracy control. In vivo, GFP tagging of the protein in a way that partly retains its function confirmed earlier cytological observation; i.e., this factor is mainly diffuse within the cytosol, but may transiently accumulate within nuclei or in defined regions of the cytoplasm. These data emphasize the fact that the translation apparatus exerts a global regulatory control over cell physiology and that eEF1A is one of the key factors involved in this monitoring.
Collapse
Affiliation(s)
- P Silar
- Institut de Génétique et Microbiologie de l'Université de Paris Sud, C.N.R.S. UMR 8621, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
8
|
Koll F, Sidoti C, Rincheval V, Lecellier G. Mitochondrial membrane potential and ageing in Podospora anserina. Mech Ageing Dev 2001; 122:205-17. [PMID: 11166359 DOI: 10.1016/s0047-6374(00)00232-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Some filamentous fungi exhibit a limited vegetative growth with modifications in the mitochondria, suggesting the involvement of mitochondria in the process of ageing. Nevertheless, the relationship between the ability to grow or the fate of these cells relative to their mitochondrial membrane potential (Psi(mt)) level has not been investigated. Using flow cytometric analysis, we have assessed Psi(mt) in young and senescent cultures of wild type strains and mitochondrial or nuclear mutant strains of Podospora anserina that present very long or brief life span. When we compared two distinct populations of cells obtained from the same strain, we can show a correlation not only between Psi(mt) and ageing, but also between Psi(mt) and the frequency of regeneration and/or the life span. However, this relationship is not observed when we compared the cells obtained from different physiological states or mutants strains. These results allow us to suggest that the Psi(mt) modifications during senescence could be only one of the possible consequences of the process and are not the factor driving towards death. We also show that the driving force of Psi(mt) is principally maintained by the alternative pathway during ageing, suggesting a role of the alternative oxidase pathway.
Collapse
Affiliation(s)
- F Koll
- Centre de Génétique Moléculaire, Avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | |
Collapse
|
9
|
Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A. Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol 1999; 19:4093-100. [PMID: 10330149 PMCID: PMC104368 DOI: 10.1128/mcb.19.6.4093] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (alpha) has been thought to play a prominent role in this syndrome. Intron alpha is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the alpha sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron alpha. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron alpha is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron alpha plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, "immortality" can be acquired not by the absence of intron alpha but rather by the lack of active cytochrome c oxidase.
Collapse
Affiliation(s)
- O Begel
- Centre de Génétique Moléculaire-Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
10
|
Gagny B, Silar P. Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle. Genetics 1998; 149:1763-75. [PMID: 9691035 PMCID: PMC1460253 DOI: 10.1093/genetics/149.4.1763] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an attempt to decipher their role in the life history and senescence process of the filamentous fungus Podospora anserina, we have cloned the su1 and su2 genes, previously identified as implicated in cytosolic translation fidelity. We show that these genes are the equivalents of the SUP35 and SUP45 genes of Saccharomyces cerevisiae, which encode the cytosolic translation termination factors eRF3 and eRF1, respectively. Mutations in these genes that suppress nonsense mutations may lead to drastic mycelium morphology changes and sexual impairment but have little effect on life span. Deletion of su1, coding for the P. anserina eRF3, is lethal. Diminution of its expression leads to a nonsense suppressor phenotype whereas its overexpression leads to an antisuppressor phenotype. P. anserina eRF3 presents an N-terminal region structurally related to the yeast eRF3 one. Deletion of the N-terminal region of P. anserina eRF3 does not cause any vegetative alteration; especially life span is not changed. However, it promotes a reproductive impairment. Contrary to what happens in S. cerevisiae, deletion of the N terminus of the protein promotes a nonsense suppressor phenotype. Genetic analysis suggests that this domain of eRF3 acts in P. anserina as a cis-activator of the C-terminal portion and is required for proper reproduction.
Collapse
Affiliation(s)
- B Gagny
- Institut de Génétique et Microbiologie, Université de Paris-Sud, 91405 Orsay cedex, France
| | | |
Collapse
|
11
|
Contamine V, Picard M. Escape from Premature Death Due to Nuclear Mutations in Podospora anserina: Repeal versus Respite. Fungal Genet Biol 1998; 23:223-36. [PMID: 9693024 DOI: 10.1006/fgbi.1998.1040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Premature death has been defined as a growth stoppage linked to the accumulation of specific deletions of the mitochondrial genome (mtDNA) in Podospora anserina. This occurs only in strains carrying the AS1-4 mutation which lies in a gene encoding a cytosolic ribosomal protein. Here we describe the isolation and genetic characterization of 10 nuclear mutations which either delay the appearance of this syndrome (respite from premature death) or cause a switch to the classical senescence process (repeal of premature death). These mutations lie in at least six genes. Some cause defects at the levels of ascospore germination, growth rates, and/or sensitivity toward inhibitors of protein syntheses. All modify the onset of senescence in wild-type (AS1+) strains. The role played by these genes is discussed with respect to the control of diseases due to mtDNA rearrangements in filamentous fungi. Copyright 1998 Academic Press.
Collapse
Affiliation(s)
- V Contamine
- Institut de Génétique et Microbiologie, de l'Université Paris-Sud, C.N.R.S.-URA 2225, Orsay, 91405, France
| | | |
Collapse
|
12
|
Gagny B, Rossignol M, Silar P. Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: relationship between cytosolic translation and longevity in filamentous fungi. Fungal Genet Biol 1997; 22:191-8. [PMID: 9454646 DOI: 10.1006/fgbi.1997.1012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have cloned and sequenced the gene encoding the translation elongation factor eEF1A from two filamentous fungi, Podospora curvicolla and Sordaria macrospora. These fungi are close relatives of Podospora anserina and also show senescence syndromes. Comparison of the sequences of the deduced proteins with that of P. anserina reveals that the three proteins differ in several positions. Replacement of the P. anserina gene by either of the two exogenous genes does not entail any modification in P. anserina physiology; the longevity of the fungus is not affected. No alteration of in vivo translational accuracy was detected; however, the exogenous proteins nonetheless promoted a modification of the resistance to the aminoglycoside antibiotic paromomycin. These data suggest that optimization of life span between these closely related fungi has likely not been performed during evolution through modifications of eEF1A activity, despite the fact that mutations in this factor can drastically affect longevity.
Collapse
Affiliation(s)
- B Gagny
- Institut de Génétique et Microbiologie, CNRS URA 2225, Bât. 400 Université de Paris Sud, Orsay cedex, 91405, France
| | | | | |
Collapse
|
13
|
Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M. Mutations in genes encoding the mitochondrial outer membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 1997; 17:6359-66. [PMID: 9343397 PMCID: PMC232487 DOI: 10.1128/mcb.17.11.6359] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tom70 and Mdm10 are mitochondrial outer membrane proteins. Tom70 is implicated in the import of proteins from the cytosol into the mitochondria in Saccharomyces cerevisiae and Neurospora crassa. Mdm10 is involved in the morphology and distribution of mitochondria in S. cerevisiae. Here we report on the characterization of the genes encoding these proteins in the filamentous fungus Podospora anserina. The two genes were previously genetically identified through a systematic search for nuclear suppressors of a degenerative process displayed by the AS1-4 mutant. The PaTom70 protein shows 80% identity with its N. crassa homolog. The PaMdm10 protein displays 35.9% identity with its S. cerevisiae homolog, and cytological analyses show that the PaMDM10-1 mutant exhibits giant mitochondria, as does the S. cerevisiae mdm10-1 mutant. Mutations in PaTOM70 and PaMDM10 result in the accumulation of specific deleted mitochondrial genomes during the senescence process of the fungus. The phenotypic properties of the single- and double-mutant strains suggest a functional relationship between the Tom70 and Mdm10 proteins. These data emphasize the role of the mitochondrial outer membrane in the stability of the mitochondrial genome in an obligate aerobe, probably through the import process.
Collapse
Affiliation(s)
- C Jamet-Vierny
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France.
| | | | | | | | | |
Collapse
|
14
|
Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM. A nonmammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 1995; 81:1043-51. [PMID: 7600573 DOI: 10.1016/s0092-8674(05)80009-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The car1 gene of the filamentous fungus Podospora anserina was cloned by complementation of a mutant defective for caryogamy (nuclear fusion), a process required for sexual sporulation. This gene encodes a protein that shows similarity to the mammalian PAF1 protein (Zellweger syndrome). Besides sequence similarity, the two proteins share a transmembrane domain and the same type of zinc finger motif. A combination of molecular, physiological, genetical, and ultrastructural approaches gave evidence that the P. anserina car1 protein is actually a peroxisomal protein. This study shows that peroxisomes are required at a specific stage of sexual development, at least in P. anserina, and that a functional homolog of the PAF1 gene is present in a lower eucaryote.
Collapse
|
15
|
Dequard-Chablat M, Sellem C. The S12 ribosomal protein of Podospora anserina belongs to the S19 bacterial family and controls the mitochondrial genome integrity through cytoplasmic translation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36558-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Abstract
Various translation initiation and elongation factors seem to participate in the control of the cellular proliferation and the ageing process in higher eukaryotes. Studies indicate that EF-1 alpha, one of the translation elongation factors, may be one of the major components involved. We here present the cloning of the filamentous fungus P. anserina EF-1 alpha encoding gene and show that strains bearing high fidelity mutations in the EF-1 alpha gene have a drastically increased longevity as well as an impairment in sporulation. This suggests that EF-1 alpha involved in the sexual and senescence processes in lower eukaryotes, through the control of translational errors.
Collapse
Affiliation(s)
- P Silar
- Centre de Génétique Moléculaire, CNRS, Gif sur Yvette, France
| | | |
Collapse
|
17
|
|
18
|
Martinelli SD, Sheikh A. Hygromycin- and paromomycin-resistant mutants of Aspergillus nidulans alter translational fidelity. Curr Genet 1991; 20:211-8. [PMID: 1934127 DOI: 10.1007/bf00326235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutants of Aspergillus nidulans resistant to the aminoglycoside antibiotics paromomycin and hygromycin B have been isolated and their growth characteristics are described here. Most paromomycin mutants were cross-resistant to hygromycin and geneticin. All the hygromycin-resistant mutants were slightly cross-resistant to geneticin. Out of the 15 mutants tested 14 had drug-resistant ribosomes in vitro and all 12 of those investigated further had reduced levels of translational misreading. Five new loci have been found--parA on linkage group I, hygA on III, hygB on IV, hygC on V, hygD on VI and parB on VIII. This increases, to at least 12, the number of translational fidelity loci in A. nidulans.
Collapse
Affiliation(s)
- S D Martinelli
- Biology Department, Birkbeck College, University of London, England
| | | |
Collapse
|
19
|
Belcour L, Begel O, Picard M. A site-specific deletion in mitochondrial DNA of Podospora is under the control of nuclear genes. Proc Natl Acad Sci U S A 1991; 88:3579-83. [PMID: 2023905 PMCID: PMC51495 DOI: 10.1073/pnas.88.9.3579] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the filamentous fungus Podospora anserina, the association of two nuclear genes inevitably leads to a "premature death" phenotype consisting of an early end of vegetative growth a few days after ascospore germination. Mycelia showing this phenotype contain a mitochondrial chromosome that always bears the same deletion. One of the break points is exactly at the 5' splice site of a particular mitochondrial intron, suggesting that the deletion event could result from molecular mechanisms also involved in intron mobility. One of the nuclear genes involved in triggering this site-specific event belongs to the mating-type minus haplotype; the other is a mutant allele of a gene encoding a cytosolic ribosomal protein.
Collapse
Affiliation(s)
- L Belcour
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | |
Collapse
|
20
|
Martinelli SD. Antisuppressor mutations in Aspergillus nidulans: cold-resistant revertants of suppressor suaC109. Genet Res (Camb) 1987; 49:191-200. [PMID: 3305170 DOI: 10.1017/s0016672300027075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SummaryCold-resistant revertants of the cold-sensitive, ribosomal suppressorsuaC109have been isolated, with a view to obtaining mutations in new ribosomal protein genes. Many revertants had reduced suppressor activity and were classified as antisuppressor mutants. Both intragenic and extragenic reversions were found. In seven strains the extragenic reversion to cold resistance segregated with the antisuppressor phenotype, and these were designatedasumutations. Three of the fiveasugenes, C, B and D were mapped to linkage groups, I, II and V respectively. The antisuppressors are not gene-specific, although they mainly antagonize the activity of ribosomal suppressors. The antisuppressors altered all aspects of the phenotype of suppressorsuaC109including sensitivity to aminoglycoside antibiotics, and are therefore thought to be mutations in ribosomal protein genes.
Collapse
|
21
|
Dequard-Chablat M, Coppin-Raynal E, Picard-Bennoun M, Madjar JJ. At least seven ribosomal proteins are involved in the control of translational accuracy in a eukaryotic organism. J Mol Biol 1986; 190:167-75. [PMID: 3795267 DOI: 10.1016/0022-2836(86)90290-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the filamentous fungus Podospora anserina, ribosomal proteins of 60 mutants impaired in the control of translational fidelity have been submitted to electrophoretic analysis. The "four corners" system combining four different two-dimensional polyacrylamide gel electrophoretic systems has been used. An altered electrophoretic pattern has been observed for 12 mutants. In mutants su3, su12 and su11 (decreased translational fidelity), proteins S1, S7 and S8, respectively, are altered. For AS mutants (increased translational fidelity), proteins S9, S12 and S19, respectively, are altered in AS9, AS1 and AS6 mutants, and protein S29 is lacking in AS3 mutants. The data suggest that five of these genes (at least) are the structural genes for the relevant proteins (su3:S1, su12:S7, AS1:S12, AS6:S19, AS9:S9), while the AS3 gene may code for a modifying enzyme.
Collapse
|
22
|
Dequard-Chablat M. Genetics of translational fidelity in Podospora anserina: are all the genes involved in this ribosomal function identified? Curr Genet 1986; 10:531-6. [PMID: 3442829 DOI: 10.1007/bf00447387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Su12-1 and su12-2 are two ribosomal suppressor mutations previously described in the fungus Podospora anserina. Revertants were isolated on the criteria of either improved growth at 27 degrees C (for su12-1) or suppression of the paromomycin hypersensitivity (for su12-2). Among 45 mutations lying outside the su12 locus, only one was found which defines a new antisuppressor locus, AS9. About 3/4 of these mutations are antisuppressor mutations localized in the previously identified AS6 and AS7 genes. While the AS6 mutations harbour diverse phenotypes, all the mutations lying in the AS7 gene lead to the same phenotypic alterations. In addition, two new su3 mutations were obtained and shown to display an antisuppressor effect on su12-1.
Collapse
Affiliation(s)
- M Dequard-Chablat
- Laboratoire de Génétique, Université de Paris-Sud (UA 040086), Orsay, France
| |
Collapse
|
23
|
Dequard-Chablat M. Different alterations of the ribosomal protein S7 lead to opposite effects on translational fidelity in the fungus Podospora anserina. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35632-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Abstract
If the rate constant for peptide bond formation were high just after an amino acid incorporation and occasionally switched to a lower value afterwards, then the ribosome could compensate for tRNA imbalance specifically at hungry codons. A rigorous analysis of the scheme proves its effectiveness. For instance, a 10-fold reduction in cognate tRNA concentration may increase the error rate by only a factor of two.
Collapse
|
25
|
Dequard-Chablat M. Ribosomal suppressors in Podospora anserina: evidence for two new loci by means of a new screening procedure. Genet Res (Camb) 1985; 45:9-19. [PMID: 3996914 DOI: 10.1017/s0016672300021923] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
SummaryI describe here a new screening procedure to isolate ribosomal suppressors in Podospora anserina. I have used the sporulation defect displayed by an antisuppressor mutation AS7–2. The revertants able to sporulate are due to either true reversions or external mutations. The mutations which restore most efficiently the sporulation show all the properties of ribosomal suppressors and are localized in two new suppressor loci su11 and su12.
Collapse
|
26
|
Dequard-Chablat M, Coppin-Raynal E. Increase of translational fidelity blocks sporulation in the fungus Podospora anserina. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00332762] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Abstract
Several observations made in the fungus Podospora anserina suggest that translational ambiguity may increase, and possibly must increase, at specific stages of the life cycle. Such changes in the properties of the translational apparatus seem to occur as well in the yeast S. cerevisiae and in the alga C. reinhardii. A slight increase of the misreading level would allow readthrough or frameshifting necessary to synthesise regulatory proteins in low amount at key points of cellular differentiation.
Collapse
|
28
|
Coppin-Raynal E, Le Coze D. Mutations relieving hypersensitivity to paromomycin caused by ribosomal suppressors in Podospora anserina. Genet Res (Camb) 1982; 40:149-64. [PMID: 7152256 DOI: 10.1017/s0016672300019029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
SUMMARYIn the fungusPodospora anserina, mutations were selected which relieved the hypersensitivity to paromomycin caused by four suppressors assumed to be ribosomal ambiguity mutations (su1–31,su1–49,su1–60,su2–5). Our first purpose was to isolate new antisuppressor mutations and in fact a new antisuppressor gene,AS7was uncovered. TheAS7–1mutant displays a pleiotropic phenotype and particularly a sporulation defect. On the other hand, a newsu1mutant was obtained which acts as a suppressor and also as an antisuppressor: it can specifically reduce the suppressor effect of certainsu2mutations. This property of somesu1andsu2mutations was already known. Apart from these mutations probably involved in the control of translational fidelity, six mutations conferring cross-resistance to paromomycin and neomycin were isolated. While four of them are localized in thePm1andPm2loci previously identified, the two others define a new gene which controls paromomycin and neomycin resistance,Pm3. Strains carrying thePm3–1allele are sensitive to temperature at the level of growth and sporulation. The three last mutations which were obtained confer no mutant phenotype when separated from thesu1background. They are closely linked to thesu2locus.
Collapse
|
29
|
Randsholt N, Ibarrondo F, Dequard M, Picard-Bennoun M. Analysis of revertants of a ribosomal mutation in Podospora anserina: evidence for new ribosomal mutations which confer hypersensitivity to paromomycin. Biochem Genet 1982; 20:569-84. [PMID: 7115288 DOI: 10.1007/bf00484705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This paper describes the analysis of cold-resistant revertants of a cold-sensitive mutant. Pm1-1 is a ribosomal mutation screened for its paromomycin resistance. Suppression of its cold sensitivity occurs with two kinds of external mutations localized in two different loci. One of them, PmB, is assumed to be a ribosomal gene. PmB mutations confer hypersensitivity to paromomycin in vivo as well as in vitro in a cell-free protein synthesis system.
Collapse
|
30
|
Coppin-Raynal E. Ribosomal control of translational fidelity in Podospora anserina: A suppressor and an antisuppressor affecting the paromomycin-induced misreading in vitro. Curr Genet 1982; 5:57-63. [DOI: 10.1007/bf00445742] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/1981] [Indexed: 10/26/2022]
|
31
|
Impairment of cytoplasmic protein synthesis can be detected on whole cells by cytochrome spectra. Mycology 1981. [DOI: 10.1016/0147-5975(81)90042-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Picard-Bennoun M. Mutations affecting translational fidelity in the eucaryote Podospora anserina: characterization of two ribosomal restrictive mutations. MOLECULAR & GENERAL GENETICS : MGG 1981; 183:175-80. [PMID: 6948993 DOI: 10.1007/bf00270158] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fifty-nine mutations that restrict suppressor efficiency were selected in the fungus Podospora anserina using four different screening methods. Previous genetic analysis has shown that these antisuppressors lie in six loci and that they could be similar to ribosomal restrictive mutations known in Escherichia coli. The present study deals with the response of two of them, AS1-1 and AS6-1, to paromomycin and low temperature both in vivo and in vitro. The data demonstrate that ribosomes of the mutant and double-mutant strains are equally resistant to the ambiguity effect of paromomycin. These data are the first demonstration of mutations that increase translational fidelity in eucaryotic organism.
Collapse
|
33
|
Coppin-Raynal E. Ribosomal suppressors and antisuppressors in Podospora anserina: altered susceptibility to paromomycin and relationships between genetic and phenotypic suppression. Biochem Genet 1981; 19:729-40. [PMID: 7295296 DOI: 10.1007/bf00484005] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Informational suppressors and antisuppressors have been previously isolated in Podospora anserina, and their properties suggest that they could be ribosomal mutants involved in the control of translational fidelity. In this paper we present results concerning relationships between these mutants and paromomycin, an aminoglycoside antibiotic known to stimulate translational errors. The mutants were found to manifest an altered growth sensitivity to this drug as compared with the wild-type strain: Most of the suppressors were more sensitive and, in contrast, most of the antisuppressors were more resistant to paromomycin. Moreover, phenotypic suppression of an auxotrophic mutation by paromomycin was observed only if a suppressor and an antisuppressor had been introduced in the strain. These results suggest that ambiguity levels could be altered in the suppressor and antisuppressor strains. In addition, paromomycin was shown to abolish sporulation, which suggests relationships between mistranslation and a step of cellular differentiation.
Collapse
|
34
|
|
35
|
Picard-Bennoun M, Le Coze D. Search for ribosomal mutants in Podospora anserina: genetic analysis of cold-sensitive mutants. Genet Res (Camb) 1980; 36:289-97. [PMID: 7203012 DOI: 10.1017/s001667230001990x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SUMMARYTwenty-four cold-sensitive (prototrophic) mutants were isolated after UV mutagenesis of protoplasts of the fungusPodospora anserina. Genetic analysis of these mutants was performed in order to detect those among them which were most likely to be impaired in translational fidelity. The 24 mutations belonged to 24 different genes. One half of the mutants were pleiotropic and displayed an altered phenotype: growth rate at the permissive temperature, germination of the spores, fertility and/or sporulation. Nine mutants differed from wild-type in their resistance levels to cycloheximide, trichodermin and/or paromomycin. Several mutations were linked to known ribosomal loci. Two mutations behaved like informational antisuppressors: one is allelic to the previously describedAs3gene and the other one defines a new antisuppressor gene,AS6.
Collapse
|
36
|
Coppin-Raynal E. Analytical chromatography of ribosomal proteins in the fungus, Podospora anserina. Anal Biochem 1980; 109:395-8. [PMID: 7224164 DOI: 10.1016/0003-2697(80)90666-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Janner F, Vögeli G, Fluri R. The antisuppressor strain sin1 of Schizosaccharomyces pombe lacks the modification isopentenyladenosine in transfer RNA. J Mol Biol 1980; 139:207-19. [PMID: 7411631 DOI: 10.1016/0022-2836(80)90305-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Dequard M, Couderc JL, Legrain P, Belcour L, Picard-Bennoun M. Search for ribosomal mutants in Podospora anserina: genetic analysis of mutants resistant to paromomycin. Biochem Genet 1980; 18:263-80. [PMID: 7447923 DOI: 10.1007/bf00484241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has recently been shown that paromomycin, an antibiotic of the aminoglycoside family, is also active on eukaryotic cytoplasmic ribosomes. In the fungus Podospora anserina, genetic analysis of ten mutants resistant to high doses of paromomycin shows that this resistance is caused by mutations in two different nuclear genes. These mutants display pleiotropic phenotypes (cold sensitivity, mycelium and spore appearance and coloration, cross-resistance to other antibiotics). Double mutants are either lethal or very altered and unstable. Moreover, the cytochrome spectra of these mutants seem to indicate that cytoplasmic protein synthesis is affected. The mutants also display a slight suppressor effect. We can therefore assume that these mutations affect cytoplasmic ribosomes.
Collapse
|
39
|
Begueret J, Perrot M, Crouzet M. Ribosomal proteins in the fungus Podospora anserina: evidence for an electrophoretically altered 60S protein in a cycloheximide resistant mutant. MOLECULAR & GENERAL GENETICS : MGG 1977; 156:141-4. [PMID: 600264 DOI: 10.1007/bf00283486] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteins of cytoplasmic ribosomes of the Podospora anserina were analyzed by two dimensional gel electrophoresis. The numbers of proteins were estimated to be 28 in the small subunit and 41 in the large subunit. The L21 protein of the large subunit was found to migrate differently in a cycloheximide resistant mutant.
Collapse
|
40
|
Coppin-Raynal E. Ribosomal suppressors and antisuppressors in Podospora anserina: resistance to cycloheximide. J Bacteriol 1977; 131:876-83. [PMID: 893344 PMCID: PMC235544 DOI: 10.1128/jb.131.3.876-883.1977] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Informational suppressors and antisuppressors have been previously isolated in Podospora anserina, and a range of exclusively genetic arguments have led to the assumption that they correspond to ribosomal mutations. An in vivo and in vitro comparison of the effect of the ribosomal inhibitor cycloheximide on wildtype and mutant strains described in this paper confirms the ribosomal hypothesis for at least some mutants. Indeed, the four mutants in the AS3 gene were cycloheximide resistant, and their ribosomes were found to be resistant when analyzed by polyuridyl-directed polyphenylalanine systhesis. On the other hand, ribosomes from two su 1 mutants were hypersensitive to the drug.
Collapse
|