1
|
Taflin H, Odin E, Carlsson G, Gustavsson B, Hemmingsson O, Wettergren Y, Urbanowicz K, Turyn J, Smolenski RT, Peters GJ. Increased potentiation of 5-fluorouracil induced thymidylate synthase inhibition by 5,10-methylenetetrahydrofolate (arfolitixorin) compared to leucovorin in patients with colorectal liver metastases; The Modelle-001 Trial. BJC REPORTS 2024; 2:89. [PMID: 39567776 PMCID: PMC11579015 DOI: 10.1038/s44276-024-00111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a cornerstone in treatment of colorectal cancer (CRC) and is usually combined with leucovorin (LV) to enhance the antitumour effect by increase thymidylate synthase (TS) inhibition, the key target enzyme for 5-FU. Arfolitixorin (Arfo) is an active form of the reduced folate, [6 R]-5,10-methylenetetrahydrofolate ([6 R]-MeTHF and in contrast to LV, does not need to be metabolized. The Modelle-001 was designed to explore whether a single intravenous bolus injection of Arfo as compared to LV, together with 5-FU increases the inhibition of TS, levels of folate concentrations and polyglutamylation in CRC liver metastases (CRLM) and liver parenchyma. PATIENTS AND METHODS Thirty patients with CRLM received either LV (60 mg/m2) or Arfo (30 mg/m2 or 120 mg/m2) in combination with 5-FU preoperatively. Levels of folates and and TS inhibition were measured. RESULTS Significantly higher MeTHF levels and higher TS inhibition were measured in the Arfo groups compared to LV60, and there was a difference in folate poly-glutamylation between the groups. CONCLUSION The Modelle-001 Trial demonstrated significantly higher levels of MeTHF in metastases following Arfo compared to LV. This resulted in a greater increase TS inhibition in metastases although not statistically significant.
Collapse
Grants
- CAN 2015/499, CAN 2018, CAN 201025 Swedish Cancer Society
- CAN 2015/499, CAN 2018, CAN 201025 Swedish Cancer Society
- CAN 2015/499, CAN 2018, CAN 201025 Swedish Cancer Society
- CAN 2015/499, CAN 2018, CAN 201025 Swedish Cancer Society
- ALFGBG-426941, ALFGBG-586631, ALFGBG-723361, ALFGBG-788901, ALFGBG-966007 the Swedish state under the LUA/ALF agreement
- ALFGBG-426941, ALFGBG-586631, ALFGBG-723361, ALFGBG-788901, ALFGBG-966007 the Swedish state under the LUA/ALF agreement
- ALFGBG-426941, ALFGBG-586631, ALFGBG-723361, ALFGBG-788901, ALFGBG-966007 the Swedish state under the LUA/ALF agreement
- ALFGBG-426941, ALFGBG-586631, ALFGBG-723361, ALFGBG-788901, ALFGBG-966007 the Swedish state under the LUA/ALF agreement
- 335/07 IngaBritt and Arne Lundberg Foundation
- 335/07 IngaBritt and Arne Lundberg Foundation
- 335/07 IngaBritt and Arne Lundberg Foundation
- 335/07 IngaBritt and Arne Lundberg Foundation
- unconditional grant Isofol Medical AB
- Swedish Society of Medicine
- The Gothenburg Society of Medicine
Collapse
Affiliation(s)
- Helena Taflin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden.
| | - Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden
| | - Göran Carlsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden
| | - Oskar Hemmingsson
- Department of Diagnostics and Intervention/Surgery, Umeå University, Umeå, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Surgery, Gothenburg, Sweden
| | | | - Jacek Turyn
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | | | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Béguin J, Laloy E, Cochin S, Gantzer M, Farine I, Pichon C, Moreau B, Foloppe J, Balloul JM, Machon C, Guitton J, Tierny D, Klonjkowski B, Quéméneur E, Maurey C, Erbs P. Oncolytic virotherapy with intratumoral injection of vaccinia virus TG6002 and 5-fluorocytosine administration in dogs with malignant tumors. Mol Ther Oncolytics 2023; 30:103-116. [PMID: 37635744 PMCID: PMC10448017 DOI: 10.1016/j.omto.2023.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine. The viral genome was assessed in blood and tumor biopsies by qPCR. 5-Fluorouracil concentrations were measured in serum and tumor biopsies by liquid chromatography or high-resolution mass spectrometry. Histological and immunohistochemical analyses were performed. The viral genome was detected in blood (7/13) and tumor biopsies (4/11). Viral replication was suspected in 6/13 dogs. The median intratumoral concentration of 5-fluorouracil was 314 pg/mg. 5-Fluorouracil was not detected in the blood. An increase in necrosis (6/9) and a downregulation of intratumoral regulatory T lymphocytes (6/6) were observed. Viral replication, 5-fluorouracil synthesis, and tumor microenvironment changes were more frequently observed with higher TG6002 doses. This study confirmed the replicative properties, targeted chemotherapy synthesis, and reversion of the immunosuppressive tumor microenvironment in dogs with spontaneous malignant tumors treated with TG6002 and 5-fluorocytosine.
Collapse
Affiliation(s)
- Jérémy Béguin
- Transgene, 67405 Illkirch-Graffenstaden, France
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
- Department of Internal Medicine, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | - Eve Laloy
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
- Anatomical Pathology Unit, Biopôle, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | | | | | | | | | | | | | | | - Christelle Machon
- Service de Biochimie et pharmacotoxicologie, Hôpital Lyon-Sud, Hospices Civils de Lyon, 69310, France
| | - Jérôme Guitton
- Service de Biochimie et pharmacotoxicologie, Hôpital Lyon-Sud, Hospices Civils de Lyon, 69310, France
| | | | - Bernard Klonjkowski
- UMR Virologie, INRAE, École Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France
| | | | - Christelle Maurey
- Department of Internal Medicine, École Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France
| | | |
Collapse
|
3
|
Adam C, Bray TL, Pérez-López AM, Tan EH, Rubio-Ruiz B, Baillache DJ, Houston DR, Salji MJ, Leung HY, Unciti-Broceta A. A 5-FU Precursor Designed to Evade Anabolic and Catabolic Drug Pathways and Activated by Pd Chemistry In Vitro and In Vivo. J Med Chem 2022; 65:552-561. [PMID: 34979089 DOI: 10.1021/acs.jmedchem.1c01733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic antimetabolite that is widely administered to cancer patients by bolus injection, especially to those suffering from colorectal and pancreatic cancer. Because of its suboptimal route of administration and dose-limiting toxicities, diverse 5-FU prodrugs have been developed to confer oral bioavailability and increase the safety profile of 5-FU chemotherapy regimens. Our contribution to this goal is presented herein with the development of a novel palladium-activated prodrug designed to evade the metabolic machinery responsible for 5-FU anabolic activation and catabolic processing. The new prodrug is completely innocuous to cells and highly resistant to metabolization by primary hepatocytes and liver S9 fractions (the main metabolic route for 5-FU degradation), whereas it is rapidly converted into 5-FU in the presence of a palladium (Pd) source. In vivo pharmokinetic analysis shows the prodrug is rapidly and completely absorbed after oral administration and exhibits a longer half-life than 5-FU. In vivo efficacy studies in a xenograft colon cancer model served to prove, for the first time, that orally administered prodrugs can be locally converted to active drugs by intratumorally inserted Pd implants.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Thomas L Bray
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ee Hong Tan
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Mark J Salji
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| |
Collapse
|
4
|
Non-Invasive Analysis of Human Liver Metabolism by Magnetic Resonance Spectroscopy. Metabolites 2021; 11:metabo11110751. [PMID: 34822409 PMCID: PMC8623827 DOI: 10.3390/metabo11110751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The liver is a key node of whole-body nutrient and fuel metabolism and is also the principal site for detoxification of xenobiotic compounds. As such, hepatic metabolite concentrations and/or turnover rates inform on the status of both hepatic and systemic metabolic diseases as well as the disposition of medications. As a tool to better understand liver metabolism in these settings, in vivo magnetic resonance spectroscopy (MRS) offers a non-invasive means of monitoring hepatic metabolic activity in real time both by direct observation of concentrations and dynamics of specific metabolites as well as by observation of their enrichment by stable isotope tracers. This review summarizes the applications and advances in human liver metabolic studies by in vivo MRS over the past 35 years and discusses future directions and opportunities that will be opened by the development of ultra-high field MR systems and by hyperpolarized stable isotope tracers.
Collapse
|
5
|
Rodrigues D, de Souza T, Coyle L, Di Piazza M, Herpers B, Ferreira S, Zhang M, Vappiani J, Sévin DC, Gabor A, Lynch A, Chung SW, Saez-Rodriguez J, Jennen DGJ, Kleinjans JCS, de Kok TM. New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol 2021; 95:2691-2718. [PMID: 34151400 PMCID: PMC8298376 DOI: 10.1007/s00204-021-03092-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established 3D organoid models of human colon and small intestine (SI) were used to characterize 5-FU transcriptomic and metabolomic responses. Clinically relevant 5-FU concentrations for in vitro testing in organoids were established using physiologically based pharmacokinetic simulation of dosing regimens recommended for cancer patients, resulting in exposures to 10, 100 and 1000 µM. After treatment, different measurements were performed: cell viability and apoptosis; image analysis of cell morphological changes; RNA sequencing; and metabolome analysis of supernatant from organoids cultures. Based on analysis of the differentially expressed genes, the most prominent molecular pathways affected by 5-FU included cell cycle, p53 signalling, mitochondrial ATP synthesis and apoptosis. Short time-series expression miner demonstrated tissue-specific mechanisms affected by 5-FU, namely biosynthesis and transport of small molecules, and mRNA translation for colon; cell signalling mediated by Rho GTPases and fork-head box transcription factors for SI. Metabolomic analysis showed that in addition to the effects on TCA cycle and oxidative stress in both organoids, tissue-specific metabolic alterations were also induced by 5-FU. Multi-omics integration identified transcription factor E2F1, a regulator of cell cycle and apoptosis, as the best key node across all samples. These results provide new insights into 5-FU toxicity mechanisms and underline the relevance of human organoid models in the safety assessment in drug development.
Collapse
Affiliation(s)
- Daniela Rodrigues
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Terezinha de Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Luke Coyle
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Matteo Di Piazza
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
- F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Bram Herpers
- OcellO B.V., BioPartner Center, Leiden, the Netherlands
| | - Sofia Ferreira
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | - Mian Zhang
- Certara UK Limited, Simcyp Division, Sheffield, S1 2BJ, UK
| | | | - Daniel C Sévin
- GSK Functional Genomics/Cellzome, 69117, Heidelberg, Germany
| | - Attila Gabor
- Faculty of Medicine, Heidelberg University Hospital, Institute for Computational Biomedicine, Heidelberg, Germany
| | | | - Seung-Wook Chung
- Departmnet of Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Julio Saez-Rodriguez
- GSK Non-Clinical Safety, Ware, SG12 0DP, UK
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Aachen, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg University, Heidelberg, Germany
| | - Danyel G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Theo M de Kok
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Tilija Pun N, Jeong CH. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel) 2021; 14:ph14050470. [PMID: 34065757 PMCID: PMC8156779 DOI: 10.3390/ph14050470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer is incurable because progressive phenotypic and genotypic changes in cancer cells lead to resistance and recurrence. This indicates the need for the development of new drugs or alternative therapeutic strategies. The impediments associated with new drug discovery have necessitated drug repurposing (i.e., the use of old drugs for new therapeutic indications), which is an economical, safe, and efficacious approach as it is emerged from clinical drug development or may even be marketed with a well-established safety profile and optimal dosing. Statins are inhibitors of HMG-CoA reductase in cholesterol biosynthesis and are used in the treatment of hypercholesterolemia, atherosclerosis, and obesity. As cholesterol is linked to the initiation and progression of cancer, statins have been extensively used in cancer therapy with a concept of drug repurposing. Many studies including in vitro and in vivo have shown that statin has been used as monotherapy to inhibit cancer cell proliferation and induce apoptosis. Moreover, it has been used as a combination therapy to mediate synergistic action to overcome anti-cancer drug resistance as well. In this review, the recent explorations are done in vitro, in vivo, and clinical trials to address the action of statin either single or in combination with anti-cancer drugs to improve the chemotherapy of the cancers were discussed. Here, we discussed the emergence of statin as a lipid-lowering drug; its use to inhibit cancer cell proliferation and induction of apoptosis as a monotherapy; and its use in combination with anti-cancer drugs for its synergistic action to overcome anti-cancer drug resistance. Furthermore, we discuss the clinical trials of statins and the current possibilities and limitations of preclinical and clinical investigations.
Collapse
|
7
|
Derissen EJB, Beijnen JH. Intracellular Pharmacokinetics of Pyrimidine Analogues used in Oncology and the Correlation with Drug Action. Clin Pharmacokinet 2020; 59:1521-1550. [PMID: 33064276 PMCID: PMC7717039 DOI: 10.1007/s40262-020-00934-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyrimidine analogues can be considered as prodrugs, like their natural counterparts, they have to be activated within the cell. The intracellular activation involves several metabolic steps including sequential phosphorylation to its monophosphate, diphosphate and triphosphate. The intracellularly formed nucleotides are responsible for the pharmacological effects. This review provides a comprehensive overview of the clinical studies that measured the intracellular nucleotide concentrations of pyrimidine analogues in patients with cancer. The objective was to gain more insight into the parallels between the different pyrimidine analogues considering their intracellular pharmacokinetics. For cytarabine and gemcitabine, the intracellular pharmacokinetics have been extensively studied over the years. However, for 5-fluorouracil, capecitabine, azacitidine and decitabine, the intracellular pharmacokinetics was only very minimally investigated. This is probably owing to the fact that there were no suitable bioanalytical assays for a long time. Since the advent of suitable assays, the first exploratory studies indicate that the intracellular 5-fluorouracil, azacitidine and decitabine nucleotide concentrations are very low compared with the intracellular nucleotide concentrations obtained during treatment with cytarabine or gemcitabine. Based on their pharmacology, the intracellular accumulation of nucleotides appears critical to the cytotoxicity of pyrimidine analogues. However, not many clinical studies have actually investigated the relationship between the intracellular nucleotide concentrations in patients with cancer and the anti-tumour effect. Only for cytarabine, a relationship was demonstrated between the intracellular triphosphate concentrations in leukaemic cells and the response rate in patients with AML. Future clinical studies should show, for the other pyrimidine analogues, whether there is a relationship between the intracellular nucleotide concentrations and the clinical outcome of patients. Research that examined the intracellular pharmacokinetics of cytarabine and gemcitabine focused primarily on the saturation aspect of the intracellular triphosphate formation. Attempts to improve the dosing regimen of gemcitabine were aimed at maximising the intracellular gemcitabine triphosphate concentrations. However, this strategy does not make sense, as efficient administration also means that less gemcitabine can be administered before dose-limiting toxicities are achieved. For all pyrimidine analogues, a linear relationship was found between the dose and the plasma concentration. However, no correlation was found between the plasma concentration and the intracellular nucleotide concentration. The concentration-time curves for the intracellular nucleotides showed considerable inter-individual variation. Therefore, the question arises whether pyrimidine analogue therapy should be more individualised. Future research should show which intracellular nucleotide concentrations are worth pursuing and whether dose individualisation is useful to achieve these concentrations.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands. .,Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Pharmacy , Elisabeth-TweeSteden Hospital, Dr. Deelenlaan 5, 5042 AD, Tilburg, The Netherlands.
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital-The Netherlands Cancer Institute, Louwesweg 6, 1066 EC , Amsterdam, The Netherlands.,Science Faculty, Division of Pharmaco-epidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
8
|
Shirai H, Tsukada K. Bacterial proteolytic activity improves drug delivery in tumors in a size, pharmacokinetic, and binding affinity dependent manner - A mechanistic understanding. J Control Release 2020; 321:348-362. [PMID: 32061790 DOI: 10.1016/j.jconrel.2020.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/15/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Motile bacteria are able to penetrate in the distal areas of blood vessel, which makes bacteria attractive to researchers as a drug delivery vehicle carrying anti-cancer drugs to tumors. Not only therapeutic bacteria show wide anti-tumor effect but also the combination of therapeutic bacteria and conventional chemotherapy leads to dramatically large synergetic effect. We provide a mechanistic understanding of enhanced drug delivery in tumors by co-administration of chemotherapeutic agents and therapeutic bacteria. In this work, simultaneous delivery of C. novyi-NT and chemotherapeutic agents in tumors is mathematically modeled. Simulated doxorubicin concentration in tumors after Doxil administration with or without bacteria agreed reasonably well with experimental literature. Simulated doxorubicin concentration in tumors by the combination of Doxil and C. novyi-NT is over twice higher than that of Doxil alone. This enhanced doxorubicin concentration in tumors is due to the degradation of extracellular matrix of collagen by bacterial proteolytic activity, which increases hydraulic conductivity of interstitium, reduces interstitial fluid pressure, and thus increases convection through vessel walls. Additionally, it alleviates solid stress, which decompresses blood vessels, and thus increases vessel density. On the other hand, simulated doxorubicin concentration in tumors for non-liposomal free-doxorubicin is not enhanced by C. novyi-NT because vascular permeability of free-doxorubicin is larger than Doxil, and thus increased but relatively small convection across vessel walls is offset by the efflux due to increased interstitial flow. A strategy to further enhance this combination therapy is discussed along with sensitivity analysis.
Collapse
Affiliation(s)
- Hiroaki Shirai
- Graduates School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan.
| | - Kosuke Tsukada
- Graduates School of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan
| |
Collapse
|
9
|
Abd-Rabou AA, Bharali DJ, Mousa SA. Viramidine-Loaded Galactosylated Nanoparticles Induce Hepatic Cancer Cell Apoptosis and Inhibit Angiogenesis. Appl Biochem Biotechnol 2019; 190:305-324. [PMID: 31346920 DOI: 10.1007/s12010-019-03090-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 01/19/2023]
Abstract
Current estimates indicate that hepatocarcinoma is the leading cause of death globally. There is interest in utilizing nanomedicine for cancer therapy to overcome side effects of chemo-interventions. Ribavirin, an antiviral nucleoside inhibitor, accumulates inside red blood cells, causing anemia. Its analog, viramidine, can concentrate within hepatocytes and spare red blood cells, thus limiting anemia. Hepatocarcinoma cells have a large number of asialoglycoprotein receptors on their membranes that can bind galactosyl-terminating solid lipid nanoparticles (Gal-SLN) and internalize them. Here, viramidine, 5-fluorouracil, and paclitaxel-loaded Gal-SLN were characterized inside cells. Cytotoxicities of free-drug, nano-void, and drug-loaded Gal-SLN were evaluated using HepG2 cells; over 3 days, cell viability was measured. To test the mechanistic pathway, we investigated in vitro apoptosis using flow cytometry and in ovo angiogenesis using the CAM assay. Results showed that 1 and 2 μM of the viramidine-encapsulated Gal-SLN had the highest cytotoxic effect, achieving 80% cell death with a steady increase over 3 days, with induction of apoptosis and reduction of necrosis and angiogenesis, compared to free-drugs. Gal-SLN application on breast cancer MCF-7 cells confirmed its specificity against liver cancer HepG2 cells. We conclude that viramidine-encapsulated Gal-SLN has anticancer and anti-angiogenic activities against hepatocarcinoma.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department, Medical Research Division, National Research Centre, Giza, 12622, Egypt.,Stem Cell Laboratory, Center of Excellence for Advanced Science, National Research Centre, Giza, 12622, Egypt
| | - Dhruba J Bharali
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, 12144, USA.
| |
Collapse
|
10
|
A simple ex vivo bioassay for 5-FU transport into healthy buccal mucosal cells. Cancer Chemother Pharmacol 2019; 84:739-748. [PMID: 31324934 DOI: 10.1007/s00280-019-03904-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Fluorouracil (5-FU), a chemotherapeutic agent widely used in the treatment of numerous common malignancies, causes oral mucositis in a proportion of patients. The contribution of drug transport processes to the development of this toxicity is currently unknown. This work aimed to establish and optimise a simple phenotyping assay for 5-FU uptake into primary buccal mucosal cells (BMC). METHODS The uptake kinetics of radiolabelled 5-FU were determined in pooled BMC freshly collected from healthy volunteers. The inter- and intra-individual variability in 5-FU uptake was then assessed across a cohort that included both healthy volunteers and cancer patients. RESULTS 5-FU uptake into pooled primary BMC was both time and concentration dependent. An Eadie-Hofstee analysis suggested two components; a high-affinity (KM = 3.3 µM) low-capacity ([Formula: see text] = 57.8 pmol min-1 105 viable cells-1) transporter, and a high-capacity ([Formula: see text] = 1230 pmol min-1 105 viable cells-1) low-affinity (KM = 3932 µM) transporter. There was 180-fold variation in the rate of 5-FU uptake into BMC (0.10-17.86 pmol min-1 105 viable cells-1) across the 34 subjects (healthy participants N = 24, cancer patients N = 10). Notably, retesting of a subset of these participants (N = 16) multiple times over a period of up to 140 days demonstrated poor stability of the uptake phenotype within individuals. CONCLUSION The uptake of 5-FU into healthy oral mucosal cells is a highly variable process facilitated by membrane transporters at pharmacologically relevant concentrations. This bioassay is simple, minimally invasive, and suitable for phenotypic analysis of drug transport in healthy primary cells.
Collapse
|
11
|
Saif MW. Uridine triacetate - an antidote in the treatment of 5-fluorouracil or capecitabine poisoning. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1591273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Muhammad Wasif Saif
- Northwell Health Cancer Institute & Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, NY, USA
| |
Collapse
|
12
|
Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-Fluorouracil is Highly Toxic to Growing Ovarian Follicles in Mice. Toxicol Sci 2018; 166:97-107. [DOI: 10.1093/toxsci/kfy189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica M Stringer
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Elyse O K Swindells
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Perego P, Hempel G, Linder S, Bradshaw TD, Larsen AK, Peters GJ, Phillips RM. Cellular pharmacology studies of anticancer agents: recommendations from the EORTC-PAMM group. Cancer Chemother Pharmacol 2018; 81:427-441. [PMID: 29285635 DOI: 10.1007/s00280-017-3502-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023]
Abstract
An increasing number of manuscripts focus on the in vitro evaluation of established and novel anti-tumor agents in experimental models. Whilst the design of such in vitro assays is inherently flexible, some of these studies lack the minimum information necessary to critically evaluate their relevance or have been carried out under unsuitable conditions. The use of appropriate and robust methods and experimental design has important implications for generating results that are reliable, relevant, and reproducible. The Pharmacology and Molecular Mechanisms (PAMM) group of the European Organization for Research and Treatment of Cancer (EORTC) is the largest group of academic scientists working on drug development and bundle decades of expertise in this field. This position paper addresses all researchers with an interest in the preclinical and cellular pharmacology of anti-tumor agents and aims at generating basic recommendations for the correct use of compounds to be tested for anti-tumor activity using a range of preclinical cellular models of cancer.
Collapse
Affiliation(s)
- Paola Perego
- Molecular Pharmacology Unit, Department of Applied research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| | - Georg Hempel
- Institut für Pharmazeutische und Medizinische Chemie, -Klinische Pharmazie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, 751 85, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Tracey D Bradshaw
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM U938 and Sorbonne Universités, 75012, Paris, France
| | - Godefridus J Peters
- Laboratory Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Roger M Phillips
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|
14
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
15
|
Däster S, Amatruda N, Calabrese D, Ivanek R, Turrini E, Droeser RA, Zajac P, Fimognari C, Spagnoli GC, Iezzi G, Mele V, Muraro MG. Induction of hypoxia and necrosis in multicellular tumor spheroids is associated with resistance to chemotherapy treatment. Oncotarget 2018; 8:1725-1736. [PMID: 27965457 PMCID: PMC5352092 DOI: 10.18632/oncotarget.13857] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
Culture of cancerous cells in standard monolayer conditions poorly mirrors growth in three-dimensional architectures typically observed in a wide majority of cancers of different histological origin. Multicellular tumor spheroid (MCTS) culture models were developed to mimic these features. However, in vivo tumor growth is also characterized by the presence of ischemic and necrotic areas generated by oxygenation gradients and differential access to nutrients. Hypoxia and necrosis play key roles in tumor progression and resistance to treatment. To provide in vitro models recapitulating these events in highly controlled and standardized conditions, we have generated colorectal cancer (CRC) cell spheroids of different sizes and analyzed their gene expression profiles and sensitivity to treatment with 5FU, currently used in therapeutic protocols. Here we identify three MCTS stages, corresponding to defined spheroid sizes, characterized by normoxia, hypoxia, and hypoxia plus necrosis, respectively. Importantly, we show that MCTS including both hypoxic and necrotic areas most closely mimic gene expression profiles of in vivo-developing tumors and display the highest resistance to 5FU. Taken together, our data indicate that MCTS may mimic in vitro generation of ischemic and necrotic areas in highly standardized and controlled conditions, thereby qualifying as relevant models for drug screening purposes.
Collapse
Affiliation(s)
- Silvio Däster
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Nunzia Amatruda
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eleonora Turrini
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Raoul A Droeser
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Paul Zajac
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Giulio C Spagnoli
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giandomenica Iezzi
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Valentina Mele
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Manuele G Muraro
- Department of Surgery, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
He S, Roberts PJ, Sorrentino JA, Bisi JE, Storrie-White H, Tiessen RG, Makhuli KM, Wargin WA, Tadema H, van Hoogdalem EJ, Strum JC, Malik R, Sharpless NE. Transient CDK4/6 inhibition protects hematopoietic stem cells from chemotherapy-induced exhaustion. Sci Transl Med 2018; 9:9/387/eaal3986. [PMID: 28446688 DOI: 10.1126/scitranslmed.aal3986] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 11/14/2016] [Accepted: 01/27/2017] [Indexed: 12/11/2022]
Abstract
Conventional cytotoxic chemotherapy is highly effective in certain cancers but causes dose-limiting damage to normal proliferating cells, especially hematopoietic stem and progenitor cells (HSPCs). Serial exposure to cytotoxics causes a long-term hematopoietic compromise ("exhaustion"), which limits the use of chemotherapy and success of cancer therapy. We show that the coadministration of G1T28 (trilaciclib), which is a small-molecule inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), contemporaneously with cytotoxic chemotherapy protects murine hematopoietic stem cells (HSCs) from chemotherapy-induced exhaustion in a serial 5-fluorouracil treatment model. Consistent with a cell-intrinsic effect, we show directly preserved HSC function resulting in a more rapid recovery of peripheral blood counts, enhanced serial transplantation capacity, and reduced myeloid skewing. When administered to healthy human volunteers, G1T28 demonstrated excellent in vivo pharmacology and transiently inhibited bone marrow (BM) HSPC proliferation. These findings suggest that the combination of CDK4/6 inhibitors with cytotoxic chemotherapy should provide a means to attenuate therapy-induced BM exhaustion in patients with cancer.
Collapse
Affiliation(s)
- Shenghui He
- Departments of Genetics and Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | | | | | - John E Bisi
- G1 Therapeutics Inc., Research Triangle Park, NC 27709, USA
| | | | - Renger G Tiessen
- PRA Health Sciences, P.O. Box 200, 9470 AE Zuidlaren, Netherlands
| | | | | | - Henko Tadema
- PRA Health Sciences, P.O. Box 200, 9470 AE Zuidlaren, Netherlands
| | | | - Jay C Strum
- G1 Therapeutics Inc., Research Triangle Park, NC 27709, USA
| | - Rajesh Malik
- G1 Therapeutics Inc., Research Triangle Park, NC 27709, USA
| | - Norman E Sharpless
- Departments of Genetics and Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
17
|
An Inhalable Powder Formulation Based on Micro- and Nanoparticles Containing 5-Fluorouracil for the Treatment of Metastatic Melanoma. NANOMATERIALS 2018; 8:nano8020075. [PMID: 29385692 PMCID: PMC5853707 DOI: 10.3390/nano8020075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/21/2023]
Abstract
Melanoma is the most aggressive and lethal type of skin cancer, with a poor prognosis because of the potential for metastatic spread. The aim was to develop innovative powder formulations for the treatment of metastatic melanoma based on micro- and nanocarriers containing 5-fluorouracil (5FU) for pulmonary administration, aiming at local and systemic action. Therefore, two innovative inhalable powder formulations were produced by spray-drying using chondroitin sulfate as a structuring polymer: (a) 5FU nanoparticles obtained by piezoelectric atomization (5FU-NS) and (b) 5FU microparticles of the mucoadhesive agent Methocel™ F4M for sustained release produced by conventional spray drying (5FU-MS). The physicochemical and aerodynamic were evaluated in vitro for both systems, proving to be attractive for pulmonary delivery. The theoretical aerodynamic diameters obtained were 0.322 ± 0.07 µm (5FU-NS) and 1.138 ± 0.54 µm (5FU-MS). The fraction of respirable particles (FR%) were 76.84 ± 0.07% (5FU-NS) and 55.01 ± 2.91% (5FU-MS). The in vitro mucoadhesive properties exhibited significant adhesion efficiency in the presence of Methocel™ F4M. 5FU-MS and 5FU-NS were tested for their cytotoxic action on melanoma cancer cells (A2058 and A375) and both showed a cytotoxic effect similar to 5FU pure at concentrations of 4.3 and 1.7-fold lower, respectively.
Collapse
|
18
|
Leelakanok N, Geary S, Salem A. Fabrication and Use of Poly(d,l-lactide-co-glycolide)-Based Formulations Designed for Modified Release of 5-Fluorouracil. J Pharm Sci 2017; 107:513-528. [PMID: 29045885 DOI: 10.1016/j.xphs.2017.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
5-fluorouracil (5-FU) is a chemotherapeutic agent that has been used for the treatment of a variety of malignancies since its initial introduction to the clinic in 1957. Owing to its short biological half-life, multiple dosings are generally required to maintain effective 5-FU plasma concentrations throughout the therapeutic period. Clinical studies have shown that continuous 5-FU administration is generally superior to bolus injection as exhibited by lower toxicities and increased therapeutic efficacy. Optimal therapeutic efficacy, however, is often compromised by the limiting therapeutic index. Whilst oral formulations are also used, these suffer from the drawbacks of variable bioavailability and first-pass metabolism. As a result, sustained release formulations of 5-FU have been investigated in an effort to mimic the kinetics of continuous infusion particularly for situations where local delivery is considered appropriate. The biocompatible, biodegradable, and highly tunable synthetic polymer, poly(d,l-lactide-co-glycolide) (PLGA), is widely used as a vector for sustained drug delivery, however, issues such as insufficient loading and inappropriate burst release kinetics have dogged progress into the clinic for small hydrophilic drugs such as 5-FU. This review provides introductory information about the mechanism of action, pharmacokinetic and physicochemical properties, and clinical use of 5-FU that have contributed to the development of PLGA-based 5-FU release platforms. In addition, this review provides information on fabrication methods used for a range of 5-FU-loaded PLGA formulations and discusses factors affecting the release kinetics of 5-FU as well as the in vitro and in vivo antitumor or antiproliferative efficacy of these platforms.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Sean Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
19
|
Leelakanok N, Geary SM, Salem AK. Antitumor Efficacy and Toxicity of 5-Fluorouracil-Loaded Poly(Lactide Co-glycolide) Pellets. J Pharm Sci 2017; 107:690-697. [PMID: 29031952 DOI: 10.1016/j.xphs.2017.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 02/02/2023]
Abstract
The aim of this study was to formulate a biodegradable implant capable of imparting local antitumor activity through the sustained release of the chemotherapeutic agent, 5-fluorouracil (5-FU). Thus, injectable pellets (<1.2 mm diameter) made from poly(lactide co-glycolide) (PLGA) and loaded with 5-FU at varying drug:polymer ratios were fabricated using hot-melt extrusion and tested for their ability to provide sustained release of 5-FU in in vitro and in vivo settings. In addition, these formulations were compared against soluble 5-FU for their antitumor activity in vivo as well as for their toxicity. It was demonstrated that the release rate of 5-FU from PLGA pellets was directly related to the percentage of 5-FU in the pellets. PLGA pellets loaded with 50% w/w 5-FU exhibited comparable, and significantly enhanced, antitumor activity (as measured by tumor volumes and survival) in vivo in a thymoma and colon cancer model, respectively, when compared to an equivalent bolus dose (120 mg/kg) of soluble 5-FU. We concluded that 5-FU-loaded PLGA pellets were more effective and specifically less erythrotoxic than 5-FU bolus injections and therefore may prove to be of benefit as an intraoperative adjunct therapy for patients with cancers that are sensitive to 5-FU and who are undergoing tumor resection.
Collapse
Affiliation(s)
- Nattawut Leelakanok
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, University of Iowa College of Pharmacy, Iowa City, Iowa 52242.
| |
Collapse
|
20
|
P53 represses pyrimidine catabolic gene dihydropyrimidine dehydrogenase (DPYD) expression in response to thymidylate synthase (TS) targeting. Sci Rep 2017; 7:9711. [PMID: 28851987 PMCID: PMC5575263 DOI: 10.1038/s41598-017-09859-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022] Open
Abstract
Nucleotide metabolism in cancer cells can influence malignant behavior and intrinsic resistance to therapy. Here we describe p53-dependent control of the rate-limiting enzyme in the pyrimidine catabolic pathway, dihydropyrimidine dehydrogenase (DPYD) and its effect on pharmacokinetics of and response to 5-fluorouracil (5-FU). Using in silico/chromatin-immunoprecipitation (ChIP) analysis we identify a conserved p53 DNA-binding site (p53BS) downstream of the DPYD gene with increased p53 occupancy following 5-FU treatment of cells. Consequently, decrease in Histone H3K9AC and increase in H3K27me3 marks at the DPYD promoter are observed concomitantly with reduced expression of DPYD mRNA and protein in a p53-dependent manner. Mechanistic studies reveal inhibition of DPYD expression by p53 is augmented following thymidylate synthase (TS) inhibition and DPYD repression by p53 is dependent on DNA-dependent protein kinase (DNA-PK) and Ataxia telangiectasia mutated (ATM) signaling. In-vivo, liver specific Tp53 loss increases the conversion of 5-FU to 5-FUH2 in plasma and elicits a diminished 5-FU therapeutic response in a syngeneic colorectal tumor model consistent with increased DPYD-activity. Our data suggest that p53 plays an important role in controlling pyrimidine catabolism through repression of DPYD expression, following metabolic stress imposed by nucleotide imbalance. These findings have implications for the toxicity and efficacy of the cancer therapeutic 5-FU.
Collapse
|
21
|
Prabha G, Raj V. Formation and characterization of β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated Fe3O4 nanoparticles for loading and releasing 5-Fluorouracil drug. Biomed Pharmacother 2016; 80:173-182. [PMID: 27133054 DOI: 10.1016/j.biopha.2016.03.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/13/2016] [Accepted: 03/13/2016] [Indexed: 01/03/2023] Open
Abstract
In this work, β-cyclodextrin (β-CD) - polyethyleneglycol (PEG) - polyethyleneimine (PEI) coated iron oxide nanoparticles (Fe3O4-β-CD-PEG-PEI) were developed as drug carriers for drug delivery applications. The 5- Fluorouracil (5-FU) was chosen as model drug molecule. The developed nanoparticles (Fe3O4-β-CD-PEG-PEI) were characterized by various techniques such as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). The average particles size range of 5-FU loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles were from 151 to 300nm and zeta potential value of nanoparticles were from -43mV to -20mV as measured using Malvern Zetasizer. Finally, encapsulation efficiency (EE), loading capacity (LC) and in-vitro drug release performance of 5-FU drug loaded Fe3O4-β-CD, Fe3O4-β-CD-PEG and Fe3O4-β-CD-PEG-PEI nanoparticles was evaluated by UV-vis spectroscopy. In-vitro cytotoxicity tests investigated by MTT assay indicate that 5-FU loaded Fe3O4-β-CD-PEG-PEI nanoparticles were toxic to cancer cells and non-toxic to normal cells. The in-vitro release behavior of 5-FU from drug (5-FU) loaded Fe3O4-β-CD-PEG-PEI composite at different pH values and temperature was studied. It was found that 5-FU was released faster in pH 6.8 than in the acidic mediums (pH 1.2), and the released quantity was higher. Therefore, the newly prepared Fe3O4-β-CD-PEG-PEI carrier exhibits a promising potential capability for anticancer drug delivery in tumor therapy.
Collapse
Affiliation(s)
- G Prabha
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem-11, Tamil Nadu, India.
| | - V Raj
- Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem-11, Tamil Nadu, India.
| |
Collapse
|
22
|
Derissen EJB, Jacobs BAW, Huitema ADR, Rosing H, Schellens JHM, Beijnen JH. Exploring the intracellular pharmacokinetics of the 5-fluorouracil nucleotides during capecitabine treatment. Br J Clin Pharmacol 2016; 81:949-57. [PMID: 26718616 DOI: 10.1111/bcp.12877] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/11/2015] [Accepted: 12/24/2015] [Indexed: 12/26/2022] Open
Abstract
AIM Three intracellularly formed metabolites are responsible for the antineoplastic effect of capecitabine: 5-fluorouridine 5'-triphosphate (FUTP), 5-fluoro-2'-deoxyuridine 5'-triphosphate (FdUTP), and 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). The objective of this study was to explore the pharmacokinetics of these intracellular metabolites during capecitabine treatment. METHODS Serial plasma and peripheral blood mononuclear cell (PBMC) samples were collected from 13 patients treated with capecitabine 1000 mg QD (group A) and eight patients receiving capecitabine 850 mg m(-2) BID for fourteen days, every three weeks (group B). Samples were collected on day 1 and, for four patients of group B, also on day 14. The capecitabine and 5-fluorouracil (5-FU) plasma concentrations and intracellular metabolite concentrations were determined using LC-MS/MS. Pharmacokinetic parameters were estimated using non-compartmental analysis. RESULTS Only FUTP could be measured in the PBMC samples. The FdUTP and FdUMP concentrations were below the detection limits (LOD). No significant correlation was found between the plasma 5-FU and intracellular FUTP exposure. The FUTP concentration-time profiles demonstrated considerable inter-individual variation and accumulation of the metabolite in PBMCs. FUTP levels ranged between <LOD and 1.0 μM on day 1, and from 0.64 to 14 μM on day 14. The area under the FUTP concentration-time curve was significantly increased on day 14 of the treatment compared to day 1 (mean ± SD: 28 ± 19 μM h vs. 2.0 ± 1.9 μM h). CONCLUSIONS To our knowledge, this is the first time that intracellular FUTP concentrations were measured in patients treated with capecitabine. During 14 days of treatment with capecitabine twice daily, intracellular accumulation of FUTP occurs.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Bart A W Jacobs
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-Epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute and MC Slotervaart, Louwesweg 6, 1066 EC, Amsterdam, The Netherlands.,Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-Epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| |
Collapse
|
23
|
Abstract
Purpose An oral antineoplastic drug, S-1, is known to be more effective with less toxicity and fewer gastrointestinal side effects than the conventional intravenous 5-fluorouracil. We report a case of limbal stem cell deficiency that occurred in a patient receiving chemotherapy using S-1 alone for gastric cancer. Case Report A 65-year-old woman with symptoms of grittiness and epiphora in both eyes for several months was referred to the ophthalmology clinic. She had been receiving S-1 orally after total gastrectomy for advanced gastric cancer. Slit lamp examination revealed an irregular hazy corneal epithelium in both eyes that extended to the center of the cornea overlying the pupil and showed late staining with fluorescein dye. Palisades of Vogt at the superior limbus were absent in both eyes. Best-corrected distance vision was 20/50 in both eyes with all other structures of the anterior and posterior segment unremarkable including a patent lacrimal drainage system. There was no change in the corneal lesions of either eye despite 3 months of topical therapy. The lesions did resolve in 4 months after discontinuation of S-1 therapy owing to acute renal failure. Conclusions Early detection of this adverse reaction before significant visual loss through regular follow-up appears to be important in patients receiving S-1 therapy.
Collapse
|
24
|
Derissen EJB, Hillebrand MJX, Rosing H, Schellens JHM, Beijnen JH. Development of an LC-MS/MS assay for the quantitative determination of the intracellular 5-fluorouracil nucleotides responsible for the anticancer effect of 5-fluorouracil. J Pharm Biomed Anal 2015; 110:58-66. [PMID: 25804433 DOI: 10.1016/j.jpba.2015.02.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/26/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022]
Abstract
5-Fluorouracil (5-FU) and its oral prodrug capecitabine are among the most widely used chemotherapeutics. For cytotoxic activity, 5-FU requires cellular uptake and intracellular metabolic activation. Three intracellular formed metabolites are responsible for the antineoplastic effect of 5-FU: 5-fluorouridine 5'-triphosphate (FUTP), 5-fluoro-2'-deoxyuridine 5'-triphosphate (FdUTP) and 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP). In this paper, we describe the development of an LC-MS/MS assay for quantification of these active 5-FU nucleotides in peripheral blood mononuclear cells (PBMCs). Because the intracellular 5-FU nucleotide concentrations were very low, maximization of the release from the cell matrix and minimization of interference were critical factors. Therefore, a series of experiments was performed to select the best method for cell lysis and nucleotide extraction. Chromatography was optimized to obtain separation from endogenous nucleotides, and the effect of different cell numbers was examined. The assay was validated for the following concentration ranges in PBMC lysate: 0.488-19.9 nM for FUTP, 1.66-67.7 nM for FdUTP and 0.748-30.7 nM for FdUMP. Accuracies were between -2.2 and 7.0% deviation for all analytes, and the coefficient of variation values were ≤ 4.9%. The assay was successfully applied to quantify 5-FU nucleotides in PBMC samples from patients treated with capecitabine and patients receiving 5-FU intravenously. FUTP amounts up to 3054 fmol/10(6) PBMCs and FdUMP levels up to 169 fmol/10(6) PBMCs were measured. The FdUTP concentrations were below the lower limit of quantification. To our knowledge, this is the first time that 5-FU nucleotides were quantified in cells from patients treated with 5-FU or capecitabine without using a radiolabel.
Collapse
Affiliation(s)
- Ellen J B Derissen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | - Michel J X Hillebrand
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital - The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands; Science Faculty, Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmaco-epidemiology & Clinical Pharmacology, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
25
|
Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:487-98. [DOI: 10.1016/j.msec.2014.12.036] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/05/2014] [Accepted: 12/05/2014] [Indexed: 11/22/2022]
|
26
|
J. McGrail D, 1 School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100;, S. Patel K, N. Khambhati N, Pithadia K, R. Dawson M. Utilizing temporal variations in chemotherapeutic response to improve breast cancer treatment efficacy. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.4.310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Hussain A, Samad A, Ramzan M, Ahsan MN, Ur Rehman Z, Ahmad FJ. Elastic liposome-based gel for topical delivery of 5-fluorouracil: in vitro and in vivo investigation. Drug Deliv 2014; 23:1115-29. [DOI: 10.3109/10717544.2014.976891] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India,
| | - Abdus Samad
- Department of Pharmacokinetic and Statistics, Fortis Clinical Research Ltd., Faridabad, Haryana, India,
| | - Mohammad Ramzan
- PCTE Institute of Pharmacy, Baddowal Cantt, Ferozepur Road, Ludhiana, Punjab, India, and
| | - Mohd Neyaz Ahsan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India,
| | - Zia Ur Rehman
- PCTE Institute of Pharmacy, Baddowal Cantt, Ferozepur Road, Ludhiana, Punjab, India, and
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
| |
Collapse
|
28
|
Ma YS, Yang IP, Tsai HL, Huang CW, Juo SHH, Wang JY. High glucose modulates antiproliferative effect and cytotoxicity of 5-fluorouracil in human colon cancer cells. DNA Cell Biol 2014; 33:64-72. [PMID: 24283362 PMCID: PMC3929122 DOI: 10.1089/dna.2013.2161] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 12/15/2022] Open
Abstract
5-Fluorouracil (5-FU)-based chemotherapy is widely used for the treatment of colorectal cancer (CRC). While optimal doses of 5-FU are generally established based on a patient's estimated body surface area, the plasma concentrations of 5-FU vary among patients. In addition, hyperglycemia in patients with CRC has been reported as a risk factor in poor prognosis. The aim of the present study was to investigate whether hyperglycemia affects antiproliferative effect of 5-FU on the human colon cancer cells (SW480, SW620, LoVo, and HCT116). Growth inhibition of 5-FU was accessed by WST-8 assay. The effect of high glucose (HG, 15 mM) and 5-FU on the cellular proliferation was evaluated by flow cytometry analysis using 5-ethynyl-2'-deoxy-uridine (EdU) incorporation plus 7-AAD. Cell death was determined by flow cytometry using Annexin V-FITC and PI. The results showed that HG, compared to physiological normal glucose (NG) concentration (5 mM), leads to increased cell proliferation and increased GI50 of 5-FU in the four colon cancer cell lines. When the cells were pretreated with a low-dose 5-FU in NG condition, subsequent HG treatment eliminated inhibitory effect of 5-FU in cancer cell growth. In the presence of 5-FU (0.5 μg/mL for LoVo and HCT116; 1 μg/mL for SW480 and SW620), culture with HG for 72 h does not significantly altered cell cycle profile in the four cell lines but significantly increased DNA replication in SW620 (21%) and LoVo (17%). Flow cytometric analysis showed that HG protects cells against 5-FU-induced cell death in SW480. Finally, HG did not alter intracellular level of reactive oxygen species (ROS), although 5-FU indeed induced higher intracellular level of ROS. In conclusion, HG attenuates growth inhibition of 5-FU and our results indicate that decreased cell death and increased DNA replication may account for the attenuating effect of a HG environment on 5-FU-induced tumor growth inhibition.
Collapse
Affiliation(s)
- Yi-Shing Ma
- Graduate Institute of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Ping Yang
- Graduate Institute of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Graduate Institute of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Genome Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Louie SG, Ely B, Lenz HJ, Albain KS, Gotay C, Coleman D, Raghavan D, Shields AF, Gold PJ, Blanke CD. Higher capecitabine AUC in elderly patients with advanced colorectal cancer (SWOGS0030). Br J Cancer 2013; 109:1744-9. [PMID: 24022189 PMCID: PMC3790171 DOI: 10.1038/bjc.2013.517] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022] Open
Abstract
Background: The aging process is accompanied by physiological changes including reduced glomerular filtration and hepatic function, as well as changes in gastric secretions. To investigate what effect would aging have on the disposition of capecitabine and its metabolites, the pharmacokinetics between patients ⩾70 years and <60 years were compared in SWOG0030. Methods: Twenty-nine unresectable colorectal cancer patients were stratified to either ⩾70 or <60 years of age, where the disposition of capecitabine and its metabolites were compared. Results: Notable increase in capecitabine area under the curve (AUC) was accompanied by reduction in capecitabine clearance in ⩾70 years patients (P<0.05). No difference in 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine (DFUR), and 5-fluorouracil (5FU) AUCs between the two age groups, suggesting that carboxylesterase and cytidine deaminase (CDA) activity was similar between the two age groups. These results suggest that metabolic enzymes involved in converting capecitabine metabolites are not altered by age. An elevation in capecitabine Cmax and reduction in clearance was seen in females, where capecitabine AUC was 40.3% higher in women. Elevation of DFUR Cmax (45%) and AUC (46%) (P<0.05) was also noted, suggesting that CDA activity may be higher in females. Conclusion: Increases in capecitabine Cmax and AUC was observed in patients ⩾70 years when compared with younger patients who were >60 years.
Collapse
Affiliation(s)
- S G Louie
- 1] Department of Pharmacy, University of Southern California, Los Angeles, CA, USA [2] Department of Oncology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
ElMeshad AN, Mortazavi SM, Mozafari MR. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J Liposome Res 2013; 24:1-9. [DOI: 10.3109/08982104.2013.810644] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Krynetskiy E, Krynetskaia N, Rihawi D, Wieczerzak K, Ciummo V, Walker E. Establishing a model for assessing DNA damage in murine brain cells as a molecular marker of chemotherapy-associated cognitive impairment. Life Sci 2013; 93:605-10. [PMID: 23567806 DOI: 10.1016/j.lfs.2013.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/10/2013] [Accepted: 03/18/2013] [Indexed: 01/01/2023]
Abstract
AIMS Chemotherapy-associated cognitive impairment often follows cancer chemotherapy. We explored chemotherapy-induced DNA damage in the brain cells of mice treated with 5-fluorouracil (5FU), an antineoplastic agent, to correlate the extent of DNA damage to behavioral functioning in an autoshaping-operant mouse model of chemotherapy-induced learning and memory deficits (Foley et al., 2008). MAIN METHODS Male, Swiss-Webster mice were injected once with saline or 75 mg/kg 5FU at 0, 12, and 24h and weighed every 24h. Twenty-four h after the last injection, the mice were tested in a two-day acquisition and the retention of a novel response task for food reinforcement. Murine brain cells were analyzed for the presence of single- and double-strand DNA breaks by the single cell gel electrophoresis assay (the Comet assay). KEY FINDINGS We detected significant differences (p<0.0001) for all DNA damage characteristics (DNA "comet" tail shape, migration pattern, tail moment and olive moments) between control mice cohort and 5FU-treated mice cohort: tail length - 119 vs. 153; tail moment - 101 vs. 136; olive moment - 60 vs. 82, correspondingly. We found a positive correlation between increased response rates (r=0.52, p<0.05) and increased rate of errors (r=0.51, p<0.05), and DNA damage on day 1. For all 15 mice (saline-treated and 5FU-treated mice), we found negative correlations between DNA damage and weight (r=-0.75, p<0.02). SIGNIFICANCE Our results indicate that chemotherapy-induced DNA damage changes the physiological status of the brain cells and may provide insights to the mechanisms for cognitive impairment after cancer chemotherapy.
Collapse
Affiliation(s)
- Evgeny Krynetskiy
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, United States
| | | | | | | | | | | |
Collapse
|
32
|
Ganti V, Walker EA, Nagar S. Pharmacokinetic application of a bio-analytical LC-MS method developed for 5-fluorouracil and methotrexate in mouse plasma, brain and urine. Biomed Chromatogr 2013; 27:994-1002. [PMID: 23494628 DOI: 10.1002/bmc.2893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/05/2023]
Abstract
In the past we have reported significant cognitive deficits in mice receiving 5-fluorouracil in combination with low-dose methotrexate. To explain such interactions, a pharmacokinetic study was designed. A sensitive bio-analytical method was therefore developed and validated for 5-fluorouracil and methotrexate in mouse plasma, brain and urine with liquid chromatography coupled to a single quadrupole mass spectrometer. Chromatographic separation was accomplished by Agilent® Zorbax® SB-C18 column, with isocratic elution (5 mM ammonium acetate and methanol, 70:30, %v/v) at a flow rate of 300 μL/min. The limit of quantitation for both drugs was 15.6 ng/mL (plasma and brain) and 78.1 ng/mL (urine), with interday and intraday precision and accuracy ≤15% and a total run time of 6 min. This bio-analytical method was used for the pharmacokinetic characterization of 5-fluorouracil and methotrexate in mouse plasma, brain and urine over a period of 24 h. This method allowed characterization of the brain concentrations of 5-fluorouracil over a period of 24 h.
Collapse
Affiliation(s)
- Vaishnavi Ganti
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
33
|
Wen L, Li M, Wu Y. Monodisperse pH-sensitive protamine hollow microspheres as carriers for drug delivery. J Appl Polym Sci 2012. [DOI: 10.1002/app.38696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Timmers L, Swart EL, Boons CCLM, Mangnus D, van de Ven PM, Peters GJ, Boven E, Hugtenburg JG. The use of capecitabine in daily practice: a study on adherence and patients' experiences. Patient Prefer Adherence 2012; 6:741-748. [PMID: 23118530 PMCID: PMC3484526 DOI: 10.2147/ppa.s36757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Adherence to pharmacological therapy is a complex and multifactorial issue that can substantially alter the outcome of treatment. Especially when using long-term medication, cancer patients have adherence rates similar to those of patients with other diseases. The consequences of poor adherence are poor health outcomes and increased health care costs. Only few studies have focused on the use of oral anticancer agents in daily practice. Information about the reasons for nonadherence is essential for the development of interventions that may improve adherence. This report presents the CAPER-capecitabine protocol, which is designed to study the adherence to capecitabine and the influence of patient attitudes towards medication and self-reported side effects. Furthermore, the relationships between patient characteristics, disease characteristics, side effects, quality of life, patient beliefs and attitudes towards disease and medication, dose adjustments, reasons for discontinuation, and plasma concentration of three of the main metabolites, including the active compound 5-fluorouracil, will be explored. METHODS In this multicenter, prospective, observational cohort study, 90 patients aged 18 years or older starting treatment with capecitabine will be included and followed for a period up to five cycles. The main study parameters are adherence, patient attitudes towards medication, and the number and grade of patient-reported side effects. At baseline and during week 2 of cycles 1, 3 and 5, patients will be asked to donate blood and fill out a questionnaire. Blood samples will be analyzed for plasma concentration of the metabolites, 5'-deoxy-5-fluorouridine, 5-fluorouracil, and α-fluoro-β-alanine. The CAPER-capecitabine trial is closely related to the CAPER-erlotinib trial. DISCUSSION The aim of the present study is to get more insight into patient experiences with the use of capecitabine in daily practice and the various aspects that govern adherence. We hypothesize that patient attitudes towards medication and the side effects experienced play an important role in the way patients use capecitabine. We expect that our findings will be useful for health care professionals in developing interventions to support patients in improving adherence and persistence with the use of capecitabine.
Collapse
Affiliation(s)
- Lonneke Timmers
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | - Eleonora L Swart
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | - Christel CLM Boons
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | - Dirk Mangnus
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Epie Boven
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline G Hugtenburg
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Wilson B, Ambika TV, Patel RDK, Jenita JL, Priyadarshini SRB. Nanoparticles based on albumin: preparation, characterization and the use for 5-flurouracil delivery. Int J Biol Macromol 2012; 51:874-8. [PMID: 22820011 DOI: 10.1016/j.ijbiomac.2012.07.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
The aim of the study was to formulate and evaluate nanoparticles based on albumin to deliver 5-fluorouracil. The nanoparticles were prepared by coacervation method. The nanoparticles were characterized for particle size, surface charge, size distribution and drug loading capacity. The drug loading capacity varied from 4.22% to 19.8% (w/w). The mean particle size was 141.9 nm and surface charge was -30.3 mV. The drug loaded particles exerted a bi-phasic release pattern with an initial burst effect followed by a sustained release in pH 7.4 phosphate buffer. The drug release was first order diffusion controlled and the mechanism was Fickian. The drug loaded nanoparticles showed superior cytotoxicity when compared to the free drug.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, Dayananda Sagar College of Pharmacy, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | | | | | | | | |
Collapse
|
36
|
Rai PR, Tiwary AK, Rana V. Optimization of an aqueous tablet-coating process containing carboxymethylated Cassia fistula gum. AAPS PharmSciTech 2012; 13:431-40. [PMID: 22362140 DOI: 10.1208/s12249-012-9763-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 02/03/2012] [Indexed: 11/30/2022] Open
Abstract
The present investigation was aimed at developing and optimizing a simple aqueous tablet-coating formulation and its process. 5-Fluorouracil (5-FU) was used to ascertain the relative lipophilic/hydrophilic behavior of the coating system. Optimization was performed by evaluating the adhesive force strength and cohesive force strength of the tablet coat using a texture analyzer. The in vitro release of 5-FU was found to decrease with an increase in (tablet surface-coat) adhesive force strength. The (tablet-tablet) cohesive force strength was reduced by the addition of magnesium silicate to the coating solution. The addition of magnesium silicate (0.2% w/v) to the carboxymethyl Cassia fistula gum-chitosan (CCG-CH) coating surface significantly inhibited the release of 5-FU possibly due to an increase in the hydrophobic character of the coated tablet surface. This was possible by coating cohesive force strength reduction coating compositions (CCG-CH (70:30) and 0.3% magnesium silicate). Further, the FTIR-ATR and DSC analyses suggested the pivotal role of magnesium silicate in modifying the release of 5-FU from CCG-CH-coated tablets due to hydrogen bonding of its Si-O-Si or Mg-O groups with -OH moieties of CCG-CH.
Collapse
|
37
|
Lin Y, Radzi R, Morimoto M, Saimoto H, Okamoto Y, Minami S. Characterization of Chitosan-Carboxymethyl Dextran Nanoparticles as a Drug Carrier and as a Stimulator of Mouse Splenocytes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1401-20. [DOI: 10.1163/092050611x582849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Y.S. Lin
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| | - R. Radzi
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| | - M. Morimoto
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| | - H. Saimoto
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| | - Y. Okamoto
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| | - S. Minami
- a Department of Veterinary Medicine , Tottori University , Tottori-shi , Tottori , 680-8553 , Japan
| |
Collapse
|
38
|
Konings IRHM, Sleijfer S, Mathijssen RHJ, de Bruijn P, Ghobadi Moghaddam-Helmantel IM, van Dam LM, Wiemer EAC, Verweij J, Loos WJ. Increasing tumoral 5-fluorouracil concentrations during a 5-day continuous infusion: a microdialysis study. Cancer Chemother Pharmacol 2010; 67:1055-62. [PMID: 20652702 PMCID: PMC3082021 DOI: 10.1007/s00280-010-1400-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
Purpose Response to anticancer therapy is believed to be directly related to the concentration of the anticancer drug in the tumor itself. Assessment of intra-tumor drug pharmacokinetics can be helpful to gain more insight into mechanisms involved in the (in)sensitivity of tumors to anticancer therapy. We explored the pharmacokinetics of 5-fluorouracil in both plasma and tumor tissue during a 5-day continuous infusion of 5-fluorouracil in patients with cancer. Sampling for measurement of 5-fluorouracil in tumor tissue was performed using microdialysis. Experimental design In seven patients with an accessible (sub)cutaneous tumor treated with a continuous 5-fluorouracil infusion, plasma and microdialysate samples from tumor and normal adipose tissue were collected over a period of 5 days. Results For six patients, drug concentrations in both tumor tissue and plasma were available. Concentration–time curves of unbound 5-fluorouracil were lower in tumor tissue compared to the curves in plasma, but exposure ratios of tumor tissue versus plasma increased during the 5-day infusion period. The presence of circadian rhythmicity of 5-fluorouracil pharmacokinetics in the tumor itself was demonstrated as 5-fluorouracil concentrations in tumor extracellular fluid were higher during the night than during daytime. Conclusion Microdialysis was successfully employed in patients with cancer during a continuous 5-day 5-fluorouracil infusion. Plasma and tumor pharmacokinetics of 5-fluorouracil differed substantially with increasing 5-fluorouracil concentrations in tumor over time, possibly resulting from a lowered interstitial fluid pressure by 5-fluorouracil itself. This microdialysis 5-fluorouracil model might be useful to monitor the effect of drug delivery modulating strategies in future studies.
Collapse
Affiliation(s)
- Inge R H M Konings
- Department of Medical Oncology, Erasmus University Medical Center, Room HE-118, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Breda M, Barattè S. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal Bioanal Chem 2010; 397:1191-201. [PMID: 20383700 DOI: 10.1007/s00216-010-3633-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 11/26/2022]
Abstract
5-Fluorouracil (5-FU) is a cytostatic agent that has been widely used in the treatment of various solid tumours for more than 20 years, and is still considered to be among the most active antineoplastic agents in advanced colorectal cancer and malignancies of the head and neck. A large number of non-chromatographic and chromatographic methods for the quantitation of 5-FU, related prodrugs and their metabolites in biological matrices have been developed in the last 30 years to support preclinical and clinical studies. However, 5-FU monitoring has not been widely used, at least not in the USA, and certainly not outside the clinical research setting, given the absence of simple, fast and inexpensive testing methods for 5-FU monitoring. Recent developments with testing based on liquid chromatography-tandem mass spectrometry and a nanoparticle antibody-based immunoassay may facilitate routine monitoring of 5-FU in daily clinical practice. In this review the advantages and disadvantages of the bioanalytical methods developed and used for 5-FU, its metabolites and related prodrugs are discussed.
Collapse
Affiliation(s)
- Massimo Breda
- Accelera S.r.l., Viale Pasteur 10, 20014 Nerviano, Italy.
| | | |
Collapse
|
40
|
Zheng Y, Yang W, Wang C, Hu J, Fu S, Dong L, Wu L, Shen X. Nanoparticles based on the complex of chitosan and polyaspartic acid sodium salt: Preparation, characterization and the use for 5-fluorouracil delivery. Eur J Pharm Biopharm 2007; 67:621-31. [PMID: 17533123 DOI: 10.1016/j.ejpb.2007.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 03/22/2007] [Accepted: 04/05/2007] [Indexed: 11/27/2022]
Abstract
New nonstoichiometric polyelectrolyte complex nanoparticles were prepared based on chitosan (CS) and polyaspartic acid sodium salt (PAsp). The physicochemical properties of the complexes were investigated by means of turbidity, dynamic light scattering, transmission electron microscopy and zeta potential. The results indicated that the slow dropwise addition of chitosan into PAsp allowed to elaborate either anionic or cationic particles in the size range of 85-300 nm with proper CS and PAsp unit molar ratios. Investigation of structural changes during the addition of CS revealed that the microstructure of the nanoparticles depended strongly on the unit molar ratio of CS to PAsp. Nanoparticles containing a hydrophilic drug, 5-fluorouracil (5FU), were prepared by mixing and absorption method. In vitro and in vivo experiment indicated that the drug-loaded CS-PAsp nanoparticles presented a sustained release of 5FU compared to the 5FU solution and the areas under curve (AUC) were increased by about four times.
Collapse
Affiliation(s)
- Yongli Zheng
- Department of Macromolecular Science, Fudan University, and Zhongshan Hospital, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pentheroudakis G, Pappas P, Golfinopoulos V, Fountzilas G, Nikolaidou M, Boumba VA, Vougiouklakis T, Nikiforidis L, Tzamakou E, Siarabi O, Marselos M, Pavlidis N. Weekday on-weekend off oral capecitabine: a phase I study of a continuous schedule better simulating protracted fluoropyrimidine therapy. Cancer Chemother Pharmacol 2007; 60:733-9. [PMID: 17333194 DOI: 10.1007/s00280-007-0419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although protracted intravenous 5-fluorouracil is superior to bolus regimens in terms of tumour exposure to the drug during DNA synthesis as well as activity and safety, the oral fluoropyrimidine capecitabine is administered intermittently. In this phase I study, we investigated an alternative, dose-intense continuous regimen. MATERIALS AND METHODS Oral capecitabine was administered twice daily continuously with weekend breaks, in patients with advanced solid tumours refractory to standard therapy. Dose escalation proceeded from 1,331 to 2,510 mg/m(2) daily. Dose limiting toxicity (DLT) consisted of any grade-3 or 4 adverse event except for alopecia and skin toxicity resolving within 7 days. RESULTS Twenty-five heavily pretreated patients participated in the study. No DLT occurred in the first four cohorts. Two out of four patients developed grade III diarrhoea in the fourth week of capecitabine at 2,510 mg/m(2) (DLT). The most common toxic episodes during all cycles of treatment were grade 1-2 fatigue, skin erythema, abdominal cramps, nausea, constipation and neutropenia. Disease regression was seen in three and stabilisation with clinical benefit in ten patients (clinical benefit response 54%). Pharmacokinetic studies of capecitabine and metabolites in four patients at 2,250 mg/m(2 )daily showed rapid absorption, short plasma half-lives with the exception of FBAL and absence of accumulation or conversion saturation during the course of therapy. At this dose, administered dose intensity in eight patients was 99.3% of the planned one. CONCLUSIONS Weekday on-weekend off capecitabine maximizes cytotoxic impact on tumour cells during S-phase by safely simulating protracted fluoropyrimidine therapy at a recommended dose (2,250 mg/m(2)) close to that of the intermittent schedule and clearly higher than the continuous one of 1,331 mg/m(2).
Collapse
Affiliation(s)
- G Pentheroudakis
- Department of Medical Oncology, Medical School, Ioannina University Hospital, Niarxou Avenue, 45500 Ioannina, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hernández-Vargas H, Ballestar E, Carmona-Saez P, von Kobbe C, Bañón-Rodríguez I, Esteller M, Moreno-Bueno G, Palacios J. Transcriptional profiling of MCF7 breast cancer cells in response to 5-Fluorouracil: relationship with cell cycle changes and apoptosis, and identification of novel targets of p53. Int J Cancer 2006; 119:1164-75. [PMID: 16557594 DOI: 10.1002/ijc.21938] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The availability of oral precursors of 5-Fluorouracil (5-FU) and its favorable results in treating advanced breast cancer have renewed the interest in the molecular mechanisms underlying its cytotoxicity. We have compared the changes in cell cycle and cell death parameters induced by 2 different concentrations of 5-FU (IC50 and IC80) in the breast adenocarcinoma cell line MCF7. G1/S cell cycle arrest was associated with both concentrations, whereas cell death was mainly induced after IC80 5-FU. These changes were correlated with gene expression assessed by cDNA microarray analysis. Main findings included an overexpression of p53 target genes involved in cell cycle and apoptosis (CDKN1A/p21, TP53INP, TNFRSF6/FAS and BBC3/PUMA), and significant repression of Myc. High dose 5-FU also induced a higher regulation of the mitochondrial death genes APAF1, BAK1 and BCL2, and induction of genes of the ID family. Furthermore, we establish a direct causal relationship between p21, ID1 and ID2 overexpression, increased acetylation of histones H3 and H4 and binding of p53 to their promoters as a result of 5-FU treatment. The relevance of these findings was further studied after interfering p53 expression in MCF7 cells (shp53 cells), showing a lower induction of both, ID1 and ID2 transcripts, after 5-FU when compared with MCF7 shGFP control cells. This molecular characterization of dose- and time-dependent modifications of gene expression after 5-FU treatment should provide a resource for future basic studies addressing the molecular mechanisms of chemotherapy in breast cancer.
Collapse
Affiliation(s)
- Héctor Hernández-Vargas
- Breast and Gynaecological Cancer Group, Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pisano R, Breda M, Grassi S, James CA. Hydrophilic interaction liquid chromatography–APCI–mass spectrometry determination of 5-fluorouracil in plasma and tissues. J Pharm Biomed Anal 2005; 38:738-45. [PMID: 15967302 DOI: 10.1016/j.jpba.2005.01.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
A simple and fast analytical method using hydrophilic interaction liquid chromatography (HILIC) coupled with mass spectrometry was developed to analyse 5-fluorouracil (5-FU) in plasma and tissues. The HILIC system overcomes problems reported in obtaining satisfactory retention of 5-FU with other types of HPLC systems. After addition of internal standard (IS) (5-Chlorouracil (5-CU)), plasma proteins were precipitated with acetonitrile, and tissue samples homogenised with a micro-dismembrator. The analysis was performed using a polymer-based column (Ashaipak NH2) and the compounds were eluted under gradient conditions at 1 ml/min using a mobile phase containing a mixture of ammonium formate and acetonitrile. MS detection used a API 4000 mass spectrometry with heated nebulizer source and multiple reaction monitoring operated in the negative ion mode. The mass transitions of 5-FU and its internal standard were 129 m/z-->42m/z and 145 m/z-->42 m/z, respectively. The lower limits of quantitation in plasma and tissues were about 5 ng/ml and 10 ng/g, respectively, using 25 microl of plasma and 50mg of tissue. Good linearity, accuracy and precision were obtained in all matrices tested. The suitability and robustness of the method for in vivo samples were confirmed by analysis of mouse plasma, muscle and tumour from animals dosed with 5-FU.
Collapse
Affiliation(s)
- Rossella Pisano
- Preclinical Development, Nerviano Medical Sciences S.r.l., Viale Pasteur 10, 20014 Nerviano, Italy
| | | | | | | |
Collapse
|
44
|
McSheehy PMJ, Port RE, Rodrigues LM, Robinson SP, Stubbs M, van der Borns K, Peters GJ, Judson IR, Leach MO, Griffiths JR. Investigations in vivo of the effects of carbogen breathing on 5-fluorouracil pharmacokinetics and physiology of solid rodent tumours. Cancer Chemother Pharmacol 2005; 55:117-128. [PMID: 15592719 DOI: 10.1007/s00280-004-0851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2004] [Accepted: 04/26/2004] [Indexed: 11/27/2022]
Abstract
PURPOSE We have shown previously that carbogen (95% 0(2), 5% CO(2)) breathing by rodents can increase uptake of anticancer drugs into tumours. The aim of this study was to extend these observations to other rodent models using the anticancer drug 5-fluorouracil (5FU). 5FU pharmacokinetics in tumour and plasma and physiological effects on the tumour by carbogen were investigated to determine the locus of carbogen action on augmenting tumour uptake of 5FU. METHODS Two different tumour models were used, rat GH3 prolactinomas xenografted s.c. into nude mice and rat H9618a hepatomas grown s.c. in syngeneic Buffalo rats. Uptake and metabolism of 5FU in both tumour models with or without host carbogen breathing was studied non-invasively using fluorine-19 magnetic resonance spectroscopy ((19)F-MRS), while plasma samples from Buffalo rats were used to construct a NONMEM pharmacokinetic model. Physiological effects of carbogen on tumours were studied using (31)P-MRS for energy status (NTP/Pi) and pH, and gradient-recalled echo magnetic resonance imaging (GRE-MRI) for blood flow and oxygenation. RESULTS In both tumour models, carbogan-induced GRE-MRI signal intensity increases of approximately 60% consistent with an increase in tumour blood oxygenation and/or flow. In GH3 xenografts, (19)F-MRS showed that carbogen had no significant effect on 5FU uptake and metabolism by the tumours, and (31)P-MRS showed there was no change in the NTP/Pi ratio. In H9618a hepatomas, (19)F-MRS showed that carbogen had no effect on tumour 5FU uptake but significantly ( p=0.0003) increased 5FU elimination from the tumour (i.e. decreased the t(1/2)) and significantly ( p=0.029) increased (53%) the rate of metabolism to cytotoxic fluoronucleotides (FNuct). The pharmacokinetic analysis showed that carbogen increased the rate of tumour uptake of 5FU from the plasma but also increased the rate of removal. (31)P-MRS showed there were significant ( p CONCLUSIONS We suggest that carbogen can transiently increase tumour blood flow, but this effect alone may not increase uptake of anticancer drugs without a secondary mechanism operating. In the case of the hepatoma, the increase in tumour energy status and pH gradient may be sufficient to augment 5FU metabolism to cytotoxic FNuct, while in the GH3 xenografts this was not the case. Thus carbogen breathing does not universally lead to increased uptake of anticancer drugs.
Collapse
Affiliation(s)
- P M J McSheehy
- Department of Biochemistry, Cancer Research UK Biomedical Magnetic Resonance Research Group, St George's Hospital Medical School, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Troester MA, Hoadley KA, Parker JS, Perou CM. Prediction of toxicant-specific gene expression signatures after chemotherapeutic treatment of breast cell lines. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1607-13. [PMID: 15598611 PMCID: PMC1247657 DOI: 10.1289/txg.7204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Global gene expression profiling has demonstrated that the predominant cellular response to a range of toxicants is a general stress response. This stereotyped environmental stress response commonly includes repression of protein synthesis and cell-cycle-regulated genes and induction of DNA damage and oxidative stress-responsive genes. Our laboratory recently characterized the general stress response of breast cell lines derived from basal-like and luminal epithelium after treatment with doxorubicin (DOX) or 5-fluorouracil (5FU) and showed that each cell type has a distinct response. However, we expected that some of the expression changes induced by DOX and 5FU would be unique to each compound and might reflect the underlying mechanisms of action of these agents. Therefore, we employed supervised analyses (significance analysis of microarrays) to identify genes that showed differential expression between DOX-treated and 5FU-treated cell lines. We then used cross-validation analyses and identified genes that afforded high predictive accuracy in classifying samples into the two treatment classes. To test whether these gene lists had good predictive accuracy in an independent data set, we treated our panel of cell lines with etoposide, a compound mechanistically similar to DOX. We demonstrated that using expression patterns of 100 genes we were able to obtain 100% predictive accuracy in classifying the etoposide samples as being more similar in expression to DOX-treated than to 5FU-treated samples. These analyses also showed that toxicant-specific gene expression patterns, similar to general stress responses, vary according to cell type.
Collapse
Affiliation(s)
- Melissa A Troester
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
Yu BT, Sun X, Zhang ZR. Enhanced liver targeting by synthesis of N1-stearyl-5-Fu and incorporation into solid lipid nanoparticles. Arch Pharm Res 2004; 26:1096-101. [PMID: 14723346 DOI: 10.1007/bf02994764] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To enhance the liver targeting and reduce the side effects of 5-fluorouracil (5-Fu), it was acylated by stearyl chloride to obtain N1-stearyl-5-Fu (5-FuS). The chemical structure of the prodrug was confirmed by Nuclear Magnetic Resonance and Infrared Spectrometry. 5-FuS was incorporated into solid lipid nanoparticles (SLN), which were prepared by the physical agglomeration method. The mean diameter of 5-FuS-SLN was 240.19 nm and the drug loading was 20.53%. The release characteristics in vitro of 5-FuS-SLN were fitted to the first-order pharmacokinetic model. Compared with 5-Fu injection, a study on the distribution of 5-FuS-SLN in mice showed that 5-FuS-SLN could double 5-Fu concentration in mice livers. The main pharmacokinetic parameters of 5-FuS-SLN in rabbits is shown as follows: Vd=0.04336 L/kg, T(1/2) beta=1.2834 h, CL=0.1632 L/h. In conclusion, 5-FuS-SLN has significant liver targeting properties. The employment of a prodrug to enhance drug liposoluble properties and the preparation method presented in this paper, seem to be an alternative strategy to the traditional colloidal delivery system.
Collapse
Affiliation(s)
- Bo-Tao Yu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | | |
Collapse
|
47
|
Noordhuis P, Holwerda U, Van der Wilt CL, Van Groeningen CJ, Smid K, Meijer S, Pinedo HM, Peters GJ. 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann Oncol 2004; 15:1025-1032. [PMID: 15205195 DOI: 10.1093/annonc/mdh264] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The mechanism of action of 5-fluorouracil (5-FU) has been associated with inhibition of thymidylate synthase (TS) and incorporation of 5-FU into RNA and DNA, but limited data are available in human tumor tissue for the latter. We therefore measured incorporation in human tumor biopsy specimens after administration of a test dose of 5-FU alone or with leucovorin. PATIENTS AND METHODS Patients received 5-FU (500 mg/m(2)) with or without high-dose leucovorin, low-dose leucovorin or l-leucovorin, and biopsy specimens were taken after approximately 2, 24 or 48 h. Tissues were pulverized and extracted for nucleic acids. 5-FU incorporation was measured using gas chromatography/mass spectrometry after complete degradation to bases of isolated RNA and DNA. RESULTS Maximal incorporation into RNA (1.0 pmol/micrograms RNA) and DNA (127 fmol/micrograms DNA) of 59 and 46 biopsy specimens, respectively, was found at 24 h after 5-FU administration. Incorporation into RNA but not DNA was significantly correlated with intratumoral 5-FU levels. However, DNA incorporation was significantly correlated with the RNA incorporation. Primary tumor tissue, liver metastasis and normal mucosa did not show significant differences, while leucovorin had no effect. Neither for RNA (30 patients) nor DNA (24 patients) incorporation was a significant correlation with response to 5-FU therapy found. However, in the same group of patients, response was significantly correlated to TS inhibition (mean TS in responding and non-responding groups 45 and 231 pmol/h/mg protein, respectively; P=0.001). CONCLUSIONS 5-FU is incorporated at detectable levels into RNA and DNA of human tumor tissue, but no relation between the efficacy of 5-FU treatment and incorporation was found, in contrast to TS.
Collapse
Affiliation(s)
- P Noordhuis
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
48
|
James CA, Breda M, Baratt� S, Casati M, Grassi S, Pellegatta B, Sarati S, Frigerio E. Analysis of Drugs and Metabolites in Tissues and Other Solid Matrices. Chromatographia 2004. [DOI: 10.1365/s10337-004-0197-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Kamm YJL, Peters GJ, Hull WE, Punt CJA, Heerschap A. Correlation between 5-fluorouracil metabolism and treatment response in two variants of C26 murine colon carcinoma. Br J Cancer 2003; 89:754-762. [PMID: 12915890 PMCID: PMC2376920 DOI: 10.1038/sj.bjc.6601162] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 05/28/2003] [Accepted: 06/04/2003] [Indexed: 12/31/2022] Open
Abstract
Following an i.p. dose of 150 mg x kg(-1) 5-fluorouracil (5-FU), drug uptake and metabolism over a 2-h period were studied by in vivo (19)F magnetic resonance spectroscopy (MRS) for the murine colon carcinoma lines C26-B (5-FU-insensitive; n=11) and C26-10 (5-FU-sensitive; n=15) implanted s.c. in Balb/C mice. Time courses for tumour growth, intracellular levels of FdUMP, thymidylate synthase (TS) activity, and 5-FU in RNA were also determined, and the effects of a 9.5-min period of carbogen breathing, starting 1 min before drug administration, on MRS-detected 5-FU metabolism and tumour growth curves were examined. Both tumour variants generated MRS-detectable 5-FU nucleotides and showed similar initial growth inhibition after treatment. However, the growth rate of C26-B tumours returned to normal, while the sensitive C26-10 tumours, which produced larger fluoronucleotide pools, still showed moderate growth inhibition. Carbogen breathing did not significantly influence 5-FU uptake or fluoronucleotide production but did significantly enhance growth inhibition in C26-10 tumours. While both tumour variants exhibited incorporation of 5-FU into RNA and inhibition of TS via FdUMP, clearance of 5-FU from RNA and recovery of TS activity were greater for the insensitive C26-B line, indicating that these processes, in addition to 5-FU uptake and metabolism, may be important determinants of drug sensitivity and treatment response.
Collapse
Affiliation(s)
- Y J L Kamm
- Department of Medical Oncology 550, University Medical Center Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Peters GJ, Noordhuis P, Van Kuilenburg ABP, Schornagel JH, Gall H, Turner SL, Swart MS, Voorn D, Van Gennip AH, Wanders J, Holwerda U, Smid K, Giaccone G, Fumoleau P, Van Groeningen CJ. Pharmacokinetics of S-1, an oral formulation of ftorafur, oxonic acid and 5-chloro-2,4-dihydroxypyridine (molar ratio 1:0.4:1) in patients with solid tumors. Cancer Chemother Pharmacol 2003; 52:1-12. [PMID: 12739060 DOI: 10.1007/s00280-003-0617-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Accepted: 03/11/2003] [Indexed: 12/23/2022]
Abstract
S-1 is an oral formulation of ftorafur (FT), oxonic acid and 5-chloro-2,4-dihydroxypyridine (CDHP) at a molar ratio of 1:0.4:1. FT is a 5-fluorouracil (5-FU) prodrug, CDHP is a dihydropyrimidine dehydrogenase (DPD) inhibitor and oxonic acid is an inhibitor of 5-FU phosphoribosylation in the gastrointestinal mucosa and was included to prevent gastrointestinal toxicity. We determined the pharmacokinetics of S-1 in 28 patients at doses of 25, 35, 40 and 45 mg/m(2). The plasma C(max) values of FT, 5-FU, oxonic acid and CDHP increased dose-dependently and after 1-2 h were in the ranges 5.8-13 microM, 0.4-2.4 microM, 0.026-1.337 microM, and 1.1-3.6 microM, respectively. Uracil levels, indicative of DPD inhibition, also increased dose-dependently from basal levels of 0.03-0.25 microM to 3.6-9.4 microM after 2-4 h, and 0.09-0.9 microM was still present after 24 h. The pharmacokinetics of CDHP and uracil were linear over the dose range. The areas under the plasma concentration curves (AUC) for CDHP and uracil were in the ranges 418-1735 and 2281-8627 micromol x min/l, respectively. The t(1/2) values were in the ranges 213-692 and 216-354 min, respectively. Cumulative urinary excretion of FT was predominantly as 5-FU and was 2.2-11.9%; the urinary excretion of both fluoro-beta-alanine and uracil was generally maximal between 6 and 18 h. During 28-day courses with twice-daily S-1 administration, 5-FU and uracil generally increased. Before each intake of S-1, 5-FU varied between 0.5 and 1 microM and uracil was in the micromolar range (up to 7 microM), indicating that effective DPD inhibition was maintained during the course. In a biopsy of an esophageal adenocarcinoma metastasis that had regressed, thymidylate synthase, the target of 5-FU, was inhibited 50%, but increased four- to tenfold after relapse in subsequent biopsies. In conclusion, oral S-1 administration resulted in prolonged exposure to micromolar 5-FU concentrations due to DPD inhibition, and the decrease in uracil levels after 6 h followed the pattern of CDHP and indicates reversible DPD inhibition.
Collapse
Affiliation(s)
- G J Peters
- Department of Medical Oncology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|