1
|
Sharma B, Agriantonis G, Twelker K, Ebelle D, Kiernan S, Siddiqui M, Soni A, Cheerasarn S, Simon W, Jiang W, Cardona A, Chapelet J, Agathis AZ, Gamboa A, Dave J, Mestre J, Bhatia ND, Shaefee Z, Whittington J. Gut Microbiota Serves as a Crucial Independent Biomarker in Inflammatory Bowel Disease (IBD). Int J Mol Sci 2025; 26:2503. [PMID: 40141145 PMCID: PMC11942158 DOI: 10.3390/ijms26062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD), ulcerative colitis (UC), and IBD unclassified (IBD-U), is a complex intestinal disorder influenced by genetic, environmental, and microbial factors. Recent evidence highlights the gut microbiota as a pivotal biomarker and modulator in IBD pathogenesis. Dysbiosis, characterized by reduced microbial diversity and altered composition, is a hallmark of IBD. A consistent decrease in anti-inflammatory bacteria, such as Faecalibacterium prausnitzii, and an increase in pro-inflammatory species, including Escherichia coli, have been observed. Metabolomic studies reveal decreased short-chain fatty acids (SCFAs) and secondary bile acids, critical for gut homeostasis, alongside elevated pro-inflammatory metabolites. The gut microbiota interacts with host immune pathways, influencing morphogens, glycosylation, and podoplanin (PDPN) expression. The disruption of glycosylation impairs mucosal barriers, while aberrant PDPN activity exacerbates inflammation. Additionally, microbial alterations contribute to oxidative stress, further destabilizing intestinal barriers. These molecular and cellular disruptions underscore the role of the microbiome in IBD pathophysiology. Emerging therapeutic strategies, including probiotics, prebiotics, and dietary interventions, aim to restore microbial balance and mitigate inflammation. Advanced studies on microbiota-targeted therapies reveal their potential to reduce disease severity and improve patient outcomes. Nevertheless, further research is needed to elucidate the bidirectional interactions between the gut microbiome and host immune responses and to translate these insights into clinical applications. This review consolidates current findings on the gut microbiota's role in IBD, emphasizing its diagnostic and therapeutic implications, and advocates for the continued exploration of microbiome-based interventions to combat this debilitating disease.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - George Agriantonis
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Kate Twelker
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Danielle Ebelle
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Samantha Kiernan
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Maham Siddiqui
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Aditi Soni
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Sittha Cheerasarn
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Whenzdjyny Simon
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Winston Jiang
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Angie Cardona
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
| | - Jessica Chapelet
- Department of Medicine, St. George’s University, Grenada FZ818, West Indies; (D.E.); (M.S.); (W.S.); (J.C.)
| | - Alexandra Z. Agathis
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Alejandro Gamboa
- Department of Medicine, Medical University of the Americas, Devens, MA 01434, USA;
| | - Jasmine Dave
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Juan Mestre
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Navin D. Bhatia
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Zahra Shaefee
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| | - Jennifer Whittington
- Department of Surgery, NYC Health and Hospitals—Elmhurst, New York, NY 11373, USA; (B.S.); (G.A.); (S.K.); (S.C.); (A.C.); (J.D.); (J.M.); (N.D.B.); (Z.S.)
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (W.J.); (A.Z.A.)
| |
Collapse
|
2
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4
|
Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans. Essays Biochem 2022; 67:429-442. [PMID: 36562177 PMCID: PMC10154612 DOI: 10.1042/ebc20220120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Sulfated host glycans (mucin O-glycans and glycosaminoglycans [GAGs]) are critical nutrient sources and colonisation factors for Bacteroidetes of the human gut microbiota (HGM); a complex ecosystem comprising essential microorganisms that coevolved with humans to serve important roles in pathogen protection, immune signalling, and host nutrition. Carbohydrate sulfatases are essential enzymes to access sulfated host glycans and are capable of exquisite regio- and stereo-selective substrate recognition. In these enzymes, the common recognition features of each subfamily are correlated with their genomic and environmental context. The exo-acting carbohydrate sulfatases are attractive drug targets amenable to small-molecule screening and subsequent engineering, and their high specificity will help elucidate the role of glycan sulfation in health and disease. Inhibition of carbohydrate sulfatases provides potential routes to control Bacteroidetes growth and to explore the influence of host glycan metabolism by Bacteroidetes on the HGM ecosystem. The roles of carbohydrate sulfatases from the HGM organism Bacteroides thetaiotaomicron and the soil isolated Pedobacter heparinus (P. heparinus) in sulfated host glycan metabolism are examined and contrasted, and the structural features underpinning glycan recognition and specificity explored.
Collapse
|
5
|
Camilleri M. Bile acid detergency: permeability, inflammation, and effects of sulfation. Am J Physiol Gastrointest Liver Physiol 2022; 322:G480-G488. [PMID: 35258349 PMCID: PMC8993532 DOI: 10.1152/ajpgi.00011.2022] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 01/31/2023]
Abstract
Bile acids are amphipathic, detergent molecules. The detergent effects of di-α-hydroxy-bile acids are relevant to several colonic diseases. The aims were to review the concentrations of bile acids reaching the human colon in health and disease, the molecular structure of bile acids that determine detergent functions and the relationship to human diseases (neuroendocrine tumors, microscopic colitis, active celiac disease, and ulcerative colitis, Crohn's disease and ileal resection), the relationship to bacterial uptake into the mucosa, mucin depletion, and epithelial damage, the role of bile acids in mucosal inflammation and microscopic colitis, and the role of sulfation of bile salts in detoxification or prevention of the detergent effects of bile acids. The concentrations of bile acids reaching the human colon range from 2 to 10 mM; di-α-hydroxy bile acids are the only bile acids with detergent effects that include mucin depletion, mucosal damage, bacterial uptake, and microscopic inflammation that may be manifest in diseases associated with no overt inflammation of the mucosa, such as bile acid diarrhea, ileal diseases such as neuroendocrine tumors, ileal resection, and nonalcoholic steatohepatitis. Sulfation inactivates colonic secretion due to primary bile acids, but it may render secondary bile acids proinflammatory in the colon. Other evidence in preclinical models of inflammatory bowel disease (IBD) suggests reduced sulfation causes barrier dysfunction, inflammation, or carcinogenesis. These advances emphasize relevance and opportunities afforded by greater understanding of the chemistry and metabolism of bile acids, which stands to be further enhanced by research into the metabolic interactions of microbiota with bile acids.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Brazil JC, Parkos CA. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol 2022; 15:211-222. [PMID: 34782709 PMCID: PMC8591159 DOI: 10.1038/s41385-021-00466-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.
Collapse
Affiliation(s)
- Jennifer C. Brazil
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Plekhova V, De Paepe E, Van Renterghem K, Van Winckel M, Hemeryck LY, Vanhaecke L. Disparities in the gut metabolome of post-operative Hirschsprung's disease patients. Sci Rep 2021; 11:16167. [PMID: 34373532 PMCID: PMC8352975 DOI: 10.1038/s41598-021-95589-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 10/26/2022] Open
Abstract
Hirschsprung's disease (HD) is a congenital structural abnormality of the colon seen in approximately 1 to 5000 live births. Despite surgical correction shortly after presentation, up to 60% of patients will express long-term gastrointestinal complaints, including potentially life-threatening Hirschsprung-associated enterocolitis (HAEC). In this study fecal samples from postoperative HD patients (n = 38) and their healthy siblings (n = 21) were analysed using high-resolution liquid chromatography-mass spectrometry aiming to further unravel the nature of the chronic gastrointestinal disturbances. Furthermore, within the patient group, we compared the faecal metabolome between patients with and without a history of HAEC as well as those diagnosed with short or long aganglionic segment. Targeted analysis identified several individual metabolites characteristic for all HD patients as well as those with a history of HAEC and long segment HD. Moreover, multivariate models based on untargeted data established statistically significant (p < 0.05) differences in comprehensive faecal metabolome in the patients' cohort as a whole and in patients with a history of HAEC. Pathway analysis revealed the most impact on amino sugar, lysine, sialic acid, hyaluronan and heparan sulphate metabolism in HD, as well as impaired tyrosine metabolism in HAEC group. Those changes imply disruption of intestinal mucosal barrier due to glycosaminoglycan breakdown and dysbiosis as major metabolic changes in patients' group and should be further explored for potential diagnostic or treatment targets.
Collapse
Affiliation(s)
- Vera Plekhova
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ellen De Paepe
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katrien Van Renterghem
- Department of Pediatric Surgery, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Myriam Van Winckel
- Department of Pediatrics and Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Lieselot Y Hemeryck
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
8
|
Xu P, Xi Y, Zhu J, Zhang M, Luka Z, Stolz DB, Cai X, Xie Y, Xu M, Ren S, Huang Z, Yang D, York JD, Ma X, Xie W. Intestinal Sulfation Is Essential to Protect Against Colitis and Colonic Carcinogenesis. Gastroenterology 2021; 161:271-286.e11. [PMID: 33819483 PMCID: PMC8238844 DOI: 10.1053/j.gastro.2021.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Sulfation is a conjugation reaction essential for numerous biochemical and cellular functions in mammals. The 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the key enzyme to generate PAPS, which is the universal sulfonate donor for all sulfation reactions. The goal of this study was to determine whether and how PAPSS2 plays a role in colitis and colonic carcinogenesis. METHODS Tissue arrays of human colon cancer specimens, gene expression data, and clinical features of cancer patients were analyzed. Intestinal-specific Papss2 knockout mice (Papss2ΔIE) were created and subjected to dextran sodium sulfate-induced colitis and colonic carcinogenesis induced by a combined treatment of azoxymethane and dextran sodium sulfate or azoxymethane alone. RESULTS The expression of PAPSS2 is decreased in the colon cancers of mice and humans. The lower expression of PAPSS2 in colon cancer patients is correlated with worse survival. Papss2ΔIE mice showed heightened sensitivity to colitis and colon cancer by damaging the intestinal mucosal barrier, increasing intestinal permeability and bacteria infiltration, and worsening the intestinal tumor microenvironment. Mechanistically, the Papss2ΔIE mice exhibited reduced intestinal sulfomucin content. Metabolomic analyses revealed the accumulation of bile acids, including the Farnesoid X receptor antagonist bile acid tauro-β-muricholic acid, and deficiency in the formation of bile acid sulfates in the colon of Papss2ΔIE mice. CONCLUSIONS We have uncovered an important role of PAPSS2-mediated sulfation in colitis and colonic carcinogenesis. Intestinal sulfation may represent a potential diagnostic marker and PAPSS2 may serve as a potential therapeutic target for inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Donna B Stolz
- Departments of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Lin SJH, Arruda B, Burrough E. Alteration of Colonic Mucin Composition and Cytokine Expression in Acute Swine Dysentery. Vet Pathol 2021; 58:531-541. [PMID: 33686884 DOI: 10.1177/0300985821996657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Swine dysentery (SD) is an enteric disease associated with strongly β-hemolytic Brachyspira spp. that cause mucohemorrhagic diarrhea primarily in grower-finisher pigs. We characterized alteration of colonic mucin composition and local cytokine expression in the colon of pigs with acute SD after B. hyodysenteriae (Bhyo) infection and fed either a diet containing 30% distillers dried grains with solubles (DDGS) or a control diet. Colonic tissue samples from 9 noninoculated pigs (Control, N = 4; DDGS, N = 5) and 10 inoculated pigs experiencing acute SD (Bhyo, N = 4; Bhyo-DDGS, N = 6) were evaluated. At the apex of the spiral colon, histochemical staining with high-iron diamine-Alcian blue revealed increased sialomucin (P = .008) and decreased sulfomucin (P = .027) in Bhyo pigs relative to controls, with a dietary effect for sulfomucin. Noninoculated pigs fed DDGS had greater expression of sulfomucin (P = .002) compared to pigs fed the control diet. Immunohistochemically, there was de novo expression of mucin 5AC (MUC5AC) in the Bhyo group while mucin 2 (MUC2) expression was not significantly different between groups. RNA in situ hybridization to detect the pro-inflammatory cytokine IL-1β often showed increased expression in the Bhyo group although without statistical significance, and this was not correlated with MUC5AC or MUC2 expression, suggesting IL-1β is not a major regulator of their secretion in acute SD. Expression of the anti-inflammatory cytokine TGF-β1 was significantly suppressed in the Bhyo group compared to controls (P = .005). This study reveals mucin and cytokine alterations in the colon of pigs with experimentally induced SD and related dietary effects of DDGS.
Collapse
|
10
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
11
|
Olli KE, Rapp C, O’Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, Frank DN, Ir D, Robertson CE, Evans CM, Aherne CM. Muc5ac Expression Protects the Colonic Barrier in Experimental Colitis. Inflamm Bowel Dis 2020; 26:1353-1367. [PMID: 32385500 PMCID: PMC7441107 DOI: 10.1093/ibd/izaa064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The mucus gel layer (MGL) lining the colon is integral to exclusion of bacteria and maintaining intestinal homeostasis in health and disease. Some MGL defects allowing bacteria to directly contact the colonic surface are commonly observed in ulcerative colitis (UC). The major macromolecular component of the colonic MGL is the secreted gel-forming mucin MUC2, whose expression is essential for homeostasis in health. In UC, another gel-forming mucin, MUC5AC, is induced. In mice, Muc5ac is protective during intestinal helminth infection. Here we tested the expression and functional role of MUC5AC/Muc5ac in UC biopsies and murine colitis. METHODS We measured MUC5AC/Muc5ac expression in UC biopsies and in dextran sulfate sodium (DSS) colitis. We performed DSS colitis in mice deficient in Muc5ac (Muc5ac-/-) to model the potential functional role of Muc5ac in colitis. To assess MGL integrity, we quantified bacterial-epithelial interaction and translocation to mesenteric lymph nodes. Antibiotic treatment and 16S rRNA gene sequencing were performed to directly investigate the role of bacteria in murine colitis. RESULTS Colonic MUC5AC/Muc5ac mRNA expression increased significantly in active UC and murine colitis. Muc5ac-/- mice experienced worsened injury and inflammation in DSS colitis compared with control mice. This result was associated with increased bacterial-epithelial contact and translocation to the mesenteric lymph nodes. However, no change in microbial abundance or community composition was noted. Antibiotic treatment normalized colitis severity in Muc5ac-/- mice to that of antibiotic-treated control mice. CONCLUSIONS MUC5AC/Muc5ac induction in the acutely inflamed colon controls injury by reducing bacterial breach of the MGL.
Collapse
Affiliation(s)
- Kristine E Olli
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Caroline Rapp
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren O’Connell
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Colm B Collins
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin N McNamee
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, County Kildare, Ireland
| | - Owen Jensen
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen C Allison
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew S Goldberg
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark E Gerich
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles E Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher M Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carol M Aherne
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
12
|
Quin C, Vicaretti SD, Mohtarudin NA, Garner AM, Vollman DM, Gibson DL, Zandberg WF. Influence of sulfonated and diet-derived human milk oligosaccharides on the infant microbiome and immune markers. J Biol Chem 2020; 295:4035-4048. [PMID: 32014993 DOI: 10.1074/jbc.ra119.011351] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Human milk oligosaccharides (HMOs) promote the development of the neonatal intestinal, immune, and nervous systems and has recently received considerable attention. Here we investigated how the maternal diet affects HMO biosynthesis and how any diet-induced HMO alterations influence the infant gut microbiome and immunity. Using capillary electrophoresis and MS-based analyses, we extracted and measured HMOs from breast milk samples and then correlated their levels with results from validated 24-h diet recall surveys and breast milk fatty acids. We found that fruit intake and unsaturated fatty acids in breast milk were positively correlated with an increased absolute abundance of numerous HMOs, including 16 sulfonated HMOs we identified here in humans for the first time. The diet-derived monosaccharide 5-N-glycolyl-neuraminic acid (Neu5Gc) was unambiguously detected in all samples. To gain insights into the potential impact of Neu5Gc on the infant microbiome, we used a constrained ordination approach and identified correlations between Neu5Gc levels and Bacteroides spp. in infant stool. However, Neu5Gc was not associated with marked changes in infant immune markers, in contrast with sulfonated HMOs, whose expression correlated with suppression of two major Th2 cytokines, IL-10 and IL-13. The findings of our work highlight the importance of maternal diet for HMO biosynthesis and provide as yet unexplored targets for future studies investigating interactions between HMOs and the intestinal microbiome and immunity in infants.
Collapse
Affiliation(s)
- Candice Quin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Sara D Vicaretti
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Nina A Mohtarudin
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Alexander M Garner
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna M Vollman
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7
| | - Deanna L Gibson
- Department of Biology, I. K. Barber School of Arts and Sciences, University of British Columbia, 1177 Research Road, Kelowna, British Columbia, Canada V1V 1V7 .,Department of Medicine, Faculty of Medicine, 317-2194 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Wesley F Zandberg
- Department of Chemistry, I. K. Barber School of Arts and Sciences, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
13
|
Hayes AJ, Melrose J. Keratan Sulphate in the Tumour Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:39-66. [PMID: 32266652 DOI: 10.1007/978-3-030-40146-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia. .,Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW, Australia. .,Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, NSW, Australia.
| |
Collapse
|
14
|
Abstract
Mucus selectively controls the transport of molecules, particulate matter, and microorganisms to the underlying epithelial layer. It may be desirable to weaken the mucus barrier to enable effective delivery of drug carriers. Alternatively, the mucus barrier can be strengthened to prevent epithelial interaction with pathogenic microbes or other exogenous materials. The dynamic mucus layer can undergo changes in structure (e.g., pore size) and/or composition (e.g., protein concentrations, mucin glycosylation) in response to stimuli that occur naturally or are purposely administered, thus altering its barrier function. This review outlines mechanisms by which mucus provides a selective barrier and methods to engineer the mucus layer from the perspective of strengthening or weakening its barrier properties. In addition, we discuss strategic design of drug carriers and dosing formulation properties for efficient delivery across the mucus barrier.
Collapse
Affiliation(s)
- T L Carlson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - J Y Lock
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - R L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA; .,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Neurath MF, Leppkes M. Resolution of ulcerative colitis. Semin Immunopathol 2019; 41:747-756. [DOI: 10.1007/s00281-019-00751-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
16
|
Cohen LJ, Cho JH, Gevers D, Chu H. Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology 2019; 156:2174-2189. [PMID: 30880022 PMCID: PMC6568267 DOI: 10.1053/j.gastro.2019.03.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
The intestinal microbiota is a dynamic community of bacteria, fungi, and viruses that mediates mucosal homeostasis and physiology. Imbalances in the microbiome and aberrant immune responses to gut bacteria can disrupt homeostasis and are associated with inflammatory bowel diseases (IBDs) in humans and colitis in mice. We review genetic variants associated with IBD and their effects on the intestinal microbiome, the immune response, and disease pathogenesis. The intestinal microbiome, which includes microbial antigens, adjuvants, and metabolic products, affects the development and function of the intestinal mucosa, influencing inflammatory responses in the gut. Therefore, strategies to manipulate the microbiome might be used in treatment of IBD. We review microbe-based therapies for IBD and the potential to engineer patients' intestinal microbiota. We discuss how studies of patients with IBD and mouse models have advanced our understanding of the interactions between genetic factors and the gut microbiome, and challenges to the development of microbe-based therapies for IBD.
Collapse
Affiliation(s)
- Louis J. Cohen
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Correspondence:
(L.J.C.),
(H.C.)
| | - Judy H. Cho
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai; The Charles Bronfman Institute for Personalized
Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029,
USA
| | - Dirk Gevers
- Janssen Human Microbiome Institute, Janssen Research &
Development, Cambridge, MA, 02142, USA
| | - Hiutung Chu
- Department of Pathology, University of California-San Diego, La Jolla, California; Chiba University and University of California-San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California.
| |
Collapse
|
17
|
The Effects of Glucosamine and Chondroitin Sulfate on Gut Microbial Composition: A Systematic Review of Evidence from Animal and Human Studies. Nutrients 2019; 11:nu11020294. [PMID: 30704054 PMCID: PMC6412843 DOI: 10.3390/nu11020294] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Oral glucosamine sulfate (GS) and chondroitin sulfate (CS), while widely marketed as joint-protective supplements, have limited intestinal absorption and are predominantly utilized by gut microbiota. Hence the effects of these supplements on the gut microbiome are of great interest, and may clarify their mode of action, or explain heterogeneity in therapeutic responses. We conducted a systematic review of animal and human studies reporting the effects of GS or CS on gut microbial composition. We searched MEDLINE, EMBASE, and Scopus databases for journal articles in English from database inception until July 2018, using search terms microbiome, microflora, intestinal microbiota/flora, gut microbiota/flora and glucosamine or chondroitin. Eight original articles reported the effects of GS or CS on microbiome composition in adult humans (four articles) or animals (four articles). Studies varied significantly in design, supplementation protocols, and microbiome assessment methods. There was moderate-quality evidence for an association between CS exposure and increased abundance of genus Bacteroides in the murine and human gut, and low-quality evidence for an association between CS exposure and an increase in Desulfovibrio piger species, an increase in Bacteroidales S24-7 family, and a decrease in Lactobacillus. We discuss the possible metabolic implications of these changes for the host. For GS, evidence of effects on gut microbiome was limited to one low-quality study. This review highlights the importance of considering the potential influence of oral CS supplements on gut microbiota when evaluating their effects and safety for the host.
Collapse
|
18
|
Issa SMA, Vitiazeva V, Hayes CA, Karlsson NG. Higher Energy Collisional Dissociation Mass Spectrometry of Sulfated O-Linked Oligosaccharides. J Proteome Res 2018; 17:3259-3267. [DOI: 10.1021/acs.jproteome.8b00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samah M. A. Issa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Catherine A. Hayes
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| | - Niclas G. Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Box 440, Medicinaregatan 9A, 405 30 Gothenburg, Sweden
| |
Collapse
|
19
|
Corfield AP. The Interaction of the Gut Microbiota with the Mucus Barrier in Health and Disease in Human. Microorganisms 2018; 6:microorganisms6030078. [PMID: 30072673 PMCID: PMC6163557 DOI: 10.3390/microorganisms6030078] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Glycoproteins are major players in the mucus protective barrier in the gastrointestinal and other mucosal surfaces. In particular the mucus glycoproteins, or mucins, are responsible for the protective gel barrier. They are characterized by their high carbohydrate content, present in their variable number, tandem repeat domains. Throughout evolution the mucins have been maintained as integral components of the mucosal barrier, emphasizing their essential biological status. The glycosylation of the mucins is achieved through a series of biosynthetic pathways processes, which generate the wide range of glycans found in these molecules. Thus mucins are decorated with molecules having information in the form of a glycocode. The enteric microbiota interacts with the mucosal mucus barrier in a variety of ways in order to fulfill its many normal processes. How bacteria read the glycocode and link to normal and pathological processes is outlined in the review.
Collapse
Affiliation(s)
- Anthony P Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, Level 7, Marlborough Street, Bristol BS2 8HW, UK.
| |
Collapse
|
20
|
Holmberg FE, Pedersen J, Jørgensen P, Soendergaard C, Jensen KB, Nielsen OH. Intestinal barrier integrity and inflammatory bowel disease: Stem cell‐based approaches to regenerate the barrier. J Tissue Eng Regen Med 2017. [DOI: 10.1002/term.2506] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fredrik E.O. Holmberg
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Jannie Pedersen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Peter Jørgensen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Christoffer Soendergaard
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre (BRIC)University of Copenhagen Copenhagen Denmark
- The Danish Stem Cell Center (Danstem)University of Copenhagen, Faculty of Health and Medical Sciences Copenhagen Denmark
| | - Ole H. Nielsen
- Department of Gastroenterology, Medical Section, Herlev HospitalUniversity of Copenhagen Herlev Denmark
| |
Collapse
|
21
|
Hasnain SZ, Dawson PA, Lourie R, Hutson P, Tong H, Grencis RK, McGuckin MA, Thornton DJ. Immune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion. PLoS Pathog 2017; 13:e1006218. [PMID: 28192541 PMCID: PMC5325613 DOI: 10.1371/journal.ppat.1006218] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Mucins are heavily glycosylated proteins that give mucus its gel-like properties. Moreover, the glycans decorating the mucin protein core can alter the protective properties of the mucus barrier. To investigate whether these alterations could be parasite-induced we utilized the Trichuris muris (T. muris) infection model, using different infection doses and strains of mice that are resistant (high dose infection in BALB/c and C57BL6 mice) or susceptible (high dose infection in AKR and low dose infection in BALB/c mice) to chronic infection by T. muris. During chronicity, within the immediate vicinity of the T. muris helminth the goblet cell thecae contained mainly sialylated mucins. In contrast, the goblet cells within the epithelial crypts in the resistant models contained mainly sulphated mucins. Maintained mucin sulphation was promoted by TH2-immune responses, in particular IL-13, and contributed to the protective properties of the mucus layer, making it less vulnerable to degradation by T. muris excretory secretory products. Mucin sulphation was markedly reduced in the caecal goblet cells in the sulphate anion transporter-1 (Sat-1) deficient mice. We found that Sat-1 deficient mice were susceptible to chronic infection despite a strong TH2-immune response. Lower sulphation levels lead to decreased efficiency of establishment of T. muris infection, independent of egg hatching. This study highlights the complex process by which immune-regulated alterations in mucin glycosylation occur following T. muris infection, which contributes to clearance of parasitic infection. Approximately 2 billion people are infected with worms every year, causing physical, nutritional and cognitive impairment particularly in children. Mucins are large sugar-coated (glycosylated) proteins that form the intestinal mucus layer. This mucus layer protects our ‘insides’ from external insults and plays an important role during worm infection. We discovered that there is a difference in the glycosylation of mucins in people infected with worms compared to uninfected individuals. Therefore, using different mouse models we investigated the role of glycosylation, and in particular sulphation of mucins in infection. We found that mucin glycosylation is controlled by the immune response and increased sulphation correlated with the expulsion of the worm from the host. Highly sulphated mucins were protected from degradation by the worm. Moreover, mice lacking a sulphate transporter had significantly lower sulphation levels on mucins, which resulted in a reduction in the establishment of the worms and chronic infection.
Collapse
Affiliation(s)
- Sumaira Z. Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
- * E-mail:
| | - Paul A. Dawson
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
- Mater Pathology Services, Mater Hospitals, South Brisbane, Queensland, Australia
| | - Peter Hutson
- Mater Pathology Services, Mater Hospitals, South Brisbane, Queensland, Australia
| | - Hui Tong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Richard K. Grencis
- Manchester Immunology Group Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Michael A. McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David J. Thornton
- Manchester Immunology Group Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Corfield A. Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2017; 147:119-147. [PMID: 28012131 PMCID: PMC5306191 DOI: 10.1007/s00418-016-1526-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/21/2022]
Abstract
Proteins undergo co- and posttranslational modifications, and their glycosylation is the most frequent and structurally variegated type. Histochemically, the detection of glycan presence has first been performed by stains. The availability of carbohydrate-specific tools (lectins, monoclonal antibodies) has revolutionized glycophenotyping, allowing monitoring of distinct structures. The different types of protein glycosylation in Eukaryotes are described. Following this educational survey, examples where known biological function is related to the glycan structures carried by proteins are given. In particular, mucins and their glycosylation patterns are considered as instructive proof-of-principle case. The tissue and cellular location of glycoprotein biosynthesis and metabolism is reviewed, with attention to new findings in goblet cells. Finally, protein glycosylation in disease is documented, with selected examples, where aberrant glycan expression impacts on normal function to let disease pathology become manifest. The histological applications adopted in these studies are emphasized throughout the text.
Collapse
Affiliation(s)
- Anthony Corfield
- Mucin Research Group, School of Clinical Sciences, Bristol Royal Infirmary, University of Bristol, Bristol, BS2 8HW, UK.
| |
Collapse
|
23
|
Is GERD a Factor in Osteonecrosis of the Jaw? Evidence of Pathology Linked to G6PD Deficiency and Sulfomucins. DISEASE MARKERS 2016; 2016:8376979. [PMID: 27773962 PMCID: PMC5059643 DOI: 10.1155/2016/8376979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/18/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.
Collapse
|
24
|
Nishiyama K, Sugiyama M, Mukai T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms 2016; 4:microorganisms4030034. [PMID: 27681930 PMCID: PMC5039594 DOI: 10.3390/microorganisms4030034] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan.
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan.
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan.
| |
Collapse
|
25
|
Chatzidaki-Livanis M, Comstock LE. Friend turned foe: a role for bacterial sulfatases in colitis. Cell Host Microbe 2016; 17:540-1. [PMID: 25974293 DOI: 10.1016/j.chom.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During colitis, gut bacteria and bacterial components can traverse the mucus layer and contact host cells. In this issue of Cell Host & Microbe, Hickey et al. (2015) show that sulfatases of Bacteroides thetaiotaomicron are required for its outer membrane vesicles to transit to underlying host immune cells and cause colitis.
Collapse
Affiliation(s)
- Maria Chatzidaki-Livanis
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Earley H, Lennon G, Balfe A, Kilcoyne M, Clyne M, Joshi L, Carrington S, Martin ST, Coffey JC, Winter DC, O’Connell PR. A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis. PLoS One 2015; 10:e0135280. [PMID: 26491870 PMCID: PMC4619660 DOI: 10.1371/journal.pone.0135280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/20/2015] [Indexed: 01/30/2023] Open
Abstract
Background Akkermansia muciniphila and Desulfovibrio spp. are commensal microbes colonising the mucus gel layer of the colon. Both species have the capacity to utilise colonic mucin as a substrate. A. muciniphila degrades colonic mucin, while Desulfovibrio spp. metabolise the sulfate moiety of sulfated mucins. Altered abundances of these microorganisms have been reported in ulcerative colitis (UC). However their capacity to bind to human colonic mucin, and whether this binding capacity is affected by changes in mucin associated with UC, remain to be defined. Methods Mucin was isolated from resected colon from control patients undergoing resection for colonic cancer (n = 7) and patients undergoing resection for UC (n = 5). Isolated mucin was purified and printed onto mucin microarrays. Binding of reference strains and three clinical isolates of A. muciniphila and Desulfovibrio spp. to purified mucin was investigated. Results Both A. muciniphila and Desulfovibro spp. bound to mucin. The reference strain and all clinical isolates of A. muciniphila showed increased binding capacity for UC mucin (p < .005). The Desulfovibrio reference strain showed increased affinity for UC mucin. The mucin binding profiles of clinical isolates of Desulfovibrio spp. were specific to each isolate. Two isolates showed no difference in binding. One UC isolate bound with increased affinity to UC mucin (p < .005). Conclusion These preliminary data suggest that differences exist in the mucin binding capacity of isolates of A. muciniphila and Desulfovibrio spp. This study highlights the mucin microarray platform as a means of studying the ability of bacteria to interact with colonic mucin in health and disease.
Collapse
Affiliation(s)
- Helen Earley
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Grainne Lennon
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Aine Balfe
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Marguerite Clyne
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Stephen Carrington
- College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Sean T. Martin
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | | | - Desmond C. Winter
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
| | - P. Ronan O’Connell
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Centre for Colorectal Disease, St Vincent’s University Hospital, Dublin 4, Ireland
- * E-mail:
| |
Collapse
|
27
|
Hickey CA, Kuhn KA, Donermeyer DL, Porter NT, Jin C, Cameron EA, Jung H, Kaiko GE, Wegorzewska M, Malvin NP, Glowacki RWP, Hansson GC, Allen PM, Martens EC, Stappenbeck TS. Colitogenic Bacteroides thetaiotaomicron Antigens Access Host Immune Cells in a Sulfatase-Dependent Manner via Outer Membrane Vesicles. Cell Host Microbe 2015; 17:672-80. [PMID: 25974305 PMCID: PMC4432250 DOI: 10.1016/j.chom.2015.04.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/07/2015] [Accepted: 04/06/2015] [Indexed: 12/11/2022]
Abstract
Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.
Collapse
Affiliation(s)
- Christina A Hickey
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kristine A Kuhn
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - David L Donermeyer
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Chunsheng Jin
- Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Elizabeth A Cameron
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Haerin Jung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Gerard E Kaiko
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Marta Wegorzewska
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Robert W P Glowacki
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Bringiotti R, Ierardi E, Lovero R, Losurdo G, Leo AD, Principi M. Intestinal microbiota: The explosive mixture at the origin of inflammatory bowel disease? World J Gastrointest Pathophysiol 2014; 5:550-559. [PMID: 25400998 PMCID: PMC4231519 DOI: 10.4291/wjgp.v5.i4.550] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/02/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs), namely Crohn’s disease and ulcerative colitis, are lifelong chronic disorders arising from interactions among genetic, immunological and environmental factors. Although the origin of IBDs is closely linked to immune response alterations, which governs most medical decision-making, recent findings suggest that gut microbiota may be involved in IBD pathogenesis. Epidemiologic evidence and several studies have shown that a dysregulation of gut microbiota (i.e., dysbiosis) may trigger the onset of intestinal disorders such as IBDs. Animal and human investigations focusing on the microbiota-IBD relationship have suggested an altered balance of the intestinal microbial population in the active phase of IBD. Rigorous microbiota typing could, therefore, soon become part of a complete phenotypic analysis of IBD patients. Moreover, individual susceptibility and environmental triggers such as nutrition, medications, age or smoking could modify bacterial strains in the bowel habitat. Pharmacological manipulation of bowel microbiota is somewhat controversial. The employment of antibiotics, probiotics, prebiotics and synbiotics has been widely addressed in the literature worldwide, with the aim of obtaining positive results in a number of IBD patient settings, and determining the appropriate timing and modality of this intervention. Recently, novel treatments for IBDs, such as fecal microbiota transplantation, when accepted by patients, have shown promising results. Controlled studies are being designed. In the near future, new therapeutic strategies can be expected, with non-pathogenic or modified food organisms that can be genetically modified to exert anti-inflammatory properties.
Collapse
|
30
|
Abstract
The intestinal epithelium is covered with mucus with the main structural building block being the densely O-glycosylated MUC2 mucin. The intestinal epithelium is exposed to ingested material, our digestive machinery, and large amounts of microorganisms. Mucus is the first line of defense and aids to limit exposure to all these threats to the epithelium. In the small intestine, mucus acts as a matrix, which contains antimicrobial products, such as defensins and immunoglobulin A that limit epithelial exposure to the luminal bacteria. In the colon, the stratified inner mucus layer acts as a physical barrier excluding bacteria from the epithelium. Bacterial penetration of this normally restricted zone is observed in many colitis models and also in patients with ulcerative colitis. Mucus defects that allow bacteria to reach the epithelium and to stimulate an immune system response can lead to the development of intestinal inflammation. The current state of our knowledge concerning the function of the mucus layers and the main mucin component, MUC2, in inflammatory bowel disease is described in this review.
Collapse
|
31
|
Lennon G, Balfe Á, Bambury N, Lavelle A, Maguire A, Docherty NG, Coffey JC, Winter DC, Sheahan K, O'Connell PR. Correlations between colonic crypt mucin chemotype, inflammatory grade and Desulfovibrio species in ulcerative colitis. Colorectal Dis 2014; 16:O161-9. [PMID: 24345279 DOI: 10.1111/codi.12503] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/02/2013] [Indexed: 12/13/2022]
Abstract
AIM The colonic mucus gel layer is composed of mucins that may be sulphated or sialyated. Sulphated mucins predominate in health while in ulcerative colitis (UC) sulphation is reduced. These differences result directly from inflammatory events. It may also be hypothesized that they arise in part from alterations in the colonic microbiota, particularly changes in the burden of sulphated mucin-metabolizing species, such as Desulfovibrio (DSV) bacteria. The aim of this study was to correlate colonic mucin chemotypes and inflammatory scores in health and UC and relate these changes to changes in the colonization of colonic crypts by DSV. METHOD Paired colonic biopsies from 34 healthy controls (HC) and 19 patients with active UC were collected for the purpose of parallel histological and microbiological assessment. High-iron diamine and Alcian blue staining and haematoxylin and eosin of mucosal biopsy specimens were used to assess histological changes within the clinical spectrum of UC. Quantitative real-time polymerase chain reaction analysis was employed to determine the total and DSV copy number within the colonic crypts. RESULTS Compared with HC, the mucin chemotype in UC was less sulphated and inversely correlated with the degree of mucosal inflammation. A weak but significant negative correlation was found between the abundance of sulphated mucins and DSV burden. CONCLUSION Mucin composition strongly correlates with the degree of mucosal inflammation, and to a lesser extent with DSV burden. These data suggest that mucin chemotype and DSV burden are linked phenomena and highlight the need to consider changes in mucin chemotype in the setting of microbial dysbiosis occurring within the colitic colon. What does this paper add to the literature? Decreased sulphation of mucins has been associated with inflammation in ulcerative colitis. Currently there are few data describing the relationship between microbial species and changes in mucin chemotype. This study validates previous findings and presents evidence of changes in mucin chemotype occurring in tandem with coherent changes in the microbiota within crypt niches.
Collapse
Affiliation(s)
- G Lennon
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland; Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Antoni L, Nuding S, Wehkamp J, Stange EF. Intestinal barrier in inflammatory bowel disease. World J Gastroenterol 2014; 20:1165-1179. [PMID: 24574793 PMCID: PMC3921501 DOI: 10.3748/wjg.v20.i5.1165] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/08/2013] [Accepted: 12/13/2013] [Indexed: 02/06/2023] Open
Abstract
A complex mucosal barrier protects as the first line of defense the surface of the healthy intestinal tract from adhesion and invasion by luminal microorganisms. In this review, we provide an overview about the major components of this protective system as for example an intact epithelium, the synthesis of various antimicrobial peptides (AMPs) and the formation of the mucus layer. We highlight the crucial importance of their correct functioning for the maintenance of a proper intestinal function and the prevention of dysbiosis and disease. Barrier disturbances including a defective production of AMPs, alterations in thickness or composition of the intestinal mucus layer, alterations of pattern-recognition receptors, defects in the process of autophagy as well as unresolved endoplasmic reticulum stress result in an inadequate host protection and are thought to play a crucial role in the pathogenesis of the inflammatory bowel diseases Crohn’s disease and ulcerative colitis.
Collapse
|
33
|
Håkansson Å, Tormo-Badia N, Baridi A, Xu J, Molin G, Hagslätt ML, Karlsson C, Jeppsson B, Cilio CM, Ahrné S. Immunological alteration and changes of gut microbiota after dextran sulfate sodium (DSS) administration in mice. Clin Exp Med 2014; 15:107-20. [PMID: 24414342 PMCID: PMC4308640 DOI: 10.1007/s10238-013-0270-5] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/14/2013] [Indexed: 12/17/2022]
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammation of the colonic mucosa. Administration of dextran sulfate sodium (DSS) to animals is a frequently used model to mimic human colitis. Deregulation of the immune response to the enteric microflora or pathogens as well as increased intestinal permeability have been proposed as disease-driving mechanisms. To enlarge the understanding of the pathogenesis, we have studied the effect of DSS on the immune system and gut microbiota in mice. Intestinal inflammation was verified through histological evaluation and myeloperoxidase activity. Immunological changes were assessed by flow cytometry in spleen, Peyer′s patches and mesenteric lymph nodes and through multiplex cytokine profiling. In addition, quantification of the total amount of bacteria on colonic mucosa as well as the total amount of lactobacilli, Akkermansia, Desulfovibrio and Enterobacteriaceae was performed by the use of quantitative PCR. Diversity and community structure were analysed by terminal restriction fragment length polymorphism (T-RFLP) patterns, and principal component analysis was utilized on immunological and T-RFLP patterns. DSS-induced colitis show clinical and histological similarities to UC. The composition of the colonic microflora was profoundly changed and correlated with several alterations of the immune system. The results demonstrate a relationship between multiple immunological changes and alterations of the gut microbiota after DSS administration. These data highlight and improve the definition of the immunological basis of the disease and suggest a role for dysregulation of the gut microbiota in the pathogenesis of colitis.
Collapse
Affiliation(s)
- Å Håkansson
- Food Hygiene, Division of Applied Nutrition and Food Chemistry, Lund University, Lund, Sweden,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang IN, Okawara T, Watanabe M, Kawai Y, Kitazawa H, Ohnuma S, Shibata C, Horii A, Kimura K, Taketomo N, Xiao JZ, Iwatsuki K, Saito T. New screening methods for probiotics with adhesion properties to sialic acid and sulphate residues in human colonic mucin using the Biacore assay. J Appl Microbiol 2013; 114:854-60. [DOI: 10.1111/jam.12063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 09/26/2012] [Accepted: 11/04/2012] [Indexed: 01/30/2023]
Affiliation(s)
- I-N. Huang
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| | - T. Okawara
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| | - M. Watanabe
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| | - Y. Kawai
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| | - H. Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| | - S. Ohnuma
- Department of Surgery; Tohoku University Graduate School of Medicine; Sendai Japan
| | - C. Shibata
- Department of Surgery; Tohoku University Graduate School of Medicine; Sendai Japan
| | - A. Horii
- Department of Molecular Pathology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - K. Kimura
- Division of Research and Development; Meiji Co., Ltd; Odawara Japan
| | - N. Taketomo
- Division of Research and Development; Meiji Co., Ltd; Odawara Japan
| | - J.-Z. Xiao
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd; Zama Japan
| | - K. Iwatsuki
- Food Science and Technology Institute, Morinaga Milk Industry Co., Ltd; Zama Japan
| | - T. Saito
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University; Sendai Japan
| |
Collapse
|
35
|
Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ. A new role for mucins in immunity: insights from gastrointestinal nematode infection. Int J Biochem Cell Biol 2012; 45:364-74. [PMID: 23107603 DOI: 10.1016/j.biocel.2012.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/21/2012] [Accepted: 10/23/2012] [Indexed: 12/26/2022]
Abstract
The body's mucosal surfaces are protected from pathogens and physical and chemical attack by the gel-like extracellular matrix, mucus. The framework of this barrier is provided by polymeric, gel-forming mucins. These enormous O-linked glycoproteins are synthesised, stored and secreted by goblet cells that are also the source of other protective factors. Immune regulation of goblet cells during the course of infection impacts on mucin production and properties and ultimately upon barrier function. The barrier function of mucins in protection of the host is well accepted as an important aspect of innate defence. However, it is becoming increasingly clear that mucins have a much more direct role in combating pathogens and parasites and are an important part of the coordinated immune response to infection. Of particular relevance to this review is the finding that mucins are essential anti-parasitic effector molecules. The current understanding of the roles of these multifunctional glycoproteins, and other goblet cell products, in mucosal defence against intestinal dwelling nematodes is discussed.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, Brisbane, QLD 4029, Australia
| | | | | | | |
Collapse
|
36
|
Wolff MJ, Broadhurst MJ, Loke P. Helminthic therapy: improving mucosal barrier function. Trends Parasitol 2012; 28:187-94. [PMID: 22464690 DOI: 10.1016/j.pt.2012.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/29/2012] [Accepted: 02/29/2012] [Indexed: 12/21/2022]
Abstract
The epidemiology of autoimmune diseases and helminth infections led to suggestions that helminths could improve inflammatory conditions, which was then tested using animal models. This has translated to clinical investigations aimed at the safe and controlled reintroduction of helminthic exposure to patients suffering from autoimmune diseases (so-called 'helminthic therapy') in an effort to mitigate the inflammatory response. In this review, we summarize the results of recent clinical trials of helminthic therapy, with particular attention to mechanisms of action. Whereas previous reviews have emphasized immune regulatory mechanisms activated by helminths, we propose that enhancement of mucosal barrier function may have an equally important role in improving conditions of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Martin J Wolff
- Division of Gastroenterology, Department of Medicine, New York University School of Medicine, New York, NY 10010, USA
| | | | | |
Collapse
|
37
|
Atkins HL, Geier MS, Prisciandaro LD, Pattanaik AK, Forder REA, Turner MS, Howarth GS. Effects of a Lactobacillus reuteri BR11 mutant deficient in the cystine-transport system in a rat model of inflammatory bowel disease. Dig Dis Sci 2012; 57:713-719. [PMID: 22038505 DOI: 10.1007/s10620-011-1943-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/08/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract associated with altered composition of the gut microbiota. Lactobacillus reuteri BR11 (BR11) has recently been reported to reduce the severity of experimental IBD because of its probiotic properties possibly attributed to a mechanism of thiol production via its unique cysteine/cystine-transport system. AIM We compared BR11 and a BR11 mutant deficient in the cystine-uptake system (PNG201), for their capacity to reduce the severity of experimental colitis. METHODS Male Sprague-Dawley rats (n = 8 per group) were gavaged (1 ml/day) with skim milk, BR11 or PNG201 (1 × 10(9) CFU/ml) for 12 days. Rats consumed either water or 2% dextran sulfate sodium in drinking water from days 6 to 12 to induce colitis. Metabolism data, disease activity index, intestinal mucin profile, and histological analyses were assessed and compared by ANOVA. RESULTS Assessed histologically, DSS administration resulted in significant colonic deterioration, including loss of crypt area and increased damage severity. BR11 administration only partially alleviated the DSS effects, with a minor improvement in crypt area (P < 0.05). Administration of the PNG201 mutant strain to colitic animals failed to achieve significance (P > 0.05) against the DSS control for any of the end-points. However, the mutant strain induced significantly greater (P < 0.05) histological severity compared with BR11-treated colitic animals, indicative of possible exacerbation of colitis. CONCLUSIONS The cystine-uptake system only minimally affects the biological effects of BR11, as evidenced by histological and macroscopic colitic changes.
Collapse
Affiliation(s)
- Haydn L Atkins
- School of Animal and Veterinary Sciences, Faculty of Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Croix JA, Bhatia S, Gaskins HR. Inflammatory cues modulate the expression of secretory product genes, Golgi sulfotransferases and sulfomucin production in LS174T cells. Exp Biol Med (Maywood) 2011; 236:1402-12. [PMID: 22101519 DOI: 10.1258/ebm.2011.011186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The signals that mediate goblet cell expression of specific mucin chemotypes are poorly defined. Animal and in vitro studies show that acidomucin chemotypes may be altered by inflammation and changes in intestinal microbiota. To examine factors that may elicit this response, human adenocarcinoma-derived LS174T cells, which have a goblet cell-like phenotype and produce both sulfo- and sialomucins, were used to examine the effects of selected microbial and host factors on expression of goblet cell secretory product genes, sulfotransferases and sulfomucin production. Expression of genes encoding mucin 2 (MUC2), resistin-like molecule β (RETNLB), and trefoil factor 3 (TFF3) and Golgi sulfotransferases, carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 5 (CHST5) and galactose-3-O-sulfotransferase 2 (GAL3ST2), was measured by quantitative reverse transcriptase-polymerase chain reaction following treatment with bacterial flagellin, tumor necrosis factor α (TNF-α) or the mucogenic cytokine interleukin-13 (IL-13). Expression of the toll-like receptor 5 (TLR5) gene was also analysed. Sulfomucin expression was examined via high-iron diamide/alcian blue (HID/AB) histochemistry and immunofluorescent staining for the Sulfo Le(a) antigen, which is synthesized in part by GAL3ST2. Flagellin, IL-13 and TNF-α all significantly increased GAL3ST2, MUC2, TFF3 and TLR5 expression, while only IL-13 increased RETNLB and CHST5 expression. Based on HID/AB histochemistry, mucin sulfation was significantly increased in response to both flagellin and IL-13 but not TNF-α. Only treatment with flagellin increased the expression of the Sulfo Le(a) antigen. Collectively, these results indicate that bacterial flagellin, IL-13 and TNF-α differentially modulate the expression of goblet cell secretory product genes, sulfotransferases and sulfomucin production.
Collapse
Affiliation(s)
- Jennifer A Croix
- Division of Nutritional Sciences, University of Illinois, 1207 W. Gregory Dr. Urbana, Urbana, IL 61801, USA
| | | | | |
Collapse
|
39
|
Castro I, Aguilera S, Brockhausen I, Alliende C, Quest AFG, Molina C, Urzúa U, Mandel U, Bahamondes V, Barrera MJ, Sánchez M, González S, Hermoso M, Leyton C, González MJ. Decreased salivary sulphotransferase activity correlated with inflammation and autoimmunity parameters in Sjogren's syndrome patients. Rheumatology (Oxford) 2011; 51:482-90. [PMID: 22101162 DOI: 10.1093/rheumatology/ker351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To determine the expression and enzymatic activities of sulphotransferases involved in mucin hyposulphation in labial salivary glands (LSGs) from SS patients and to correlate sulphotransferase activity with clinical parameters such as secretion, inflammation and serology. METHODS LSG from 31 SS patients and 31 control subjects were studied. Relative mRNA and protein levels of Gal3-O-sulphotransferases (Gal3STs) and β1,3-galactosyltransferase-5 (β3GalT5) were determined by quantitative RT-PCR and western blotting, respectively. Enzymatic activities were quantified using radioactively labelled donor substrates and specific acceptor substrates. Products were purified by chromatography. Spearman's correlation analysis was used to compare data. RESULTS The levels of Gal3ST activity were significantly decreased in SS patients, without changes in mRNA and protein levels, while the enzymatic activities of glycosyltransferases involved in mucin glycosylation were similar in both groups. An inverse correlation was observed between Gal3ST activity and glandular function measured by scintigraphy, but not with unstimulated salivary flow. Gal3ST activity was inversely correlated with focus score, TNF-α levels and presence of the autoantibodies Ro/SS-A and La/SS-B. CONCLUSION The decrease in sulphotransferase activity provides an explanation for mucin hyposulphation observed in the LSGs from SS patients. The decrease in Gal3STs activity was not a consequence of reduced gene expression, but probably due to alterations in the enzyme activity regulation. Interestingly, the levels of sulphotransferase activity detected correlated well with secretory function, inflammation and serology. Finally, we postulate that pro-inflammatory cytokines induced by autoantibodies, such as Ro/SS-A and La/SS-B in SS patients, may modulate Gal3ST activity, thereby altering mucin quality and leading to mouth dryness.
Collapse
Affiliation(s)
- Isabel Castro
- Institute of Biomedical Sciences, University of Chile, Casilla, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Larsson JMH, Karlsson H, Crespo JG, Johansson MEV, Eklund L, Sjövall H, Hansson GC. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 2011; 17:2299-307. [PMID: 21290483 DOI: 10.1002/ibd.21625] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/06/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND The MUC2 mucin organizes the two mucus layers in the colon. This mucin carries a large number of O-glycans that are assumed to be attachment sites for the commensal flora found in the outer mucus layer. METHODS Single biopsies from the sigmoid colon of controls (25) and patients with inactive (13) or active (15) ulcerative colitis (UC) were collected during routine colonoscopy. The insoluble MUC2 mucin was prepared and separated by gel electrophoresis, its relative amount estimated, its O-glycans released, and glycans analyzed by novel sensitive glycomics chromatography / mass spectrometry providing information on glycan structures and relative abundances. The glycosylation pattern was related to the degree of mucosal inflammation and clinical severity of the disease. RESULTS The relative abundance of MUC2 showed high individual variability. Two major glycan profiles were found; a normal pattern in the control and inactive UC patients and an aberrant profile in patients with active colitis with an increase in a subset of the smaller glycans and a decrease of several complex glycans. The magnitude of this phenomenon was significantly related to both the degree of inflammation in the biopsies and also to some extent the severity of disease course. The aberrant profile was further shown to be reversible upon remission. CONCLUSIONS In the majority of the active UC patients MUC2 mucin has an altered glycan profile as compared to inactive UC and control patients. Patients with strong alterations in the glycan pattern tended to have a more severe disease course.
Collapse
Affiliation(s)
- Jessica M Holmn Larsson
- Department of Medical Biochemistry, University of Gothenburg, Gothenburg, Sweden, Sahlgrens' University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics.
Collapse
|
42
|
Fu J, Wei B, Wen T, Johansson MEV, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, McDaniel JM, Sferra TJ, Turner JR, Chen H, Hansson GC, Braun J, Xia L. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 2011; 121:1657-66. [PMID: 21383503 DOI: 10.1172/jci45538] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/12/2011] [Indexed: 12/19/2022] Open
Abstract
Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.
Collapse
Affiliation(s)
- Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Martinez CAR, Nonose R, Spadari APP, Máximo FR, Priolli DG, Pereira JA, Margarido NF. Quantification by computerized morphometry of tissue levels of sulfomucins and sialomucins in diversion colitis in rats. Acta Cir Bras 2011; 25:231-40. [PMID: 20498935 DOI: 10.1590/s0102-86502010000300004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/17/2010] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To quantify the intensity of sulfomucin and sialomucin expression in the colon mucosa, by means of computer-assisted image processing, comparing segments with and without fecal stream and correlating with the duration of fecal transit exclusion. METHODS Forty-five Wistar rats were subjected to diversion of the fecal stream in the left colon by means of constructing a proximal colostomy and distal mucosal fistula. They were distributed randomly into three experimental groups of 15 animals, of which 10 were subjected to colon diversion (experimental subgroup) and five were only subjected to laparotomy, without colon diversion (control subgroup). The three experimental groups were formed according to the sacrifice date, which was to be performed six weeks after the surgical procedure (Group A), 12 weeks (Group B) and 18 weeks (Group C). The sulfomucin and sialomucin expression in the colon mucosa was evaluated using the histochemical technique of high iron diamine-alcian blue (HID-AB). The tissue expression was quantified for each animal, in the segments with and without fecal stream, at a location where there were four complete contiguous crypts in two random fields, with the aid of the computer-assisted image analysis software. The final value was taken to be the mean reading from the two fields selected, in the segments with and without fecal stream. To compare the expressions of the two mucin subtypes in the segments with and without fecal stream, the paired Student t test was used. To analyze variance according to duration of exclusion, ANOVA with the Newman-Keuls post-test was used, setting the significance level at 5% (p<0.05). RESULTS There were significant reductions in tissue sulfomucin and sialomucin content in the colon without fecal stream, independent of the duration of exclusion considered. There was increased tissue sulfomucin content and decreased tissue sialomucin in the segments without fecal stream, with increasing duration of exclusion. CONCLUSIONS Diversion of the fecal transit decreased the tissue sulfomucin and sialomucin content in the segments without fecal stream. Notwithstanding the reduction in the levels of both subtypes of acid mucin in the segments without fecal stream, there was increased tissue sulfomucin content and decreased tissue sialomucin with increasing duration of intestinal diversion.
Collapse
|
44
|
Pearson JP, Brownlee IA. The interaction of large bowel microflora with the colonic mucus barrier. Int J Inflam 2010; 2010:321426. [PMID: 21152122 PMCID: PMC2989700 DOI: 10.4061/2010/321426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
The colonic mucus barrier is the first line of defence that the underlying mucosa has against the wide range of potentially damaging agents of microbial, endogenous, and dietary origin that occur within the colonic lumen. The functional component of mucus is the secreted, polymeric glycoprotein mucin. The mucus barrier can either act as an energy source or a support medium for growth to the intestinal microflora. The mucus barrier appears to effectively partition the vast number of microbial cells from the underlying epithelium. The normal functionality and biochemistry of this mucus barrier appears to be lost in diseases of the colorectal mucosa. Germ-free animal studies have highlighted the necessity of the presence of the colonic microflora to drive the maturation of the colonic mucosa and normal mucus production. A number of by-products of the microflora have been suggested to be key luminal drivers of colonic mucus secretion.
Collapse
Affiliation(s)
- Jeffrey P Pearson
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
45
|
Cathelicidins in inflammation and tissue repair: Potential therapeutic applications for gastrointestinal disorders. Acta Pharmacol Sin 2010; 31:1118-22. [PMID: 20676121 DOI: 10.1038/aps.2010.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cathelicidins, a family of host defense peptides, are highly expressed during infection, inflammation and wound healing. These peptides not only have broad-spectrum antimicrobial activities, but also modulate inflammation by altering cytokine response and chemoattraction of inflammatory cells in diseased tissues. In this connection, a mouse cathelicidin has been demonstrated to prevent inflammation in the colon through enhancing mucus production and reducing production of pro-inflammatory cytokines. In addition, cathelicidins promote wound healing through stimulation of re-epithelialization and angiogenesis at injured tissues. In an animal model of gastric ulceration, the rat cathelicidin promotes ulcer healing by inducing proliferation of gastric epithelial cells both in vitro and in vivo. In conclusion, cathelicidins represent an important group of effector molecules in the innate immune system that operates a complex integration of inflammation and tissue repair in the gastrointestinal mucosa and other organs.
Collapse
|
46
|
Lee HS, Han SY, Ryu KY, Kim DH. The degradation of glycosaminoglycans by intestinal microflora deteriorates colitis in mice. Inflammation 2009; 32:27-36. [PMID: 19067146 DOI: 10.1007/s10753-008-9099-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The biosynthesis and modification of mucopolysaccharides and glycosaminoglycans (GAGs), secreted from gastrointestinal mucosal cells, are increased in colitis and influence the viability of the defense barrier. Therefore, to evaluate the role of GAG-degrading intestinal microflora during the progression of colitis, we investigated the degradation activity of intestinal bacterial GAG, cytotoxicity of GAGs and their metabolites, such as iduronic acid, D: -uronic acid or D: -glucuronic acid and D: -galactosamine or D: -glucosamine, against intestinal cells. We also tested their deteriorative effects against colitis. Colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) with and without antibiotics in mice. The TNBS treatment caused colon shortening, increased myeloperoxidase activity, induced IL-1beta, TNF-alpha, and IL-6 expression in the colon, activated NF-kappaB, and potentiated the GAG-degrading activities of intestinal microflora. The antibiotic treatment inhibited colon shortening, decreased myeloperoxidase activity, and reduced proinflammatory cytokine expression, NF-kappaB activation, and GAG degradation, induced by TNBS. Among the GAG metabolites, d-glucosamine and d-galactosamine showed cytotoxicity against intestinal cells, Caco-2 and IEC-18 cells, synergistically deteriorated the cytotoxicity of TNBS as well as the TNBS-induced colitis in mice. Based on these findings, intestinal microflora may degrade GAGs in colitis, their metabolites deteriorate the progress of colitis and antibiotics ameliorate the colitis by the inhibition of GAG-degrading bacterial growth.
Collapse
Affiliation(s)
- Hye-Sung Lee
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1, Hoegi, Dongdaemun-Ku, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|
47
|
Abstract
Similar changes in glycosylation occur in the colonic epithelium in inflammatory conditions such as ulcerative colitis and Crohn's disease and also in colon cancer and precancerous adenomatous polyps. They include reduced length of O-glycans, reduced sulfation, increased sialylation and increased expression of oncofetal carbohydrate antigens, such as sialyl-Tn (sialylalpha2-6GalNAc), and the TF antigen (Thomsen-Friedenreich antigen) Galbeta1-3GalNAcalpha-Ser/Thr. The changes affect cell surface as well as secreted glycoproteins and mediate altered interactions between the epithelium and lectins of dietary, microbial or human origin. Different TF-binding lectins cause diverse effects on epithelial cells, reflecting subtle differences in binding specificities e.g. for sialylated TF; some of these interactions, such as with the TF-binding peanut lectin that resists digestion, may be biologically significant. Increased TF expression by cancer cells also allows interaction with the human galactose-binding lectin, galectin-3. This lectin has increased concentration in the sera of patients with metastatic cancer and binds TF on cancer cell surface MUC1 (mucin 1), causing clustering of MUC1 and revealing underlying adhesion molecules which promote adhesion to endothelium. This is likely to be an important mechanism in cancer metastasis and represents a valid therapeutic target. Tools are now available to allow fast and accurate elucidation of glycosylation changes in epithelial disease, characterization of their potential lectin ligands, whether dietary, microbial or human, and determination of the functional significance of their interactions. This should prove a very fruitful area for future research with relevance to infectious, inflammatory and cancerous diseases of the epithelia.
Collapse
|
48
|
McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:100-13. [PMID: 18623167 DOI: 10.1002/ibd.20539] [Citation(s) in RCA: 449] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The etiology of human inflammatory bowel diseases (IBDs) is believed to involve inappropriate host responses to the complex commensal microbial flora in the gut, although an altered commensal flora is not completely excluded. A multifunctional cellular and secreted barrier separates the microbial flora from host tissues. Altered function of this barrier remains a major largely unexplored pathway to IBD. Although there is evidence of barrier dysfunction in IBD, it remains unclear whether this is a primary contributor to disease or a consequence of mucosal inflammation. Recent evidence from animal models demonstrating that genetic defects restricted to the epithelium can initiate intestinal inflammation in the presence of normal underlying immunity has refocused attention on epithelial dysfunction in IBD. We review the components of the secreted and cellular barrier, their regulation, including interactions with underlying innate and adaptive immunity, evidence from animal models of the barrier's role in preventing intestinal inflammation, and evidence of barrier dysfunction in both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
49
|
Tai EKK, Wong HPS, Lam EKY, Wu WKK, Yu L, Koo MWL, Cho CH. Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway. J Cell Biochem 2008; 104:251-8. [PMID: 18059019 DOI: 10.1002/jcb.21615] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mucus forms the physical barrier along the gastrointestinal tract. It plays an important role to prevent mucosal damage and inflammation. Our animal study showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon. In the current study, we examined the direct effect and mechanisms by which the peptide increased mucus synthesis in a human colonic cell line (HT-29). Human cathelicidin (LL-37) dose-dependently (10-40 microg/ml) and significantly stimulated mucus synthesis by increasing the D-[6-(3)H] glucosamine incorporation in the cells. Real-time PCR data showed that addition of LL-37 induced more than 50% increase in MUC1 and MUC2 mRNA levels. Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis. LL-37 also activated the phosphorylation of mitogen-activated protein (MAP) kinase in the cells. A specific inhibitor of the MAP kinase pathway, U0126, completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37. Taken together, LL-37 can directly stimulate mucus synthesis through activation of MUC1 and MUC2 expression and MAP kinase pathway in human colonic cells.
Collapse
Affiliation(s)
- Emily K K Tai
- Department of Pharmacology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Png CW, Crockford TL, Cornall RJ, Adams R, Kato M, Nelms KA, Hong NA, Florin THJ, Goodnow CC, McGuckin MA. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008; 5:e54. [PMID: 18318598 PMCID: PMC2270292 DOI: 10.1371/journal.pmed.0050054] [Citation(s) in RCA: 565] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 01/17/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND MUC2 mucin produced by intestinal goblet cells is the major component of the intestinal mucus barrier. The inflammatory bowel disease ulcerative colitis is characterized by depleted goblet cells and a reduced mucus layer, but the aetiology remains obscure. In this study we used random mutagenesis to produce two murine models of inflammatory bowel disease, characterised the basis and nature of the inflammation in these mice, and compared the pathology with human ulcerative colitis. METHODS AND FINDINGS By murine N-ethyl-N-nitrosourea mutagenesis we identified two distinct noncomplementing missense mutations in Muc2 causing an ulcerative colitis-like phenotype. 100% of mice of both strains developed mild spontaneous distal intestinal inflammation by 6 wk (histological colitis scores versus wild-type mice, p < 0.01) and chronic diarrhoea. Monitoring over 300 mice of each strain demonstrated that 25% and 40% of each strain, respectively, developed severe clinical signs of colitis by age 1 y. Mutant mice showed aberrant Muc2 biosynthesis, less stored mucin in goblet cells, a diminished mucus barrier, and increased susceptibility to colitis induced by a luminal toxin. Enhanced local production of IL-1beta, TNF-alpha, and IFN-gamma was seen in the distal colon, and intestinal permeability increased 2-fold. The number of leukocytes within mesenteric lymph nodes increased 5-fold and leukocytes cultured in vitro produced more Th1 and Th2 cytokines (IFN-gamma, TNF-alpha, and IL-13). This pathology was accompanied by accumulation of the Muc2 precursor and ultrastructural and biochemical evidence of endoplasmic reticulum (ER) stress in goblet cells, activation of the unfolded protein response, and altered intestinal expression of genes involved in ER stress, inflammation, apoptosis, and wound repair. Expression of mutated Muc2 oligomerisation domains in vitro demonstrated that aberrant Muc2 oligomerisation underlies the ER stress. In human ulcerative colitis we demonstrate similar accumulation of nonglycosylated MUC2 precursor in goblet cells together with ultrastructural and biochemical evidence of ER stress even in noninflamed intestinal tissue. Although our study demonstrates that mucin misfolding and ER stress initiate colitis in mice, it does not ascertain the genetic or environmental drivers of ER stress in human colitis. CONCLUSIONS Characterisation of the mouse models we created and comparison with human disease suggest that ER stress-related mucin depletion could be a fundamental component of the pathogenesis of human colitis and that clinical studies combining genetics, ER stress-related pathology and relevant environmental epidemiology are warranted.
Collapse
Affiliation(s)
- Chad K Heazlewood
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Matthew C Cook
- Immunology and Inflammation Group, Phenomix Australia, Acton, Australia
| | - Rajaraman Eri
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Gareth R Price
- Molecular Genetics Team, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Sharyn B Tauro
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Douglas Taupin
- Gastroenterology Unit, Canberra Hospital, Woden, Australia
| | - David J Thornton
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Chin Wen Png
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Tanya L Crockford
- Nuffield Dept of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Cornall
- Nuffield Dept of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rachel Adams
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Masato Kato
- Dendritic Cell Program, Mater Medical Research Institute, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Keats A Nelms
- Immunology and Inflammation Group, Phenomix Australia, Acton, Australia
| | - Nancy A Hong
- Phenomix Corporation, San Diego, California, United States of America
| | - Timothy H. J Florin
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
| | - Christopher C Goodnow
- Division of Immunology and Genetics and Australian Phenomics Facility, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Michael A McGuckin
- Mucin and IBD Research Teams, Mucosal Diseases Program, Mater Medical Research Institute, and the University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|