1
|
Poplawski J, Montina T, Metz GAS. Early life stress shifts critical periods and causes precocious visual cortex development. PLoS One 2024; 19:e0316384. [PMID: 39739746 DOI: 10.1371/journal.pone.0316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex. ELS induced by animal transportation on postnatal day 12 accelerated the opening and closing of the visual cortex critical period along with earlier maturation of visual acuity. Staining of a molecular correlate that marks the end of critical period plasticity revealed premature emergence of inhibitory perineuronal nets (PNNs) following ELS. ELS also drove lasting changes in visual cortex mRNA expression affecting genes linked to psychiatric disease risk, with hemispheric asymmetries favoring the right side. NMR spectroscopy and a metabolomics approach revealed that ELS was accompanied by activated energy metabolism and protein biosynthesis. Thus, ELS may accelerate visual system development, resulting in premature opening and closing of critical period plasticity. Overall, the data suggest that ELS desynchronizes the orchestrated temporal sequence of regional brain development potentially leading to long-term functional deficiencies. These observations provide new insights into a neurodevelopmental expense to adaptative brain plasticity. These findings also suggest that shipment of laboratory animals during vulnerable developmental ages may result in long lasting phenotypes, introducing critical confounds to the experimental design.
Collapse
Affiliation(s)
- Janet Poplawski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
2
|
Yang M, Ma Y, Song X, Miao J, Yan L. Integrative chemical and multiomics analyses of tetracycline removal mechanisms in Pseudomonas sp. DX-21. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134123. [PMID: 38554508 DOI: 10.1016/j.jhazmat.2024.134123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Tetracycline (TC), widely found in various environments, poses significant risks to ecosystems and human health. While efficient biodegradation removes TC, the mechanisms underlying this process have not been elucidated. This study investigated the molecular mechanisms underlying TC biosorption and transfer within the extracellular polymeric substances (EPS) of strain DX-21 and its biodegradation process using fourier transform infrared spectroscopy, molecular docking, and multiomics. Under TC stress, DX-21 increased TC biosorption by secreting more extracellular polysaccharides and proteins, particularly the latter, mitigating toxicity. Moreover, specialized transporter proteins with increased binding capacity facilitated TC movement from the EPS to the cell membrane and within the cell. Transcriptomic and untargeted metabolomic analyses revealed that the presence of TC led to the differential expression of 306 genes and significant alterations in 37 metabolites. Notably, genes related to key enzymes, such as electron transport, peroxidase, and oxidoreductase, exhibited significant differential expression. DX-21 combated and degraded TC by regulating metabolism, altering cell membrane permeability, enhancing oxidative defense, and enhancing energy availability. Furthermore, integrative omics analyses indicated that DX-21 degrades TC via various enzymes, reallocating resources from other biosynthetic pathways. These results advance the understanding of the metabolic responses and regulatory mechanisms of DX-21 in response to TC.
Collapse
Affiliation(s)
- Mengya Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifei Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Song
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Miao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lilong Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Pierzchala K, Hadjihambi A, Mosso J, Jalan R, Rose CF, Cudalbu C. Lessons on brain edema in HE: from cellular to animal models and clinical studies. Metab Brain Dis 2024; 39:403-437. [PMID: 37606786 PMCID: PMC10957693 DOI: 10.1007/s11011-023-01269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.
Collapse
Affiliation(s)
- Katarzyna Pierzchala
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, SE5 9NT, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland
- Laboratory for Functional and Metabolic Imaging (LIFMET), EPFL, Lausanne, Switzerland
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, UK
- European Foundation for the Study of Chronic Liver Failure (EF Clif), Barcelona, Spain
| | - Christopher F Rose
- Hépato-Neuro Laboratory, Centre de Recherche du Centre Hospitalier de l', Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, QC, Montreal, H3T 1J4, Canada
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, EPFL, Lausanne, Switzerland.
| |
Collapse
|
4
|
Dai H, Song D, Xu J, Li B, Hertz L, Peng L. Ammonia-induced Na,K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 2013; 63:610-25. [PMID: 24044899 DOI: 10.1016/j.neuint.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR(845) and EGFR(1068); (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3mM ammonia it does not appear until after 12h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Dan Song
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Junnan Xu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
5
|
Norenberg MD, Rama Rao KV, Jayakumar AR. Signaling factors in the mechanism of ammonia neurotoxicity. Metab Brain Dis 2009; 24:103-17. [PMID: 19104923 DOI: 10.1007/s11011-008-9113-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/28/2008] [Indexed: 02/08/2023]
Abstract
Mechanisms involved in hepatic encephalopathy (HE) still remain poorly understood. It is generally accepted that ammonia plays a major role in this disorder, and that astrocytes represent the principal target of ammonia neurotoxicity. In recent years, studies from several laboratories have uncovered a number of factors and pathways that appear to be critically involved in the pathogenesis of this disorder. Foremost is oxidative and nitrosative stress (ONS), which is largely initiated by an ammonia-induced increase in intracellular Ca(2+). Such increase in Ca(2+) activates a number of enzymes that promote the synthesis of reactive oxygen-nitrogen species, including constitutive nitric oxide synthase, NADPH oxidase and phospholipase A2. ONS subsequently induces the mitochondrial permeability transition, and activates mitogen-activated protein kinases and the transcription factor, nuclear factor-kappaB (NF-kappaB). These factors act to generate additional reactive oxygen-nitrogen species, to phosphorylate various proteins and transcription factors, and to cause mitochondrial dysfunction. This article reviews the role of these factors in the mechanism of HE and ammonia toxicity with a focus on astrocyte swelling and glutamate uptake, which are important consequences of ammonia neurotoxicity. These pathways and factors provide attractive targets for identifying agents potentially useful in the therapy of HE and other hyperammonemic disorders.
Collapse
Affiliation(s)
- M D Norenberg
- Department of Pathology (D-33), University of Miami School of Medicine, P.O. Box 016960, Miami, FL 33101, USA.
| | | | | |
Collapse
|
6
|
Abstract
Both neurons and astrocytes have high rates of glucose utilization and oxidative metabolism. Fully 20% of glucose consumption is used for astrocytic production of glutamate and glutamine, which during intense glutamatergic activity leads to an increase in glutamate content, but at steady state is compensated for by an equally intense oxidation of glutamate. The amounts of ammonia used for glutamine synthesis and liberated during glutamine hydrolysis are large, compared to the additional demand for glutamine synthesis in hyperammonemic animals and patients with hepatic encephalopathy. Nevertheless, elevated ammonia concentrations lead to an increased astrocytic glutamine production and an elevated content of glutamine combined with a decrease in glutamate content, probably mainly in a cytosolic pool needed for normal activity of the malate-asparate shuttle (MAS); another compartment generated by glutamine hydrolysis is increased. As a result of reduced MAS activity the pyruvate/lactate ratio is decreased in astrocytes but not in neurons and decarboxylation of pyruvate to form acetyl coenzyme A is reduced. Elevated ammonia concentrations also inhibit decarboxylation of alpha-ketoglutarate in the TCA cycle. This effect occurs in both neurons and astrocytes, is unrelated to MAS activity and seen after chronic treatment with ammonia even in the absence of elevated ammonia concentrations.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| | | |
Collapse
|
7
|
Rama Rao KV, Jayakumar AR, Norenberg MD. Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 2003; 43:517-23. [PMID: 12742099 DOI: 10.1016/s0197-0186(03)00042-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the principal target of ammonia toxicity. Glutamine, a byproduct of ammonia metabolism, has been implicated in some of the deleterious effects of ammonia on the CNS. We have recently shown that ammonia induces the mitochondrial permeability transition (MPT) in cultured astrocytes, but not in neurons. We therefore determined whether glutamine is also capable of inducing the MPT in cultured astrocytes. Astrocytes were treated with glutamine (4.5 mM) for various time periods and the MPT was assessed by changes in 2-deoxyglucose (2-DG) mitochondrial permeability, calcein fluorescence assay, and by changes in cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (deltapsi(m)) using the potentiometric dye, JC-1. Astrocytes treated with glutamine significantly increased 2-DG permeability (120%, P<0.01), decreased mitochondrial calcein fluorescence, and concomitantly dissipated the deltapsi(m). All of these effects were blocked by CsA. These data indicate that glutamine induces the MPT in cultured astrocytes. The induction of the MPT by glutamine in astrocytes, and the subsequent development of mitochondrial dysfunction, may partially explain the deleterious affects of glutamine on the CNS in the setting of hyperammonemia.
Collapse
Affiliation(s)
- K V Rama Rao
- Veterans Affairs Medical Center and Department of Pathology (D-33), P.O. Box 016960, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
8
|
Rama Rao KV, Jayakumar AR, Norenberg DM. Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 2003; 18:113-27. [PMID: 12822830 DOI: 10.1023/a:1023858902184] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with severe liver disease. Although the mechanisms responsible for HE remain elusive, ammonia is generally considered to be involved in its pathogenesis, and astrocytes are thought to be the principal target of ammonia neurotoxicity. Altered bioenergetics and oxidative stress are also thought to play a major role in this disorder. In this paper, we present data invoking the mitochondrial permeability transition (MPT) as a factor in the pathogenesis of HE/hyperammonemia. The MPT is a Ca2+-dependent, cyclosporin A (CsA) sensitive process due to the opening of a pore in the inner mitochondrial membrane that leads to a collapse of ionic gradients and ultimately to mitochondrial dysfunction. Many of the factors that facilitate the induction of the MPT are also known to be implicated in the mechanism of HE, including free radicals, Ca2+, nitric oxide, alkaline pH, and glutamine. We have recently shown that treatment of cultured astrocytes with 5 mM NH4Cl resulted in a dissipation of the mitochondrial membrane potential (delta(psi)m), which was sensitive to CsA. Similarly treated cultured neurons failed to show a loss of the delta(psi)m. Further support for the ammonia induction of the MPT was obtained by observing an increase in mitochondrial permeability to 2-deoxyglucose-6-phosphate, and a decrease in calcein fluorescence in astrocytes after ammonia treatment, both of which were also blocked by CsA. CsA was likewise capable of exerting a protective effect against hyperammonemia in mice. Taken together, our data suggest that the MPT represents an important component of the pathogenesis of HE and other hyperammonemic states.
Collapse
Affiliation(s)
- K V Rama Rao
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Leif Hertz
- Hong Kong DNA Chips, Ltd., Kowloon, Hong Kong, China
| | | |
Collapse
|
10
|
Murthy CRK, Norenberg MD. Suppression of ammonia-induced swelling by aspartate but not by ornithine in primary cultures of rat astrocytes. Neurochem Int 2002; 41:171-6. [PMID: 12020617 DOI: 10.1016/s0197-0186(02)00039-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cerebral edema with a rise in intracranial pressure is the hallmark of fulminant hepatic failure (FHF) and acute hyperammonemic (HA) states and is characterized by a poor survival rate. Astrocytes are the cells in brain which are swollen in these conditions. Several hypotheses have been proposed to explain the mechanism of cerebral edema in FHF and treatment strategies have evolved based on these putative mechanisms. Treatment with a mixture of ornithine and aspartate has been proven to be clinically beneficial as it reduces edema and improves the neurological status. It has been suggested that these two amino acids generate the glutamate required for the synthesis of glutamine and that they also enhance urea synthesis in surviving hepatocytes in FHF and HA. Presently, we report that of these two amino acids, only aspartate is effective in suppressing ammonia-induced swelling in primary cultures of astrocytes, while ornithine is ineffective. These results are discussed in relation to the metabolism of aspartate and ornithine in astrocytes, with an emphasis on glutamine synthesis and the malate-aspartate shuttle (MAS). We propose that the ability of aspartate to generate glutamate in the cytosol for glutamine synthesis and oxaloacetate in mitochondria to support the citric acid cycle play a role in its ability to reduce ammonia-induced swelling in astrocytes.
Collapse
Affiliation(s)
- Chinta R K Murthy
- Department of Animal Sciences, University of Hyderabad, Andhra Pradesh, Hyderabad, India
| | | |
Collapse
|
11
|
Bai G, Rama Rao KV, Murthy CR, Panickar KS, Jayakumar AR, Norenberg MD. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 2001; 66:981-91. [PMID: 11746427 DOI: 10.1002/jnr.10056] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and the astrocyte appears to be the principal target of ammonia toxicity. The specific neurochemical mechanisms underlying HE, however, remain elusive. One of the suggested mechanisms for ammonia toxicity is impaired cellular bioenergetics. Because there is evidence that the mitochondrial permeability transition (MPT) is associated with mitochondrial dysfunction, we determined whether the MPT might be involved in the bioenergetic alterations related to ammonia toxicity. Accordingly, we examined the mitochondrial membrane potential (Deltapsi(m)) in cultured astrocytes and neurons using laser-scanning confocal microscopy after loading the cells with the voltage-sensitive dye JC-1. We found that ammonia induced a dissipation of the Deltapsi(m) in a time- and concentration-dependent manner. These findings were supported by flow cytometry using the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Cyclosporin A, a specific inhibitor of the MPT, completely blocked the ammonia-induced dissipation of the Deltapsi(m). We also found an increase in the mitochondrial permeability to 2-deoxyglucose in astrocytes that had been exposed to 5 mM NH(4)Cl, further supporting the concept that ammonia induces the MPT in these cells. Pretreatment with methionine sulfoximine, an inhibitor of glutamine synthetase, blocked the ammonia-induced collapse of Deltapsi(m), suggesting a role of glutamine in this process. Over a 24-hr period, ammonia had no effect on the Deltapsi(m) in cultured neurons. Collectively, our data indicate that ammonia induces the MPT in cultured astrocytes, which may be a factor in the mitochondrial dysfunction associated with HE and other hyperammonemic states.
Collapse
Affiliation(s)
- G Bai
- Department of Pathology, Veterans Affairs Medical Center, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
12
|
Murthy CR, Rama Rao KV, Bai G, Norenberg MD. Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 2001; 66:282-8. [PMID: 11592125 DOI: 10.1002/jnr.1222] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Elevated levels of ammonia in blood and brain result in derangement of cerebral function. Recently, lipid peroxidation and oxidative stress have been implicated in ammonia neurotoxicity. Because ammonia is primarily detoxified in astrocytes, we postulated that pathophysiological concentrations of ammonia might induce free radical formation in these cells. To test this hypothesis, we examined the extent of free radical production in primary cultures of astrocytes that had been preloaded with the fluorescent dye 5- (and 6-)carboxy-2',7'-dichlorodihydrofluorescein diacetate (DCFDA). DCFDA fluorescence was found to be increased in a dose-dependent manner when astrocytes were exposed to 1, 5, and 10 mM NH(4)Cl. This phenomenon was transitory; it peaked at 2.5 min after exposure and declined subsequently. By 2 hr after treatment, DCFDA fluorescence was below control level. Addition of catalase or superoxide dismutase to 5 mM NH(4)Cl-treated astrocytes reduced free radical formation. Pretreatment with 3 mM methionine sulfoximine, an inhibitor of glutamine synthetase, also suppressed free radical formation by 5 mM NH(4)Cl. The results of this study suggest that elevated concentrations of ammonia induce the formation of free radicals in astrocytes and that this process is associated with the synthesis of glutamine. We propose that astrocyte-derived free radicals may be responsible for some of the pathophysiological changes associated with hyperammonemic conditions.
Collapse
Affiliation(s)
- C R Murthy
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | |
Collapse
|
13
|
Abstract
Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with severe liver disease. Although the molecular basis for the neurological disorder in HE remains elusive, elevated ammonia and its chief metabolite glutamine are believed to be important factors responsible for altered cerebral functions, including multiple neurotransmitter system(s) failure, altered bioenergetics, and more recently oxidative stress. Accumulated evidence suggests that direct interference of ammonia at several points in cerebral energy metabolism, including glycolysis, TCA cycle, and the electron transport chain, could lead to energy depletion. Additionally, recent studies from our laboratory have invoked the possibility that ammonia and glutamine may induce the mitochondrial permeability transition in astrocytes, a process capable of causing mitochondrial dysfunction. Altered mitochondrial metabolism appears to be an important mechanism responsible for the cerebral abnormalities associated with HE and other hyperammonemic states.
Collapse
Affiliation(s)
- K V Rao
- Laboratory of Neuropathology, Veterans Administration Medical Center, University of Miami School of Medicine, Florida, USA
| | | |
Collapse
|
14
|
Haghighat N, McCandless DW, Geraminegad P. The effect of ammonium chloride on metabolism of primary neurons and neuroblastoma cells in vitro. Metab Brain Dis 2000; 15:151-62. [PMID: 11092581 DOI: 10.1007/bf02679981] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hyperammonemia is a consistent finding in many metabolic disorders. The excess ammonia (NH4Cl) interferes with brain energy metabolism possibly in part by inhibiting the tricarboxylic acid (TCA) cycle. Inhibition of the TCA cycle may result in depletion of ATP in the brain cells. In this study, the acute and chronic effect of NH4Cl (7.5 mM and 15 mM) on the metabolism of isolated neurons and neuroblastoma cells was examined. These cells were treated with NH4Cl for 15 minutes and 24 hours. Morphologic and metabolic toxicity were greater in neuroblastoma cells than in primary neurons. Following 15 minutes treatment, concentration of lactate increased significantly in neuroblastoma cells but, the concentration of other metabolites did not change significantly in neuroblastoma cells and in primary neurons. Following 24 hours treatment, the glucose utilization increased in both cell types. This high utilization of glucose in neuroblastoma cells was in concert with an increase in lactate and decrease in glutamate and ATP. In primary neurons, following 24 hours treatment, the glucose utilization significantly increased, but the concentration of the other metabolites did not change significantly. Neuroblastoma cells consumed more glucose than primary neurons in absence of NH4Cl, but generated the same amount of lactate as neurons.
Collapse
Affiliation(s)
- N Haghighat
- Department of Cell Biology and Anatomy, Finch University of Health Sciences/The Chicago Medical School, North Chicago, Illinois 60064, USA.
| | | | | |
Collapse
|
15
|
McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG. Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 1995; 20:1491-501. [PMID: 8789613 DOI: 10.1007/bf00970599] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Malate has a number of key roles in the brain, including its function as a tricarboxylic acid (TCA) cycle intermediate, and as a participant in the malate-aspartate shuttle. In addition, malate is converted to pyruvate and CO2 via malic enzyme and may participate in metabolic trafficking between astrocytes and neurons. We have previously demonstrated that malate is metabolized in at least two compartments of TCA cycle activity in astrocytes. Since malic enzyme contributes to the overall regulation of malate metabolism, we determined the activity and kinetics of the mitochondrial and cytosolic forms of this enzyme from cultured astrocytes. Malic enzyme activity measured at 37 degrees C in the presence of 0.5 mM malate was 4.15 +/- 0.47 and 11.61 +/- 0.98 nmol/min/mg protein, in mitochondria and cytosol, respectively (mean +/- SEM, n = 18-19). Malic enzyme activity was also measured in the presence of several endogenous compounds, which have been shown to alter intracellular malate metabolism in astrocytes, to determine if these compounds affected malic enzyme activity. Lactate inhibited cytosolic malic enzyme by a noncompetitive mechanism, but had no effect on the mitochondrial enzyme. alpha-Ketoglutarate inhibited both cytosolic and mitochondrial malic enzymes by a partial noncompetitive mechanism. Citrate inhibited cytosolic malic enzyme competitively and inhibited mitochondrial malic enzyme noncompetitively at low concentrations of malate, but competitively at high concentrations of malate. Both glutamate and aspartate decreased the activity of mitochondrial malic enzyme, but also increased the affinity of the enzyme for malate. The results demonstrate that mitochondrial and cytosolic malic enzymes have different kinetic parameters and are regulated differently by endogenous compounds previously shown to alter malate metabolism in astrocytes. We propose that malic enzyme in brain has an important role in the complete oxidation of anaplerotic compounds for energy.
Collapse
Affiliation(s)
- M C McKenna
- Department of Pediatrics, University of Maryland School of Medicine, Baltimor USA
| | | | | | | | | |
Collapse
|
16
|
Hirvonen MR, Savolainen KM. Malaoxon-induced brain phosphoinositide turnover and changes in brain calcium levels by female gender in pregnant and non-pregnant convulsing and non-convulsing rats. Hum Exp Toxicol 1993; 12:469-77. [PMID: 7904463 DOI: 10.1177/096032719301200604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alterations in malaoxon-(MO)-induced brain regional phosphoinositide (PI) turnover and in brain calcium levels were studied in female non-pregnant and pregnant rats, and in their offspring. The adult rats were followed for 1 or 4 h after MO for tonic-clonic convulsions. A dose of 8.2 mg kg-1 of MO caused similar convulsions in 74% of the pregnant rats as we have reported in young male rats with a dose of 39.2 mg kg-1. However, convulsions did not occur in non-pregnant female rats. Inositol and inositol monophosphate levels were similar in all control rats. MO decreased brain inositol both in pregnant and non-pregnant female rats, and in the cerebellum of the offspring. In contrast to the findings in male rats, MO only randomly increased brain inositol-1-phosphate in female rats, or in their offspring. However, cerebral inositol-4-phosphate levels were similarly increased both in the non-pregnant and the pregnant rats irrespectively of convulsions. MO did not elevate cerebral Ca2+ in female rats or their offspring, in contrast to the male rats. The present results suggest that female rats are more sensitive than male rats to MO-induced PI signalling, and during pregnancy, also to MO-induced overt convulsions, but not to changes in cerebral Ca2+.
Collapse
Affiliation(s)
- M R Hirvonen
- Division of Environmental Health, National Public Health Institute, Kuopio, Finland
| | | |
Collapse
|
17
|
Abstract
Activity levels of enzymes of glycolytic pathway viz., hexokinase (EC.2.7.1.1), phosphofructokinase (EC.2.7.1.11), aldolase (EC.4.1.2.13), glyceraldehyde-3-phosphate dehydrogenase (EC.1.2.1.12), enolase (EC.4.2.1.11), pyruvate kinase (EC.2.7.1.40) and lactate dehydrogenase (EC.1.1.1.27) were estimated in cerebral cortex, cerebellum and brainstem of the rats treated with subacute and acute doses of ammonium acetate and compared with those of control animals. In general, the activities of all the enzymes except for hexokinase and lactate dehydrogenase, were elevated in all the three regions of the brain. The results suggests an enhanced rate of glycolysis in brain in hyperammonemic states and strengthens the role of ammonium ion in stimulating certain enzymes of the glycolytic pathway.
Collapse
Affiliation(s)
- L Ratnakumari
- School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
18
|
Tabernero A, Bolaños JP, Medina JM. Lipogenesis from lactate in rat neurons and astrocytes in primary culture. Biochem J 1993; 294 ( Pt 3):635-8. [PMID: 8379917 PMCID: PMC1134508 DOI: 10.1042/bj2940635] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rate of synthesis of phospholipid and sterol species from L-lactate in neurons and astrocytes in primary culture was studied. Both types of cells actively utilized lactate as lipid precursor, although the rate of lipogenesis was about 2-fold greater in astrocytes than in neurons. The incorporation of lactate into phospholipids was significantly higher than that into sterols in both types of cells, but the ratio of phospholipid/sterol synthesis was much higher in astrocytes than in neurons. Phosphatidylcholine (PC) was the main phospholipid synthesized in both types of cells, followed by phosphatidylethanolamine (PE), phosphatidylserine and phosphatidylinositol. No detectable synthesis of sphingomyelins was observed. The ratio of PC/PE synthesis was about 2-fold higher in astrocytes than in neurons. The main sterol synthesized in neurons was lanosterol, followed by desmosterol. However, the main sterol synthesized in astrocytes was desmosterol, followed by lanosterol and cholesterol. The different ratios of phospholipid/sterol and PC/PE synthesis found in neurons and astrocytes may result in different membrane fluidity being higher in astrocytes than in neurons. This may be associated with differences in the functionality of both types of cells.
Collapse
Affiliation(s)
- A Tabernero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
19
|
Rao VL, Murthy CR. Uptake and metabolism of glutamate and aspartate by astroglial and neuronal preparations of rat cerebellum. Neurochem Res 1993; 18:647-54. [PMID: 8099717 DOI: 10.1007/bf00966777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of 14CO2 production from [U-14C]glutamate, [U-14C]aspartate and [1-14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of 14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of alpha-ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.
Collapse
Affiliation(s)
- V L Rao
- School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
20
|
Ratnakumari L, Murthy CR. In vitro and in vivo effects of ammonia on glucose metabolism in the astrocytes of rat cerebral cortex. Neurosci Lett 1992; 148:85-8. [PMID: 1300509 DOI: 10.1016/0304-3940(92)90810-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effects of 1 and 5 mM ammonium acetate on glucose metabolism were studied in astrocytes. But for an elevation in the levels of fructose-6-phosphate, phosphoenol pyruvate, and pyruvate, glucose metabolism was unaltered in the presence of 1 mM ammonium acetate. With 5 mM ammonium acetate, but for unaltered lactate, ADP, ATP and decreased aspartate, levels of several intermediates were elevated. Similar results were obtained when astrocytes isolated from hyperammonemic rats were incubated with glucose except for an enhanced production of 14CO2 from [U-14C]glucose. It is suggested that glucose metabolism of astrocytes may not be severely affected in astrocytes of cerebral cortex in acute hyperammonemic states.
Collapse
Affiliation(s)
- L Ratnakumari
- Pediatric Research Center, Hospital St. Justine, Montreal, Que., Canada
| | | |
Collapse
|
21
|
McKenna MC, Tildon JT, Couto R, Stevenson JH, Caprio FJ. The metabolism of malate by cultured rat brain astrocytes. Neurochem Res 1990; 15:1211-20. [PMID: 2129052 DOI: 10.1007/bf01208582] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-[U-14C]malate in primary cultures of rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from 0.01 mM and 0.5 mM malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain. Both the biphasic kinetics and the differential action of many of the effectors on the 14CO2 production from 0.01 mM and 0.5 mM malate provide evidence for the presence of more than one pool of malate metabolism in cultured rat brain astrocytes.
Collapse
Affiliation(s)
- M C McKenna
- Department of Pediatrics, University of Maryland School of Medicine Baltimore 21201
| | | | | | | | | |
Collapse
|
22
|
Lai JC, Murthy CR, Cooper AJ, Hertz E, Hertz L. Differential effects of ammonia and beta-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochem Res 1989; 14:377-89. [PMID: 2569676 DOI: 10.1007/bf01000042] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of ammonium chloride (3 mM) and beta-methylene-DL-aspartate (BMA; 5 mM) (an inhibitor of aspartate aminotransferase, a key enzyme of the malate-aspartate shuttle (MAS] on the metabolism of glutamate and related amino acids were studied in primary cultures of astrocytes and neurons. Both ammonia and BMA inhibited 14CO2 production from [U-14C]- and [1-14C]glutamate by astrocytes and neurons and their effects were partially additive. Acute treatment of astrocytes with ammonia (but not BMA) increased astrocytic glutamine. Acute treatment of astrocytes with ammonia or BMA decreased astrocytic glutamate and aspartate (both are key components of the MAS). Acute treatment of neurons with ammonia decreased neuronal aspartate and glutamine and did not apparently affect the efflux of aspartate from neurons. However, acute BMA treatment of neurons led to decreased neuronal glutamate and glutamine and apparently reduced the efflux of aspartate and glutamine from neurons. The data are consistent with the notion that both ammonia and BMA may inhibit the MAS although BMA may also directly inhibit cellular glutamate uptake. Additionally, these results also suggest that ammonia and BMA exert differential effects on astroglial and neuronal glutamate metabolism.
Collapse
Affiliation(s)
- J C Lai
- Department of Biochemistry, Cornell University Medical College, New York, NY 10021
| | | | | | | | | |
Collapse
|
23
|
Ratnakumari L, Murthy CR. Activities of pyruvate dehydrogenase, enzymes of citric acid cycle, and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats. Neurochem Res 1989; 14:221-8. [PMID: 2725822 DOI: 10.1007/bf00971314] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activity levels of pyruvate dehydrogenase, enzymes of citric acid cycle, aspartate and alanine aminotransferases were estimated in mitochondria, synaptosomes and cytosol isolated from brains of normal rats and those injected with acute and subacute doses of ammonium acetate. In mitochondria isolated from animals treated with acute dose of ammonium acetate, there was an elevation in the activities of pyruvate, isocitrate and succinate dehydrogenases while the activities of malate dehydrogenase (malate----oxaloacetate), aspartate and alanine aminotransferases were suppressed. In subacute conditions a similar profile of change was noticed excepting that there was an elevation in the activity of alpha-ketoglutarate dehydrogenase in mitochondria. In the synaptosomes isolated from animals administered with acute dose of ammonium acetate, there was an increase in the activities of pyruvate, isocitrate, alpha-ketoglutarate and succinate dehydrogenases while the changes in the activities of malate dehydrogenase, aspartate and alanine amino transferases were suppressed. In the subacute toxicity similar changes were observed in this fraction except that the activity of malate dehydrogenase (oxaloacetate----malate) was enhanced. In the cytosol, pyruvate dehydrogenase and other enzymes of citric acid cycle except malate dehydrogenase were enhanced in both acute and subacute ammonia toxicity though their activities are lesser than that of mitochondria. In this fraction malate dehydrogenase (oxaloacetate----malate) was enhanced while activities of malate dehydrogenase (malate----oxaloacetate), aspartate and alanine aminotransferases were suppressed in both the conditions. Based on these results it is concluded that the decreased activities of malate dehydrogenase (malate----oxaloacetate) in mitochondria and of aspartate aminotransferase in mitochondria and cytosol may be responsible for the disruption of malate-aspartate shuttle in hyperammonemic state.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Ratnakumari
- School of Life Sciences, University of Hyderabad, India
| | | |
Collapse
|
24
|
Fitzpatrick SM, Cooper AJ, Hertz L. Effects of ammonia and beta-methylene-DL-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J Neurochem 1988; 51:1197-203. [PMID: 3138386 DOI: 10.1111/j.1471-4159.1988.tb03087.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.
Collapse
Affiliation(s)
- S M Fitzpatrick
- Department of Neurology, Cornell University Medical College, New York, NY 10021
| | | | | |
Collapse
|
25
|
Hertz L, Drejer J, Schousboe A. Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 1988; 13:605-10. [PMID: 2901049 DOI: 10.1007/bf00973275] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several aspects of energy metabolism (glucose utilization, lactate production, 14CO2 production from labeled glucose, glutamate or pyruvate, oxygen consumption and contents of ATP and phosphocreatine) were measured in cerebellar granule cells (glutamatergic) in primary cultures and compared with corresponding data for cerebral cortical neurons (mainly GABA-ergic) and astrocytes. Cerebellar granule cells and astrocytes were metabolically more active than cerebral cortical neurons. Glutamate which is utilized as a major metabolic fuel as astrocytes and, to a lesser extent, in cerebral cortical neurons, was virtually not oxidized in cerebellar granule cells.
Collapse
Affiliation(s)
- L Hertz
- Dept. of Pharmacology, Univ. of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
26
|
Hertz L, Murthy CR, Lai JC, Fitzpatrick SM, Cooper AJ. Some metabolic effects of ammonia on astrocytes and neurons in primary cultures. NEUROCHEMICAL PATHOLOGY 1987; 6:97-129. [PMID: 3114685 DOI: 10.1007/bf02833602] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Some metabolic effects on primary cultures of neurons or astrocytes were studied following acute or chronic exposure to pathophysiological concentrations (usually 3 mM) of ammonia. Three parameters were investigated: (1) 14CO2 production from 14C-labeled substrates [glucose, pyruvate, branched-chain amino acids (leucine, valine, isoleucine), and glutamate]; (2) interconversion between glutamate and glutamine; and (3) incorporation of label from labeled branched-chain amino acids into proteins. Neither acute nor chronic exposure to ammonia had any effect on 14CO2 production from [U-14C]glucose in astrocytes and neurons, whereas under certain conditions 14CO2 production from [1-14C]pyruvate in astrocytes was inhibited by ammonia. Production of 14CO2 from [1-14C]branched-chain amino acids was inhibited by acute, but stimulated by chronic, exposure to ammonia (3 mM) in astrocytes, with less effect in neurons. Production of 14CO2 from [1-14C]glutamate in both astrocytes and neurons was inhibited by acute exposure to ammonia. In astrocytes, glutamate levels tended to decrease and glutamine levels tended to increase following acute exposure to ammonia; in neurons, both glutamine and glutamate levels decreased. Protein content (per culture dish) increased in astrocytes but not in neurons, after chronic exposure to ammonia, possibly as a result of enhanced protein synthesis and/or by inhibition of protein degradation.
Collapse
|