1
|
Helbing DL, Dommaschk EM, Danyeli LV, Liepinsh E, Refisch A, Sen ZD, Zvejniece L, Rocktäschel T, Stabenow LK, Schiöth HB, Walter M, Dambrova M, Besteher B. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: a narrative review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1829-1845. [PMID: 38172332 PMCID: PMC11579146 DOI: 10.1007/s00406-023-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Post-acute sequelae of COVID-19 can present as multi-organ pathology, with neuropsychiatric symptoms being the most common symptom complex, characterizing long COVID as a syndrome with a significant disease burden for affected individuals. Several typical symptoms of long COVID, such as fatigue, depressive symptoms and cognitive impairment, are also key features of other psychiatric disorders such as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and major depressive disorder (MDD). However, clinically successful treatment strategies are still lacking and are often inspired by treatment options for diseases with similar clinical presentations, such as ME/CFS. Acetylcarnitine, the shortest metabolite of a class of fatty acid metabolites called acylcarnitines and one of the most abundant blood metabolites in humans can be used as a dietary/nutritional supplement with proven clinical efficacy in the treatment of MDD, ME/CFS and other neuropsychiatric disorders. Basic research in recent decades has established acylcarnitines in general, and acetylcarnitine in particular, as important regulators and indicators of mitochondrial function and other physiological processes such as neuroinflammation and energy production pathways. In this review, we will compare the clinical basis of neuropsychiatric long COVID with other fatigue-associated diseases. We will also review common molecular disease mechanisms associated with altered acetylcarnitine metabolism and the potential of acetylcarnitine to interfere with these as a therapeutic agent. Finally, we will review the current evidence for acetylcarnitine as a supplement in the treatment of fatigue-associated diseases and propose future research strategies to investigate the potential of acetylcarnitine as a treatment option for long COVID.
Collapse
Affiliation(s)
- Dario Lucas Helbing
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Eva-Maria Dommaschk
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Tonia Rocktäschel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
| | - Leonie Karoline Stabenow
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24, Uppsala, Sweden
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Bianca Besteher
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, Philosophenweg 3, 07743, Jena, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits, Underlying Mental Health (C-I-R-C), Jena, Magdeburg, Halle, Germany.
- German Center for Mental Health (DZPG), Site Halle, Jena, Magdeburg, Germany.
| |
Collapse
|
2
|
Stark RJ, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Krispinsky LT, Lamb FS. ENDOTHELIAL-DEPENDENT VASCULAR REACTIVITY AFTER CARDIOPULMONARY BYPASS IS ASSOCIATED WITH UNIQUE METABOLOMIC SIGNATURES. Shock 2024; 62:656-662. [PMID: 39178242 PMCID: PMC12013827 DOI: 10.1097/shk.0000000000002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
ABSTRACT Cardiopulmonary bypass (CPB), an extracorporeal method necessary for the surgical correction of complex congenital heart defects, incites significant inflammation that affects vascular function. These changes are associated with alterations in cellular metabolism that promote energy production to deal with this stress. Utilizing laser Doppler perfusion monitoring coupled with iontophoresis in patients undergoing corrective heart surgery, we hypothesized that temporal, untargeted metabolomics could be performed to assess the link between metabolism and vascular function. Globally, we found 2,404 unique features in the plasma of patients undergoing CPB. Metabolites related to arginine biosynthesis were the most altered by CPB. Correlation of metabolic profiles with endothelial-dependent (acetylcholine [ACh]) or endothelial-independent (sodium nitroprusside [SNP]) vascular reactivity identified purine metabolism being most consistently associated with either vascular response. Concerning ACh-mediated responses, acetylcarnitine levels were most strongly associated, while glutamine levels were associated with both ACh and SNP responsiveness. These data provide insight into the metabolic landscape of children undergoing CPB for corrective heart surgery and provide detail into how these metabolites relate to physiological aberrations in vascular function.
Collapse
Affiliation(s)
- Ryan J Stark
- Division of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | - Stacy D Sherrod
- Vanderbilt Center for Innovative Technology, Nashville, Tennessee
| | - John A McLean
- Vanderbilt Center for Innovative Technology, Nashville, Tennessee
| | - Luke T Krispinsky
- Division of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fred S Lamb
- Division of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Sabei FY, Khardali I, Al-Kasim MA, Shaheen ES, Oraiby M, Alamir A, David B, Alshahrani S, Jali AM, Attafi M, Albeishy MY, Attafi I. Disposition Kinetics of Cathinone and its Metabolites after Oral Administration in Rats. Curr Drug Metab 2024; 25:220-226. [PMID: 38752643 DOI: 10.2174/0113892002300638240513065512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Cathinone is a natural stimulant found in the Catha edulis plant. Its derivatives make up the largest group of new psychoactive substances. In order to better understand its effects, it is imperative to investigate its distribution, pharmacokinetics, and metabolic profile. However, the existing literature on cathinone remains limited. OBJECTIVE This study aimed to investigate the disposition kinetics and metabolic profile of cathinone and its metabolite cathine through a single oral dose of cathinone administration in rats. METHODS Cathinone and cathine concentrations were identified and quantified using ion trap liquid chromatography- mass spectrometry (LC-IT/MS). The metabolic profile in the serum, brain, lung, liver, kidney, and heart was analyzed at specific time points (0, 0.5, 2.5, 6, 12, 24, 48, and 72 hours) using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method. RESULTS The highest concentration of cathinone was found in the kidney (1438.6 μg/L, which gradually decreased to 1.97 within 48 h and disappeared after 72 h. Cathinone levels in the lungs, liver, and heart were 859, 798.9, and 385.8 μg/L, respectively, within half an hour. However, within 2.5 hours, these levels decreased to 608.1, 429.3, and 309.1 μg/L and became undetectable after 24 h. In the rat brain, cathinone levels dropped quickly and were undetectable within six hours, decreasing from 712.7 μg/L after 30 min. In the brain and serum, cathine reached its highest levels at 2.5 hours, while in other organs, it peaked at 0.5 hours, indicating slower conversion of cathinone to cathine in the brain and serum. CONCLUSION This study revealed a dynamic interplay between cathinone disposition kinetics and its impact on organ-specific metabolic profiles in rats. These results have significant implications for drug development, pharmacovigilance, and clinical practices involving cathinone. Investigating the correlation between the changes in biomarkers found in the brain and the levels of cathinone and cathine is essential for informed decision- making in medical practices and further research into the pharmacological properties of cathinone.
Collapse
Affiliation(s)
- Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ibrahim Khardali
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
| | - Mohamed A Al-Kasim
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - Magbool Oraiby
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
| | - Ahmad Alamir
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
| | - Banji David
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulmajeed M Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammed Attafi
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
| | - Mohammed Y Albeishy
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
| | - Ibraheem Attafi
- Forensic Toxicology Services, Forensic and Janoub Al-Qunfudah Hospital, Ministry of Health, Jazan, 45142, Saudi Arabia
- Janoub Al-Qunfudah Hospital, Ministry of Health, Al Qunfudhah, Saudi Arabia
| |
Collapse
|
4
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
5
|
Grossini E, De Marchi F, Venkatesan S, Mele A, Ferrante D, Mazzini L. Effects of Acetyl-L-Carnitine on Oxidative Stress in Amyotrophic Lateral Sclerosis Patients: Evaluation on Plasma Markers and Members of the Neurovascular Unit. Antioxidants (Basel) 2023; 12:1887. [PMID: 37891966 PMCID: PMC10604350 DOI: 10.3390/antiox12101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress, the alteration of mitochondrial function, and the neurovascular unit (NVU), play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. We aimed to demonstrate the changes in the plasma redox system and nitric oxide (NO) in 32 new ALS-diagnosed patients in treatment with Acetyl-L-Carnitine (ALCAR) compared to healthy controls. We also evaluated the effects of plasma on human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. The analyses were performed at the baseline (T0), after three months (T1), and after six months (T2). In ALS patients at T0/T1, the plasma markers of lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and 4-hydroxy nonenal (4-HNE) were higher, whereas the antioxidants, glutathione (GSH) and the glutathione peroxidase (GPx) activity were lower than in healthy controls. At T2, plasma TBARS and 4-HNE decreased, whereas plasma GSH and the GPx activity increased in ALS patients. As regards NO, the plasma levels were firmly lower at T0-T2 than those of healthy controls. Cell viability, and mitochondrial membrane potential in HUVEC/astrocytes treated with the plasma of ALS patients at T0-T2 were reduced, while the oxidant release increased. Those results, which confirmed the fundamental role of oxidative stress, mitochondrial function, and of the NVU in ALS pathogenesis, can have a double meaning, acting as disease markers at baseline and potential markers of drug effects in clinical practice and during clinical trials.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Angelica Mele
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Daniela Ferrante
- Statistic Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| |
Collapse
|
6
|
Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli L, Ghelardini C. Anti-Hyperalgesic Efficacy of Acetyl L-Carnitine (ALCAR) Against Visceral Pain Induced by Colitis: Involvement of Glia in the Enteric and Central Nervous System. Int J Mol Sci 2023; 24:14841. [PMID: 37834289 PMCID: PMC10573187 DOI: 10.3390/ijms241914841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (A.T.); (C.C.); (F.M.); (L.D.C.M.); (C.G.)
| | | | | | | | | | | | | |
Collapse
|
7
|
Malaguarnera G, Catania VE, Bertino G, Chisari LM, Castorina M, Bonfiglio C, Cauli O, Malaguarnera M. Acetyl-L-carnitine Slows the Progression from Prefrailty to Frailty in Older Subjects: A Randomized Interventional Clinical Trial. Curr Pharm Des 2022; 28:3158-3166. [PMID: 36043711 DOI: 10.2174/1381612828666220830092815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Ageing is characterized by a gradual decline in body function, representing the clinical situation called "frailty". Prefrailty is the intermediate stage between frailty and robust condition. L-carnitine (LC) plays an important role in energy production from long-chain fatty acids in mitochondria, and its serum level is lower in prefrail and frail subjects. OBJECTIVE This study aims to evaluate the effect of Acetyl-L-carnitine (ALCAR) in pre-frail older patients. METHODS We scheduled 3 months of treatment and then 3 months of follow-up. A total of 92 subjects were selected from May, 2009 to July, 2017, in a randomized, observational, double-blind, placebo-controlled study. We scheduled 3 months of treatment and then 3 months of follow-up. ALCAR (oral 1.5 g/bis in die - BID) or placebo groups were used. RESULTS After the treatment, only the treated group displayed a decrease in C reactive protein (CRP) p < 0.001 and an increase in serum-free carnitine and acetylcarnitine (p < 0.05) in Mini-Mental state (MMSE) p < 0.0001 and 6-walking distance (p < 0.0001); ALCAR group vs. placebo group showed a decrease in HDL cholesterol and CRP (p < 0.01), an increase in MMSE score (p < 0.001) and in the 6-walking distance (p < 0.001). CONCLUSIONS ALCAR treatment delays the incidence and severity of onset of degenerative disorders of the elderly in prefrail subjects with improvement in memory and cognitive processes.
Collapse
Affiliation(s)
- Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | - Vito Emanuele Catania
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gaetano Bertino
- Hepatology Unit, A.O.U. Policlinico- San Marco, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Maria Chisari
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy
| | | | | | - Omar Cauli
- Department of Nursing, Faculty of Nursing and Podiatry, University of Valencia, c/Jaume Roig s/n, 46010 Valencia, Spain.,Frailty and Cognitive Impairment Organized Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Michele Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, Catania, Italy.,Department of Psychobiology, Facultad de Psicología, Universidad de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| |
Collapse
|
8
|
Malík M, Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022; 14:3367. [PMID: 36014874 PMCID: PMC9415189 DOI: 10.3390/nu14163367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/22/2022] Open
Abstract
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
Collapse
Affiliation(s)
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| |
Collapse
|
9
|
Miura S, Oyanagi E, Watanabe C, Hamada H, Aoki T, Kremenik MJ, Yano H. Acetyl-L-carnitine attenuates Poly I: C- induced sickness behavior in mice. Biosci Biotechnol Biochem 2022; 86:1423-1430. [PMID: 35945649 DOI: 10.1093/bbb/zbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Fatigue is accompanied by a decrease in physical activity or malaise, and might be reduced by acetyl-L-carnitine (ALC) administration. The purpose of this study was to investigate the preventive effects of ALC on Poly I: C-induced sickness behavior in mice. For the experiment, male C3H/HeN mice were used and treated with ALC for 5 days before Poly I: C administration. ALC administration attenuated the decrease in wheel behavior activity of mice at 24 h after Poly I: C administration, and ALC treated mice quickly recovered from the sickness behavior. The gene expression of brain-derived neurotrophic factor (BDNF) in the cerebrum and hippocampus, which is associated with physical activity, was higher in the ALC-treated group. Translocator protein 18kDa (TSPO), which has cytoprotective effects, was up-regulated in the cerebrum and hippocampus, suggesting that ALC suppressed the decrease in activity induced by Poly I: C treatment through enhancement of cytoprotective effects in the brain.
Collapse
Affiliation(s)
- Suzuka Miura
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Chihiro Watanabe
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Michael J Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki, Okayama, 288 Matsushima, Kurashiki, Okayama, Japan
| |
Collapse
|
10
|
Kępka A, Ochocińska A, Borzym-Kluczyk M, Chojnowska S, Skorupa E, Przychodzeń M, Waszkiewicz N. Healthy Food Pyramid as Well as Physical and Mental Activity in the Prevention of Alzheimer’s Disease. Nutrients 2022; 14:nu14081534. [PMID: 35458096 PMCID: PMC9028231 DOI: 10.3390/nu14081534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
The ageing of the population is resulting in neurodegenerative diseases, including Alzheimer’s disease (AD), which are an increasing social, economic and medical problem. Diet and physical activity are now considered as important modifiable factors that help prevent or delay the development of AD and other dementia-related diseases. The pyramid of healthy nutrition and lifestyle is a way of presenting the principles, the implementation of which gives a chance for proper development and a long healthy life. The basis of the pyramid, in the first place, is physical activity. Our review of the literature in the PubMed database supports the hypothesis that complementary factors, such as proper diet, physical exercise and mental activity, have a positive impact on the prevention of neurodegenerative diseases. The nutritional recommendations for healthy adults primarily include the consumption of vegetables, fruits, cereals, legumes, vegetable oils and fishes. Therefore, the introduction of Mediterranean and Asian diets may reduce the risk of the neurodegenerative diseases associated with dementia, whereas dairy products and meat—the main sources of L-carnitine—should be consumed in moderate amounts. The aim of our work is to provide up-to-date knowledge about the appropriate dietary model and healthy lifestyle elements and their impact on good health and the long life of people.
Collapse
Affiliation(s)
- Alina Kępka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
- Correspondence: (A.K.); (A.O.); Tel.: +48-22-815-73-01 (A.O.)
| | - Agnieszka Ochocińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
- Correspondence: (A.K.); (A.O.); Tel.: +48-22-815-73-01 (A.O.)
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Ewa Skorupa
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute of Warsaw, 04-730 Warsaw, Poland;
| | - Małgorzata Przychodzeń
- Department of Psychogeriatry, Independent Public Psychiatric Health Care Institution in Choroszcz, 16-070 Choroszcz, Poland;
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
11
|
Ebert T, Heinz DE, Almeida-Corrêa S, Cruz R, Dethloff F, Stark T, Bajaj T, Maurel OM, Ribeiro FM, Calcagnini S, Hafner K, Gassen NC, Turck CW, Boulat B, Czisch M, Wotjak CT. Myo-Inositol Levels in the Dorsal Hippocampus Serve as Glial Prognostic Marker of Mild Cognitive Impairment in Mice. Front Aging Neurosci 2021; 13:731603. [PMID: 34867270 PMCID: PMC8633395 DOI: 10.3389/fnagi.2021.731603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023] Open
Abstract
Dementia is a devastating age-related disorder. Its therapy would largely benefit from the identification of susceptible subjects at early, prodromal stages of the disease. To search for such prognostic markers of cognitive impairment, we studied spatial navigation in male BALBc vs. B6N mice in combination with in vivo magnetic resonance spectroscopy (1H-MRS). BALBc mice consistently showed higher escape latencies than B6N mice, both in the Water Cross Maze (WCM) and the Morris water maze (MWM). These performance deficits coincided with higher levels of myo-inositol (mIns) in the dorsal hippocampus before and after training. Subsequent biochemical analyses of hippocampal specimens by capillary immunodetection and liquid chromatography mass spectrometry-based (LC/MS) metabolomics revealed a higher abundance of glial markers (IBA-1, S100B, and GFAP) as well as distinct alterations in metabolites including a decrease in vitamins (pantothenic acid and nicotinamide), neurotransmitters (acetylcholine), their metabolites (glutamine), and acetyl-L-carnitine. Supplementation of low abundant acetyl-L-carnitine via the drinking water, however, failed to revert the behavioral deficits shown by BALBc mice. Based on our data we suggest (i) BALBc mice as an animal model and (ii) hippocampal mIns levels as a prognostic marker of mild cognitive impairment (MCI), due to (iii) local changes in microglia and astrocyte activity, which may (iv) result in decreased concentrations of promnesic molecules.
Collapse
Affiliation(s)
- Tim Ebert
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Daniel E. Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | | | - Renata Cruz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Frederik Dethloff
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tibor Stark
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Oriana M. Maurel
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Fabiola M. Ribeiro
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Silvio Calcagnini
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nils C. Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W. Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Benoit Boulat
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Michael Czisch
- Scientific Core Unit “Neuroimaging”, Max Planck Institute of Psychiatry, Munich, Germany
| | - Carsten T. Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, Munich, Germany
- Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
12
|
Kinchen JM, Mohney RP, Pappan KL. Long-Chain Acylcholines Link Butyrylcholinesterase to Regulation of Non-neuronal Cholinergic Signaling. J Proteome Res 2021; 21:599-611. [PMID: 34758617 DOI: 10.1021/acs.jproteome.1c00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acylcholines are comprised of an acyl chain esterified to a choline moiety; acetylcholine is the best-characterized member of this class, functioning as a neurotransmitter in the central and peripheral nervous systems as well as an inhibitor of cytokine production by macrophages and other innate immune cells. Acylcholines are metabolized by a class of cholinesterases, including acetylcholinesterase (a specific regulator of acetylcholine levels) and butyrylcholinesterase (BChE, an enigmatic enzyme whose function has not been resolved by genetic knockout models). BChE provides reserve capacity to hydrolyze acetylcholine, but its importance is arguable given acetylcholinesterase is the most catalytically efficient enzyme characterized to date. While known to be substrates of BChE in vitro, endogenous production of long-chain acylcholines is a recent discovery enabled by untargeted metabolomics. Compared to acetylcholine, long-chain acylcholines show greater stability in circulation with homeostatic levels-dictated by synthesis and clearance-suggested to impact cholinergic receptor sensitivity of acetylcholine with varying levels of antagonism. Acylcholines then provide a link between BChE and non-neuronal acetylcholine signaling, filling a gap in understanding around how imbalances between acylcholines and BChE could modulate inflammatory disease, such as the "cytokine storm" identified in severe COVID-19. Areas for further research, development, and clinical testing are outlined.
Collapse
Affiliation(s)
- Jason M Kinchen
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Robert P Mohney
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| | - Kirk L Pappan
- Owlstone Medical Inc., 600 Park Office Drive, Suite 140, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
13
|
Emran T, Chowdhury NI, Sarker M, Bepari AK, Hossain M, Rahman GMS, Reza HM. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed Pharmacother 2021; 143:112139. [PMID: 34507121 DOI: 10.1016/j.biopha.2021.112139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
BRIEF INTRODUCTION Myocardial infarction (MI) is a common manifestation of certain cardiac diseases where oxidative stress and fibrosis aggravate the condition markedly. MAIN OBJECTIVE OF THE STUDY Investigation of L-carnitine's cardioprotective roles and mechanism of action in a rat model of MI. METHODS To develop a MI animal model, Isoproterenol (ISO) was administered in male Long Evans rats where animals were divided into five groups (six rats/group). The oxidative stress and antioxidant enzyme activities were determined by different biochemical tests. The real-time PCR was performed to determine the expression of TNF-α and Il-1β. Histopathological observations by hematoxylin-eosin and Masson trichrome were made to observe the tissue damage and fibrosis in heart and kidney. SIGNIFICANT FINDINGS FROM THE STUDY The ISO-treated rats showed increased levels of troponin I and lipid peroxidation and lower antioxidant enzyme activity in heart and kidney tissues. The levels of TNF-α and IL-1β were also increased in ISO-rats. Co-administration of L-carnitine with ISO reversed all these parameters. The elevated levels of uric acid and creatinine kinase and ALP, AST and ALT activities in ISO-rats were also significantly reduced by L-carnitine administration. L-carnitine markedly decreased the infiltration of inflammatory cells and improved the tissue architecture in heart and kidney. Control animals did not show any appreciable response upon L-carnitine administration. RELEVANT CONTRIBUTION TO KNOWLEDGE These results suggest that L-carnitine plays a defensive role against cardiac and renal damage in ISO-treated MI rat model via suppressing oxidative stress and increasing antioxidant enzyme functions through inhibition of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Tushar Emran
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Nowreen Islam Chowdhury
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Manoneeta Sarker
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Asim Kumar Bepari
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Murad Hossain
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - G M Sayedur Rahman
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh.
| |
Collapse
|
14
|
Statsenko ME, Turkina SV. [Possibilities of sequential levocarnitin and acetylcarnitin treatment in correcting cognitive deficiency in patients with cardiovascular diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:45-51. [PMID: 34184477 DOI: 10.17116/jnevro202112105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of sequential therapy with levocarnitine and acetylcarnitine in patients with cardiovascular pathology (arterial hypertension and/or coronary heart disease) and moderate cognitive deficits. MATERIAL AND METHODS The study included 120 patients aged 54-67 years. The main group of patients (n=60) in addition to the basic treatment of the underlying disease received l-carnitine (Elkar solution for intravenous and intramuscular injection of 100 mg/ml, the company «PIK-FARMA»)/jet during 10 days in a dose of 1000 mg/day, with following transition to oral administration of acetyl-l-carnitine (Carnitin, the company «PIK-FARMA»), 500 mg (2 cap Sula) 2 times a day for 2 months. The comparison group (n=60) received basic therapy for major diseases. The total duration of follow-up was 70 days. RESULTS The results obtained indicate that in such comorbid patients, the use of levocarnitine and acetylcarnitine reduces the severity of cognitive deficits. An important aspect of their pathogenetic effect on the severity of cognitive deficits may be the possibility of correcting endothelial dysfunction. The use of levocarnitine and acetylcarnitine in patients with cardiovascular pathology has demonstrated good tolerability and safety.
Collapse
Affiliation(s)
- M E Statsenko
- Volgograd State Medical University, Volgograd, Russia
| | - S V Turkina
- Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
15
|
Vallianatou T, Shariatgorji R, Nilsson A, Karlgren M, Hulme H, Fridjonsdottir E, Svenningsson P, Andrén PE. Integration of Mass Spectrometry Imaging and Machine Learning Visualizes Region-Specific Age-Induced and Drug-Target Metabolic Perturbations in the Brain. ACS Chem Neurosci 2021; 12:1811-1823. [PMID: 33939923 PMCID: PMC8291481 DOI: 10.1021/acschemneuro.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
![]()
Detailed metabolic
imaging of specific brain regions in early aging
may expose pathophysiological mechanisms and indicate effective neuropharmacological
targets in the onset of cognitive decline. Comprehensive imaging of
brain aging and drug-target effects is restricted using conventional
methodology. We simultaneously visualized multiple metabolic alterations
induced by normal aging in specific regions of mouse brains by integrating
Fourier-transform ion cyclotron resonance mass spectrometry imaging
and combined supervised and unsupervised machine learning models.
We examined the interplay between aging and the response to tacrine-induced
acetylcholinesterase inhibition, a well-characterized therapeutic
treatment against dementia. The dipeptide carnosine (β-alanyl-l-histidine) and the vitamin α-tocopherol were significantly
elevated by aging in different brain regions. l-Carnitine
and acetylcholine metabolism were found to be major pathways affected
by aging and tacrine administration in a brain region-specific manner,
indicating altered mitochondrial function and neurotransmission. The
highly interconnected hippocampus and retrosplenial cortex displayed
different age-induced alterations in lipids and acylcarnitines, reflecting
diverse region-specific metabolic effects. The subregional differences
observed in the hippocampal formation of several lipid metabolites
demonstrate the unique potential of the technique compared to standard
mass spectrometry approaches. An age-induced increase of endogenous
antioxidants, such as α-tocopherol, in the hippocampus was detected,
suggesting an augmentation of neuroprotective mechanisms in early
aging. Our comprehensive imaging approach visualized heterogeneous
age-induced metabolic perturbations in mitochondrial function, neurotransmission,
and lipid signaling, not always attenuated by acetylcholinesterase
inhibition.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Reza Shariatgorji
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP), Biomedical Centre 580, Uppsala University, SE-75123 Uppsala, Sweden
| | - Heather Hulme
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| | - Per Svenningsson
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Per E. Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Biomedical Centre 591, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
16
|
Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med 2021; 10:jcm10061202. [PMID: 33805796 PMCID: PMC8000371 DOI: 10.3390/jcm10061202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early childhood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates expression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates neurotransmission. Determination of L-carnitine in serum/plasma and analysis of acylcarnitines in a dried blood spot may be useful in ASD diagnosis and treatment. Changes in the acylcarnitine profiles may indicate potential mitochondrial dysfunctions and abnormal fatty acid metabolism in ASD children. L-carnitine deficiency or deregulation of L-carnitine metabolism in ASD is accompanied by disturbances of other metabolic pathways, e.g., Krebs cycle, the activity of respiratory chain complexes, indicative of mitochondrial dysfunction. Supplementation of L-carnitine may be beneficial to alleviate behavioral and cognitive symptoms in ASD patients.
Collapse
|
17
|
Magnuson JT, Cryder Z, Andrzejczyk NE, Harraka G, Wolf DC, Gan J, Schlenk D. Metabolomic Profiles in the Brains of Juvenile Steelhead ( Oncorhynchus mykiss) Following Bifenthrin Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12245-12253. [PMID: 32900186 DOI: 10.1021/acs.est.0c04847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The pyrethroid insecticide, bifenthrin, is frequently measured at concentrations exceeding those that induce acute and chronic toxicity to several invertebrate and fish species residing in the Sacramento-San Joaquin Delta of California. Since the brain is considered to be a significant target for bifenthrin toxicity, juvenile steelhead trout (Oncorhynchus mykiss) were treated with concentrations of bifenthrin found prior to (60 ng/L) and following (120 ng/L) major stormwater runoff events with nontargeted metabolomics used to target transcriptomic alterations in steelhead brains following exposure. Predicted responses were involved in cellular apoptosis and necrosis in steelhead treated with 60 ng/L bifenthrin using the software Ingenuity Pathway Analysis. These responses were predominately driven by decreased levels of acetyl-l-carnitine (ALC), docosahexaenoic acid (DHA), and adenine. Steelhead treated with 120 ng/L bifenthrin had reductions of lysophosphatidylcholines (LPC), lysophosphatidylethanolamines (LPE), and increased levels of betaine, which were predicted to induce an inflammatory response. Several genes predicted to be involved in apoptotic (caspase3 and nrf2) and inflammatory (miox) pathways had altered expression following exposure to bifenthrin. There was a significantly increased expression of caspase3 and miox in fish treated with 120 ng/L bifenthrin with a significant reduction of nrf2 in fish treated with 60 ng/L bifenthrin. These data indicate that bifenthrin may have multiple targets within the brain that affect general neuron viability, function, and signaling potentially through alterations in signaling fatty acids.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Zachary Cryder
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Nicolette E Andrzejczyk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Gary Harraka
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Douglas C Wolf
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, California 92521, United States
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Kepka A, Ochocinska A, Borzym-Kluczyk M, Skorupa E, Stasiewicz-Jarocka B, Chojnowska S, Waszkiewicz N. Preventive Role of L-Carnitine and Balanced Diet in Alzheimer's Disease. Nutrients 2020; 12:E1987. [PMID: 32635400 PMCID: PMC7400709 DOI: 10.3390/nu12071987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
The prevention or alleviation of neurodegenerative diseases, including Alzheimer's disease (AD), is a challenge for contemporary health services. The aim of this study was to review the literature on the prevention or alleviation of AD by introducing an appropriate carnitine-rich diet, dietary carnitine supplements and the MIND (Mediterranean-DASH Intervention for Neurodegenerative Delay) diet, which contains elements of the Mediterranean diet and the Dietary Approaches to Stop Hypertension (DASH) diet. L-carnitine (LC) plays a crucial role in the energetic metabolism of the cell. A properly balanced diet contains a substantial amount of LC as well as essential amino acids and microelements taking part in endogenous carnitine synthesis. In healthy people, carnitine biosynthesis is sufficient to prevent the symptoms of carnitine deficiency. In persons with dysfunction of mitochondria, e.g., with AD connected with extensive degeneration of the brain structures, there are often serious disturbances in the functioning of the whole organism. The Mediterranean diet is characterized by a high consumption of fruits and vegetables, cereals, nuts, olive oil, and seeds as the major source of fats, moderate consumption of fish and poultry, low to moderate consumption of dairy products and alcohol, and low intake of red and processed meat. The introduction of foodstuffs rich in carnitine and the MIND diet or carnitine supplementation of the AD patients may improve their functioning in everyday life.
Collapse
Affiliation(s)
- Alina Kepka
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Agnieszka Ochocinska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | - Małgorzata Borzym-Kluczyk
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Ewa Skorupa
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland;
| | | | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Napoleon Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, 15-089 Bialystok, Poland;
| |
Collapse
|
19
|
Travica N, Ried K, Sali A, Hudson I, Scholey A, Pipingas A. Plasma Vitamin C Concentrations and Cognitive Function: A Cross-Sectional Study. Front Aging Neurosci 2019; 11:72. [PMID: 31001107 PMCID: PMC6454201 DOI: 10.3389/fnagi.2019.00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Vitamin-C is a water soluble molecule that humans have lost the ability to produce. Vitamin-C plays a role in CNS functions such as neuronal differentiation, maturation, myelin formation and modulation of the catecholaminergic systems. A recent systematic review by our team indicated the need for further research into the relationship between plasma vitamin C and cognition in cognitively intact participants using plasma vitamin C concentrations instead of estimates derived from food-frequency-questionnaires (FFQ), and more sensitive cognitive assessments suitable for cognitive abilities vulnerable to aging. It was hypothesized that higher plasma vitamin C concentrations would be linked with higher cognitive performance. This cross-sectional trial was conducted on healthy adults (n = 80, Female = 52, Male = 28, 24-96 years) with a range of plasma Vitamin C concentrations. Cognitive assessments included The Swinburne-University-Computerized-Cognitive-Assessment-Battery (SUCCAB) and two pen and paper tests, the Symbol-Digits-Modalities-Test (SDMT) and Hopkins-Verbal-Learning-Test-Revised (HVLT-R). The pen and paper assessments were conducted to establish whether their scores would correlate with the computerized tasks. Plasma-Vitamin C concentrations were measured using two biochemical analyses. Participants were grouped into those with plasma vitamin-C concentrations of adequate level (≥28 μmol/L) and deficient level (<28 μmol/L). The SUCCAB identified a significantly higher performance ratio (accuracy/reaction-time) in the group with adequate vitamin-C levels vs. deficient vitamin-C on the choice reaction time (M = 188 ± 4 vs. 167 ± 9, p = 0.039), immediate recognition memory (M = 81 ± 3 vs. 68 ± 6, p = 0.03), congruent Stroop (M = 134 ± 3 vs. 116 ± 7, p = 0.024), and delayed recognition tasks (M = 72 ± 2 vs. 62 ± 4, p = 0.049), after adjusting for age (p < 0.05). Significantly higher scores in immediate recall on the HVLT-R (M = 10.64 ± 0.16 vs. 9.17 ± 0.37, p = 0.001), delayed recall (M = 9.74 ± 0.22 vs. 7.64 ± 0.51, p < 0.001), total recall (M = 27.93 ± 0.48 vs. 24.19 ± 1.11, p = 0.003) were shown in participants with adequate plasma Vitamin-C concentrations, after adjusting for vitamin-C supplementation dose (p < 0.05). Similarly, higher SDMT scores were observed in participants with adequate plasma Vitamin-C concentrations (M = 49.73 ± 10.34 vs. 41.38 ± 5.06, p = 0.039), after adjusting for age (p < 0.05). In conclusion there was a significant association between vitamin-C plasma concentrations and performance on tasks involving attention, focus, working memory, decision speed, delayed and total recall, and recognition. Plasma vitamin C concentrations obtained through vitamin C supplementation did not affect cognitive performance differently to adequate concentrations obtained through dietary intake. Clinicaltrials.gov Unique Identifier: ACTRN 12615001140549, URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369440.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
| | - Karin Ried
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
- Discipline of General Practice, The University of Adelaide, Adelaide, SA, Australia
- Health and Sports Institute, Bond University, Gold Coast, QLD, Australia
| | - Avni Sali
- National Institute of Integrative Medicine, Hawthorn, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Department of Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
20
|
López-Suárez O, Concheiro-Guisán A, Sánchez-Pintos P, Cocho JA, Fernández Lorenzo JR, Couce ML. Acylcarnitine profile in neonatal hypoxic-ischemic encephalopathy: The value of butyrylcarnitine as a prognostic marker. Medicine (Baltimore) 2019; 98:e15221. [PMID: 30985723 PMCID: PMC6485840 DOI: 10.1097/md.0000000000015221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/01/2019] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
Abstract
Optimal prognostic markers evaluating early neuroprotective interventions in neonatal hypoxic-ischemic encephalopathy (HIE) are lacking. This study was designed to assess the prognostic value of acylcarnitines in neonatal HIE.An observational cohort study was conducted over 10 years in 67 HIE. Variables analyzed included sex, blood cord pH, Apgar score, hypothermia treatment (yes/no), neuron-specific enolase (NSE) levels, and clinical outcome (neurological examination, brain magnetic resonance imaging [MRI], and electroencephalogram) before discharge and at 6 months. Acylcarnitine profiles were analyzed by tandem-mass spectrometry on dried-blood spots collected on day 3 for newborn screening. A cohort of healthy newborns was used as control group.HIE patients had significantly increased C4, C5, C5:1, C6, C6-OH, C8 levels (all P < .01) and decreased long-chain acylcarnitine levels (P < .03). Hypothermia treatment was associated with a decrease in C4 levels (p = 0.005) and an increase in most long-chain acylcarnitine levels (P < .01). A significant association was found between C4 levels and NSE on day 1 of hypothermia treatment (P = .002) and abnormal brain magnetic resonance imaging (MRI) at discharge (P = .037). In the hypothermia group, C4 levels decreased in patients with favorable outcomes but remained high in those who progressed unfavorably.C4 appears to be a good prognostic marker in HIE, as blood levels correlated with NSE levels and abnormal MRI findings. Furthermore, hypothermia did not lead to decreased levels in patients with adverse outcomes.
Collapse
Affiliation(s)
- Olalla López-Suárez
- Neonatal Unit, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
| | - Ana Concheiro-Guisán
- Neonatal Unit, Pediatric Service, Hospital Alvaro Cunqueiro, Health Research Institute of Vigo (IVI), Vigo
| | - Paula Sánchez-Pintos
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - Jose A. Cocho
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| | - José R. Fernández Lorenzo
- Neonatal Unit, Pediatric Service, Hospital Alvaro Cunqueiro, Health Research Institute of Vigo (IVI), Vigo
| | - María L. Couce
- Neonatal Unit, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Diagnosis and Treatment of Congenital Metabolic Diseases Unit (UDyTEMC), Department of Pediatrics, Health Research Institute of Santiago (IDIS), CIBERER, Hospital Clínico Universitario de Santiago de Compostela, Spain
| |
Collapse
|
21
|
Lee H, Kim HK, Kwon JT, Park S, Park HJ, Kim SK, Park JK, Kang WS, Kim YJ, Chung JH, Kim JW, Kim HJ. BBOX1 is down-regulated in maternal immune-activated mice and implicated in genetic susceptibility to human schizophrenia. Psychiatry Res 2018; 259:197-202. [PMID: 29065368 DOI: 10.1016/j.psychres.2017.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/12/2017] [Accepted: 10/01/2017] [Indexed: 01/09/2023]
Abstract
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorders such as bipolar disorder, autism, and schizophrenia in later life. Gamma-butyrobetaine hydroxylase (BBOX 1) is an enzyme responsible for the biosynthesis of l-carnitine, a key molecule in fatty acid metabolism. This cytosolic dimeric protein belongs to the dioxygenase family. In this study, we investigated whether BBOX 1 expression was related to psychiatric disorder in an animal model. We also conducted a case-control study using 284 schizophrenia patients and 409 controls with single-nucleotide polymorphisms (SNPs) in the 5'-near region of BBOX 1. BBOX 1 expression was increased in the medial frontal cortex of a mouse model of schizophrenia induced by maternal immune activation. Furthermore, the genotype and allele frequencies of two SNPs (rs7939644 and rs10767592) were significantly associated with schizophrenia susceptibility. Our results suggest that BBOX 1 might be associated with maternal immune activation and schizophrenia susceptibility. Therefore, it might be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Shohyun Park
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jin Kyung Park
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Young Jong Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea; Soonchunhyang Medical Research Institute, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
22
|
Ponomareva EV. [The use of acetyl-L-carnitine in gerontological practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:81-86. [PMID: 28980618 DOI: 10.17116/jnevro20171176281-86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An analysis of literature data on the acetyl-L-carnitine treatment in gerontological practice is performed. This review describes the range of biochemical activity and mechanism of action of the drug. The profile and specificity of acetyl-L-carnitine action and the possibility of combining nicergoline with other drugs is discussed. The results of preclinical and clinical studies on the application of acetyl-L-carnitine in the world medical practice are analyzed. The analysis of the studies demonstrates the high efficacy and a broad spectrum of acetyl-L-carnitine treatment.
Collapse
Affiliation(s)
- E V Ponomareva
- Federal State Budgetary Scientific Institution 'Mental Health Research Center', Moscow, Russia
| |
Collapse
|
23
|
L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res 2017; 42:1661-1675. [PMID: 28508995 DOI: 10.1007/s11064-017-2288-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. Treatment with L-carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism. In recent years there has been considerable interest in the therapeutic potential of L-carnitine and its acetylated derivative acetyl-L-carnitine (ALCAR) for neuroprotection in a number of disorders including hypoxia-ischemia, traumatic brain injury, Alzheimer's disease and in conditions leading to central or peripheral nervous system injury. There is compelling evidence from preclinical studies that L-carnitine and ALCAR can improve energy status, decrease oxidative stress and prevent subsequent cell death in models of adult, neonatal and pediatric brain injury. ALCAR can provide an acetyl moiety that can be oxidized for energy, used as a precursor for acetylcholine, or incorporated into glutamate, glutamine and GABA, or into lipids for myelination and cell growth. Administration of ALCAR after brain injury in rat pups improved long-term functional outcomes, including memory. Additional studies are needed to better explore the potential of L-carnitine and ALCAR for protection of developing brain as there is an urgent need for therapies that can improve outcome after neonatal and pediatric brain injury.
Collapse
|
24
|
Tang S, Xu S, Lu X, Gullapalli RP, McKenna MC, Waddell J. Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats. Dev Neurosci 2017; 38:384-396. [PMID: 28226317 DOI: 10.1159/000455041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022] Open
Abstract
Perinatal hypoxia ischemia (HI) is a significant cause of brain injury in surviving infants. Although hypothermia improves outcomes in some infants, additional therapies are needed since about 40% of infants still have a poor outcome. Acetyl-L-carnitine (ALCAR), an acetylated derivative of L-carnitine, protected against early changes in brain metabolites and mitochondrial function after HI on postnatal day (PND) 7 in a rat pup model of near-term HI injury. However, its efficacy in long-term structural and functional outcomes remains unexplored. We determined the efficacy of ALCAR therapy administered to rat pups after HI at PND 7, using both longitudinal in vivo magnetic resonance imaging and behavioral tests, in male and female rats. HI led to sex-specific behavioral impairment, with males exhibiting more global functional deficits than females. Interestingly, HI reduced the volume of the contralateral hemisphere in males only, suggesting that the brain injury is more diffuse in males than in females. Treatment with ALCAR improved both morphological and functional outcomes in both male and female rats. These results suggest that ALCAR may be a potential therapy for clinical use since the treatment attenuated the moderate injury produced under the experimental conditions used and improved the functional outcome in preclinical studies.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
25
|
High-throughput chinmedomics-based prediction of effective components and targets from herbal medicine AS1350. Sci Rep 2016; 6:38437. [PMID: 27910928 PMCID: PMC5133595 DOI: 10.1038/srep38437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
This work was designed to explore the effective components and targets of herbal medicine AS1350 and its effect on “Kidney-Yang Deficiency Syndrome” (KYDS) based on a chinmedomics strategy which is capable of directly discovering and predicting the effective components, and potential targets, of herbal medicine. Serum samples were analysed by UPLC-MS combined with pattern recognition analysis to identify the biomarkers related to the therapeutic effects. Interestingly, the effectiveness of AS1350 against KYDS was proved by the chinmedomics method and regulated the biomarkers and targeting of metabolic disorders. Some 48 marker metabolites associated with alpha-linolenic acid metabolism, fatty acid metabolism, sphingolipids metabolism, phospholipid metabolism, steroid hormone biosynthesis, and amino acid metabolism were identified. The correlation coefficient between the constituents in vivo and the changes of marker metabolites were calculated by PCMS software and the potential effective constituents of AS1350 were also confirmed. By using chinmedomics technology, the components in AS1350 protecting against KYDS by re-balancing metabolic disorders of fatty acid metabolism, lipid metabolism, steroid hormone biosynthesis, etc. were deduced. These data indicated that the phenotypic characterisations of AS1350 altering the metabolic signatures of KYDS were multi-component, multi-pathway, multi-target, and overall regulation in nature.
Collapse
|
26
|
Acetyl-l-Carnitine Augmentation of Clozapine in Partial-Responder Schizophrenia: A 12-Week, Open-Label Uncontrolled Preliminary Study. Clin Neuropharmacol 2016; 39:277-280. [DOI: 10.1097/wnf.0000000000000170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
28
|
Pochini L, Scalise M, Di Silvestre S, Belviso S, Pandolfi A, Arduini A, Bonomini M, Indiveri C. Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:653-60. [PMID: 26724204 DOI: 10.1016/j.bbamem.2015.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 12/21/2015] [Indexed: 01/29/2023]
Abstract
A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Sara Di Silvestre
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" CeS.I., Via Luigi Polacchi, 11, 66013 Chieti, Italy
| | - Stefania Belviso
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" CeS.I., Via Luigi Polacchi, 11, 66013 Chieti, Italy
| | - Arduino Arduini
- CoreQuest Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy; Department of Research and Development, CoreQuest Sagl, Tecnopolo, Via Cantonale 18, 6928 Manno, Switzerland
| | - Mario Bonomini
- Department of Medicine, Institute of Nephrology, G. d'Annunzio University, Via dei Vestini, Chieti-Pescara, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, (CS), Italy.
| |
Collapse
|
29
|
Strilakou A, Perelas A, Lazaris A, Papavdi A, Karkalousos P, Giannopoulou I, Kriebardis A, Panayiotides I, Liapi C. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine. Fundam Clin Pharmacol 2015; 30:47-57. [PMID: 26501493 DOI: 10.1111/fcp.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine.
Collapse
Affiliation(s)
- Athina Strilakou
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Apostolos Perelas
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Andreas Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Asteria Papavdi
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Petros Karkalousos
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioanna Giannopoulou
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological Institute of Athens, Agiou Spyridonos and Dimitsanas Street, Egaleo, 12210, Athens, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon Hospital, 1Rimini Street, Chaidari, 12462, Athens, Greece
| | - Charis Liapi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 11527, Athens, Greece
| |
Collapse
|
30
|
Falasca S, Ranc V, Petruzziello F, Khani A, Kretz R, Zhang X, Rainer G. Altered neurochemical levels in the rat brain following chronic nicotine treatment. J Chem Neuroanat 2014; 59-60:29-35. [PMID: 24915436 DOI: 10.1016/j.jchemneu.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 05/21/2014] [Accepted: 05/25/2014] [Indexed: 12/31/2022]
Abstract
Converging evidence shows that neurochemical systems are crucial mediators of nicotine dependence. Our present study evaluates the effect of 3-month chronic nicotine treatment on the levels of multiple quaternary ammonium compounds as well as glutamate and gamma aminobutyric acid in the rat prefrontal cortex, dorsal striatum and hypothalamus. We observed a marked decrease of acetylcholine levels in the dorsal striatum (22.88%, p<0.01), reflecting the impact of chronic nicotine in local interneuron circuits. We found decreases of carnitine in the dorsal striatum and prefrontal cortex (19.44%, p<0.01; 13.58%, p<0.01, respectively), but robust enhancements of carnitine in the hypothalamus (26.59%, p<0.01), which may reflect the alterations in food and water intake during chronic nicotine treatment. Finally, we identified an increase of prefrontal cortex glutamate levels (8.05%, p<0.05), supporting previous studies suggesting enhanced prefrontal activity during chronic drug use. Our study shows that quaternary ammonium compounds are regulated in a highly brain region specific manner during chronic nicotine treatment, and provides novel insights into neurochemical regulation during nicotine use.
Collapse
Affiliation(s)
- Sara Falasca
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Vaclav Ranc
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Robert Kretz
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland
| | - Xiaozhe Zhang
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland.
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin du Musee 5, Fribourg CH-1700, Switzerland; Fribourg Center for Cognition, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
31
|
Onofrj M, Ciccocioppo F, Varanese S, di Muzio A, Calvani M, Chiechio S, Osio M, Thomas A. Acetyl-L-carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev Neurother 2014; 13:925-36. [DOI: 10.1586/14737175.2013.814930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Song MK, Seon HJ, Kim IG, Han JY, Choi IS, Lee SG. The effect of combined therapy of exercise and nootropic agent on cognitive function in focal cerebral infarction rat model. Ann Rehabil Med 2012; 36:303-10. [PMID: 22837964 PMCID: PMC3400868 DOI: 10.5535/arm.2012.36.3.303] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/10/2012] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the effect of combined therapy of exercise and nootropic agent on cognitive function in a focal cerebral infarction rat model. Method Forty 10-week old male Sprague-Dawley rats were subjected to photothrombotic cerebral infarction of the left parietal lobe. All rats were randomly divided into 4 groups: group A was photothrombotic cerebral infarction rats without any treatment (n=10); group B was photothrombotic cerebral infarction rats with swimming exercise (n=10); group C was photothrombotic cerebral infarction rats with oral administration of acetyl-L-carnitine (n=10); group D was photothrombotic cerebral infarction rats with swimming exercise and oral administration of acetyl-L-carnitine (n=10). Cognitive function was evaluated using the Morris water maze test on the 1st day, and the 1st, 2nd, and 4th week after the induction of cerebral infarction. The activity of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in the hippocampus were measured. The neuronal cells of the hippocampus were histopathologically evaluated. Results The escape latency was shorter in groups B, C, and D than in group A. However, the differences were not statistically significant at the 1st, 2nd and 4th week. The activity of SOD was the highest in group D. The level of MDA was the lowest in group D. We observed more normal neuronal cells in groups B, C, and D. Conclusion The combined therapy of exercise and nootropic agent was helpful in ameliorating oxidative stress in the focal cerebral infarction rat model. However, the effect did not translate into improvement of cognitive function.
Collapse
Affiliation(s)
- Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Research Institute of Medical Sciences, Center for Aging and Geriatrics, Regional CardioCerebroVascular Center, Chonnam National University Medical School & Hospital, Gwangju 501-757, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Analysis of multiple quaternary ammonium compounds in the brain using tandem capillary column separation and high resolution mass spectrometric detection. J Chromatogr A 2012; 1241:46-51. [DOI: 10.1016/j.chroma.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 11/21/2022]
|
34
|
Acetyl-l-Carnitine in the treatment of anhedonia, melancholic and negative symptoms in alcohol dependent subjects. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:953-8. [PMID: 21256179 DOI: 10.1016/j.pnpbp.2011.01.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 01/12/2011] [Accepted: 01/12/2011] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Aim of this randomized, double-blind, placebo-controlled study was to evaluate the efficacy of Acetyl-l-Carnitine (ALC), at different dosages, on specific anhedonic symptoms in detoxified alcohol dependent subjects. Secondary endpoints were the effect of ALC on melancholic and negative symptoms. METHOD Sixty-four anhedonic alcohol dependent patients with minor or absent withdrawal symptoms were randomized: 23 received ALC at a dosage of 3g/day, 21 received ALC at a dosage of 1g/day, and 20 were given placebo. ALC was given intravenously for 10days, followed by 80days of oral treatment plus a follow-up period of 45days. The presence of anhedonic symptoms was determined by the SHAPS (Snaith-Hamilton Pleasure Scale) and the VASa (Visual Analogue Scale for Anhedonia); negative and melancholic symptoms were evaluated by the SANS (Scale for the Assessment of Negative Symptoms), and the BRMS (Bech-Rafaelsen Melancholia Scale). RESULTS The natural course of anhedonia in the placebo group showed a decline until day 30 and remains stable for the rest of the study. Intravenously ALC accelerated the improvement of anhedonia reaching constant low levels early, on day 10. At this step levels of anhedonia (SHAPS, VASa) and melancholic symptoms (BRMES) resulted significantly reduced (p<0.05) in both the ALC 3g and ALC 1g groups with respect to placebo; SANS scores significantly reduced only in the ALC 1g respect to placebo (p=0.014). During oral treatment with ALC, anhedonia scores did not differ from placebo. CONCLUSION Intravenously ALC was effective in accelerating the abstinence-associated improvement of anhedonia, melancholic and negative symptoms, whereas oral ALC treatment starting on day 10 showed no further improvements. Accordingly, in alcohol dependent subjects, ALC may be considered as a new potentially useful drug for the treatment of anhedonia.
Collapse
|
35
|
Bartolini A, Di Cesare Mannelli L, Ghelardini C. Analgesic and antineuropathic drugs acting through central cholinergic mechanisms. RECENT PATENTS ON CNS DRUG DISCOVERY 2011; 6:119-40. [PMID: 21585331 PMCID: PMC3182079 DOI: 10.2174/157488911795933901] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 01/06/2011] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
The role of muscarinic and nicotinic cholinergic receptors in analgesia and neuropathic pain relief is relatively unknown. This review describes how such drugs induce analgesia or alleviate neuropathic pain by acting on the central cholinergic system. Several pharmacological strategies are discussed which increase synthesis and release of acetylcholine (ACh) from cholinergic neurons. The effects of their acute and chronic administration are described. The pharmacological strategies which facilitate the physiological functions of the cholinergic system without altering the normal modulation of cholinergic signals are highlighted. It is proposed that full agonists of muscarinic or nicotinic receptors should be avoided. Their activation is too intense and un-physiological because neuronal signals are distorted when these receptors are constantly activated. Good results can be achieved by using agents that are able to a) increase ACh synthesis, b) partially inhibit cholinesterase activity c) selectively block the autoreceptor or heteroreceptor feedback mechanisms. Activation of M(1) subtype muscarinic receptors induces analgesia. Chronic stimulation of nicotinic (N(1)) receptors has neuronal protective effects. Recent experimental results indicate a relationship between repeated cholinergic stimulation and neurotrophic activation of the glial derived neurotrophic factor (GDNF) family. At least 9 patents covering novel chemicals for cholinergic system modulation and pain control are discussed.
Collapse
Affiliation(s)
- Alessandro Bartolini
- University of Florence, Department of Preclinical and Clinical Pharmacology, Italy.
| | | | | |
Collapse
|
36
|
Stough C, Camfield D, Kure C, Tarasuik J, Downey L, Lloyd J, Zangara A, Scholey A, Reynolds J. Improving general intelligence with a nutrient-based pharmacological intervention. INTELLIGENCE 2011. [DOI: 10.1016/j.intell.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Hatzigiakoumis DS, Martinotti G, Giannantonio MD, Janiri L. Anhedonia and substance dependence: clinical correlates and treatment options. Front Psychiatry 2011; 2:10. [PMID: 21556280 PMCID: PMC3089992 DOI: 10.3389/fpsyt.2011.00010] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/26/2011] [Indexed: 01/17/2023] Open
Abstract
Anhedonia is a condition in which the capacity of experiencing pleasure is totally or partially lost, and it refers to both a state symptom in various psychiatric disorders and a personality trait. It has a putative neural substrate, originating in the dopaminergic mesolimbic and mesocortical reward circuit. Anhedonia frequently occurs in mood disorders, as a negative symptom in schizophrenia, and in substance use disorders. In particular, we focus our attention on the relationships occurring between anhedonia and substance use disorders, as highlighted by many studies. Several authors suggested that anhedonia is an important factor involved in relapse as well as in the transition from recreational use to excessive drug intake. In particular, anhedonia has been found to be a frequent feature in alcoholics and addicted patients during acute and chronic withdrawal as well as in cocaine, stimulant, and cannabis abusers. Furthermore, in subjects with a substance dependence disorder, there is a significant correlation between anhedonia, craving, intensity of withdrawal symptoms, and psychosocial and personality characteristics. Therefore treating anhedonia in detoxified alcohol-dependent subjects could be critical in terms of relapse prevention strategies, given its strong relationship with craving.
Collapse
|
38
|
Kobayashi S, Iwamoto M, Kon K, Waki H, Ando S, Tanaka Y. Acetyl-L-carnitine improves aged brain function. Geriatr Gerontol Int 2010; 10 Suppl 1:S99-106. [PMID: 20590847 DOI: 10.1111/j.1447-0594.2010.00595.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Tokyo Metropolitan Institute of Gerontology, Tokyo Metropolitan Foundation for Research on Aging and Promotion, Sakaecho, Itabashiku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Martinotti G, Reina D, Di Nicola M, Andreoli S, Tedeschi D, Ortolani I, Pozzi G, Iannoni E, D'Iddio S, Janiri L. Acetyl-L-Carnitine for Alcohol Craving and Relapse Prevention in Anhedonic Alcoholics: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial. Alcohol Alcohol 2010; 45:449-55. [DOI: 10.1093/alcalc/agq039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
40
|
Di Cesare Mannelli L, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Toscano A, Pacini A, Bartolini A. Neuroprotective effects of acetyl-L-carnitine on neuropathic pain and apoptosis: a role for the nicotinic receptor. J Neurosci Res 2009; 87:200-7. [PMID: 18709658 DOI: 10.1002/jnr.21815] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several pathologies related to nervous tissue alterations are characterized by a chronic pain syndrome defined by persistent or paroxysmal pain independent or dependent on a stimulus. Pathophysiological mechanisms related to neuropathic disease are associated with mitochondrial dysfunctions that lead to an activation of the apoptotic cascade. In a model of peripheral neuropathy obtained by the loose ligation of the rat sciatic nerve, acetyl-L-Carnitine (ALCAR; 100 mg/kg intraperitoneally [i.p.] twice daily for 14 days) was able to reduce hyperalgesia and apoptosis. In the present study, different mechanisms for the analgesic and the antineuropathic effect of ALCAR are described. The muscarinic blocker atropine (5 mg/kg i.p.) injected simultaneously with ALCAR did not antagonize the ALCAR antihyperalgesic effect on the paw-pressure test but significantly reduced the analgesic effect of ALCAR. Conversely, the antineuropathic effect of ALCAR was prevented by cotreatment with the nicotinic antagonist mecamylamine (2 mg/kg i.p. twice daily for 14 days). A pharmacological silencing of the nicotinic receptors significantly reduced the X-linked inhibitor of apoptosis protein-related protective effect of ALCAR on the apoptosis induced by ligation of the sciatic nerve. Taken together, these data highlight the relevance of nicotinic modulation in neuropathy treatment.
Collapse
|
41
|
Traina G, Federighi G, Brunelli M, Scuri R. Cytoprotective Effect of Acetyl-l-Carnitine Evidenced by Analysis of Gene Expression in the Rat Brain. Mol Neurobiol 2009; 39:101-6. [DOI: 10.1007/s12035-009-8056-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/22/2009] [Indexed: 11/24/2022]
|
42
|
Barhwal K, Hota SK, Prasad D, Singh SB, Ilavazhagan G. Hypoxia-induced deactivation of NGF-mediated ERK1/2 signaling in hippocampal cells: Neuroprotection by acetyl-L-carnitine. J Neurosci Res 2008; 86:2705-21. [DOI: 10.1002/jnr.21722] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Arnold LE, Amato A, Bozzolo H, Hollway J, Cook A, Ramadan Y, Crowl L, Zhang D, Thompson S, Testa G, Kliewer V, Wigal T, McBurnett K, Manos M. Acetyl-L-carnitine (ALC) in attention-deficit/hyperactivity disorder: a multi-site, placebo-controlled pilot trial. J Child Adolesc Psychopharmacol 2007; 17:791-802. [PMID: 18315451 DOI: 10.1089/cap.2007.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine whether acetyl-L-carnitine (ALC), a metabolite necessary for energy metabolism and essential fatty acid anabolism, might help attention-deficit/hyperactivity disorder (ADHD). Trials in Down's syndrome, migraine, and Alzheimer's disease showed benefit for attention. A preliminary trial in ADHD using L-carnitine reported significant benefit. METHOD A multi-site 16-week pilot study randomized 112 children (83 boys, 29 girls) age 5-12 with systematically diagnosed ADHD to placebo or ALC in weight-based doses from 500 to 1500 mg b.i.d. The 2001 revisions of the Conners' parent and teacher scales (including DSM-IV ADHD symptoms) were administered at baseline, 8, 12, and 16 weeks. Analyses were ANOVA of change from baseline to 16 weeks with treatment, center, and treatment-by-center interaction as independent variables. RESULTS The primary intent-to-treat analysis, of 9 DSM-IV teacher-rated inattentive symptoms, was not significant. However, secondary analyses were interesting. There was significant (p = 0.02) moderation by subtype: superiority of ALC over placebo in the inattentive type, with an opposite tendency in combined type. There was also a geographic effect (p = 0.047). Side effects were negligible; electrocardiograms, lab work, and physical exam unremarkable. CONCLUSION ALC appears safe, but with no effect on the overall ADHD population (especially combined type). It deserves further exploration for possible benefit specifically in the inattentive type.
Collapse
Affiliation(s)
- L Eugene Arnold
- The Ohio State University Nisonger Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Barhwal K, Singh SB, Hota SK, Jayalakshmi K, Ilavazhagan G. Acetyl-l-Carnitine ameliorates hypobaric hypoxic impairment and spatial memory deficits in rats. Eur J Pharmacol 2007; 570:97-107. [PMID: 17610872 DOI: 10.1016/j.ejphar.2007.05.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 05/26/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Inadequate oxygen availability at high altitude causes oxidative stress and generation of reactive oxygen species, which may lead to memory impairment. Hippocampus, which plays a key role in the learning and memory processes, is especially vulnerable to hypoxic damage. The present study was aimed at investigating the effect of acetyl-L-carnitine on spatial working and reference memory deficits along with oxidative and apoptotic damage, caused by hypobaric hypoxia in male Sprague Dawley rats. Rats were trained in Morris Water Maze for eight days after which they were submitted to chronic hypobaric hypoxia exposure at a simulated altitude of 6100 m for three days. Rats received daily acetyl-L-carnitine at a dosage of 75 mg/kg body weight orally during exposure. Subsequent to exposure, performance of the animals was tested in Morris Water Maze, which revealed working memory impairment that was significantly improved by acetyl-L-carnitine. However, there was no change in the reference memory after hypobaric hypoxia exposure. Following behavioral study animals were sacrificed and biomarkers of oxidative damage like free radical production, lactate dehydrogenase activity, lipid peroxidation, antioxidant status and expression of apoptotic [viz. caspase-3, Apoptosis activating factor (Apaf-1), bax, cytochrome c] and anti-apoptotic protein-Bcl-2 were studied in the hippocampus. There was a significant increase in oxidative stress along with increased expression of apoptotic proteins and NR1 subunit of glutamate receptor indicating occurrence of excitotoxicity in hypoxia exposed rats. These results suggested that supplementation with acetyl-L-carnitine improves spatial working memory deficits reduces oxidative stress and inhibits apoptotic cascade induced by hypoxia.
Collapse
Affiliation(s)
- Kalpana Barhwal
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi-110054, India
| | | | | | | | | |
Collapse
|
45
|
Di Cesare Mannelli L, Ghelardini C, Calvani M, Nicolai R, Mosconi L, Vivoli E, Pacini A, Bartolini A. Protective effect of acetyl-l-carnitine on the apoptotic pathway of peripheral neuropathy. Eur J Neurosci 2007; 26:820-7. [PMID: 17714181 DOI: 10.1111/j.1460-9568.2007.05722.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral neuropathies are widespread disorders induced by autoimmune diseases, drug or toxin exposure, infections, metabolic insults or trauma. Nerve damage may cause muscle weakness, altered functionalities and sensitivity, and a chronic pain syndrome characterized by allodynia and hyperalgesia. Pathophysiological mechanisms related to neuropathic disease are associated with mitochondrial dysfunctions that lead to the activation of the apoptotic cascade. In a model of peripheral neuropathy, obtained by the loose ligation of the rat sciatic nerve (CCI), we describe a nerve apoptotic state that encompasses the release of cytochrome C in the cytosol, the activation of caspase 3, and the fragmentation of the genome. Animal treatment with acetyl-L-carnitine (ALCAR), but not with L-carnitine (L-Carn) or Gabapentin, prevents apoptosis induction. ALCAR reduces cytosolic cytochrome C and caspase 3 active fragments expression in a significant manner with respect to saline treatment. Accordingly, ALCAR treatment impairs caspase 3 protease activity, as demonstrated by reduced levels of cleaved PARP. Finally, ALCAR decreases the number of piknotic nuclei. This protection correlates with the induction of X-linked inhibitor apoptosis protein (XIAP). Taken together these results show that CCI is a valuable model to investigate neuropathies-related apoptosis phenomena and that ALCAR is able to prevent regulated cell death in the damaged sciatic nerve.
Collapse
|
46
|
Milgram NW, Araujo JA, Hagen TM, Treadwell BV, Ames BN. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 2007; 21:3756-62. [PMID: 17622567 DOI: 10.1096/fj.07-8531com] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Beagle dogs between 7.6 and 8.8 years of age administered a twice daily supplement of alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC) over approximately 2 months made significantly fewer errors in reaching the learning criterion on two landmark discrimination tasks compared to controls administered a methylcellulose placebo. Testing started after a 5 day wash-in. The dogs were also tested on a variable delay version of a previously acquired spatial memory task; results were not significant. The improved performance on the landmark task of dogs supplemented with LA + ALC provides evidence of the effectiveness of this supplement in improving discrimination and allocentric spatial learning. We suggest that long-term maintenance on LA and ALC may be effective in attenuating age-associated cognitive decline by slowing the rate of mitochondrial decay and cellular aging.
Collapse
Affiliation(s)
- N W Milgram
- University of Toronto, Division of Life Sciences, Scarborough, Ontario, Canada.
| | | | | | | | | |
Collapse
|
47
|
Picconi B, Barone I, Pisani A, Nicolai R, Benatti P, Bernardi G, Calvani M, Calabresi P. Acetyl-l-carnitine protects striatal neurons against in vitro ischemia: The role of endogenous acetylcholine. Neuropharmacology 2006; 50:917-23. [PMID: 16500685 DOI: 10.1016/j.neuropharm.2006.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
The neuronal death after ischemia is closely linked to the essential role of mitochondrial metabolism. Inhibition of mitochondrial respiratory chain reduces ATP generation leading to a dysregulation of ion metabolism. Acetyl-L-carnitine (ALC) influences the maintenance of key mitochondrial proteins for maximum energy production and it may play a neuroprotective role in some pathological conditions. In this study we have analyzed ALC-mediated neuroprotection on an in vitro model of brain ischemia. Field potential recordings were obtained from a rat corticostriatal slice preparation. In vitro ischemia (oxygen and glucose deprivation) was delivered by switching to a solution in which glucose was omitted and oxygen was replaced with N2. Ten minutes of in vitro ischemia caused an irreversible loss of the field potential amplitude. Pretreatment with ALC produced a progressive and dose-dependent recovery of the field potential amplitude following in vitro ischemia. The neuroprotective effect of ALC was stereospecific since the pretreatment with two different carnitine-related compounds did not cause neuroprotection. The choline transporter inhibitor hemicholinium-3 blocked the neuroprotective effect of ALC. ALC-mediated neuroprotection was also prevented either by the non-selective muscarinic antagonist scopolamine, or by the putative M2-like receptor antagonist methoctramine. Conversely, the effect of ALC was not altered by the M1-like receptor antagonist pirenzepine. These findings show that ALC exert a neuroprotective action against in vitro ischemia. This neuroprotective effect requires the activity of choline uptake system and the activation of M2 muscarinic receptors.
Collapse
Affiliation(s)
- Barbara Picconi
- Laboratorio di Neurofisiologia, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Inazu M, Takeda H, Maehara K, Miyashita K, Tomoda A, Matsumiya T. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J Neurochem 2006; 97:424-34. [PMID: 16539668 DOI: 10.1111/j.1471-4159.2006.03757.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we sought to identify the transporters that mediate the uptake of L-carnitine and acetyl-L-carnitine in cultured rat cortical astrocytes. L-[(3)H]carnitine and acetyl-L-[(3)H]carnitine uptake were both saturable, and mediated by a single Na(+)-dependent transport system. Uptake of both was inhibited by L-carnitine, D-carnitine, acetyl-L-carnitine and various organic cations. Acylcarnitines (acetyl-, butyryl-, hexanoyl-, octanoyl- and palmitoyl-L-carnitine) also interacted with L-[(3)H]carnitine and acetyl-L-[(3)H]carnitine transport. 2-Amino-2-norbornane carboxylic acid, a known inhibitor of amino acid transporter B(0,+) (ATB(0,+)), did not cause any significant inhibition. A highly significant correlation was found between the potencies of acylcarnitines in the inhibition of L-[(3)H]carnitine and acetyl-L-[(3)H]carnitine uptake and the acyl chain length of acylcarnitines. The expression of mRNA for organic cation/carnitine transporters (OCTNs), carnitine transporter 2 (CT2) and ATB(0,+) in astrocytes was investigated by reverse transcription (RT)-PCR. OCTN2 mRNA was expressed in astrocytes, whereas the expression of OCTN1, OCTN3 and CT2 mRNA could not be detected. ATB(0,+) mRNA was expressed at very low levels in astrocytes. Western blotting analysis indicated that anti-OCTN2 polyclonal antibody recognized a band of 70 kDa in both kidney and astrocyte preparations. OCTN2 immunoreactivity was detected in rat astrocytes by immunocytochemical staining. Inhibition of OCTN2 expression by RNA interference significantly inhibited L-[(3)H]carnitine and acetyl-L-[(3)H]carnitine uptake into astrocytes. These results suggest that OCTN2 is functionally expressed in rat astrocytes, and is responsible for L-carnitine and acetyl-L-carnitine uptake in these cells.
Collapse
Affiliation(s)
- Masato Inazu
- Department of Pharmacology, Tokyo Medical University, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Traina G, Bernardi R, Rizzo M, Calvani M, Durante M, Brunelli M. Acetyl-L-carnitine up-regulates expression of voltage-dependent anion channel in the rat brain. Neurochem Int 2006; 48:673-8. [PMID: 16527372 DOI: 10.1016/j.neuint.2005.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/08/2005] [Indexed: 11/15/2022]
Abstract
Acetyl-L-carnitine (ALC) exerts unique neuroprotective, neuromodulatory, and neurotrophic properties, which play an important role in counteracting various pathological processes, and have antioxidative properties, protecting cells against lipid peroxidation. In this study, suppression subtractive hybridization (SSH) method was applied for the generation of subtracted cDNA libraries and the subsequent identification of differentially expressed transcripts after treatment of rats with ALC. The technique generates an equalized representation of differentially expressed genes irrespective of their relative abundance and it is based on the construction of forward and reverse cDNA libraries that allow the identification of the genes that are regulated after ALC treatment. In the present paper, we report the identification of the gene of mitochondrial voltage-dependent anion channel (VDAC) protein which is positively modulated by the ALC treatment. VDAC is a small pore-forming protein of the mitochondrial outer membrane. It represents an interesting tool for Ca(2+) homeostasis, and it plays a central role in apoptosis. In addition, VDAC seems to have a relevant role in the synaptic plasticity.
Collapse
Affiliation(s)
- Giovanna Traina
- Dipartimento di Fisiologia e Biochimica G. Moruzzi, Università di Pisa, Via S. Zeno, 56127 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Liu J, Head E, Kuratsune H, Cotman CW, Ames BN. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress biomarkers in the brain of old rats. Ann N Y Acad Sci 2005; 1033:117-31. [PMID: 15591009 DOI: 10.1196/annals.1320.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
L-carnitine and acetyl-L-carnitine (ALC) are both used to improve mitochondrial function. Although it has been argued that ALC is better than l-carnitine in absorption and activity, there has been no experiment to compare the two compounds at the same dose. In the present experiment, the effects of ALC and L-carnitine on the levels of free, acyl, and total L-carnitine in plasma and brain, rat ambulatory activity, and biomarkers of oxidative stress are investigated. Aged rats (23 months old) were given ALC or L-carnitine at 0.15% in drinking water for 4 weeks. L-carnitine and ALC were similar in elevating carnitine levels in plasma and brain. Both increased ambulatory activity similarly. However, ALC decreased the lipid peroxidation (malondialdehyde, MDA) in the old rat brain, while L-carnitine did not. ALC decreased the extent of oxidized nucleotides (oxo8dG/oxo8G) immunostaining in the hippocampal CA1 and cortex, while L-carnitine did not. ALC decreased nitrotyrosine immunostaining in the hippocampal CA1 and white matter, while L-carnitine did not. In conclusion, ALC and L-carnitine were similar in increasing ambulatory activity in old rats and elevating carnitine levels in blood and brain. However, ALC was effective, unlike L-carnitine, in decreasing oxidative damage, including MDA, oxo8dG/oxo8G, and nitrotyrosine, in old rat brain. These data suggest that ALC may be a better dietary supplement than L-carnitine.
Collapse
Affiliation(s)
- Jiankang Liu
- Department of Molecular and Cell Biology, Uniersity of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|