1
|
Barratt LJ, Reynolds IJ, Franco Ortega S, Harper AL. Transcriptomic and co-expression network analyses on diverse wheat landraces identifies candidate master regulators of the response to early drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1212559. [PMID: 37426985 PMCID: PMC10326901 DOI: 10.3389/fpls.2023.1212559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.
Collapse
|
2
|
Gregusová V, Kaňuková Š, Hudcovicová M, Bojnanská K, Ondreičková K, Piršelová B, Mészáros P, Lengyelová L, Galuščáková Ľ, Kubová V, Matušíková I, Mihálik D, Kraic J, Havrlentová M. The Cell-Wall β-d-Glucan in Leaves of Oat ( Avena sativa L.) Affected by Fungal Pathogen Blumeria graminis f. sp. avenae. Polymers (Basel) 2022; 14:3416. [PMID: 36015673 PMCID: PMC9415129 DOI: 10.3390/polym14163416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to the structural and storage functions of the (1,3; 1,4)-β-d-glucans (β-d-glucan), the possible protective role of this polymer under biotic stresses is still debated. The aim of this study was to contribute to this hypothesis by analyzing the β-d-glucans content, expression of related cellulose synthase-like (Csl) Cs1F6, CslF9, CslF3 genes, content of chlorophylls, and β-1,3-glucanase content in oat (Avena sativa L.) leaves infected with the commonly occurring oat fungal pathogen, Blumeria graminis f. sp. avenae (B. graminis). Its presence influenced all measured parameters. The content of β-d-glucans in infected leaves decreased in all used varieties, compared to the non-infected plants, but not significantly. Oats reacted differently, with Aragon and Vaclav responding with overexpression, and Bay Yan 2, Ivory, and Racoon responding with the underexpression of these genes. Pathogens changed the relative ratios regarding the expression of CslF6, CslF9, and CslF3 genes from neutral to negative correlations. However, changes in the expression of these genes did not statistically significantly affect the content of β-d-glucans. A very slight indication of positive correlation, but statistically insignificant, was observed between the contents of β-d-glucans and chlorophylls. Some isoforms of β-1,3-glucanases accumulated to a several-times higher level in the infected leaves of all varieties. New isoforms of β-1,3-glucanases were also detected in infected leaves after fungal infection.
Collapse
Affiliation(s)
- Veronika Gregusová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Šarlota Kaňuková
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Martina Hudcovicová
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Bojnanská
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Katarína Ondreičková
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Beáta Piršelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Patrik Mészáros
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Libuša Lengyelová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ľudmila Galuščáková
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Veronika Kubová
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia
| | - Ildikó Matušíková
- Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Daniel Mihálik
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Ján Kraic
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| | - Michaela Havrlentová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
- National Agricultural and Food Centre, Research Institute of Plant Production, 921 01 Piešťany, Slovakia
| |
Collapse
|
3
|
The Pathogen-Induced MATE Gene TaPIMA1 Is Required for Defense Responses to Rhizoctonia cerealis in Wheat. Int J Mol Sci 2022; 23:ijms23063377. [PMID: 35328796 PMCID: PMC8950252 DOI: 10.3390/ijms23063377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/29/2022] Open
Abstract
The sharp eyespot, mainly caused by the soil-borne fungus Rhizoctonia cerealis, is a devastating disease endangering production of wheat (Triticum aestivum). Multi-Antimicrobial Extrusion (MATE) family genes are widely distributed in plant species, but little is known about MATE functions in wheat disease resistance. In this study, we identified TaPIMA1, a pathogen-induced MATE gene in wheat, from RNA-seq data. TaPIMA1 expression was induced by Rhizoctonia cerealis and was higher in sharp eyespot-resistant wheat genotypes than in susceptible wheat genotypes. Molecular biology assays showed that TaPIMA1 belonged to the MATE family, and the expressed protein could distribute in the cytoplasm and plasma membrane. Virus-Induced Gene Silencing plus disease assessment indicated that knock-down of TaPIMA1 impaired resistance of wheat to sharp eyespot and down-regulated the expression of defense genes (Defensin, PR10, PR1.2, and Chitinase3). Furthermore, TaPIMA1 was rapidly induced by exogenous H2O2 and jasmonate (JA) treatments, which also promoted the expression of pathogenesis-related genes. These results suggested that TaPIMA1 might positively regulate the defense against R. cerealis by up-regulating the expression of defense-associated genes in H2O2 and JA signal pathways. This study sheds light on the role of MATE transporter in wheat defense to Rhizoctonia cerealis and provides a potential gene for improving wheat resistance against sharp eyespot.
Collapse
|
4
|
A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance. Mol Genet Genomics 2020; 296:179-192. [PMID: 33130909 DOI: 10.1007/s00438-020-01738-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Ethylene response factors (ERFs) widely exist in plants and have been reported to be an important regulator of plant abiotic stress. Celery, a common economic vegetable of Apiaceae, contains lots of ERF transcription factors (TFs) with various functions. AP2/ERF TFs play positive or negative roles in plant growth and stress response. Here, AgERF8, a gene encoding EAR-type AP2/ERF TF, was identified. The AgERF8 mRNA accumulated in response to both abscisic acid (ABA) signaling and salt treatment. AgERF8 was proving to be a nucleus-located protein and could bind to GCC-box. The overexpression of AgERF8 in Arabidopsis repressed the transcription of downstream genes, AtBGL and AtBCH. Arabidopsis overexpressing AgERF8 gene showed inhibited root growth under ABA and NaCl treatments. AgERF8 transgenic lines showed low tolerance to ABA and salt stress than wild-type plants. Low increment in SOD and POD activities, increased accumulation of MDA, and significantly decreased plant fresh weights and chlorophyll levels were detected in AgERF8 hosting lines after treated with ABA and NaCl. Furthermore, the overexpression of AgERF8 also inhibited the levels of ascorbic acid and antioxidant-related genes (AtCAT1, AtSOD1, AtPOD, AtSOS1, AtAPX1, and AtP5CS1) expression in transgenic Arabidopsis. This finding indicated that AgERF8 negatively affected the resistance of transgenic Arabidopsis to ABA and salt stress through regulating downstream genes expression and relevant physiological changes. It will provide a potential sight to further understand the functions of ERF TFs in celery.
Collapse
|
5
|
Genievskaya Y, Turuspekov Y, Rsaliyev A, Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan. PeerJ 2020; 8:e9820. [PMID: 32944423 PMCID: PMC7469934 DOI: 10.7717/peerj.9820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/05/2020] [Indexed: 11/20/2022] Open
Abstract
Common or bread wheat (Triticum aestivum L.) is the most important cereal crop in the world, including Kazakhstan, where it is a major agricultural commodity. Fungal pathogens producing leaf, stem, and yellow (stripe) rusts of wheat may cause yield losses of up to 50-60%. One of the most effective methods for preventing these losses is to develop resistant cultivars with high yield potential. This goal can be achieved using complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. In this study, a panel consisting of 215 common wheat cultivars and breeding lines from Kazakhstan, Russia, Europe, USA, Canada, Mexico, and Australia, with a wide range of resistance to leaf rust (LR), stem rust (SR), and yellow rust (YR) diseases, was analyzed under field conditions in Southern Kazakhstan. The collection was genotyped using the 20K Illumina iSelect DNA array, where 11,510 informative single-nucleotide polymorphism markers were selected for further genome-wide association study (GWAS). Evaluation of the phenotypic diversity over 2 years showed a mostly mixed reaction to LR, mixed reaction/moderate susceptibility to SR, and moderate resistance to YR among wheat accessions from Kazakhstan. GWAS revealed 45 marker-trait associations (MTAs), including 23 for LR, 14 for SR, and eight for YR resistances. Three MTAs for LR resistance and one for SR resistance appeared to be novel. The MTAs identified in this work can be used for marker-assisted selection of common wheat in Kazakhstan in breeding new cultivars resistant to LR, SR, and YR diseases. These findings can be helpful for pyramiding genes with favorable alleles in promising cultivars and lines.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Yerlan Turuspekov
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky, Zhambyl Region, Kazakhstan
| | - Saule Abugalieva
- Plant Molecular Genetics Laboratory, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan.,Kazakh National Agrarian University, Almaty, Kazakhstan
| |
Collapse
|
6
|
Dong X, Zhao Y, Ran X, Guo L, Zhao DG. Overexpression of a New Chitinase Gene EuCHIT2 Enhances Resistance to Erysiphe cichoracearum DC in Tobacco Plants. Int J Mol Sci 2017; 18:E2361. [PMID: 29112167 PMCID: PMC5713330 DOI: 10.3390/ijms18112361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, we cloned a new chitinase gene, EuCHIT2, from Eucommia ulmoides Oliver (E. ulmoides) using rapid amplification of cDNA ends (RACE) technology and constructed an overexpression vector, pSH-35S-EuCHIT2, to introduce it into tobacco (Nicotiana tabacum cv. Xanthi). Resistance to Erysiphe cichoracearum de Candolle (E.cichoracearum DC) and molecular mechanisms in the transgenic tobacco were determined by drop inoculation, spore counting, determination of physicochemical indicators, and analysis of gene expression. The chitinase activity and resistance to E. cichoracearum DC were significantly higher in the transgenic tobacco than in wild-type tobacco (p < 0.05). The activities of peroxidase (POD) and catalase (CAT), after inoculation with E. cichoracearum DC, were higher in the transgenic tobacco than in the wild-type. Conversely, the malondialdehyde (MDA) content was significantly lower in the transgenic tobacco than the wild-type before and after inoculation. In addition, our study also indicated that the resistance to E. cichoracearum DC might involve the salicylic acid (SA) and jasmonic acid (JA) pathways, because the expression levels of pathogenesis-related gene 1 (PR-1a) and coronatine-insensitive 1 (COI1) were significantly increased and decreased, respectively, after inoculation with E. cichoracearum DC. The present study supports the notion that PR-1a and POD participate in resistance to E. cichoracearum DC in the transgenic tobacco plants.
Collapse
Affiliation(s)
- Xuan Dong
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
| | - Yichen Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- The School of Pharmaceutical Science, Guizhou University, Guiyang 550025, China.
| | - Xin Ran
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
| | - Linxia Guo
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
| | - De-Gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China.
- The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China.
- Guizhou Academy of Agricultural Science, Guiyang 550025, China.
| |
Collapse
|
7
|
Yang B, Ruan R, Cantu D, Wang X, Ji W, Ronald PC, Dubcovsky J. A comparative approach expands the protein-protein interaction node of the immune receptor XA21 in wheat and rice. Genome 2013; 56:315-26. [PMID: 23957671 PMCID: PMC4873545 DOI: 10.1139/gen-2013-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rice (Oryza sativa) OsXA21 receptor kinase is a well-studied immune receptor that initiates a signal transduction pathway leading to resistance to Xanthomonas oryzae pv. oryzae. Two homologs of OsXA21 were identified in wheat (Triticum aestivum): TaXA21-like1 located in a syntenic region with OsXA21, and TaXA21-like2 located in a nonsyntenic region. Proteins encoded by these two wheat genes interact with four wheat orthologs of known OsXA21 interactors. In this study, we screened a wheat yeast-two-hybrid (Y2H) library using the cytosolic portion of TaXA21-like1 as bait to identify additional interactors. Using full-length T. aestivum and T. monococcum proteins and Y2H assays we identified three novel TaXA21-like1 interactors (TaARG, TaPR2, TmSKL1) plus one previously known in rice (TaSGT1). An additional full-length wheat protein (TaCIPK14) interacted with TaXA21-like2 and OsXA21 but not with TaXA21-like1. The interactions of TaXA21-like1 with TmSKL1 and TaSGT1 were also observed in rice protoplasts using bimolecular fluorescence complementation assays. We then cloned the rice homologs of the novel wheat interactors and confirmed that they all interact with OsXA21. This last result suggests that interspecific comparative interactome analyses can be used not only to transfer known interactions from rice to wheat, but also to identify novel interactions in rice.
Collapse
Affiliation(s)
- Baoju Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Targeted spatio-temporal expression based characterization of state of infection and time-point of maximum defense in wheat NILs during leaf rust infection. Mol Biol Rep 2012; 39:9373-82. [DOI: 10.1007/s11033-012-1801-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
|
9
|
Zamora MNGMN, Bournonville CG, Castagnaro AP, Ricci JCDA. Identification and characterisation of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:412-420. [PMID: 32480793 DOI: 10.1071/fp11275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/20/2012] [Indexed: 06/11/2023]
Abstract
The identification of a full length cDNA encoding an endo-β-1,3-glucanase (FaOGBG-5) from strawberry (Fragaria×ananassa Duch) is reported. The analysis of the deduced amino acid sequence of FaOGBG-5 showed that it shares typical structural features and a high degree of identity with other plant β-1,3-glucanases of the class I. The expression of FaOGBG-5 in plants infected with a virulent isolate of Colletotrichum acutatum and an avirulent isolate of Colletotrichum fragariae was examined. Induction of expression was observed with both pathogens but exhibited a delayed high expression with the virulent one. Additionally, the accumulation of FaOGBG-5 transcripts was also observed after treatments with the stress related hormones salicylic acid and ethylene. Results obtained suggest that the β-1,3-glucanase encoded by FaOGBG-5 may be implicated in plant defence against biotic and abiotic stress.
Collapse
Affiliation(s)
- Mart N G Mart Nez Zamora
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| | - Carlos Grellet Bournonville
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| | - Atilio P Castagnaro
- Sección Biotecnología, Estación Experimental Agroindustrial O. Colombres-Unidad asociada al INSIBIO, CC No. 9 (4101) Las Talitas, Tucumán, Argentina
| | - Juan C D Az Ricci
- INSIBIO (CONICET-UNT) - Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica 'Dr Bernabé Bloj', Facultad de Bioquímica, Química y Farmacia (UNT), Chacabuco 461 (4000) Tucumán, Argentina
| |
Collapse
|
10
|
Moldenhauer J, Pretorius ZA, Moerschbacher BM, Prins R, Van Der Westhuizen AJ. Histopathology and PR-protein markers provide insight into adult plant resistance to stripe rust of wheat. MOLECULAR PLANT PATHOLOGY 2008; 9:137-45. [PMID: 18705847 PMCID: PMC6640335 DOI: 10.1111/j.1364-3703.2007.00449.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a serious disease of wheat. The spring wheat cultivar Kariega expresses complete adult plant resistance to stripe rust, whereas Avocet S is susceptible. In former studies, quantitative trait loci (QTL) analysis of doubled haploid lines derived from a Kariega x Avocet S cross revealed two major QTL (QYr.sgi-7D and QYr.sgi-2B.1) and two minor QTL (QYr.sgi-1A and QYr.sgi-4A.1) responsible for the adult resistance of Kariega in the field. Avocet S contains none of these QTL. In the present study, stripe rust development was compared, by means of fluorescence and confocal laser scanning microscopy, in flag leaves of Kariega, Avocet S and six doubled haploid (DH) lines, containing all four, none or one QTL. Depending on the QTL present, the infection types of the DH lines ranged from resistant to fully susceptible. No differences in fungal growth were observed during the first 5 days post inoculation (dpi), whereas the mean length of the fungal colonies started to differ at 6 dpi. Interestingly, MP 51 carrying QYr.sgi-7D responded with lignification to the fungal growth without restricting it, whereas MP 35 containing QYr.sgi-2B.1 did not show lignified host tissue, but fungal growth was restricted. RT PCR experiments with sequences of pathogenesis-related (PR) proteins resulted in a slightly stronger induction of PR 1, 2 and 5, known markers for the hypersensitive reaction, and peroxidases in MP 51, whereas a second band for chitinases was detected in MP 35 only.
Collapse
Affiliation(s)
- Jennifer Moldenhauer
- Department of Plant Biochemistry and Biotechnology, Westphalian Wilhelm's-University Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | | | | | |
Collapse
|
11
|
Moon DH, Salvatierra GR, Caldas DGG, Gallo de Carvalho MCC, Carneiro RT, Franceschini LM, Oda S, Labate CA. Comparison of the expression profiles of susceptible and resistant Eucalyptus grandis exposed to Puccinia psidii Winter using SAGE. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:1010-1018. [PMID: 32689429 DOI: 10.1071/fp07094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 09/18/2007] [Indexed: 05/02/2023]
Abstract
Eucalyptus grandis Hill ex Maiden and its hybrids are commonly planted by the Brazilian pulp and paper industry, but they are the most susceptible to the neotropical rust disease caused by Puccinia psidii Winter. In an initial attempt to understand the mechanisms of resistance, we constructed two contrasting Serial Analysis of Gene Expression (SAGE) libraries using susceptible and resistant individuals from a segregating half-sibling E. grandis population. Using the Z-test we identified tags differentially expressed between the libraries, preferentially 239 in the susceptible and 232 in the resistant type individuals. Using public (Expressed Sequence Tags) EST databases, 40 of the susceptible and 70 of the resistant tags matched ESTs and were annotated. By comparing the type of genes and their expression levels, distinct differences between the libraries were observed. Susceptible plants showed gene expression linked to leaf senescence, generalised stress responses and detoxification, and are apparently incapable of inducing a competent host defence response. On the other hand, resistant plants showed genes upregulated for cellular polarisation, cytoskeleton restructuring, vesicle transport, and cellulose and lignin biosynthesis. In the resistant individuals, evidence for systemic resistance, anti-oxidative responses and a hypersensitive response was also observed, although no R gene was identified.
Collapse
Affiliation(s)
- David H Moon
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Guillermo R Salvatierra
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Danielle G G Caldas
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Mayra C C Gallo de Carvalho
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Raphael T Carneiro
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Lívia M Franceschini
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| | - Shinitiro Oda
- Suzano Papel e Celulose, Av. Brigadeiro Faria Lima n° 1355, 8° andar, CEP 01452-919, São Paulo-SP, Brasil
| | - Carlos A Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba-SP, Brasil
| |
Collapse
|
12
|
Higa-Nishiyama A, Ohsato S, Banno S, Woo SH, Fujimura M, Yamaguchi I, Kimura M. Cloning and characterization of six highly similar endo-1,3-beta-glucanase genes in hexaploid wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:666-73. [PMID: 17110121 DOI: 10.1016/j.plaphy.2006.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 10/09/2006] [Indexed: 05/09/2023]
Abstract
Pathogenesis-related (PR) proteins are often used as a marker of plant defense reactions. Some endo-1,3-beta-glucanase (Gns) genes encode proteins that belong to the PR protein family 2 (PR-2). Although the number of homologous family member genes is significantly greater in hexaploid wheat (Triticum aestivum L.) compared to other model plants, earlier studies did not evaluate the possible contribution of their homologs to hybridization signals in Northern blot analysis. In this study, we have examined whether routine transcriptional analyses of a PR gene is of high reliability or not by isolating six highly similar Gns genes (TaGlb2a, TaGlb2b, TaGlb2c, TaGlb2d, TaGlb2e, and TaGlb2f) and characterizing their expression patterns in detail. While TaGlb2b was shown to be a PR-2 gene, transcription of TaGlb2c and TaGlb2d was not induced upon infection with either powdery mildew (Erysiphe graminis) or head blight (Fusarium graminearum) pathogens; their transcripts were most abundant in healthy spikes (lemmas and in particular paleae). Therefore, in some cases, the conventional analyses do not necessarily provide accurate information on expression pattern of a PR gene in hexaploid wheat. This is also the first report of wheat genes that are specifically expressed in lemma/palea tissues of flowering spikelets.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Gene Expression Regulation, Enzymologic/physiology
- Gene Expression Regulation, Plant/physiology
- Genes, Plant
- Glucan 1,3-beta-Glucosidase/biosynthesis
- Glucan 1,3-beta-Glucosidase/genetics
- Molecular Sequence Data
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- Ploidies
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/biosynthesis
- RNA, Plant/genetics
- Triticum/enzymology
- Triticum/genetics
Collapse
Affiliation(s)
- A Higa-Nishiyama
- Plant and Microbial Metabolic Engineering Research Unit and Laboratory for Remediation Research, Discovery Research Institute (DRI) and Plant Science Center (PSC1), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Shi Y, Zhang Y, Shih DS. Cloning and expression analysis of two beta-1,3-glucanase genes from strawberry. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:956-67. [PMID: 16949959 DOI: 10.1016/j.jplph.2005.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 09/30/2005] [Indexed: 05/09/2023]
Abstract
We isolated from strawberry (Fragariae x ananassa Duch) a genomic clone of a beta-1,3-glucanase gene, designated as FaBG2-2. In addition, a related cDNA clone, designated as FaBG2-3, was also isolated. FaBG2-2 and FaBG2-3 are similar in their coding regions, except that FaBG2-2 does not appear to contain a signal peptide coding sequence. The 5' and 3' flanking regions of FaBG2-2 and FaBG2-3 are differentt. Using real-time PCR, the expression patterns of FaBG2-3 and a previously isolated beta-1,3-glucanase gene, FaBG2-1, in strawberry plants infected with Colletotrichum fragariae or Colletotrichum acutatum were analyzed at different time points post-infection. The results showed that expressions of both genes in the leaves of infected plants were induced by the two fungi, but the level of induction was several fold greater with C. fragariae. Comparison of the expression levels of the two genes revealed that the level of FaBG2-3 expression was several hundred to over a thousand fold higher than that of FaBG2-1. Furthermore, the expression levels of the two genes in the leaf, fruit, crown and root of uninfected strawberry plants were analyzed.
Collapse
Affiliation(s)
- Yanlin Shi
- Department of Biological Sciences, LSU Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | |
Collapse
|
14
|
Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 2005; 275:159-68. [PMID: 16341885 DOI: 10.1007/s00438-005-0073-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Barley homolog of the Arabidopsis necrotic (disease lesion mimic) mutant HLM1 that encodes the cyclic nucleotide-gated ion channel 4 was cloned. Barley gene was mapped genetically to the known necrotic locus nec1 and subsequent sequence analysis identified mutations in five available nec1 alleles confirming barley homolog of Arabidopsis HLM1 as the NEC1 gene. Two fast neutron (FN) induced mutants had extensive deletions in the gene, while two previously described nec1 alleles had either a STOP codon in exon 1 or a MITE insertion in intron 2 which caused alternative splicing, frame shift and production of a predicted non-functional protein. The MITE insertion was consistent with the reported spontaneous origin of the nec1 Parkland allele. The third FN mutant had a point mutation in the coding sequence which resulted in an amino acid change in the conserved predicted cyclic nucleotide-gated ion channel pore region. The expression of two pathogenesis-related genes, HvPR-1a and beta-1,3-glucanase, was elevated in two FN necrotic lines. Ten other members of the barley cyclic nucleotide-gated ion channel gene family were identified and their position on barley linkage map is reported.
Collapse
Affiliation(s)
- Nils Rostoks
- Scottish Crop Research Institute, Genome Dynamics, Invergowrie, Dundee, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lu ZX, Gaudet DA, Frick M, Puchalski B, Genswein B, Laroche A. Identification and characterization of genes differentially expressed in the resistance reaction in wheat infected with Tilletia tritici, the common bunt pathogen. BMB Rep 2005; 38:420-31. [PMID: 16053709 DOI: 10.5483/bmbrep.2005.38.4.420] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentially virulent race T1 of common bunt (Tilletia tritici) was used to inoculate the wheat lines Neepawa (compatible) and its sib BW553 (incompatible) that are nearly isogenic for the Bt-10 resistance gene. Inoculated crown tissues were used to construct a suppression subtractive hybridization (SSH) cDNA library. Of the 1920 clones arrayed from the SSH cDNA library, approximately 10 % were differentially regulated. A total of 168 differentially up-regulated and 25 downregulated genes were identified and sequenced; 71 % sequences had significant homology to genes of known function, of which 59 % appeared to have roles in cellular metabolism and development, 24 % in abiotic/biotic stress responses, 3 % involved in transcription and signal transduction responses. Two putative resistance genes and a transcription factor were identified among the upregulated sequences. The expression of several candidate genes including a lipase, two non-specific lipid transfer proteins (ns-LTPs), and several wheat pathogenesis-related (PR)-proteins, was evaluated following 4 to 32 days postinoculation in compatible and incompatible interactions. Results confirmed the higher overall expression of these genes in resistant BW553 compared to susceptible Neepawa, and the differential up-regulation of wheat lipase, chitinase and PR-1 proteins in the expression of the incompatible interaction.
Collapse
Affiliation(s)
- Zhen-Xiang Lu
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1
| | | | | | | | | | | |
Collapse
|
16
|
Leonard KJ, Szabo LJ. Stem rust of small grains and grasses caused by Puccinia graminis. MOLECULAR PLANT PATHOLOGY 2005; 6:99-111. [PMID: 20565642 DOI: 10.1111/j.1364-3703.2005.00273.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED SUMMARY Stem rust has been a serious disease of wheat, barley, oat and rye, as well as various important grasses including timothy, tall fescue and perennial ryegrass. The stem rust fungus, Puccinia graminis, is functionally an obligate biotroph. Although the fungus can be cultured with difficulty on artificial media, cultures grow slowly and upon subculturing they develop abnormal ploidy levels and lose their ability to infect host plants [Bushnell and Bosacker (1982) Can. J. Bot. 60, 1827-1836]. P. graminis is a typical heteroecious rust fungus with the full complement of five distinct spore stages that occur during asexual reproduction on its gramineous hosts and sexual reproduction that begins in the resting spore stage and culminates on the alternate host, barberry (Berberis spp.). There appears to be little polymorphism for resistance/susceptibility in Berberis species, but complex polymorphisms of resistance/susceptibility and matching virulence/avirulence exist in gene-for-gene relationships between small grain species and the forms of P. graminis that infect them. TAXONOMY Puccinia graminis is a rust fungus in the phylum Basidiomycota, class Urediniomycetes, order Uredinales, and family Pucciniaceae, which contains 17 genera and approximately 4121 species, of which the majority are in the genus Puccinia[Kirk et al. (2001) Ainsworth and Bisby's Dictionary of the Fungi. Wallingford, UK: CAB International]. Various subdivisions of P. graminis into subspecies, varieties and formae speciales have been proposed based on spore size and host range. Crossing studies and DNA sequence comparisons support the separation of at least two subspecies, but not the proposed separation based on spore size. HOST RANGE The host range of P. graminis is very broad compared with that of most Puccinia spp.; it includes at least 365 species of cereals and grasses in 54 genera [Anikster (1984) The Cereal Rusts. Orlando, FL: Academic Press, pp. 115-130]. Wheat stem rust, P. graminis f. sp. tritici, was shown to infect 74 species in 34 genera in artificial inoculations of seedlings, but only 28 of those species belonging to eight genera were known to be natural hosts of the fungus. Other formae speciales of P. graminis have narrower host ranges than P. graminis f. sp. tritici. Disease symptoms: Infections in cereals or grasses occur mainly on stems and leaf sheaths, but occasionally they may be found on leaf blades and glumes as well. The first macroscopic symptom is usually a small chlorotic fleck, which appears a few days after infection. About 8-10 days after infection, a pustule several millimetres long and a few millimetres wide is formed by rupture of the host epidermis from pressure of a mass of brick-red urediniospores produced in the infection. These uredinial pustules are generally linear or diamond shaped and may enlarge up to 10 mm long. The powdery masses of urediniospores appear similar to rust spots on a weathered iron surface. With age, the infection ceases production of brick-red urediniospores and produces a layer of black teliospores in their place, causing the stems of heavily infected plants to appear blackened late in the season.
Collapse
Affiliation(s)
- Kurt J Leonard
- Department of Plant Pathology, University of Minnesota and United States Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN 55108, USA
| | | |
Collapse
|
17
|
Genetics of Morphogenesis in Basidiomycetes. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Rabijns A, Raedschelders G, Robben J, Sansen S, Sørensen JF, Van Campenhout S, Delcour JA. Properties of TAXI-type endoxylanase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:213-21. [PMID: 14871662 DOI: 10.1016/j.bbapap.2003.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 08/07/2003] [Indexed: 12/20/2022]
Abstract
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.
Collapse
Affiliation(s)
- Kurt Gebruers
- KU Leuven, Laboratory of Food Chemistry, Kasteelpark Arenberg 20, B-3001 Louvain, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Albayrak G, Arican E. Amplification of Specific Genes by using RT-PCR Technique in Plants. BIOTECHNOL BIOTEC EQ 2004. [DOI: 10.1080/13102818.2004.10819223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
20
|
Lee OS, Lee B, Park N, Koo JC, Kim YH, Prasad D T, Karigar C, Chun HJ, Jeong BR, Kim DH, Nam J, Yun JG, Kwak SS, Cho MJ, Yun DJ. Pn-AMPs, the hevein-like proteins from Pharbitis nil confers disease resistance against phytopathogenic fungi in tomato, Lycopersicum esculentum. PHYTOCHEMISTRY 2003; 62:1073-9. [PMID: 12591259 DOI: 10.1016/s0031-9422(02)00668-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The antifungal activity of hevein-like proteins has been associated with their chitin-binding activities. Pn-AMP1 and Pn-AMP2, two hevein homologues from Pharbitis nil, show in vitro antifungal activities against both chitin and non-chitin containing fungi. Purified Pn-AMPs retained antifungal activities only under non-reducing conditions. When Pn-AMP2 cDNA was constitutively expressed in tomato (Lycopersicon esculentum) plants under the control of CaMV35S promoter, the transgenic plants showed enhanced resistance against both the non-chitinous fungus Phytophthora capsici, and the chitin-containing fungus Fusarium oxysporum. Thus, the chitin component in the fungal cell wall is not an absolute requirement for Pn-AMP's antifungal activities. These results when considered together suggest that Pn-AMPs have the potential for developing transgenic plants resistant to a wide range of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ok Sun Lee
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju 660-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Oldach KH, Becker D, Lörz H. Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:832-8. [PMID: 11437256 DOI: 10.1094/mpmi.2001.14.7.832] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three cDNAs encoding the antifungal protein Ag-AFP from the fungus Aspergillus giganteus, a barley class II chitinase and a barley type I RIP, all regulated by the constitutive Ubiquitin1 promoter from maize, were expressed in transgenic wheat. In 17 wheat lines, stable integration and inheritance of one of the three transgenes has been demonstrated over four generations. The formation of powdery mildew (Erysiphe graminis f. sp. tritici) or leaf rust (Puccinia recondita f. sp. tritici) colonies was significantly reduced on leaves from afp or chitinase II- but not from rip I-expressing wheat lines compared with non-transgenic controls. The increased resistance of afp and chitinase II lines was dependent on the dose of fungal spores used for inoculation. Heterologous expression of the fungal afp gene and the barley chitinase II gene in wheat demonstrated that colony formation and, thereby, spreading of two important biotrophic fungal diseases is inhibited approximately 40 to 50% at an inoculum density of 80 to 100 spores per cm2.
Collapse
Affiliation(s)
- K H Oldach
- Institute for Applied Molecular Plant Biology, AMPII, University of Hamburg, Germany
| | | | | |
Collapse
|
22
|
Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:763-77. [PMID: 10875337 DOI: 10.1094/mpmi.2000.13.7.763] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Expression of eight different chitinase genes, representing members of five chitinase classes, was studied in Medicago truncatula roots during formation of arbuscular mycorrhiza with Glomus intraradices, nodulation with Rhizobium meliloti, and pathogen attack by Phytophthora megasperma f. sp. medicaginis, Fusarium solani f. sp. phaseoli (compatible interactions with root rot symptoms), Ascochyta pisi (compatible, symptomless), and F. solani f. sp. pisi (incompatible, nonhost interaction). In the compatible plant-pathogen interactions, expression of class I, II, and IV chitinase genes was enhanced. The same genes were induced during nodulation. Transcripts of class I and II chitinase genes accumulated transiently during early stages of the interaction, and transcripts of the class IV chitinase gene accumulated in mature nodules. The pattern of chitinase gene expression in mycorrhizal roots was markedly different: Expression of class I, II, and IV chitinase genes was not enhanced, whereas expression of three class III chitinase genes, with almost no basal expression, was strongly induced. Two of these three (Mtchitinase III-2 and Mtchitinase III-3) were not induced at all in interactions with pathogens and rhizobia. Thus, the expression of two mycorrhiza-specific class III chitinase genes can be considered a hallmark for the establishment of arbuscular mycorrhiza in Medicago truncatula.
Collapse
Affiliation(s)
- P Salzer
- Botanisches Institut der Universität Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|