1
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
2
|
Pervin MS, Itoh G, Talukder MSU, Fujimoto K, Morimoto YV, Tanaka M, Ueda M, Yumura S. A study of wound repair in Dictyostelium cells by using novel laserporation. Sci Rep 2018; 8:7969. [PMID: 29789591 PMCID: PMC5964096 DOI: 10.1038/s41598-018-26337-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
We examined the mechanism of cell membrane repair in Dictyostelium cells by using a novel laser-based cell poration method. The dynamics of wound pores opening and closing were characterized by live imaging of fluorescent cell membrane proteins, influx of fluorescent dye, and Ca2+ imaging. The wound closed within 2-4 sec, depending on the wound size. Cells could tolerate a wound size of less than 2.0 µm. In the absence of Ca2+ in the external medium, the wound pore did not close and cells ruptured. The release of Ca2+ from intracellular stores also contributed to the elevation of cytoplasmic Ca2+ but not to wound repair. Annexin C1 immediately accumulated at the wound site depending on the external Ca2+ concentration, and annexin C1 knockout cells had a defect in wound repair, but it was not essential. Dictyostelium cells were able to respond to multiple repeated wounds with the same time courses, in contrast to previous reports showing that the first wound accelerates the second wound repair in fibroblasts.
Collapse
Affiliation(s)
- Mst Shaela Pervin
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Md Shahabe Uddin Talukder
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, GPO Box 3787, Dhaka, 1000, Bangladesh
| | - Koushiro Fujimoto
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Yusuke V Morimoto
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.,Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masahiro Ueda
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan.
| |
Collapse
|
3
|
Saxena S, Purushothaman S, Meghah V, Bhatti B, Poruri A, Meena Lakshmi MG, Sarath Babu N, Narasimha Murthy CL, Mandal KK, Kumar A, Idris MM. Role of annexin gene and its regulation during zebrafish caudal fin regeneration. Wound Repair Regen 2016; 24:551-9. [DOI: 10.1111/wrr.12429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/10/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | - Bhawna Bhatti
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Akhila Poruri
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | | | | | | | - Komal K. Mandal
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB); Hyderabad India
| |
Collapse
|
4
|
Jin YL, Wang ZQ, Qu H, Wang HX, Ibrahim M, Zhang J, Huang YH, Wu J, Bai LL, Wang XY, Meng JY, Tang JW. Annexin A7 gene is an important factor in the lymphatic metastasis of tumors. Biomed Pharmacother 2013; 67:251-9. [DOI: 10.1016/j.biopha.2012.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/23/2012] [Indexed: 12/16/2022] Open
|
5
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
6
|
Hsu PI, Huang MS, Chen HC, Hsu PN, Lai TC, Wang JL, Lo GH, Lai KH, Tseng CJ, Hsiao M. The significance of ANXA7 expression and its correlation with poor cellular differentiation and enhanced metastatic potential of gastric cancer. J Surg Oncol 2008; 97:609-614. [PMID: 18449914 DOI: 10.1002/jso.21046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Annexin-A7 (ANXA7) exhibits biological and genetic properties expected of a tumor suppressor gene and may play a role in cancer progression. However, the ANXA7 expression in different histological subtypes of gastric adenocarcinomas and its correlation with invasive potentials has not been elucidated. METHODS Immunohistochemical staining of ANXA7 for 84 primary gastric adenocarcinomas was performed, and data was correlated with clinicopathological parameters of patients. RESULTS The ANXA7 expression was well correlated with the grade of differentiation of primary tumors. Its expression was detected in 100% (8/8), 64.9% (24/37), 66.7% (2/3), 31.9% (13/31), 0% (0/3), and 0% (0/2) of well-differentiated tubular, moderately-differentiated tubular, papillary, poorly differentiated, signet-ring cell, and mucinous adenocarcinoma, respectively. According to the Lauren's classification, the ANXA7 expression was higher in intestinal type than in diffuse type tumor (71.9% vs. 6.1%, P = 0.003). The loss of expression of ANXA7 expression was significantly related to distant metastasis (P = 0.04). However, there were no significant associations between the ANXA7 expression and survival of cancer patients (P = 0.159). CONCLUSIONS A striking correlation between ANXA7 expression and cell differentiation of gastric cancer was observed. The loss of expression of ANXA7 is associated with distant metastasis.
Collapse
Affiliation(s)
- Ping-I Hsu
- Department of Internal Medicine, Kaohsiung Veterans General Hospital and National Yang-Ming University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Srivastava M, Torosyan Y, Raffeld M, Eidelman O, Pollard HB, Bubendorf L. ANXA7 expression represents hormone-relevant tumor suppression in different cancers. Int J Cancer 2007; 121:2628-36. [PMID: 17708571 DOI: 10.1002/ijc.23008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor suppressor function of ubiquitously expressed Annexin-A7, ANXA7 (10q21) that is involved in exocytosis and membrane fusion was based on cancer prone phenotype in Anxa7(+/-) mice as well as ANXA7 role in human prostate and breast cancers. To clarify ANXA7 biomarker and tumor suppressor function, we analyzed its expression pattern in comparison to the prostate-specific biomarker NKX3.1. Immunohistochemistry-based ANXA7 and NKX3.1 protein expression was analyzed on human tissue microarrays of 4,061 specimens from a wide spectrum of the histopathologically well-characterized tumors in different stages compared to corresponding normal tissues. Decreased ANXA7 expression was mostly associated with high invasive potential in multiple tumors. Although some metastases retained relatively high ANXA7 rates compared to primary cancer tissues, the lymph node metastases from different sites (including prostate and breast) had decreased ANXA7 expression in comparison to the intact lymphatic tissues. Major ANXA7 downregulation pattern was deviated in tumors of glandular (especially neuroendocrine) origin. ANXA7 and NKX3.1 proteins were synexpressed in the male urogenital system and adrenal gland. Gene expression profiling in prostate and breast cancers (SMD) revealed distinct hormone-related profiles for NKX3.1 and ANXA7, where ANXA7 expression correlated with steroid sulfatase which has a pivotal role in steroidogenesis. Abundant protein presence in adrenal gland and its loss in hormone-refractory prostate cancer indicated that ANXA7 can be relevant to steroidogenesis and androgen sensitivity in particular. With tumor suppressor pattern validated in different tumors, ANXA7 can be an attractive diagnostic and therapeutic target associated with the hormone and/or neurotransmitter-mediated modulation of tumorigenesis.
Collapse
Affiliation(s)
- Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Hosoya KI, Amagai A, Chida J, Maeda Y. Unique behavior and function of the mitochondrial ribosomal protein S4 (RPS4) in early Dictyostelium development. Zoolog Sci 2004; 20:1455-65. [PMID: 14709810 DOI: 10.2108/zsj.20.1455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Certain proteins encoded by mitochondrial DNA (mt-DNA), including mt-ribosomal protein S4 (rps4), appear to play important roles in the initiation of cell differentiation. Partial disruption of rps4 in Dictyostelium discoideum Ax-2 cells by means of homologous recombination greatly impairs the progression of differentiation, while the the rps4(OE) cells in which the rps4 mRNA was overexpressed in the extra-mitochondrial cytoplasm exhibit enhanced differentiation (Inazu et al., 1999). We have prepared a specific anti-RPS4 antibody and generated transformants (rps4(AS) cells) by antisense-mediated gene inactivation of rps4. Surprisingly, in the rps4(AS) cells the progress of differentiation was found to be markedly inhibited, suggesting that the antisense rps4 RNA synthesized in the extra-mitochondrial cytoplasm might be as effective as the partial disruption of rps4 gene. Immunostaining of the rps4(OE) cells with the anti-RPS4 antibody demonstrated that the RPS4 protein synthesized in the extra-mitochondrial cytoplasm is capable of moving to the nucleus, as predicted by PSORTII. Taken together with the results obtained using immunostained Ax-2 cells, we propose a possible pathway of RPS4 translocation coupled with differentiation.
Collapse
Affiliation(s)
- Koh-Ichi Hosoya
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
10
|
Srivastava M, Montagna C, Leighton X, Glasman M, Naga S, Eidelman O, Ried T, Pollard HB. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse. Proc Natl Acad Sci U S A 2003; 100:14287-92. [PMID: 14608035 PMCID: PMC283584 DOI: 10.1073/pnas.2235927100] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Indexed: 02/07/2023] Open
Abstract
Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes.
Collapse
Affiliation(s)
- Meera Srivastava
- Department of Anatomy, Physiology, and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hung KS, Howng SL. Prognostic significance of annexin VII expression in glioblastomas multiforme in humans. J Neurosurg 2003; 99:886-92. [PMID: 14609169 DOI: 10.3171/jns.2003.99.5.0886] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor in adults. It is nearly uniformly fatal, with a median survival time of approximately 1 year, despite modern treatment modalities. Nevertheless, a range of survival times exists around this median. Efforts to understand why some patients live longer or shorter than the average may provide insight into the biology of these neoplasms. The annexin VII (ANX7) gene is located on the human chromosome 10q21, a site long hypothesized to harbor tumor suppressor genes associated with prostate and other cancers. To test whether ANX7 expression might be a predictor for GBMs, we examined ANX7 expression, p53 accumulation, and the MIB-1 labeling index in a retrospective series of 99 GBMs.
Methods. In all 99 cases, the patient's age, Karnofsky Performance Scale (KPS) score before surgery, extent of surgery, tumor location, and immunohistochemical features were analyzed using univariate and multivariate analyses to identify whether any significance exists among ANX7 expression, p53 accumulation, the MIB-1 labeling index, and survival time. Kaplan—Meier analyses demonstrated that a higher KPS score before surgery (< 0.0001), total tumor excision (p = 0.0072), young patient age (p = 0.03), and ANX7 expression (p = 0.0006) correlated with longer survival. Multivariate Cox regression analyses demonstrated that ANX7 expression was the strongest predictor of outcome (p < 0.0001), independent of all other variables. In addition, ANX7 expression correlated with higher MIB-1 immunostaining, but did not correlate with p53 accumulation. Moreover, a significant positive correlation was observed between p53 and MIB-1 staining.
Conclusions. These findings indicate that a higher KPS score before surgery, total tumor excision, young patient age, and ANX7 expression correlate with longer survival in patients with GBMs. Multivariate Cox regression analyses demonstrated that ANX7 expression was the strongest predictor of outcome (p < 0.0001) and was independent of all other variables.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | |
Collapse
|
12
|
Abstract
The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes.
Collapse
Affiliation(s)
- Steven A Farber
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
13
|
Srivastava M, Bubendorf L, Srikantan V, Fossom L, Nolan L, Glasman M, Leighton X, Fehrle W, Pittaluga S, Raffeld M, Koivisto P, Willi N, Gasser TC, Kononen J, Sauter G, Kallioniemi OP, Srivastava S, Pollard HB. ANX7, a candidate tumor suppressor gene for prostate cancer. Proc Natl Acad Sci U S A 2001; 98:4575-80. [PMID: 11287641 PMCID: PMC31876 DOI: 10.1073/pnas.071055798] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2000] [Accepted: 02/05/2001] [Indexed: 01/06/2023] Open
Abstract
The ANX7 gene is located on human chromosome 10q21, a site long hypothesized to harbor a tumor suppressor gene(s) (TSG) associated with prostate and other cancers. To test whether ANX7 might be a candidate TSG, we examined the ANX7-dependent suppression of human tumor cell growth, stage-specific ANX7 expression in 301 prostate specimens on a prostate tissue microarray, and loss of heterozygosity (LOH) of microsatellite markers at or near the ANX7 locus. Here we report that human tumor cell proliferation and colony formation are markedly reduced when the wild-type ANX7 gene is transfected into two prostate tumor cell lines, LNCaP and DU145. Consistently, analysis of ANX7 protein expression in human prostate tumor microarrays reveals a significantly higher rate of loss of ANX7 expression in metastatic and local recurrences of hormone refractory prostate cancer as compared with primary tumors (P = 0.0001). Using four microsatellite markers at or near the ANX7 locus, and laser capture microdissected tumor cells, 35% of the 20 primary prostate tumors show LOH. The microsatellite marker closest to the ANX7 locus showed the highest rate of LOH, including one homozygous deletion. We conclude that the ANX7 gene exhibits many biological and genetic properties expected of a TSG and may play a role in prostate cancer progression.
Collapse
Affiliation(s)
- M Srivastava
- Departments of Anatomy, Physiology, and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gaudet P, Tsang A. Regulation of the ribonucleotide reductase small subunit gene by DNA-damaging agents in Dictyostelium discoideum. Nucleic Acids Res 1999; 27:3042-8. [PMID: 10454598 PMCID: PMC148528 DOI: 10.1093/nar/27.15.3042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Escherichia coli, yeast and mammalian cells, the genes encoding ribonucleotide reductase, an essential enzyme for de novo DNA synthesis, are up-regulated in response to DNA damaging agents. We have examined the response of the rnrB gene, encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum, to DNA damaging agents. We show here that the accumulation of rnrB transcript is increased in response to methyl methane sulfonate, 4-nitroquinoline-1-oxide and irradiation with UV-light, but not to the ribonucleotide reductase inhibitor hydroxyurea. This response is rapid, transient and independent of protein synthesis. Moreover, cells from different developmental stages are able to respond to the drug in a similar fashion, regardless of the basal level of expression of the rnrB gene. We have defined the cis -acting elements of the rnrB promoter required for the response to methyl methane sulfonate and 4-nitroquinoline-1-oxide by deletion analysis. Our results indicate that there is one element, named box C, that can confer response to both drugs. Two other boxes, box A and box D, specifically conferred response to methyl methane sulfonate and 4-nitroquinoline-1-oxide, respectively.
Collapse
Affiliation(s)
- P Gaudet
- Department of Chemistry, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
15
|
Bonfils C, Gaudet P, Tsang A. Identification of cis-regulating elements and trans-acting factors regulating the expression of the gene encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum. J Biol Chem 1999; 274:20384-90. [PMID: 10400662 DOI: 10.1074/jbc.274.29.20384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the promoter of rnrB, the gene encoding the small subunit of ribonucleotide reductase of Dictyostelium discoideum, using lacZ as a reporter gene. Deletion analysis showed that expression of this gene in vegetative cells involves an A/T-rich element, whereas its expression in prespore cells during development requires a region encompassing two G/C-rich elements, designated box A and box B. Removal of boxes A and B results in very low level of activity. When either box A or box B is deleted, prestalk cells adjacent to the prespore zone also express beta-galactosidase. The behavior of these cis-regulatory elements implies that the mechanism regulating the prespore-specific expression of rnrB is different from that regulating other known prespore genes. We have used electrophoretic mobility shift assays to identify factors that interact with box A and box B. Box A interacts with a factor that is found in the nuclear fraction. While box B interacts with a factor that is present in the cytosolic fraction throughout growth and development, its presence in the nuclear fraction is developmentally regulated. Results from competition assays suggest that both box A and box B interact with transcriptional activators that have not been characterized previously.
Collapse
Affiliation(s)
- C Bonfils
- Department of Biology, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | | | |
Collapse
|
16
|
Inazu Y, Chae SC, Maeda Y. Transient expression of a mitochondrial gene cluster including rps4 is essential for the phase-shift of Dictyostelium cells from growth to differentiation. DEVELOPMENTAL GENETICS 1999; 25:339-352. [PMID: 10570466 DOI: 10.1002/(sici)1520-6408(1999)25:4<339::aid-dvg8>3.0.co;2-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using synchronized Dictyostelium discoideum Ax-2 cells and the differential display method, a mitochondrial gene cluster (referred to as differentiation-associated gene 3; dia3) was isolated as one of the genes expressed specifically during the transition of Ax-2 cells from growth to differentiation. The dia3 gene encodes for a mitochondrial protein cluster (NADH dehydrogenase (NAD) subunit 11, 5, ribosomal protein S4 (RPS4), RPS2, and NAD4L). Northern blot analysis using nonsynchronized Ax-2 cells has shown that the dia3 RNA of about 8 kb is scarcely expressed during the vegetative growth phase, and the maximal expression was attained at 2 h after starvation. To analyze the gene function of dia3, we tried inactivation of rps4 by means of homologous recombination and obtained several transformed clones showing mitochondrial DNA heteroplasmy. The transformed cells grew normally in nutrient medium, but their development after starvation was greatly impaired, thus resulting in the failure of many cells to differentiate. In this connection, the cAMP receptor 1 (car1) expression, which is one of the earliest markers of differentiation, was found to be markedly reduced in the rps4-inactivated cells.
Collapse
Affiliation(s)
- Y Inazu
- Biological Institute, Graduate School of Science, Tohoku University, Aoba, Sendai, Japan.
| | | | | |
Collapse
|
17
|
Chae SC, Inazu Y, Amagai A, Maeda Y. Underexpression of a novel gene, dia2, impairs the transition of Dictyostelium cells from growth to differentiation. Biochem Biophys Res Commun 1998; 252:278-283. [PMID: 9813183 DOI: 10.1006/bbrc.1998.9461] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Dictyostelium discoideum Ax-2 cells, a specific point (PS-point) in the cell cycle from which they initiate differentiation in response to starvation has been specified. Using synchronized Ax-2 cells and the differential display method, a novel gene (differentiation-associated gene 2; dia2) was isolated as one of the genes expressed specifically during the shift of Ax-2 cells from growth to differentiation. The dia2 gene codes a lysine- and leucine-rich protein with a predicted molecular mass of 16.9 kDa. Northern blot analysis has shown that the dia2 mRNA, of 0.7 kb, accumulates in differentiating cells starved just before the PS-point, while there is no detectable expression in vegetatively growing cells. Antisense-mediated gene inactivation of dia2 greatly inhibited the progress of differentiation, presumably through the reduced expression of cAMP receptor 1 (car1). Thus, the DIA2 expression was suggested to have an essential role in the initiation of differentiation, closely relating to the cAMP signaling system.
Collapse
Affiliation(s)
- S C Chae
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Aoba, 980-8578, Japan
| | | | | | | |
Collapse
|
18
|
Tanaka Y, Itakura R, Amagai A, Maeda Y. The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells. Exp Cell Res 1998; 240:340-8. [PMID: 9597007 DOI: 10.1006/excr.1998.3947] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which cells recognize starvation to allow subsequent cellular development was analyzed using Dictyostelium discoideum, with special emphasis on Ca2+ as a crucial signal transducer in intra- and intercellular communications. As was expected, the cytosolic Ca2+ concentration ([Ca2+]i) in aequorin-expressing cells (RHI76 derived from D. discoideum Ax-3) was temporarily increased, when 3-5 microM thapsigargin (Tg), a specific inhibitor of the Ca(2+)-ATPase, was added into the cells incubated in semistarvation medium (SS-medium: 1 vol of growth medium plus 7 vol either of 20 mM Na2/K-phosphate buffer (pH 6.2) or of Bonner's salt solution (BSS)). Essentially the same result was obtained by the application of 5 microM nigericin (Ng), an acid ionophore to cells under the semistarved condition. Here it is of interest to note that in the SS-medium Tg and Ng are capable of enhancing cell differentiation as exemplified well by the earlier acquisition of chemotactic response to cAMP, possibly inducing the starvation response through the [Ca2+]i increase. From Western blot analysis of phosphotyrosine (pTyr)-containing proteins using anti-pTyr antibody, it was found that the pTyr-phosphorylation levels of 97-, 80-, and 45-kDa proteins increase specifically in response to starvation. Interestingly, Tg and Ng induced such a change of the 80-kDa protein in the cells incubated in the SS-medium. Taken together these results strongly suggest that the temporal increase of [Ca2+]i may be a matter of importance for signal transduction coupled with starvation response.
Collapse
Affiliation(s)
- Y Tanaka
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan.
| | | | | | | |
Collapse
|
19
|
Okafuji T, Abe F, Maeda Y. Antisense-mediated regulation of Annexin VII gene expression during the transition from growth to differentiation in Dictyostelium discoideum. Gene 1997; 189:49-56. [PMID: 9161411 DOI: 10.1016/s0378-1119(96)00832-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexin VII is believed to be required for proper Ca(2+)-homeostasis in Dictyostelium discoideum cells. As was previously reported, the expression of Annexin VII gene increased during the transition of D. discoideum Ax-2 cells from growth to differentiation. We have casually cloned an interesting gene, Quit3, by the differential plaque hybridization. Quit3 had no coding region, and was expressed more predominantly in the growth phase than in the differentiation phase. Unexpectedly, this gene was found to encode the complementary sequence of Annexin VII. Therefore, it is most likely that the Quit3 mRNA may regulate the Annexin VII synthesis by the natural antisense transcript via an antisense RNA-RNA interaction, thus resulting in striking increase of Annexin VII production in the phase-shift of cells from growth to differentiation. Since Annexin VII is known to be coded for by a single gene in Dictyostelium, the antisense RNA seemed to be encoded in the same genetic locus as the Annexin VII mRNA.
Collapse
Affiliation(s)
- T Okafuji
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
20
|
Tsang A, Bonfils C, Czaika G, Shtevi A, Grant C. A prespore-specific gene of Dictyostelium discoideum encodes the small subunit of ribonucleotide reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1309:100-8. [PMID: 8950185 DOI: 10.1016/s0167-4781(96)00109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated the gene. rnrB, that encodes the ribonucleotide reductase small subunit of Dictyostelium discoideum. The deduced amino acid sequence of rnrB exhibits about 60% sequence identity with its homologues in other eukaryotes. As demonstrated by RNA blot analysis the rnrB transcript is detected in growing cells and decreases dramatically at the onset of development. The rnrB transcript reappears after the cells have formed multicellular aggregates. To further examine the pattern of expression, we have fused the rnrB promoter and part of its coding sequence to lacZ. The transgenic strain bearing such a reporter construct expresses the fusion gene with a biphasic profile, which is indistinguishable from that of the endogenous rnrB. The multicellular aggregates of Dictyostelium are differentiated along the anterior-posterior axis. Cells in the anterior give rise to the stalk of the fruiting body while cells in the posterior are precursors of spores. Results from histochemical staining show that beta-galactosidase activity is detected exclusively in the posterior two-thirds of the aggregates. These data suggest that rnrB is expressed in prespore cells during postaggregative development and in vegetative cells.
Collapse
Affiliation(s)
- A Tsang
- Department of Biology, Concordia University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
21
|
Knochel M, Kissmehl R, Wissmann JD, Momayezi M, Hentschel J, Plattner H, Burgoyne RD. Annexins in Paramecium cells. Involvement in site-specific positioning of secretory organelles. Histochem Cell Biol 1996; 105:269-81. [PMID: 9072184 DOI: 10.1007/bf01463930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexins were isolated from Paramecium cell homogenates by standard ethylene glycol tetraacetic acid (EGTA) extraction and 100 000-g centrifugation. Two different antibodies (Abs) against synthetic peptides were used, Call-15 and B15, which in mammalian cells recognize a sequence of annexin II or a common sequence occurring in several annexins (except for annexin II), respectively. With anti-Call-15 Abs, western blots from EGTA extracts showed strongly reactive bands of 44.5 and 46 kDa and of higher values. Some of these bands bound to the 100 000-g pellet fraction when Ca(2+) was added. Immuno- and affinity labelling revealed selective, Ca(2+)-dependent labelling of the cell cortex, with enrichment around trichocyst docking sites (facing subplasmalemmal Ca(2+) stores). Cortical fluorescence labelling decreased in wild-type (7S) cells when trichocyst ghosts were detached after synchronous exocytosis. Similarly, cortical labelling was reduced when intact trichocysts were detached from the cell surface of non-discharge mutant cells (nd9-28 degrees C, showing identical bands on blots), which then contained numerous heavily labelled phagolysosomes. This strongly suggests annexin downregulation. All together, the dynamic labelling of cortical structures we observed strongly supports involvement of calpactin-like annexins in trichocyst docking. Anti-B15 Abs recognized a band of 51 kDa and some of higher values. These Abs selectively labelled the outlines of the cytoproct, the site of spent phagolysosome exocytosis. In conclusion, our data indicate involvement of specific sets of annexins in site-specific positioning and attachment of widely different secretory organelles at the cell surface in Paramecium cells.
Collapse
Affiliation(s)
- M Knochel
- Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|