1
|
Intrinsic Chemical Reactivity of Activated Human Complement Component C3. Immunobiology 2022; 227:152209. [DOI: 10.1016/j.imbio.2022.152209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
|
2
|
Bowden TJ, Kraev I, Lange S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103714. [PMID: 32335073 DOI: 10.1016/j.dci.2020.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The horseshoe crab is a living fossil and a species of marine arthropod with unusual immune system properties which are also exploited commercially. Given its ancient status dating to the Ordovician period (450 million years ago), its standing in phylogeny and unusual immunological characteristics, the horseshoe crab may hold valuable information for comparative immunology studies. Peptidylarginine deiminases (PADs) are calcium dependent enzymes that are phylogenetically conserved and cause protein deimination via conversion of arginine to citrulline. This post-translational modification can lead to structural and functional protein changes contributing to protein moonlighting in health and disease. PAD-mediated regulation of extracellular vesicle (EV) release, a critical component of cellular communication, has furthermore been identified to be a phylogenetically conserved mechanism. PADs, protein deimination and EVs have hitherto not been studied in the horseshoe crab and were assessed in the current study. Horseshoe crab haemolymph serum-EVs were found to be a poly-dispersed population in the 20-400 nm size range, with the majority of EVs falling within 40-123 nm. Key immune proteins were identified to be post-translationally deiminated in horseshoe crab haemolymph serum, providing insights into protein moonlighting function of Limulus and phylogenetically conserved immune proteins. KEGG (Kyoto encyclopaedia of genes and genomes) and GO (gene ontology) enrichment analysis of deiminated proteins identified in Limulus revealed KEGG pathways relating to complement and coagulation pathways, Staphylococcus aureus infection, glycolysis/gluconeogenesis and carbon metabolism, while GO pathways of biological and molecular pathways related to a range of immune and metabolic functions, as well as developmental processes. The characterisation of EVs, and post-translational deimination signatures, revealed here in horseshoe crab, contributes to current understanding of protein moonlighting functions and EV-mediated communication in this ancient arthropod and throughout phylogeny.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science Technology, Engineering and Mathematics Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
3
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
4
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
5
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Hayes P, Lange S. Deiminated proteins and extracellular vesicles - Novel serum biomarkers in whales and orca. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100676. [PMID: 32114311 DOI: 10.1016/j.cbd.2020.100676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland
| | - Polly Hayes
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
6
|
Phillips RA, Kraev I, Lange S. Protein Deimination and Extracellular Vesicle Profiles in Antarctic Seabirds. BIOLOGY 2020; 9:E15. [PMID: 31936359 PMCID: PMC7168935 DOI: 10.3390/biology9010015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
Pelagic seabirds are amongst the most threatened of all avian groups. They face a range of immunological challenges which seem destined to increase due to environmental changes in their breeding and foraging habitats, affecting prey resources and exposure to pollution and pathogens. Therefore, the identification of biomarkers for the assessment of their health status is of considerable importance. Peptidylarginine deiminases (PADs) post-translationally convert arginine into citrulline in target proteins in an irreversible manner. PAD-mediated deimination can cause structural and functional changes in target proteins, allowing for protein moonlighting in physiological and pathophysiological processes. PADs furthermore contribute to the release of extracellular vesicles (EVs), which play important roles in cellular communication. In the present study, post-translationally deiminated protein and EV profiles of plasma were assessed in eight seabird species from the Antarctic, representing two avian orders: Procellariiformes (albatrosses and petrels) and Charadriiformes (waders, auks, gulls and skuas). We report some differences between the species assessed, with the narrowest EV profiles of 50-200 nm in the northern giant petrel Macronectes halli, and the highest abundance of larger 250-500 nm EVs in the brown skua Stercorarius antarcticus. The seabird EVs were positive for phylogenetically conserved EV markers and showed characteristic EV morphology. Post-translational deimination was identified in a range of key plasma proteins critical for immune response and metabolic pathways in three of the bird species under study; the wandering albatross Diomedea exulans, south polar skua Stercorarius maccormicki and northern giant petrel. Some differences in Gene Ontology (GO) biological and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for deiminated proteins were observed between these three species. This indicates that target proteins for deimination may differ, potentially contributing to a range of physiological functions relating to metabolism and immune response, as well as to key defence mechanisms. PAD protein homologues were identified in the seabird plasma by Western blotting via cross-reaction with human PAD antibodies, at an expected 75 kDa size. This is the first study to profile EVs and to identify deiminated proteins as putative novel plasma biomarkers in Antarctic seabirds. These biomarkers may be further refined to become useful indicators of physiological and immunological status in seabirds-many of which are globally threatened.
Collapse
Affiliation(s)
- Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
7
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
8
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and plasma of nurse shark (Ginglymostoma cirratum) - Novel insights into shark immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 92:249-255. [PMID: 31200072 DOI: 10.1016/j.fsi.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Extracellular vesicles are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins and extracellular vesicles (EVs) are described for the first time in shark plasma. We report a poly-dispersed population of shark plasma EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In plasma, 6 deiminated proteins, including complement and immunoglobulin, were identified, whereof 3 proteins were found to be exported in plasma-derived EVs. A PAD homologue was identified in shark plasma by Western blotting and detected an expected 70 kDa size. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in nurse shark plasma. This is the first report of deiminated proteins in plasma and EVs, highlighting a hitherto unrecognized post-translational modification in key immune proteins of innate and adaptive immunity in shark.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
9
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
10
|
Holm L, Ackland GL, Edwards MR, Breckenridge RA, Sim RB, Offer J. Chemical labelling of active serum thioester proteins for quantification. Immunobiology 2011; 217:256-64. [PMID: 21852021 PMCID: PMC3274692 DOI: 10.1016/j.imbio.2011.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022]
Abstract
The complement serum proteins C3 and C4 and the protease inhibitor α-2 macroglobulin are all members of the C3/α-2M thioester protein family, an evolutionarily ancient and conserved family that contains an intrachain thioester bond. The chemistry of the thioester bond is a key to the function of the thioester proteins. All these proteins function by covalently linking to their target by acyl transfer of the protein via the thioester moiety. We show that the signature thioester bond can be targeted with nucleophiles linked to a bioreporter molecule, site-specifically modifying the whole, intact thioester protein. Conditions were optimised to label selectively and efficiently pull-down unprocessed thioester-containing proteins from serum. We demonstrated pull-down of full-length C3, α-2M and C4 from sera in high salt, using a biotinylated nucleophile and streptavidin-coated resin, confirmed by MALDI-TOF MS identification of the gel bands. The potential for the development of a quantitative method for measuring active C3 in serum was investigated in patient sera pre and post operation. Quantifying active C3 in clinical assays using current methods is difficult. Methods based on antibody detection (e.g. nephelometry) do not distinguish between active C3 and inactive breakdown products. C3-specific haemolytic assays can be used, but these require use of relatively unstable reagents. The current work represents a promising robust, enzyme- and antibody-free chemical method for detecting active thioester proteins in blood, plasma or serum.
Collapse
Affiliation(s)
- Lotta Holm
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | - Mark R. Edwards
- Centre for Anaesthesia, Critical Care and Pain Medicine, University College London Hospitals, University College London, London, UK
| | | | - Robert B. Sim
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - John Offer
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
- Corresponding author. Tel.: +44 20 88 16 20 82.
| |
Collapse
|
11
|
Fredslund F, Jenner L, Husted LB, Nyborg J, Andersen GR, Sottrup-Jensen L. The Structure of Bovine Complement Component 3 Reveals the Basis for Thioester Function. J Mol Biol 2006; 361:115-27. [PMID: 16831446 DOI: 10.1016/j.jmb.2006.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 11/25/2022]
Abstract
The third component of complement (C3) is a 190 kDa glycoprotein essential for eliciting the complement response. The protein consists of two polypeptide chains (alpha and beta) held together with a single disulfide bridge. The beta-chain is composed of six MG domains, one of which is shared with the alpha-chain. The disulfide bridge connecting the chains is positioned in the shared MG domain. The alpha-chain consists of the anaphylatoxin domain, three MG domains, a CUB domain, an alpha(6)/alpha(6)-barrel domain and the C-terminal C345c domain. An internal thioester in the alpha-chain of C3 (present in C4 but not in C5) is cleaved during complement activation. This mediates covalent attachment of the activated C3b to immune complexes and invading microorganisms, thereby opsonizing the target. We present the structure of bovine C3 determined at 3 Angstroms resolution. The structure shows that the ester is buried deeply between the thioester domain and the properdin binding domain, in agreement with the human structure. This domain interface is broken upon activation, allowing nucleophile access. The structure of bovine C3 clearly demonstrates that the main chain around the thioester undergoes a helical transition upon activation. This rearrangement is proposed to be the basis for the high level of reactivity of the thioester group. A strictly conserved glutamate residue is suggested to function catalytically in thioester proteins. Structure-based design of inhibitors of C3 activation may target a conserved pocket between the alpha-chain and the beta-chain of C3, which appears essential for conformational changes in C3.
Collapse
|
12
|
Yu CY, Chung EK, Yang Y, Blanchong CA, Jacobsen N, Saxena K, Yang Z, Miller W, Varga L, Fust G. Dancing with complement C4 and the RP-C4-CYP21-TNX (RCCX) modules of the major histocompatibility complex. ACTA ACUST UNITED AC 2004; 75:217-92. [PMID: 14604014 DOI: 10.1016/s0079-6603(03)75007-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of the complement component C4 genes varies from 2 to 8 in a diploid genome among different human individuals. Three quarters of the C4 genes in Caucasian populations have the endogenous retrovirus, HERV-K(C4), in the ninth intron. The remainder does not. The C4 serum proteins are highly polymorphic and their concentrations vary from 100 to approximately 1000 microg/ml. There are two distinct classes of C4 protein, C4A and C4B, which have diversified to fulfill (a) the opsonization/immunoclearance purposes and (b) the well-known complement function in the killing of microbes by lysis and neutralization, respectively. Many infectious and autoimmune diseases are associated with complete or partial deficiency of C4A and/or C4B. The adverse effects of high C4 gene dosages, however, are just emerging, as the concepts of human C4 genetics are revised and accurate techniques are applied to distinguish partial deficiencies from differential expression caused by unequal C4A and C4B gene dosages and gene sizes. This review attempts to dissect the sophisticated genetics of complement C4A and C4B. The emphases are on the qualitative and quantitative diversities of C4 genotypes and phenotypes. The many allotypic variants and the processed products of human and mouse C4 proteins are described. The modular variation of C4 genes together with the serine/threonine nuclear kinase gene RP, the steroid 21-hydroxylase CYP21, and extracellular matrix protein TNX (RCCX modules) are investigated for the effects on homogenization of C4 protein polymorphisms, and on the unequal genetic crossovers that knocked out the functions of CYP21 and/or TNX. Furthermore, the influence of the endogenous retrovirus HERV-K(C4) on C4 gene expression and the dispersal of HERV-K(C4) family members in the human genome are discussed.
Collapse
Affiliation(s)
- C Yung Yu
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205-2696, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Karges HE. Plasmafraktionierung und therapeutische Plasmaproteine. TRANSFUSIONSMEDIZIN 2004. [DOI: 10.1007/978-3-662-10597-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Blanchong CA, Chung EK, Rupert KL, Yang Y, Yang Z, Zhou B, Moulds JM, Yu CY. Genetic, structural and functional diversities of human complement components C4A and C4B and their mouse homologues, Slp and C4. Int Immunopharmacol 2001; 1:365-92. [PMID: 11367523 DOI: 10.1016/s1567-5769(01)00019-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complement protein C4 is a non-enzymatic component of the C3 and C5 convertases and thus essential for the propagation of the classical complement pathway. The covalent binding of C4 to immunoglobulins and immune complexes (IC) also enhances the solubilization of immune aggregates, and the clearance of IC through complement receptor one (CR1) on erythrocytes. Human C4 is the most polymorphic protein of the complement system. In this review, we summarize the current concepts on the 1-2-3 loci model of C4A and C4B genes in the population, factors affecting the expression levels of C4 transcripts and proteins, and the structural, functional and serological diversities of the C4A and C4B proteins. The diversities and polymorphisms of the mouse homologues Slp and C4 proteins are described and contrasted with their human homologues. The human C4 genes are located in the MHC class III region on chromosome 6. Each human C4 gene consists of 41 exons coding for a 5.4-kb transcript. The long gene is 20.6 kb and the short gene is 14.2 kb. In the Caucasian population 55% of the MHC haplotypes have the 2-locus, C4A-C4B configurations and 45% have an unequal number of C4A and C4B genes. Moreover, three-quarters of C4 genes harbor the 6.4 kb endogenous retrovirus HERV-K(C4) in the intron 9 of the long genes. Duplication of a C4 gene always concurs with its adjacent genes RP, CYP21 and TNX, which together form a genetic unit termed an RCCX module. Monomodular, bimodular and trimodular RCCX structures with 1, 2 and 3 complement C4 genes have frequencies of 17%, 69% and 14%, respectively. Partial deficiencies of C4A and C4B, primarily due to the presence of monomodular haplotypes and homo-expression of C4A proteins from bimodular structures, have a combined frequency of 31.6%. Multiple structural isoforms of each C4A and C4B allotype exist in the circulation because of the imperfect and incomplete proteolytic processing of the precursor protein to form the beta-alpha-gamma structures. Immunofixation experiments of C4A and C4B demonstrate > 41 allotypes in the two classes of proteins. A compilation of polymorphic sites from limited C4 sequences revealed the presence of 24 polymophic residues, mostly clustered C-terminal to the thioester bond within the C4d region of the alpha-chain. The covalent binding affinities of the thioester carbonyl group of C4A and C4B appear to be modulated by four isotypic residues at positions 1101, 1102, 1105 and 1106. Site directed mutagenesis experiments revealed that D1106 is responsible for the effective binding of C4A to form amide bonds with immune aggregates or protein antigens, and H1106 of C4B catalyzes the transacylation of the thioester carbonyl group to form ester bonds with carbohydrate antigens. The expression of C4 is inducible or enhanced by gamma-interferon. The liver is the main organ that synthesizes and secretes C4A and C4B to the circulation but there are many extra-hepatic sites producing moderate quantities of C4 for local defense. The plasma protein levels of C4A and C4B are mainly determined by the corresponding gene dosage. However, C4B proteins encoded by monomodular short genes may have relatively higher concentrations than those from long C4A genes. The 5' regulatory sequence of a C4 gene contains a Spl site, three E-boxes but no TATA box. The sequences beyond--1524 nt may be completely different as the C4 genes at RCCX module I have RPI-specific sequences, while those at Modules II, III and IV have TNXA-specific sequences. The remarkable genetic diversity of human C4A and C4B probably promotes the exchange of genetic information to create and maintain the quantitative and qualitative variations of C4A and C4B proteins in the population, as driven by the selection pressure against a great variety of microbes. An undesirable accompanying byproduct of this phenomenon is the inherent deleterious recombinations among the RCCX constituents leading to autoimmune and genetic disorders.
Collapse
Affiliation(s)
- C A Blanchong
- Children's Research Institute, 700 Children's Drive, Columbus, OH 43205-2696, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Isaac L, Isenman D. Structural requirements for thioester bond formation in human complement component C3. Reassessment of the role of thioester bond integrity on the conformation of C3. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50200-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Taniguchi-Sidle A, Isenman DE. Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18). J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48541-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Affiliation(s)
- R B Sim
- Department of Biochemistry, Oxford University, UK
| | | |
Collapse
|
19
|
Sim E, Stanley L, Gill EW, Jones A. Metabolites of procainamide and practolol inhibit complement components C3 and C4. Biochem J 1988; 251:323-6. [PMID: 2456755 PMCID: PMC1149005 DOI: 10.1042/bj2510323] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drug-induced systemic lupus erythematosus arises from toxic side-effects of administration of hydralazine, isoniazid, procainamide and practolol. Hydralazine and isoniazid are nucleophilic drugs and inhibit the covalent binding reaction of complement components, C3 and C4, an effect likely to lead to deposition of immune complexes (a feature of systemic lupus erythematosus). Procainamide and practolol do not themselves inhibit C3 and C4. A range of metabolites and putative metabolites of procainamide and practolol were synthesized, and tested for their ability to inhibit the covalent binding reactions of C3 and C4. The highly nucleophilic hydroxylamine metabolite of procainamide was strongly inhibitory in both tests, as was a putative hydroxylamine metabolite of practolol. These studies indicate a potential role for the hydroxylamine metabolites in mediating the toxic side-effects of procainamide and practolol, and emphasize the need for adequate measurements of hydroxylamine metabolites in human tissue.
Collapse
Affiliation(s)
- E Sim
- Department of Pharmacology, University of Oxford, U.K
| | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
Bellotti V, Arosio P, Cazzola M, Cozzi A, Levi S, Meloni F, Zoppone E. Characteristics of a ferritin-binding protein present in human serum. Br J Haematol 1987; 65:489-93. [PMID: 3580307 DOI: 10.1111/j.1365-2141.1987.tb04156.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ferritin present in human serum differs from the ferritins found in tissues and other body fluids in having negligible proportions of H subunits. This has been related to the possible presence of binding factors which would form complexes with H-subunit containing ferritins and thereby determine their rapid clearance and/or interference with immunoassays ('serum inhibition'). In this work we have tried to identify and characterize these binding factors. Dotting and blotting experiments demonstrated an interaction between tissue ferritins and human serum. This was stronger with human heart and recombinant H-type ferritin obtained from E. coli than with human liver ferritin. The serum binder appeared to be a glycoprotein migrating in the beta-2 region and with a molecular weight of about 200,000 and pI between 4 and 5. Two different approaches to purification of the ferritin-binding protein yielded enriched fractions containing also the complement proteins C3 and C4, the plasma protease inhibitor alpha-2-macroglobulin, and immunoglobulins. These in vitro findings may have physiological relevance.
Collapse
|
23
|
Folkersen J, Sim RB, Sottrup-Jensen L, Svehag SE. Application of the immunoblotting technique to the study of single protein species in complex biological fluids: A model study with alpha-2-macroglobulin. Electrophoresis 1985. [DOI: 10.1002/elps.1150060506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Fontaine M, Sim RB. Localisation of a group of antigenic sites in complement component C3, and identification of a new fragmentation pattern. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 789:119-27. [PMID: 6206896 DOI: 10.1016/0167-4838(84)90195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Immunisation of rabbits or goats with denaturated human C3 reproducibly gives rise to an antiserum of restricted specificity which precipitates native C3, C3b and iC3b, but not C3c or C3d isolated from 'aged' serum. The antigenic sites recognised by the antiserum appear to be localised in a small segment of the polypeptide chain located close to the N-terminus of the C3b alpha' chain. Affinity chromatography using antibodies developed by this procedure reveals an unusual pattern of degradation of C3 which occurs on conventional 'ageing' of serum at 37 degrees C.
Collapse
|
25
|
Porter RR. The complement components of the major histocompatibility locus. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1984; 16:1-19. [PMID: 6232112 DOI: 10.3109/10409238409102804] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymorphism of complement components, recognized by differences in either their antigenic specificity or their electrophoretic mobility, together with studies of inherited deficiencies, has enabled many of their structural genes to be mapped. In humans, three genes (for C2, C4, and factor B) have been placed between HLA-D and HLA-B on chromosome 6 and in mice, C4 between H2-I and H2-D, chromosome 17. Structural studies show that these components have exceptional features. C2 and factor B which contain the proteolytic active site of the C3 and C5 convertases are of the classical and alternative pathway respectively and are similar in structure and function. Both are novel types of serine proteases. C4 (as C3) contains an intrachain thioester bond essential for hemolytic activity. Molecular genetic investigations are determining the relative positions of these genes, and their precise structure, and should clarify their relation to the inherited diseases which are associated with defects in this section of the human genome.
Collapse
|
26
|
Karp DR. Post-translational modification of the fourth component of complement. Effect of tunicamycin and amino acid analogs on the formation of the internal thiol ester and disulfide bonds. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43889-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Sim RB, Sim E. Autolytic fragmentation of complement components C3 and C4 and its relationship to covalent binding activity. Ann N Y Acad Sci 1983; 421:259-76. [PMID: 6202197 DOI: 10.1111/j.1749-6632.1983.tb18114.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The autolytic cleavage reaction of C3 and C4 and the covalent binding reaction of these proteins, are both aspects of the reactivity of an activated thiolester within these proteins. Autolytic cleavage occurs by internal nucleophilic attack on one face of the planar thiolester, while the covalent binding reaction of the activated proteins follows exposure of the opposite face of the thiolester to attack by external nucleophiles. Although the autolytic cleavage reaction does not occur under physiological conditions, the study of this phenomenon has provided valuable evidence in support of the mechanisms postulated for the physiological covalent binding reactions. The ease with which autolysis can be induced and observed in C3, C4, and alpha 2 M has provided a valuable method for detecting the active forms of these proteins in circumstances where other assays are impracticable, as, for example, in the examination of the uptake of active C3 by lymphocytes. Autolytic cleavage has also been used by Karp and colleagues to produce fragments used in characterizing genetic and biosynthetic variants of mouse C4 and the mouse protein Slp, which is structurally similar to C4. Gross structural comparisons made among C3, C4, and alpha 2 M on the basis of alignment of the autolytic cleavage sites and the protease-activation sites in these proteins were useful in predicting how the alpha-, beta-, and gamma-chains of C4, or the alpha- and beta-chains of C3, were aligned in the single polypeptide chain pro-forms of these proteins. The beta-alpha-gamma alignment deduced for C4 was also found by Goldberger and Colten. Similar alignments of cleavage sites have been used as a basis for evolutionary comparisons of complement proteins and alpha 2 M from species other than man. Although autolytic cleavage has been described only for C3, C4, alpha 2 M, and Slp, it is likely that other proteins will be found that exhibit this phenomenon. A possible candidate is pregnancy-associated plasma protein A (PAPP-A) which resembles alpha 2 M in many respects. The autolytic cleavage reaction will serve as a useful indicator in the detection of other proteins that undergo covalent binding by the mechanism discussed above.
Collapse
|
28
|
Janatova J. The third (C3) and the fourth (C4) components of complement: labile binding site and covalent bond formation. Ann N Y Acad Sci 1983; 421:218-34. [PMID: 6586100 DOI: 10.1111/j.1749-6632.1983.tb18111.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Tack BF. The beta-Cys-gamma-Glu thiolester bond in human C3, C4, and alpha 2-macroglobulin. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1983; 6:259-82. [PMID: 6198737 DOI: 10.1007/bf02116276] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
|
31
|
Karp DR. Post-translational modification of the fourth component of complement. Sulfation of the alpha-chain. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44025-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Abstract
The covalent binding of [3H]glycerol to C3 by the transfer of the acyl group of the internal thioester of C3 to the hydroxy group of glycerol can be activated either proteolytically by trypsin or by various chaotropes and denaturants. The activation of binding by trypsin or KBr showed similar dependence on the concentration of glycerol, indicating a similar activation mechanism. It is therefore concluded that the conformational change of the protein is the critical step in the binding reaction, and that the conversion of C3 into C3b under physiological conditions is only a means to induce the conformational change. Guanidinium chloride induces the binding of glycerol to C3 at concentrations of about 1 M. On increasing the concentration of guanidinium chloride the extent of binding declines and is accompanied by an increase in the autolytic cleavage reaction [Sim & Sim (1981) Biochem. J. 193, 129-141]. The autolytic cleavage reaction is therefore not independently activated with respect to the binding reaction. Its occurrence, however, is structurally restricted under physiological or limited denaturing conditions and is permissible only when C3 is brought to a higher denaturation state.
Collapse
|
33
|
Karp DR, Shreffler DC, Atkinson JP. Characterization of the Mr difference between secreted murine fourth component of complement and the major plasma form: evidence for carboxyl-terminal cleavage of the alpha chain. Proc Natl Acad Sci U S A 1982; 79:6666-70. [PMID: 6959144 PMCID: PMC347189 DOI: 10.1073/pnas.79.21.6666] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The alpha-chain of murine fourth component of complement (C4) secreted by cells in vitro and in vivo has a Mr that is larger by approximately equal to 4,000 than that of the alpha-chain of the principal form of C4 in plasma. By using in vivo labeling of C4 with [35S]methionine, C4 was shown to be first synthesized with the higher Mr ("secreted") alpha-chain, which was then quickly processed (t1/2 approximately equal to 1 hr) extracellularly to the mature ("plasma") C4 possessing the lower Mr alpha-chain. Both forms of C4 were functional as assayed by the ability of their alpha-chains to be cleaved by the protease C1, to bind methylamine, and to undergo denaturation-dependent autolysis. When secreted C4 and plasma C4 were activated to C4b, the Mr difference of 4,000 was maintained in the alpha'-chains. The Mr difference was localized to the carboxyl-terminal autolytic fragment of the alpha-chain and was unaffected by the removal of carbohydrate. C4 from resident peritoneal macrophage cultures could be converted to the plasma form by incubation with heparin/plasma. This conversion could be blocked by EDTA or 1,10-phenanthroline. These data suggest that an enzyme, presumably a neutral proteinase present in mouse plasma, cleaves the carboxyl terminus of newly synthesized C4 alpha-chains, thereby creating the major form of C4 in plasma.
Collapse
|
34
|
Covalent modification of fourth component of human complement with primary amines. Binding studies with metastable fragment C4b and with C4. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33915-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Thomas ML, Janatova J, Gray WR, Tack BF. Third component of human complement: localization of the internal thiolester bond. Proc Natl Acad Sci U S A 1982; 79:1054-8. [PMID: 6175959 PMCID: PMC345898 DOI: 10.1073/pnas.79.4.1054] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human complement protein C3 was inactivated by using methylamine and thereby generating a SH group from the internal thiol ester. The protein was coupled via this SH group to activated thiol-Sepharose and digested with elastase. Fragment C3d remained attached to the thiol-Sepharose and was subsequently eluted with L-cysteine. Concomitantly, the original SH group was regenerated, and it was then labeled with iodo[2-(3)H]acetic acid. Partial sequence analysis of the radiolabeled C3d fragment showed that both components of the thiol ester are located close to the amino terminus (residues 23 and 26). Specific chemical cleavage of the alpha-chain was achieved after S-cyanylation of the thiol. The two fragments obtained corresponded to the amino-terminal section (M(r) approximately 46,000) and the carboxy-terminal section (M(r) approximately 70,000). These results together indicate that fragment C3d occupies approximately positions 345-610 of the alpha-chain. The partial sequence of C3d was extended by completion of the sequence of a previously described tryptic peptide. Comparison of residues 1-49 of C3d with a peptide from alpha(2)-macroglobulin [Swenson, R. P. & Howard, J. B. (1980) J. Biol. Chem. 255, 8087-8091] shows a previously recognized identity of seven residues around the thiol ester site and a second region of identity around a known glycosylation site of alpha(2)-macroglobulin. The relationships among these proteins and protein C4 are discussed. An overall outline of the structure of C3 is presented, showing the locations of various fragments and cleavage sites. The thiol ester group places constraints on the local folding of the peptide chain; a possible conformation is suggested and discussed in relation to the mechanism of activation.
Collapse
|
36
|
Campbell RD, Gagnon J, Porter RR. Amino acid sequence around the thiol and reactive acyl groups of human complement component C4. Biochem J 1981; 199:359-70. [PMID: 6978711 PMCID: PMC1163379 DOI: 10.1042/bj1990359] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activation of the fourth component of complement (C4) by C1s results in the generation of a reactive acyl group, able to react with putrescine, and in the release of a free thiol group that cannot be detected in the native haemolytically active molecule. Both the reactive acyl group and the free thiol group have been shown to reside in C4d, a fragment of the alpha'-chain of C4b derived from digestion of the molecule with the control proteins C3b inactivator and C4-binding protein. Peptides derived from CNBr digestion of [1,4-14C]putrescine-labelled and iodo(2-14C]acetic acid-labelled C4d have been obtained and used to establish a continuous sequence of 88 residues from the N-terminus of the molecule. The thiol and reactive acyl groups are contained in an octapeptide that shows near identity with the equivalent sequences reported for alpha 2-macroglobulin and C3. Other adjacent short sections also show homology of sequence between the three proteins, and it is highly likely that they contribute to the overall structure that gives a unique reactivity to the thiol ester bond postulated to exist in the native forms of the three proteins.
Collapse
|