1
|
Bruštíková K, Ryabchenko B, Liebl D, Horníková L, Forstová J, Huérfano S. BK Polyomavirus Infection of Bladder Microvascular Endothelial Cells Leads to the Activation of the cGAS-STING Pathway. J Med Virol 2024; 96:e70038. [PMID: 39487659 PMCID: PMC11600483 DOI: 10.1002/jmv.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
BK polyomavirus (BKPyV) infection in humans is usually asymptomatic but ultimately results in viral persistence. In immunocompromised hosts, virus reactivation can lead to nephropathy or hemorrhagic cystitis. The urinary tract serves as a silent reservoir for the virus. Recently, it has been demonstrated that human bladder microvascular endothelial cells (HBMVECs) serve as viral reservoirs, given their unique response to infection, which involves interferon (IFN) production. The aim of the present study was to better understand the life cycle of BKPyV in HBMVECs, uncover the molecular pathway leading to IFN production, and to identify the connection between the viral life cycle and the activation of the IFN response. Here, in the early stage of infection, BKPyV virions were found in internalized monopinocytic vesicles, while later they were detected in late endosomes, lysosomes, tubuloreticular structures, and vacuole-like vesicles. The production of viral progeny in these cells started at 36 h postinfection. Increased cell membrane permeability and peaks of virion release coincided with the leakage of viral and cellular DNA into the cytosol at approximately 60 h postinfection. Leaked DNA colocalized with and activated cGAS, leading to the activation of STING and the consequent transcription of IFNB and IFN-related genes; in contrast, the IFN response was attenuated by exposure to the cGAS inhibitor, G140. These findings highlight the importance of the cGAS-STING pathway in the innate immune response of HBMVECs to BKPyV.
Collapse
Affiliation(s)
- Kateřina Bruštíková
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - David Liebl
- Imaging Methods, Core Facility, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of ScienceCharles University, BIOCEVVestecCzech Republic
| |
Collapse
|
2
|
Helle F, Brochot E, Handala L, Martin E, Castelain S, Francois C, Duverlie G. Biology of the BKPyV: An Update. Viruses 2017; 9:v9110327. [PMID: 29099746 PMCID: PMC5707534 DOI: 10.3390/v9110327] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
The BK virus (BKPyV) is a member of the Polyomaviridae family first isolated in 1971. BKPyV causes frequent infections during childhood and establishes persistent infections with minimal clinical implications within renal tubular cells and the urothelium. However, reactivation of BKPyV in immunocompromised individuals may cause serious complications. In particular, with the implementation of more potent immunosuppressive drugs in the last decade, BKPyV has become an emerging pathogen in kidney and bone marrow transplant recipients where it often causes associated nephropathy and haemorrhagic cystitis, respectively. Unfortunately, no specific antiviral against BKPyV has been approved yet and the only therapeutic option is a modulation of the immunosuppressive drug regimen to improve immune control though it may increase the risk of rejection. A better understanding of the BKPyV life cycle is thus needed to develop efficient treatment against this virus. In this review, we provide an update on recent advances in understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Francois Helle
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Etienne Brochot
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Lynda Handala
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Elodie Martin
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Sandrine Castelain
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Catherine Francois
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| | - Gilles Duverlie
- EA4294, Unité de Virologie Clinique et Fondamentale, Centre Universitaire de Recherche en Santé, Centre Hospitalier Universitaire et Université de Picardie Jules Verne, 80054 Amiens, France.
| |
Collapse
|
3
|
Trofe J, Gordon J, Roy-Chaudhury P, Koralnik IJ, Atwood WJ, Alloway RR, Khalili K, Woodle ES. Polyomavirus Nephropathy in Kidney Transplantation. Prog Transplant 2016; 14:130-40; quiz 141-2. [PMID: 15264457 DOI: 10.1177/152692480401400207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polyomavirus nephropathy has become an important complication in kidney transplantation, with a prevalence of 1% to 8%. Unfortunately, the risk factors for polyomavirus nephropathy and renal allograft loss are not well defined. The definitive diagnosis is made through assessment of a kidney transplant biopsy. Recently, noninvasive urine and serum markers have been used to assist in polyomavirus nephropathy diagnosis and monitoring. Primary treatment is immunosuppression reduction, but must be balanced with the risks of rejection. No antiviral treatments for polyomavirus nephropathy have been approved by the Food and Drug Administration. Although cidofovir has shown in vitro activity against murine polyomaviruses, and has been effective in some patients, it is associated with significant nephrotoxicity. Graft loss due to polyomavirus nephropathy should not be a contraindication to retransplantation; however, experience is limited. This review presents potential risk factors, screening, diagnostic and monitoring methods, therapeutic management, and retransplantation experience for polyomavirus nephropathy.
Collapse
Affiliation(s)
- Jennifer Trofe
- University of Cincinnati, Division of Transplantation, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
5
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
6
|
Neu U, Allen SAA, Blaum BS, Liu Y, Frank M, Palma AS, Ströh LJ, Feizi T, Peters T, Atwood WJ, Stehle T. A structure-guided mutation in the major capsid protein retargets BK polyomavirus. PLoS Pathog 2013; 9:e1003688. [PMID: 24130487 PMCID: PMC3795024 DOI: 10.1371/journal.ppat.1003688] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types. Viruses need to bind to receptors on host cells for viral entry and infection, and the type of receptor bound determines the range of hosts and tissues the virus can infect. Viruses within a family often vary in their tissue distribution and pathogenicity because changes in receptor specificity can produce a virus with different spread and infectivity. In fact, many transmissions between species are based on a virus acquiring binding capability for a new receptor. The structural changes that underlie such receptor switching are not well understood. We have analyzed the structural requirements for receptor binding and switching of the human BK polyomavirus (BKPyV), the causative agent of polyomavirus-associated nephropathy. We show that BKPyV uses specific gangliosides that all contain a common α2,8-disialic acid motif to infect cells, and have characterized the interaction in atomic detail. Our data explains the requirement for this disialic acid motif and in particular highlights a single amino acid that is central to determining specificity. Mutation of this residue switches the receptor specificity, enabling BKPyV to infect cells bearing a different class of gangliosides. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.
Collapse
Affiliation(s)
- Ursula Neu
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Stacy-ann A. Allen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Bärbel S. Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- Department of Chemistry, University of Luebeck, Luebeck, Germany
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Angelina S. Palma
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Luisa J. Ströh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Peters
- Department of Chemistry, University of Luebeck, Luebeck, Germany
| | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- * E-mail: (WJA); (TS)
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (WJA); (TS)
| |
Collapse
|
7
|
A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. Eur J Clin Microbiol Infect Dis 2012; 32:207-26. [DOI: 10.1007/s10096-012-1733-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/27/2022]
|
8
|
Jeffers L, Webster-Cyriaque JY. Viruses and salivary gland disease (SGD): lessons from HIV SGD. Adv Dent Res 2011; 23:79-83. [PMID: 21441486 DOI: 10.1177/0022034510396882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viral infections are often associated with salivary gland pathology. Here we review the pathogenesis of HIV-associated salivary gland disease (HIV-SGD), a hallmark of diffuse infiltrative lymphocytosis syndrome. We investigate the presence and contributions of viral diseases to the pathogenesis of salivary gland diseases, particularly HIV-SGD. We have detected BK viral shedding in the saliva of HIV-SGD patients consistent with viral infection and replication, suggesting a role for oral transmission. For further investigation of BKV pathogenesis in salivary glands, an in vitro model of BKV infection is described. Submandibular (HSG) and parotid (HSY) gland salivary cell lines were capable of permissive BKV infection, as determined by BKV gene expression and replication. Analysis of these data collectively suggests the potential for a BKV oral route of transmission and salivary gland pathogenesis within HIV-SGD.
Collapse
Affiliation(s)
- L Jeffers
- School of Dentistry, Department of Dental Ecology, University of North Carolina at Chapel Hill, NC, USA.
| | | |
Collapse
|
9
|
Prosser S, Hariharan S. Pathogenesis of BK virus infection after renal transplantation. Expert Rev Clin Immunol 2010; 2:833-7. [PMID: 20476968 DOI: 10.1586/1744666x.2.6.833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Tremolada S, Delbue S, Larocca S, Carloni C, Elia F, Khalili K, Gordon J, Ferrante P. Polymorphisms of the BK virus subtypes and their influence on viral in vitro growth efficiency. Virus Res 2010; 149:190-6. [PMID: 20138933 DOI: 10.1016/j.virusres.2010.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
The major capsid protein, VP1, of the human polyomavirus BK (BKV) is structurally divided into five outer loops, referred to as BC, DE, EF, GH, and HI. The BC loop includes a short region, named the BKV subtyping region, spanning nucleotides 1744-1812 and characterized by non-synonymous nucleotide polymorphisms that have been used to classify different strains of BKV into four subtypes. The aim of this study was to determine if the nucleotide changes clustered within the BKV subtyping region may influence the in vitro growth efficiency of the virus. We therefore infected the African Green Monkey kidney cell line Vero with four different viral strains (named BKV I, II, III, and IV) that contained the nucleotide sequences of the BKV subtypes within the same genomic background. Infected cells were followed for 59 days and viral replication was assessed at different time points by quantitative real-time PCR (Q-PCR). BKV I, II, and IV were successfully propagated over time in Vero cells, whereas BKV III viral loads progressively decreased during the infection course, demonstrating that the non-synonymous nucleotide polymorphisms of subtype III confer a strong disadvantage for viral replication. Since subtype III differs from all the other subtypes at position 68 of the VP1, where Leu is replaced by Gln, we created viral strains bearing Gln at this position together with the polymorphisms of subtypes I, II, IV and tested their growth in Vero cells. Our results demonstrate that this amino acid substitution does not lower the replication efficiency of subtypes I, II, and IV. In conclusion, this study provides further insights to the importance of the BC loop of BKV in the virus life cycle. In addition, given the effect of the amino acid substitutions of the four BKV subtypes on infectious spread of the virus, our results suggest the need to investigate their potential association with BKV related complications.
Collapse
Affiliation(s)
- Sara Tremolada
- Department of Public Health - Microbiology - Virology, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeffers LK, Madden V, Webster-Cyriaque J. BK virus has tropism for human salivary gland cells in vitro: implications for transmission. Virology 2009; 394:183-93. [PMID: 19782382 DOI: 10.1016/j.virol.2009.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/28/2009] [Accepted: 07/14/2009] [Indexed: 01/06/2023]
Abstract
BACKGROUND In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. RESULTS BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BK virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. CONCLUSION We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.
Collapse
Affiliation(s)
- Liesl K Jeffers
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
12
|
Marra A, Moni L, Pazzi D, Corallini A, Bridi D, Dondoni A. Synthesis of sialoclusters appended to calix[4]arene platforms via multiple azide-alkyne cycloaddition. New inhibitors of hemagglutination and cytopathic effect mediated by BK and influenza A viruses. Org Biomol Chem 2008; 6:1396-409. [DOI: 10.1039/b800598b] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Dugan AS, Gasparovic ML, Tsomaia N, Mierke DF, O'Hara BA, Manley K, Atwood WJ. Identification of amino acid residues in BK virus VP1 that are critical for viability and growth. J Virol 2007; 81:11798-808. [PMID: 17699578 PMCID: PMC2168807 DOI: 10.1128/jvi.01316-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BK virus (BKV) is a ubiquitous pathogen that establishes a persistent infection in the urinary tract of 80% of the human population. Like other polyomaviruses, the major capsid protein of BKV, virion protein 1 (VP1), is critical for host cell receptor recognition and for proper virion assembly. BKV uses a carbohydrate complex containing alpha(2,3)-linked sialic acid attached to glycoprotein and glycolipid motifs as a cellular receptor. To determine the amino acids important for BKV binding to the sialic acid portion of the complex, we generated a series of 17 point mutations in VP1 and scored them for viral growth. The first set of mutants behaved identically to wild-type virus, suggesting that these amino acids were not critical for virus propagation. Another group of VP1 mutants rendered the virus nonviable. These mutations failed to protect viral DNA from DNase I digestion, indicating a role for these domains in capsid assembly and/or packaging of DNA. A third group of VP1 mutations packaged DNA similarly to the wild type but failed to propagate. The initial burst size of these mutations was similar to that of the wild type, indicating that there is no defect in the lytic release of the mutated virions. Binding experiments revealed that a subset of the BKV mutants were unable to attach to their host cells. These motifs are likely important for sialic acid recognition. We next mapped these mutations onto a model of BKV VP1 to provide atomic insight into the role of these sites in the binding of sialic acid to VP1.
Collapse
Affiliation(s)
- Aisling S Dugan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ashok A, Atwood WJ. Virus receptors and tropism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 577:60-72. [PMID: 16626027 DOI: 10.1007/0-387-32957-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyomaviruses are small, tumorigenic, nonenveloped viruses that infect several different species. Interaction of these viruses with cell surface receptors represents the initial step during infection of host cells. This interaction can be a major determinant of viral host and tissue tropism. This chapter reviews what is currently known about the cellular receptors for each of five polyomavirus family members: Mouse polyomavirus (PyV), JC virus (JCV), BK virus (BKV), Lymphotropic papovavirus (LPV) and Simian virus 40 (SV40). These polyomaviruses serve to illustrate the enormous diversity of virus-cell surface interactions and allow us to closely evaluate the role of receptors in their life cycles. The contribution of other factors such as transcriptional regulators and signaling pathways are also summarized.
Collapse
|
15
|
Gee GV, Dugan AS, Tsomaia N, Mierke DF, Atwood WJ. The role of sialic acid in human polyomavirus infections. Glycoconj J 2006; 23:19-26. [PMID: 16575519 DOI: 10.1007/s10719-006-5434-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.
Collapse
Affiliation(s)
- Gretchen V Gee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
BK virus (BKV) is a small, non-enveloped, double-stranded DNA virus and a member of the Polyomaviridae family. As the recently recognized etiologic agent of polyomavirus-associated nephropathy, the events involved in BKV invasion of host cells are an important area of study. Using cell culture models, the mechanism by which BKV infects permissive hosts to gain access to the replication machinery within these cells is beginning to unfold. BKV uses an N-linked glycoprotein containing an alpha(2,3)-linked sialic acid as a receptor. After this initial attachment, BKV enters cells through caveolae-mediated endocytosis. Intracellular trafficking via cellular cytoskeletal components follows this relatively slow and cholesterol-dependent internalization. BKV must reach the nucleus for viral transcription and replication to occur. Elucidating the steps of the early viral lifecycle would provide clues to help explain the infectious spread and pathology of this human pathogen.
Collapse
Affiliation(s)
- A S Dugan
- Graduate Program in Pathobiology, Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
17
|
Low JA, Magnuson B, Tsai B, Imperiale MJ. Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 2006; 80:1361-6. [PMID: 16415013 PMCID: PMC1346969 DOI: 10.1128/jvi.80.3.1361-1366.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gangliosides have been shown to be plasma membrane receptors for both murine polyomavirus and SV40, while JC virus uses serotonin receptors. In contrast, little is known of the membrane receptor and entry pathway for BK virus (BKV), which can cause severe disease in immunosuppressed bone marrow and renal transplant patients. Using sucrose flotation assays, we investigated BKV binding to and interaction with human erythrocyte membranes and determined that this interaction was dependent on a neuraminidase-sensitive, proteinase K-resistant molecule. BKV was found to interact with the gangliosides GT1b and GD1b. The terminal alpha2-8-linked disialic acid motif, present in both of these gangliosides, is likely to be important for this interaction. We also determined that the addition of GD1b and GT1b to LNCaP cells, which are normally resistant to BKV infection, made them susceptible to the virus. In addition, BKV interacted with membranes extracted from the endoplasmic reticulum (ER) and infection was blocked by the addition of brefeldin A, which interferes with transport from the ER to the Golgi apparatus. These data demonstrate that BKV uses the gangliosides GT1b and GD1b as receptors and passes through the ER on the way to the nucleus.
Collapse
Affiliation(s)
- Jonathan A Low
- Department of Microbiology and Immunology, University of Michigan Medical School, 1500 E. Medical Center Dr., 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | | | | | |
Collapse
|
18
|
Dugan AS, Eash S, Atwood WJ. An N-linked glycoprotein with alpha(2,3)-linked sialic acid is a receptor for BK virus. J Virol 2006; 79:14442-5. [PMID: 16254379 PMCID: PMC1280228 DOI: 10.1128/jvi.79.22.14442-14445.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BK virus (BKV) is a common human polyomavirus infecting >80% of the population worldwide. Infection with BKV is asymptomatic, but reactivation in renal transplant recipients can lead to polyomavirus-associated nephropathy. In this report, we show that enzymatic removal of alpha(2,3)-linked sialic acid from cells inhibited BKV infection. Reconstitution of asialo cells with alpha(2,3)-specific sialyltransferase restored susceptibility to infection. Inhibition of N-linked glycosylation with tunicamycin reduced infection, but inhibition of O-linked glycosylation did not. An O-linked-specific alpha(2,3)-sialyltransferase was unable to restore infection in asialo cells. Taken together, these data indicate that an N-linked glycoprotein containing alpha(2,3)-linked sialic acid is a critical component of the cellular receptor for BKV.
Collapse
Affiliation(s)
- Aisling S Dugan
- Graduate Program in Pathobiology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
19
|
Abstract
Posttransplant reactivation of BK virus (BKV) in the renal allograft progresses to polyomavirus-associated nephropathy in 1% to 8% of kidney recipients. Graft dysfunction and loss in 30% to 45% of polyomavirus-associated nephropathy-affected patients are secondary to extensive tubular epithelial cell injury induced by the lytic replication of BKV. The early events in productive BKV infection are not thoroughly understood. We have previously shown that BKV enters cells by caveola-mediated endocytosis. In this report we examine the role of microfilaments and microtubules during early viral infection. Our results show that BKV infection of Vero cells is sensitive to nocodazole-induced disassembly of the microtubule network for the initial 8 hours following virus binding. In contrast, suppression of microtubule turnover with the stabilizing agent paclitaxel has no effect on BKV infectivity. Selective disassembly of the actin filaments with latrunculin A does not impede BKV infection, while inhibition of microfilament dynamics with jasplakinolide results in reduced numbers of viral antigen-positive cells. These data demonstrate that BKV, like other polyomaviruses, relies on an intact microtubule network during early infection. BKV, however, does not share the requirement with the closely related JC virus for an intact actin cytoskeleton during intracellular transport.
Collapse
Affiliation(s)
- Sylvia Eash
- Graduate Program in Pathobiology, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | | |
Collapse
|
20
|
Abstract
Polyomavirus-associated nephropathy occurs in approximately 5% of renal transplant recipients and results in loss of graft function in 50 to 70% of these patients. The disease is caused by reactivation of the common human polyomavirus BK (BKV) in the transplanted kidney. The early events in productive BKV infection are unknown. In this report, we focus on elucidating the mechanisms of BKV internalization in its target cell. Our data reveal that BKV entry into permissive Vero cells is slow, is independent of clathrin-coated-pit assembly, is dependent on an intact caveolin-1 scaffolding domain, is sensitive to tyrosine kinase inhibition, and requires cholesterol. BKV colocalizes with the caveola-mediated endocytic marker cholera toxin subunit B but not with the clathrin-dependent endocytic marker transferrin. In addition, BKV infectious entry is sensitive to elevation in intracellular pH. These findings indicate that BKV entry into Vero cells occurs by caveola-mediated endocytosis involving a pH-dependent step.
Collapse
Affiliation(s)
- Sylvia Eash
- Graduate Program in Pathology, Department of Molecular Microbiology and Immunology, Brown University, Box G-B616, 171 Meeting St., Providence, RI 02912, USA
| | | | | |
Collapse
|
21
|
Tegerstedt K, Andreasson K, Vlastos A, Hedlund KO, Dalianis T, Ramqvist T. Murine pneumotropic virus VP1 virus-like particles (VLPs) bind to several cell types independent of sialic acid residues and do not serologically cross react with murine polyomavirus VP1 VLPs. J Gen Virol 2004; 84:3443-3452. [PMID: 14645925 DOI: 10.1099/vir.0.19443-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of murine pneumotropic virus (MPtV) major capsid protein VP1 to form virus-like particles (VLPs) was examined. MPtV-VLPs obtained were used to estimate the potential of MPtV to attach to different cells and to assess some characteristics of the MPtV cell receptor. Furthermore, to evaluate if MPtV-VLPs could potentially complement murine polyomavirus (MPyV) VP1 VLPs (MPyV-VLPs) as vectors for prime-boost gene therapy, the capability of MPtV-VLPs to serologically cross react with MPyV-VLPs and to transduce DNA into cells was examined. MPtV VP1 obtained in a recombinant baculovirus system formed MPtV-VLPs readily. MPtV-VLPs were shown by FACS analysis to bind to different cells, independent of MHC class I antigen expression. In addition, MPtV-VLPs did not cause haemagglutination of red blood cells and MPtV-VLP binding to cells was neuraminidase resistant but mostly trypsin and papain sensitive, indicating that the MPtV receptor lacks sialic acid components. When tested by ELISA and in vivo neutralization assays, MPtV-VLPs did not serologically cross react with MPyV-VLPs, suggesting that MPtV-VLPs and MPyV-VLPs could potentially be interchanged as carriers of DNA in repeated gene therapy. Finally, MPtV-VLPs were shown to transduce foreign DNA in vitro and in vivo. In conclusion, the data suggest that MPtV-VLPs, and possibly also MPtV, bind to several different cell types, that binding is neuraminidase resistant and that MPtV-VLPs should potentially be able to complement MPyV-VLPs for prime-boost gene transfer in vivo.
Collapse
Affiliation(s)
- K Tegerstedt
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska R8 : 01, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - K Andreasson
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska R8 : 01, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - A Vlastos
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska R8 : 01, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - K O Hedlund
- Swedish Institute for Infectious Disease Control and Microbiology and Tumor Biology Center, Karolinska Institute, SE-171 82 Solna, Sweden
| | - T Dalianis
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska R8 : 01, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| | - T Ramqvist
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska R8 : 01, Karolinska Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
22
|
Abstract
Sialic acids (Sias) are terminal components of many glycoproteins and glycolipids especially of higher animals. In this exposed position they contribute significantly to the structural properties of these molecules, both in solution and on cell surfaces. Therefore, it is not surprising that Sias are important regulators of cellular and molecular interactions, in which they play a dual role. They can either mask recognition sites or serve as recognition determinants. Whereas the role of Sias in masking and in binding of pathogens to host cells has been documented over many years, their role in nonpathological cellular interaction has only been shown recently. The aim of this chapter is to summarize our knowledge about Sias in masking, for example, galactose residues, and to review the progress made during the past few years with respect to Sias as recognition determinants in the adhesion of pathogenic viruses, bacteria, and protozoa, and particularly as binding sites for endogenous cellular interaction molecules. Finally, perspectives for future research on these topics are discussed.
Collapse
Affiliation(s)
- S Kelm
- Biochemisches Institut, University of Kiel, Germany
| | | |
Collapse
|
23
|
Keppler OT, Stehling P, Herrmann M, Kayser H, Grunow D, Reutter W, Pawlita M. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J Biol Chem 1995; 270:1308-14. [PMID: 7836396 DOI: 10.1074/jbc.270.3.1308] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sialic acids are essential components of the cell surface receptors of many microorganisms including viruses. A synthetic, N-substituted D-mannosamine derivative has been shown to act as precursor for structurally altered sialic acid incorporated into glycoconjugates in vivo (Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., and Reutter, W. (1992) J. Biol. Chem. 267, 16934-16938). In this study we have analyzed the potential of three different sialic acid precursor analogues to modulate sialic acid-dependent virus receptor function on different cells. We show that treatment with these D-mannosamine derivatives can result in the structural modification of about 50% of total cellular sialic acid content. Treatment interfered drastically and specifically with sialic acid-dependent infection of two distinct primate polyoma viruses. Both inhibition (over 95%) and enhancement (up to 7-fold) of virus binding and infection were observed depending on the N-acyl substitution at the C-5 position of sialic acid. These effects were attributed to the synthesis of metabolically modified, sialylated virus receptors, carrying elongated N-acyl groups, with altered binding affinities for virus particles. Thus, the principle of biosynthetic modification of sialic acid by application of appropriate sialic acid precursors to tissue culture or in vivo offers new means to specifically influence sialic acid-dependent ligand-receptor interactions and could be a potent tool to further clarify the biological functions of sialic acid, in particular its N-acyl side chain.
Collapse
Affiliation(s)
- O T Keppler
- Angewandte Tumorvirologie (ATV), Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Haun G, Keppler OT, Bock CT, Herrmann M, Zentgraf H, Pawlita M. The cell surface receptor is a major determinant restricting the host range of the B-lymphotropic papovavirus. J Virol 1993; 67:7482-7492. [PMID: 8230469 PMCID: PMC238214 DOI: 10.1128/jvi.67.12.7482-7492.1993] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The B-lymphotropic papovavirus (LPV) productively infects only a subset of human B-lymphoma-derived cell lines while transfection of the viral genome yields infectious viral particles in a much wider variety of human hematopoietic cell lines. We have analyzed the contribution of a putative LPV receptor on the cell surface of B-cell lines in restricting the virus host range. In order to establish a quantitative virus binding assay for LPV, infectious virus particles were highly purified by metrizamide equilibrium density centrifugation and used as immunogens to raise seven mouse monoclonal antibodies specific for LPV VP1. Virus particle binding was quantitated in an indirect, nonradioactive assay with an LPV VP1-specific enzyme-linked immunosorbent assay. Binding of LPV particles to permissive human B-lymphoma cell line BJA-B occurred within minutes. Kinetics and capacity of binding were similar at 4 and 37 degrees C. A BJA-B cell was estimated to bind approximately 600 virus particles at conditions under which 50% of the administered virus was bound. The sialidase and trypsin sensitivities of the cellular virus binding moiety show that sialylated and proteinaceous components are necessary components of the LPV receptor on BJA-B cells. Despite a high binding capacity of BJA-B cells for simian virus 40, LPV binding was not significantly affected by a 20-fold excess of simian virus 40 particles, indicating that these related polyomaviruses do not bind to the same receptor on BJA-B cells. Reduction of LPV binding to sialidase-pretreated BJA-B cells was accompanied by a similar reduction of infection, indicating that virus binding may be a limiting factor in the LPV replicative cycle. The two highly LPV-permissive human B-lymphoma cell lines BJA-B and Namalwa displayed high virus binding whereas low and nonpermissive hematopoietic cell lines showed reduced or undetectable virus binding. We conclude that the inability of LPV particles to productively infect the nonpermissive human hematopoietic cell lines analyzed is probably due to the absence or insufficient expression of a functional cell surface receptor.
Collapse
Affiliation(s)
- G Haun
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Parfenov ÉA, Smirnov LD. Successes and perspectives in the creation of therapeutic preparations based on ascorbic acid (review). Pharm Chem J 1992. [DOI: 10.1007/bf00770608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|