1
|
A Glucokinase-linked Sensor in the Taste System Contributes to Glucose Appetite. Mol Metab 2022; 64:101554. [PMID: 35870707 PMCID: PMC9399534 DOI: 10.1016/j.molmet.2022.101554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/23/2023] Open
Abstract
Objectives Dietary glucose is a robust elicitor of central reward responses and ingestion, but the key peripheral sensors triggering these orexigenic mechanisms are not entirely known. The objective of this study was to determine whether glucokinase, a phosphorylating enzyme with known glucosensory roles, is also expressed in taste bud cells and contributes to the immediate hedonic appeal of glucose-containing substances. Methods and results Glucokinase (GCK) gene transcripts were localized in murine taste bud cells with RNAScope®, and GCK mRNA was found to be upregulated in the circumvallate taste papillae in response to fasting and after a period of dietary access to added simple sugars in mice, as determined with real time-qPCR. Pharmacological activation of glucokinase with Compound A increased primary taste nerve and licking responses for glucose but did not impact responsivity to fructose in naïve mice. Virogenetic silencing of glucokinase in the major taste fields attenuated glucose-stimulated licking, especially in mice that also lacked sweet receptors, but did not disrupt consummatory behaviors for fructose or the low-calorie sweetener, sucralose in sugar naïve mice. Knockdown of lingual glucokinase weakened the acquired preference for glucose over fructose in sugar-experienced mice in brief access taste tests. Conclusions Collectively, our data establish that glucokinase contributes to glucose appetition at the very first site of nutrient detection, in the oral cavity. The findings expand our understanding of orosensory inputs underlying nutrition, metabolism, and food reward. Glucokinase is expressed in the taste bud cells. Gustatory glucokinase is upregulated by energy deficit and regular consumption of simple sugars. Gustatory glucokinase is required for normal glucose taste detection and contributes to the hedonic appeal of this nutrient.
Collapse
|
2
|
Shintani T, Yamada T, Hayashi N, Iida T, Nagata Y, Ozaki N, Toyoda Y. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2888-2894. [PMID: 28209058 DOI: 10.1021/acs.jafc.6b05627] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p < 0.05). The glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p < 0.05). At 30, 60, and 90 min, the levels of insulin in the RSS group were significantly lower than those in the water group (p < 0.05). The amount of hepatic glycogen was more than 3 times higher in the RSS group than that in the other groups. After glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.
Collapse
Affiliation(s)
- Tomoya Shintani
- Research and Development, Matsutani Chemical Industry Company, Limited , 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan
| | - Takako Yamada
- Research and Development, Matsutani Chemical Industry Company, Limited , 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan
| | - Noriko Hayashi
- Research and Development, Matsutani Chemical Industry Company, Limited , 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan
| | - Tetsuo Iida
- Research and Development, Matsutani Chemical Industry Company, Limited , 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan
| | - Yasuo Nagata
- Center for Industry, University and Government Cooperation, Nagasaki University , 1-14 Bunkyo-machi, Nagasaki 852-9521, Japan
| | - Nobuaki Ozaki
- Japanese Red Cross Nagoya Daiichi Hospital , 3-35 Michishita, Nakamuraku-ku, Nagoya, Aichi 453-8511, Japan
| | - Yukiyasu Toyoda
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University , 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi468-8503, Japan
| |
Collapse
|
3
|
Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, Nagata Y, Tokuda M. Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharmacol Ther 2015; 155:49-59. [PMID: 26297965 DOI: 10.1016/j.pharmthera.2015.08.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 01/22/2023]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are the leading worldwide risk factors for mortality. The inextricably interlinked pathological progression from excessive weight gain, obesity, and hyperglycemia to T2DM, usually commencing from obesity, typically originates from overconsumption of sugar and high-fat diets. Although most patients require medications, T2DM is manageable or even preventable with consumption of low-calorie diet and maintaining body weight. Medicines like insulin, metformin, and thiazolidinediones that improve glycemic control; however, these are associated with weight gain, high blood pressure, and dyslipidemia. These situations warrant the attentive consideration of the role of balanced foods. Recently, we have discovered advantages of a rare sugar, D-allulose, a zero-calorie functional sweetener having strong anti-hyperlipidemic and anti-hyperglycemic effects. Study revealed that after oral administration in rats D-allulose readily entered the blood stream and was eliminated into urine within 24h. Cell culture study showed that D-allulose enters into and leaves the intestinal enterocytes via glucose transporters GLUT5 and GLUT2, respectively. In addition to D-allulose's short-term effects, the characterization of long-term effects has been focused on preventing commencement and progression of T2DM in diabetic rats. Human trials showed that D-allulose attenuates postprandial glucose levels in healthy subjects and in borderline diabetic subjects. The anti-hyperlipidemic effect of D-allulose, combined with its anti-inflammatory actions on adipocytes, is beneficial for the prevention of both obesity and atherosclerosis and is accompanied by improvements in insulin resistance and impaired glucose tolerance. Therefore, this review presents brief discussions focusing on physiological functions and potential benefits of D-allulose on obesity and T2DM.
Collapse
Affiliation(s)
- Akram Hossain
- Faculty of Medicine, Department of Cell Physiology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Fuminori Yamaguchi
- Faculty of Medicine, Department of Cell Physiology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Tatsuhiro Matsuo
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Ikuko Tsukamoto
- Faculty of Medicine, Department of Pharmacobioinformatics, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yukiyasu Toyoda
- Faculty of Pharmacy, Department of Pathobiochemistry, Meijo University, Tempaku-ku, Nagoya, Aichi, Japan
| | - Masahiro Ogawa
- Faculty of Agriculture, Department of Applied Biological Science, Kagawa University, 2393 Ikenobe, Miki-cho, Kagawa-gun 76100795, Japan
| | - Yasuo Nagata
- Department of Nutrition, University of Nagasaki, Siebold, 1-1-1 Manabino, Nagayo-cho, Nishisonogi-gun, Nagasaki 859-2195, Japan
| | - Masaaki Tokuda
- Faculty of Medicine, Department of Cell Physiology, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| |
Collapse
|
4
|
Raimondo A, Rees MG, Gloyn AL. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr Opin Lipidol 2015; 26:88-95. [PMID: 25692341 PMCID: PMC4422901 DOI: 10.1097/mol.0000000000000155] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW Glucokinase regulator (GCKR) encodes glucokinase regulatory protein (GKRP), a hepatocyte-specific inhibitor of the glucose-metabolizing enzyme glucokinase (GCK). Genome-wide association studies have identified a common coding variant within GCKR associated with multiple metabolic traits. This review focuses on recent insights into the critical role of GKRP in hepatic glucose metabolism that have stemmed from the study of human genetics. This knowledge has improved our understanding of glucose and lipid physiology and informed the development of targeted molecular therapeutics for diabetes. RECENT FINDINGS Rare GCKR variants have effects on GKRP expression, localization, and activity. These variants are collectively associated with hypertriglyceridaemia but are not causal. Crystal structures of GKRP and the GCK-GKRP complex have been solved, providing greater insight into the molecular interactions between these proteins. Finally, small molecules have been identified that directly bind GKRP and reduce blood glucose levels in rodent models of diabetes. SUMMARY GCKR variants across the allelic spectrum have effects on glucose and lipid homeostasis. Functional analysis has highlighted numerous molecular mechanisms for GKRP dysfunction. Hepatocyte-specific GCK activation via small molecule GKRP inhibition may be a new avenue for type 2 diabetes treatment, particularly considering evidence indicating GKRP loss-of-function alone does not cause hypertriglyceridaemia.
Collapse
Affiliation(s)
- Anne Raimondo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Matthew G. Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Broad Institute, Cambridge, Massachusetts, USA
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, ORH Trust, OCDEM, Churchill Hospital, Oxford, UK
| |
Collapse
|
5
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
6
|
|
7
|
Watanabe F, Furuya E. Quantitative image analysis reveals that phosphorylation of liver-type isozyme of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase does not affect nuclear translocation of glucokinase in rat primary hepatocytes. J Biochem 2010; 148:713-9. [PMID: 20843823 DOI: 10.1093/jb/mvq107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a new quantification method to measure translocation of glucokinase between nucleus and cytoplasm in primary hepatocytes. The method is robust, reliable and sensitive with the use of a high content fluorescence microscope, which can analyse more than 20,000 hepatocytes under each experimental condition. Frequency distributions of the nuclear and cytoplasmic contents of glucokinase did not exhibit a Gaussian distribution. Moreover, the distributions have large standard deviation values compared with their average values. These results indicate that a large number of cells must be analysed for the accurate quantification. Glucose and sorbitol promoted the translocation of glucokinase from nucleus to cytoplasm. These results show good agreement with previous reports. However, glucagon did not affect the localization of glucokinase. Under the same conditions, liver-type isozyme of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F6P2K), whose dephosphorylated form has been proposed as a cytoplasmic binding protein with glucokinase, was completely phosphorylated. These results indicate that the phosphorylation and dephosphorylation of F6P2K does not have any appreciable effect on the intracellular localization of glucokinase.
Collapse
Affiliation(s)
- Fusao Watanabe
- Department of Chemistry, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, Japan.
| | | |
Collapse
|
8
|
Glial glucokinase expression in adult and post-natal development of the hypothalamic region. ASN Neuro 2010; 2:e00035. [PMID: 20531973 PMCID: PMC2881537 DOI: 10.1042/an20090059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/08/2010] [Accepted: 04/13/2010] [Indexed: 11/23/2022] Open
Abstract
It has recently been proposed that hypothalamic glial cells sense glucose levels and release lactate as a signal to activate adjacent neurons. GK (glucokinase), the hexokinase involved in glucose sensing in pancreatic β-cells, is also expressed in the hypothalamus. However, it has not been clearly determined if glial and/or neuronal cells express this protein. Interestingly, tanycytes, the glia that cover the ventricular walls of the hypothalamus, are in contact with CSF (cerebrospinal fluid), the capillaries of the arcuate nucleus and adjacent neurons; this would be expected for a system that can detect and communicate changes in glucose concentration. Here, we demonstrated by Western-blot analysis, QRT–PCR [quantitative RT–PCR (reverse transcription–PCR)] and in situ hybridization that GK is expressed in tanycytes. Confocal microscopy and immunoultrastructural analysis revealed that GK is localized in the nucleus and cytoplasm of β1-tanycytes. Furthermore, GK expression increased in these cells during the second week of post-natal development. Based on this evidence, we propose that tanycytes mediate, at least in part, the mechanism by which the hypothalamus detects changes in glucose concentrations.
Collapse
|
9
|
Futamura M, Hosaka H, Kadotani A, Shimazaki H, Sasaki K, Ohyama S, Nishimura T, Eiki JI, Nagata Y. An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J Biol Chem 2006; 281:37668-74. [PMID: 17028192 DOI: 10.1074/jbc.m605186200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase (GK) plays a key role in the control of blood glucose homeostasis. We identified a small molecule GK activator, compound A, that increased the glucose affinity and maximal velocity (V(max)) of GK. Compound A augmented insulin secretion from isolated rat islets and enhanced glucose utilization in primary cultured rat hepatocytes. In rat oral glucose tolerance tests, orally administrated compound A lowered plasma glucose elevation with a concomitant increase in plasma insulin and hepatic glycogen. In liver, GK activity is acutely controlled by its association to the glucokinase regulatory protein (GKRP). In order to decipher the molecular aspects of how GK activator affects the shuttling of GK between nucleus and cytoplasm, the effect of compound A on GK-GKRP interaction was further investigated. Compound A increased the level of cytoplasmic GK in both isolated rat primary hepatocytes and the liver tissues from rats. Experiments in a cell-free system revealed that compound A interacted with glucose-bound free GK, thereby impairing the association of GK and GKRP. On the other hand, compound A did not bind to glucose-unbound GK or GKRP-associated GK. Furthermore, we found that glucose-dependent GK-GKRP interaction also required ATP. Given the combined prominent role of GK on insulin secretion and hepatic glucose metabolism where the GK-GKRP mechanism is involved, activation of GK has a new therapeutic potential in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Mayumi Futamura
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Berradi H, Guy G, Rideau N. A glucokinase-like enzyme induced in Mule duck livers by overfeeding. Poult Sci 2004; 83:161-8. [PMID: 14979565 DOI: 10.1093/ps/83.2.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Mule duck develops a fatty liver in response to overfeeding, which results from a dramatic increase in de novo liver lipogenesis, and thus raises questions regarding the role of glucokinase (GK), a key enzyme regulating carbohydrate metabolism in mammals. However, the presence of GK in avian species is still a matter of debate. The aim of the present study was to characterize a GK-like protein (using an immunological technique) and a GK-like activity (using an enzymatic assay) in duck liver and to measure their respective variations during various stages of overfeeding. Duck liver protein cross-reacted with antibodies directed against mammalian GK yielding a band at 50 kDa, i.e., the same molecular weight as mammalian GK. The intensity of the signal varied significantly between overfed and control ducks but in opposing ways according to the GK antibodies used, which suggests the presence of 2 isoforms of GK in the duck liver as in mammals. Enzymatic analysis demonstrated the presence of glucose phosphorylation activity sensitive to high and low glucose concentrations (high/low ratio between 1.7 and 3.7) in the soluble and particulate fractions of liver homogenates. Glucokinase-like activity per milligram protein was strongly induced by overfeeding, and plasma insulin levels increased concomitantly. More than 80% of total GK-like activity was concentrated in the soluble component from 1 to 13 d of overfeeding. These results suggest that a GK-like enzyme may actively contribute to glucose disposal throughout the overfeeding period in Mule ducks fed a carbohydrate-rich diet.
Collapse
Affiliation(s)
- H Berradi
- Station de Recherches Avicoles, Institut National de la Recherche Agronomique, F37380, Nouzilly, France
| | | | | |
Collapse
|
11
|
Bogdarina I, Murphy HC, Burns SP, Clark AJL. Investigation of the role of epigenetic modification of the rat glucokinase gene in fetal programming. Life Sci 2004; 74:1407-15. [PMID: 14706571 DOI: 10.1016/j.lfs.2003.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal malnutrition is associated with development of impaired glucose tolerance, diabetes and hypertension in later life in humans and several mammalian species. The mechanisms that underlie this phenomenon of fetal programming are unknown. We hypothesize that adverse effects in utero and early life may influence the basal expression levels of certain genes such that they are re-set with long-term consequences for the organism. An excellent candidate mechanism for this re-setting process is DNA methylation, since post-natal methylation patterns are largely established in utero. We have sought to test this hypothesis by investigating the glucokinase gene (Gck) in rat offspring programmed using a maternal low protein diet model (MLP). Northern blot reveals that fasting levels of Gck expression are reduced after programming, although this distinction disappears after feeding. Bisulphite sequencing of the hepatic Gck promoter indicates a complete absence of methylation at the 12 CpG sites studied in controls and MLP animals. Non-expressing cardiac tissue also showed no DNA methylation in this region, whereas brain and all fetal tissues were fully methylated. These findings are not consistent with the hypothesis that programming results from differential methylation of Gck. However, it remains possible that programming may influence methylation patterns in Gck at a distance from the promoter, or in genes encoding factors that regulate basal Gck expression.
Collapse
Affiliation(s)
- Irina Bogdarina
- Department of Endocrinology, Barts and The London, Queen Mary University of London, EC1A 7BE, UK
| | | | | | | |
Collapse
|
12
|
Murphy HC, Regan G, Bogdarina IG, Clark AJL, Iles RA, Cohen RD, Hitman GA, Berry CL, Coade Z, Petry CJ, Burns SP. Fetal programming of perivenous glucose uptake reveals a regulatory mechanism governing hepatic glucose output during refeeding. Diabetes 2003; 52:1326-32. [PMID: 12765940 DOI: 10.2337/diabetes.52.6.1326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased hepatic gluconeogenesis maintains glycemia during fasting and has been considered responsible for elevated hepatic glucose output in type 2 diabetes. Glucose derived periportally via gluconeogenesis is partially taken up perivenously in perfused liver but not in adult rats whose mothers were protein-restricted during gestation (MLP rats)-an environmental model of fetal programming of adult glucose intolerance exhibiting diminished perivenous glucokinase (GK) activity. We now show that perivenous glucose uptake rises with increasing glucose concentration (0-8 mmol/l) in control but not MLP liver, indicating that GK is flux-generating. The data demonstrate that acute control of hepatic glucose output is principally achieved by increasing perivenous glucose uptake, with rising glucose concentration during refeeding, rather than by downregulation of gluconeogenesis, which occurs in different hepatocytes. Consistent with these observations, glycogen synthesis in vivo commenced in the perivenous cells during refeeding, MLP livers accumulating less glycogen than controls. GK gene transcription was unchanged in MLP liver, the data supporting a recently proposed posttranscriptional model of GK regulation involving nuclear-cytoplasmic transport. The results are pertinent to impaired regulation of hepatic glucose output in type 2 diabetes, which could arise from diminished GK-mediated glucose uptake rather than increased gluconeogenesis.
Collapse
Affiliation(s)
- Helena C Murphy
- Department of Diabetes and Metabolic Medicine, St. Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End, London E1 4NS, U.K
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gomis RR, Favre C, García-Rocha M, Fernández-Novell JM, Ferrer JC, Guinovart JJ. Glucose 6-phosphate produced by gluconeogenesis and by glucokinase is equally effective in activating hepatic glycogen synthase. J Biol Chem 2003; 278:9740-6. [PMID: 12519761 DOI: 10.1074/jbc.m212151200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose 6-phosphate (Glc-6-P) produced in cultured hepatocytes by direct phosphorylation of glucose or by gluconeogenesis from dihydroxyacetone (DHA) was equally effective in activating glycogen synthase (GS). However, glycogen accumulation was higher in hepatocytes incubated with glucose than in those treated with DHA. This difference was attributed to decreased futile cycling through GS and glycogen phosphorylase (GP) in the glucose-treated hepatocytes, owing to the partial inactivation of GP induced by glucose. Our results indicate that the gluconeogenic pathway and the glucokinase-mediated phosphorylation of glucose deliver their common product to the same Glc-6-P pool, which is accessible to liver GS. As observed in the treatment with glucose, incubation of cultured hepatocytes with DHA caused the translocation of GS from a uniform cytoplasmic distribution to the hepatocyte periphery and a similar pattern of glycogen deposition. We hypothesize that Glc-6-P has a major role in glycogen metabolism not only by determining the activation state of GS but also by controlling its subcellular distribution in the hepatocyte.
Collapse
Affiliation(s)
- Roger R Gomis
- Departament de Bioquimica i Biologia Molecular and the Institut de Recerca Biomèdica de Barcelona-Parc Cientific de Barcelona, Universitat de Barcelona, Barcelona E-08028, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Burns SP, Murphy HC, Iles RA, Bailey RA, Cohen RD. Hepatic intralobular mapping of fructose metabolism in the rat liver. Biochem J 2000; 349:539-45. [PMID: 10880353 PMCID: PMC1221177 DOI: 10.1042/0264-6021:3490539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Detailed mapping of glucose and lactate metabolism along the radius of the hepatic lobule was performed in situ in rat livers perfused with 1.5 mM lactate before and during the addition of 5 mM fructose. The majority of fructose uptake occurred in the periportal region; 45% of fructose taken up in the periportal half of the lobular volume being converted into glucose. Periportal lactate uptake was markedly decreased by addition of fructose. Basal perivenous lactate output, which was derived from glucose synthesized periportally, was increased in the presence of fructose. During fructose infusion there was a small decrease in cell pH periportally, but acidification of up to 0.5 pH units perivenously. The evidence suggests that in situ the apparent direct conversion of fructose into lactate represents, to a substantial extent, the result of periportal conversion of fructose into glucose and the subsequent uptake and glycolysis to lactate in the perivenous zone of some of that glucose. (31)P NMR spectroscopy showed that the cellular concentration of phosphomonoesters changes very little periportally during fructose infusion, but there was an approximate twofold increase perivenously, presumably due to the accumulation of fructose 1-phosphate. It may be inferred that fructokinase activity is expressed throughout the hepatic lobule.
Collapse
Affiliation(s)
- S P Burns
- Cell Regulation Unit, Department of Diabetes and Metabolic Medicine, 5th Floor Alexandra Wing, St Bartholomew's and The Royal London School of Medicine and Dentistry, Whitechapel Road, London E1 1BB, UK.
| | | | | | | | | |
Collapse
|
15
|
Toyoda Y, Ito Y, Tanigawa K, Miwa I. Impairment of glucokinase translocation in cultured hepatocytes from OLETF and GK rats, animal models of type 2 diabetes. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:243-8. [PMID: 10989935 DOI: 10.1679/aohc.63.243] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We examined sugar-induced translocation of glucokinase in cultured hepatocytes from Otsuka Long-Evans Tokushima Fatty and Goto-Kakizaki rats, animal models of type 2 diabetes, and compared this with that in Long-Evans Tokushima Otsuka and Wistar rats, respectively, as control strains. When hepatocytes from the four strains were incubated with 5 mM glucose, glucokinase was present predominantly in the nuclei. Higher concentrations of glucose, 5 mM glucose plus 1 mM fructose, and 5 mM glucose plus 1 mM sorbitol all induced the translocation of glucokinase from the nucleus to the cytoplasm in hepatocytes from these rats. The extent of glucokinase translocation under these conditions, however, was less marked in both diabetic rat types than in the control rats. The extent of the phosphorylation of glucose as estimated by the release of 3H2O from [2- 3H] glucose is significantly lower in Goto-Kakizaki rats than in Wistar rats. The results indicate that the translocation of glucokinase is impaired in the hepatocytes of diabetic rats. They also suggest that the impaired translocation of glucokinase is associated with abnormal hepatic glucose metabolism in type 2 diabetes.
Collapse
Affiliation(s)
- Y Toyoda
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | | | |
Collapse
|
16
|
Maekawa F, Toyoda Y, Torii N, Miwa I, Thompson RC, Foster DL, Tsukahara S, Tsukamura H, Maeda K. Localization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms. Endocrinology 2000; 141:375-84. [PMID: 10614660 DOI: 10.1210/endo.141.1.7234] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pancreatic glucokinase (GK) is considered an important element of the glucose-sensing unit in pancreatic beta-cells. It is possible that the brain uses similar glucose-sensing units, and we employed GK immunohistochemistry and confocal microscopy to examine the anatomical distribution of GK-like immunoreactivities in the rat brain. We found strong GK-like immunoreactivities in the ependymocytes, endothelial cells, and many serotonergic neurons. In the ependymocytes, the GK-like immunoreactivity was located in the cytoplasmic area, but not in the nucleus. The GK-positive ependymocytes were found to have glucose transporter-2 (GLUT2)-like immunoreactivities on the cilia. In addition, the ependymocytes had GLUT1-like immunoreactivity on the cilia and GLUT4-like immunoreactivity densely in the cytoplasmic area and slightly in the plasma membrane. In serotonergic neurons, GK-like immunoreactivity was found in the cytoplasm and their processes. The present results raise the possibility that these GK-like immunopositive cells comprise a part of a vast glucose-sensing mechanism in the brain.
Collapse
Affiliation(s)
- F Maekawa
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shiota C, Coffey J, Grimsby J, Grippo JF, Magnuson MA. Nuclear import of hepatic glucokinase depends upon glucokinase regulatory protein, whereas export is due to a nuclear export signal sequence in glucokinase. J Biol Chem 1999; 274:37125-30. [PMID: 10601273 DOI: 10.1074/jbc.274.52.37125] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic glucokinase (GK) moves between the nucleus and cytoplasm in response to metabolic alterations. Here, using heterologous cell systems, we have found that at least two different mechanisms are involved in the intracellular movement of GK. In the absence of the GK regulatory protein (GKRP) GK resides only in the cytoplasm. However, in the presence of GKRP, GK moves to the nucleus and resides there in association with this protein until changes in the metabolic milieu prompt its release. GK does not contain a nuclear localization signal sequence and does not enter the nucleus in a GKRP-independent manner because cells treated with leptomycin B, a specific inhibitor of leucine-rich NES-dependent nuclear export, do not accumulate GK in the nucleus. Instead, entry of GK into the nucleus appears to occur via a piggy-back mechanism that involves binding to GKRP. Nuclear export of GK, which occurs after its release from GKRP, is due to a leucine-rich nuclear export signal within the protein ((300)ELVRLVLLKLV(310)). Thus, GKRP appears to function as both a nuclear chaperone and metabolic sensor and is a critical component of a hepatic GK translocation cycle for regulating the activity of this enzyme in response to metabolic alterations.
Collapse
Affiliation(s)
- C Shiota
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
18
|
Toyoda Y, Yoshie S, Fujita T, Ito Y, Nonogaki T, Miwa I. Glucokinase is located in secretory granules of pancreatic D-cells. FEBS Lett 1997; 415:281-4. [PMID: 9357983 DOI: 10.1016/s0014-5793(97)01139-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We immunohistochemically examined the distribution of glucokinase in rat pancreatic islets. Glucokinase immunoreactivity under light microscopy was detected in the cytoplasm of somatostatin cells as well as in that of insulin cells. No specific immunoreactivity was detected in glucagon and pancreatic polypeptide cells. In somatostatin cells, glucokinase immunoreactivity was located by electron microscopy exclusively within secretory granules.
Collapse
Affiliation(s)
- Y Toyoda
- Department of Clinical Biochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Murata T, Katagiri H, Ishihara H, Shibasaki Y, Asano T, Toyoda Y, Pekiner B, Pekiner C, Miwa I, Oka Y. Co-localization of glucokinase with actin filaments. FEBS Lett 1997; 406:109-13. [PMID: 9109397 DOI: 10.1016/s0014-5793(97)00253-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A portion of glucokinase appeared to be co-localized with actin filaments in the cytoplasm of cultured rat hepatocytes incubated with 25 mM glucose. When liver- or islet-type glucokinase was transiently expressed in COS-7 cells, the expressed glucokinase was also co-localized with actin filaments in the cytoplasm of these transfected cells. Although co-localization of glucokinase with actin filaments was not clearly demonstrated in the pancreatic beta-cell line MIN6, islet glucokinase was found to be present in both the nucleus and the cytoplasm, though predominantly in the nucleus. These findings suggest that subcellular localization of glucokinase, including co-localization with actin filaments, may have an important physiological role in metabolic regulation.
Collapse
Affiliation(s)
- T Murata
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Bunyo-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|