1
|
Maher S, Scott L, Zhang S, Baranchuk A. Animal models of Lyme carditis. Understanding how to study a complex disease. Curr Probl Cardiol 2024; 49:102468. [PMID: 38369203 DOI: 10.1016/j.cpcardiol.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Lyme carditis, a well-established manifestation of Lyme disease, has been studied in animal models to improve understanding of its pathogenesis. This review synthesizes existing literature on these models and associated disease mechanisms. Searches in MEDLINE, Embase, BIOSIS, and Web of Science yielded 53 articles (47 mice models and 6 other animal models). Key findings include: 1) Onset of carditis correlates with spirochete localization in the heart; 2) Carditis occurs within 10 days of infection, progressing to peak inflammation within 30 days; 3) Infiltrates were predominantly composed of Mac-1+ macrophages and were associated with increases in TNF-α, IL-1 and IL-12 cytokines; 4) Resolution of inflammation was primarily mediated by lymphocytes; 5) Immune system is a double-edged sword: it can play a role in the progression and severity of carditis, but can also have a protective effect. Animal models offer valuable insights into the evolution and pathophysiologic mechanisms of Lyme carditis.
Collapse
Affiliation(s)
- Samer Maher
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Laura Scott
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston Health Sciences Center, Kingtson, Ontario, Canada.
| |
Collapse
|
2
|
Koloski CW, Hurry G, Foley-Eby A, Adam H, Goldstein S, Zvionow P, Detmer SE, Voordouw MJ. Male C57BL/6J mice have higher presence and abundance of Borrelia burgdorferi in their ventral skin compared to female mice. Ticks Tick Borne Dis 2024; 15:102308. [PMID: 38215632 DOI: 10.1016/j.ttbdis.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Borrelia burgdorferi is a tick-borne spirochete that causes Lyme disease in humans. The host immune system controls the abundance of the spirochete in the host tissues. Recent work with immunocompetent Mus musculus mice strain C3H/HeJ found that males had a higher tissue infection prevalence and spirochete load compared to females. The purpose of this study was to determine whether host sex and acquired immunity interact to influence the prevalence and abundance of spirochetes in the tissues of the commonly used mouse strain C57BL/6. Wildtype (WT) mice and their SCID counterparts (C57BL/6) were experimentally infected with B. burgdorferi via tick bite. Ear biopsies were sampled at weeks 4, 8, and 12 post-infection (PI) and five tissues (left ear, ventral skin, heart, tibiotarsal joint of left hind leg, and liver) were collected at necropsy (16 weeks PI). The mean spirochete load in the tissues of the SCID mice was 260.4x higher compared to the WT mice. In WT mice, the infection prevalence in the ventral skin was significantly higher in males (40.0 %) compared to females (0.0 %), and the spirochete load in the rear tibiotarsal joint was significantly higher (4.3x) in males compared to females. In SCID mice, the spirochete load in the ventral skin was 200.0x higher in males compared to females, but there were no significant sex-specific difference in spirochete load in the other tissues (left ear, heart, tibiotarsal joint, or liver). Thus, the absence of acquired immunity greatly amplified the spirochete load in the ventral skin of male mice. It is important to note that the observed sex-specific differences in laboratory mice cannot be extrapolated to humans. Future studies should investigate the mechanisms underlying the male bias in the abundance of B. burgdorferi in the mouse skin.
Collapse
Affiliation(s)
- Cody W Koloski
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alexandra Foley-Eby
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hesham Adam
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Savannah Goldstein
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Pini Zvionow
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Susan E Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Maarten J Voordouw
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
3
|
Abstract
The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.
Collapse
|
4
|
Yeung C, Mendoza I, Echeverria LE, Baranchuk A. Chagas' cardiomyopathy and Lyme carditis: Lessons learned from two infectious diseases affecting the heart. Trends Cardiovasc Med 2020; 31:233-239. [PMID: 32376493 DOI: 10.1016/j.tcm.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
Abstract
Chagas' disease and Lyme disease are two endemic, vector-borne zoonotic infectious diseases that impact multiple organ systems, including the heart. Chagas' cardiomyopathy is a progressive process that can evolve into a dilated cardiomyopathy and heart failure several decades after the acute infection; in contrast, although early-disseminated Lyme carditis has been relatively well characterized, the sequelae of Lyme disease on the heart are less well-defined. A century of research on Chagas' cardiomyopathy has generated compelling data for pathophysiological models, evaluated the efficacy of therapy in large randomized controlled trials, and explored the social determinants of health impacting preventative measures. Recognizing the commonalities between Chagas' disease and Lyme disease, we speculate on whether some of the lessons learned from Chagas' cardiomyopathy may be applicable to Lyme carditis.
Collapse
Affiliation(s)
- Cynthia Yeung
- Department of Medicine, Clinical Electrophysiology and Pacing, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada
| | - Ivan Mendoza
- Department of Experimental Cardiology, Institute of Tropical Medicine, Central University of Venezuela Section of Cardiology, Caracas, Venezuela
| | - Luis Eduardo Echeverria
- Clínica de Falla Cardíaca y Trasplante, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Adrian Baranchuk
- Department of Medicine, Clinical Electrophysiology and Pacing, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada.
| |
Collapse
|
5
|
Hawley K, Navasa N, Olson CM, Bates TC, Garg R, Hedrick MN, Conze D, Rincón M, Anguita J. Macrophage p38 mitogen-activated protein kinase activity regulates invariant natural killer T-cell responses during Borrelia burgdorferi infection. J Infect Dis 2012; 206:283-91. [PMID: 22551807 DOI: 10.1093/infdis/jis332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interaction of macrophages with infectious agents leads to the activation of several signaling cascades, including mitogen-activated protein (MAP) kinases, such as p38. We now demonstrate that p38 MAP kinase-mediated responses are critical components to the immune response to Borrelia burgdorferi. The pharmacological and genetic inhibition of p38 MAP kinase activity during infection with the spirochete results in increased carditis. In transgenic mice that express a dominant negative form of p38 MAP kinase specifically in macrophages, production of the invariant natural killer T (iNKT) cell-attracting chemokine MCP-1 and of the antigen-presenting molecule CD1d are significantly reduced. The expression of the transgene therefore results in the deficient infiltration of iNKT cells, their decreased activation, and a diminished production of interferon γ (IFN-γ), leading to increased bacterial burdens and inflammation. These results show that p38 MAP kinase provides critical checkpoints for the protective immune response to the spirochete during infection of the heart.
Collapse
Affiliation(s)
- Kelly Hawley
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Montgomery RR, Booth CJ, Wang X, Blaho VA, Malawista SE, Brown CR. Recruitment of macrophages and polymorphonuclear leukocytes in Lyme carditis. Infect Immun 2006; 75:613-20. [PMID: 17101663 PMCID: PMC1828503 DOI: 10.1128/iai.00685-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lyme arthritis, caused by the spirochete Borrelia burgdorferi, can be recurrent or prolonged, whereas Lyme carditis is mostly nonrecurring. A prominent difference between arthritis and carditis is the differential representation of phagocytes in these lesions: polymorphonuclear leukocytes (PMN) are more prevalent in the joint, and macrophages predominate in the heart lesion. We have previously shown differential efficiency of B. burgdorferi clearance by PMN and macrophages, and we now investigate whether these functional differences at the cellular level may contribute to the observed differences in organ-specific pathogenesis. When we infected mice lacking the neutrophil chemokine receptor (CXCR2(-/-) mice) with spirochetes, we detected fewer PMN in joints and less-severe arthritis. Here we have investigated the effects of the absence of the macrophage chemokine receptor CCR2 on the development and resolution of Lyme carditis in resistant (C57BL/6J [B6]) and sensitive (C3H/HeJ [C3H]) strains of mice. In B6 CCR2(-/-) mice, although inflammation in hearts is mild, we detected an increased burden of B. burgdorferi compared to that in wild-type (WT) mice, suggesting reduced clearance in the absence of macrophages. In contrast, C3H CCR2(-/-) mice have severe inflammation but a decreased B. burgdorferi burden compared to that in WT C3H mice both at peak disease and during resolution. Histopathologic examination of infected hearts revealed that infected C3H CCR2(-/-) animals have an increased presence of PMN, suggesting compensatory mechanisms of B. burgdorferi clearance in the hearts of infected C3H CCR2(-/-) mice. The more efficient clearance of B. burgdorferi from hearts by CCR2(-/-) versus WT C3H mice suggests a natural defect in the recruitment or function of macrophages in C3H mice, which may contribute to the sensitivity of this strain to B. burgdorferi infection.
Collapse
Affiliation(s)
- Ruth R Montgomery
- Department of Internal Medicine, Yale University School of Medicine, 300 Cedar St./TAC S413, New Haven, CT 06520-8031, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Barthold SW, Hodzic E, Tunev S, Feng S. Antibody-mediated disease remission in the mouse model of lyme borreliosis. Infect Immun 2006; 74:4817-25. [PMID: 16861670 PMCID: PMC1539599 DOI: 10.1128/iai.00469-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the mouse model of Lyme borreliosis, the host immune response during infection with Borrelia burgdorferi results in the remission of carditis and arthritis, as well as global reduction of spirochete numbers in tissues, without elimination of infection. These events were recapitulated by passive transfer of immune serum from infected immunocompetent mice or T-cell-deficient mice to severe combined immunodeficient (SCID) mice. Previous studies have shown that immune serum is reactive against arthritis-related protein (Arp) and that Arp antiserum induces arthritis remission. However, although immune serum from T-cell-deficient mice induced disease remission, it was not reactive against Arp, suggesting that antibody to another antigen may be responsible. T-cell-deficient mouse immune serum was reactive to decorin binding protein A (DbpA). Therefore, DbpA antiserum was tested to determine its ability to induce disease remission in SCID mice. Antisera to Arp or DbpA induced both carditis and arthritis remission but did not significantly reduce spirochete numbers in tissues, based upon quantitative flaB DNA analysis, nor did treatment affect RNA levels of several genes, including arp and dbpA. Immunohistochemical labeling of spirochetes in hearts and joints during disease remission induced by adoptive transfer of lymphocytes, passive transfer of immune serum, or passive transfer of DbpA antiserum revealed that such treatment resulted in elimination of spirochetes from heart base and synovium but not vascular walls, tendons, or ligaments. These results suggest that Arp and DbpA antibodies may be active as disease-resolving components in immune serum but antibody against other antigens may be involved in reductions of spirochetes in tissues.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/therapeutic use
- Arthritis, Infectious/immunology
- Arthritis, Infectious/microbiology
- Arthritis, Infectious/therapy
- Borrelia burgdorferi/immunology
- Immune Sera/administration & dosage
- Immune Sera/immunology
- Immunization, Passive
- Immunotherapy, Adoptive
- Lyme Disease/immunology
- Lyme Disease/microbiology
- Lyme Disease/therapy
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, SCID
- Molecular Sequence Data
- Myocarditis/immunology
- Myocarditis/microbiology
- Myocarditis/therapy
- Recombinant Proteins
- Sequence Analysis, DNA
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Stephen W Barthold
- Center for Comparative Medicine, School of Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
8
|
Brown CR, Blaho VA, Fritsche KL, Loiacono CM. Stat1 deficiency exacerbates carditis but not arthritis during experimental lyme borreliosis. J Interferon Cytokine Res 2006; 26:390-9. [PMID: 16734559 DOI: 10.1089/jir.2006.26.390] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activation of the transcription factor Stat1 by interferon-gamma (IFN-gamma) is an important step in the development of antimicrobial effector mechanisms against many bacterial pathogens. Susceptibility to murine Lyme arthritis has been correlated with the production of several proinflammatory cytokines, especially IFN-gamma. To determine the role of IFN-mediated effector mechanisms in the development of Lyme borreliosis, we infected Stat1-deficient mice on both resistant (DBA), and susceptible (C3H) genetic backgrounds. Arthritis in Stat1(/) mice was similar to that of wild-type controls in both mouse strains. Spirochete loads in tissues were also unchanged in Stat1(/) mice. C3H Stat1(/) mice exhibited increased inflammation in the heart, whereas carditis was unchanged in DBA Stat1(/) mice. These results demonstrate that inhibition of macrophage activation and responses to IFN-gamma-mediated signaling do not alter the arthritis resistance or susceptibility phenotype; however, they do affect the severity of carditis in susceptible mouse strains.
Collapse
Affiliation(s)
- Charles R Brown
- Department of Molecular Microbiology, Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
9
|
Behera AK, Hildebrand E, Scagliotti J, Steere AC, Hu LT. Induction of host matrix metalloproteinases by Borrelia burgdorferi differs in human and murine lyme arthritis. Infect Immun 2005; 73:126-34. [PMID: 15618147 PMCID: PMC539001 DOI: 10.1128/iai.73.1.126-134.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are induced from host tissues in response to Borrelia burgdorferi. Upregulation of MMPs may play a role in the dissemination of the organism through extracellular matrix tissues, but it can also result in destructive pathology. Although mice are a well-accepted model for Lyme arthritis, there are significant differences compared to human disease. We sought to determine whether MMP expression could account for some of these differences. MMP expression patterns following B. burgdorferi infection were analyzed in primary human chondrocytes, synovial fluid samples from patients with Lyme arthritis, and cartilage tissue from Lyme arthritis-susceptible and -resistant mice by using a gene array, real-time PCR, an enzyme-linked immunosorbent assay, and immunohistochemistry. B. burgdorferi infection significantly induced transcription of MMP-1, -3, -13, and -19 from primary human chondrocyte cells. Transcription of MMP-10 and tissue inhibitor of metalloprotease 1 was increased with B. burgdorferi infection, but protein expression was only minimally increased. The synovial fluid levels of MMPs from patients with high and low spirochete burdens were consistent with results seen in the in vitro studies. B. burgdorferi-susceptible C3H/HeN mice infected with B. burgdorferi showed induction of MMP-3 and MMP-19 but no other MMP or tissue inhibitor of metalloprotease. As determined by immunohistochemistry, MMP-3 expression was increased only in chondrocytes near the articular surface. The levels of MMPs were significantly lower in the more Lyme arthritis-resistant BALB/c and C57BL/6 mice. Differences between human and murine Lyme arthritis may be related to the lack of induction of collagenases, such MMP-1 and MMP-13, in mouse joints.
Collapse
Affiliation(s)
- Aruna K Behera
- Tufts-New England Medical Center, 750 Washington St., Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
10
|
Hodzic E, Feng S, Freet KJ, Barthold SW. Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun 2003; 71:5042-55. [PMID: 12933847 PMCID: PMC187352 DOI: 10.1128/iai.71.9.5042-5055.2003] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The population dynamics of Borrelia burgdorferi were quantified by real-time PCR targeting the flaB gene in skin (inoculation site, noninoculation site, and ear), heart (heart base and ventricle), quadriceps muscle, and the tibiotarsal joint at 1, 2, 4, 6, and 8 weeks after intradermal inoculation in C3H and C3H-scid mice. In addition, RNA transcription was assessed for several prototype genes, including flaB, ospA, ospC, dbpA, arp, vlsE, fbp, oppA-2, and p37-42. Spirochete numbers were equivalent in C3H and C3H-scid mice at 1 or 2 weeks and then declined in C3H mice, but they continued to rise and then plateaued in C3H-scid mice. Gene transcription was likewise higher in C3H-scid mice than in C3H mice, particularly at 4 or more weeks of infection. Gene transcription showed variation among tissues, with the highest levels of transcription in heart and joint tissue, which are sites of inflammation.
Collapse
Affiliation(s)
- Emir Hodzic
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
11
|
Miller JC, Stevenson B. Immunological and genetic characterization of Borrelia burgdorferi BapA and EppA proteins. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1113-1125. [PMID: 12724373 DOI: 10.1099/mic.0.26120-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A large majority of examined Lyme disease spirochaete isolates were demonstrated to contain one or both of the paralogous genes bapA and eppA. Immunological analyses of serum samples collected from infected patients coupled with comparative sequence analyses indicated that bapA gene sequences are quite stable but the encoded proteins do not provoke a strong immune response in most individuals. Conversely, EppA proteins are much more antigenic but vary widely in sequence between different bacteria. Considerable evidence of insertion, deletion and other mutations within eppA genes was observed. A number of significant recombination events were also found to have occurred in regions flanking bapA genes, while the genes themselves rarely exhibited evidence of mutation, suggesting strong selective pressure to maintain BapA sequences within narrow limits. Data from these and other studies suggest important roles for BapA and EppA during the Borrelia burgdorferi infectious cycle.
Collapse
Affiliation(s)
- Jennifer C Miller
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, MS 415 Chandler Medical Center, Lexington, KY 40536-0298, USA
| |
Collapse
|
12
|
Grab DJ, Salim M, Chesney J, Bucala R, Lanners HN. A role for peripheral blood fibrocytes in Lyme disease? Med Hypotheses 2002; 59:1-10. [PMID: 12160674 DOI: 10.1016/s0306-9877(02)00189-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is proposed that peripheral blood fibrocytes will be a new and important player in the pathogenesis of Lyme disease. Peripheral blood fibrocytes are a circulating leukocyte subpopulation that: (a) express collagen; (b) are an abundant source of cytokines, chemoattractants and growth factors; and (c) are able to recruit and activate naive T-cells and memory T-cells. We predict that peripheral blood fibrocytes will represent a new and important antigen-presenting cell which will play an important role in directing the immune response from the pathogenic Th1 to the protective Th2 response cell in Borrelia infections.
Collapse
Affiliation(s)
- D J Grab
- Johns Hopkins School of Medicine, Maryland, Baltimore 21287, USA.
| | | | | | | | | |
Collapse
|
13
|
Coleman JL, Benach JL. Use of the plasminogen activation system by microorganisms. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:567-76. [PMID: 10595783 DOI: 10.1016/s0022-2143(99)90095-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of host-derived PAS components by invasive bacteria is an increasingly recognized mechanism for acquisition of extracellular proteolytic activity. This overview summarizes the pertinent contributions to this field and is divided into three parts: (1) the PAS, (2) the interaction of bacteria that produce their own plasminogen activators with the host's PAS, and (3) the interaction of bacteria that do not produce their own plasminogen activators but use plasminogen activators supplied by the host. The significance of these mechanisms in relation to the invasive potentials of the various organisms is discussed.
Collapse
Affiliation(s)
- J L Coleman
- State of New York Department of Health, State University of New York at Stony Brook, 11794-8692, USA
| | | |
Collapse
|
14
|
Coleman JL, Roemer EJ, Benach JL. Plasmin-coated borrelia Burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix. Infect Immun 1999; 67:3929-36. [PMID: 10417158 PMCID: PMC96674 DOI: 10.1128/iai.67.8.3929-3936.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi, the spirochetal agent of Lyme disease, binds plasminogen in vitro. Exogenously provided urokinase-type plasminogen (PLG) activator (uPA) converts surface-bound PLG to enzymatically active plasmin. In this study, we investigated the capacity of a B. burgdorferi human isolate, once complexed with plasmin, to degrade purified extracellular matrix (ECM) components and an interstitial ECM. In a modified enzyme-linked immunosorbent assay using immobilized, soluble ECM components, plasmin-coated B. burgdorferi degraded fibronectin, laminin, and vitronectin but not collagen. Incubation of plasmin-coated organisms with biosynthetically radiolabeled native ECM resulted in breakdown of insoluble glycoprotein, other noncollagenous proteins, and collagen, as measured by release of solubilized radioactivity. Radioactive release did not occur with untreated spirochetes or spirochetes treated with uPA or PLG alone. Kinetic and inhibition studies suggested that the breakdown of collagen was indirect and due to prior disruption of supportive ECM proteins. B. burgdorferi is an invasive bacterial pathogen that may benefit by use of the host's plasminogen activation system. The results of this study have identified mechanisms in which the spirochete can use this borrowed proteolytic activity to enhance invasiveness.
Collapse
Affiliation(s)
- J L Coleman
- State of New York Department of Health, State University of New York at Stony Brook, Stony Brook, New York 11794-8691, USA
| | | | | |
Collapse
|
15
|
Keane-Myers A, Casolaro V, Ono SJ. Molecular basis and role of differential cytokine production in T helper cell subsets in immunologic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 438:479-84. [PMID: 9634924 DOI: 10.1007/978-1-4615-5359-5_66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Keane-Myers
- Schepens Eye Research Institute, Department of Ophthalmology, Boston, Massachusetts, USA
| | | | | |
Collapse
|
16
|
Kaneda K, Masuzawa T, Simon MM, Isogai E, Isogai H, Yasugami K, Suzuki T, Suzuki Y, Yanagihara Y. Infectivity and arthritis induction of Borrelia japonica on SCID mice and immune competent mice: possible role of galactosylceramide binding activity on initiation of infection. Microbiol Immunol 1998; 42:171-5. [PMID: 9570282 DOI: 10.1111/j.1348-0421.1998.tb02268.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the relationship between the binding activity to galactosylceramide (GalCer) and the arthritis induction activity of Borrelia japonica. The B. japonica strains maintained the ability to induce arthritis in inbred C3H/HeN and immunodeficient SCID mice, but the ability was lower than that of Borrelia burgdorferi sensu stricto virulent strain 297. Histopathological changes were restricted to the joints, and a marked effusion of polymorphonuclear neutrophils into the joint space was found. The binding activity of B. japonica strains to GalCer was lower than that of the virulent strain 297 but higher than that of the high-passage strain 297. The lower infectivity and virulence of B. japonica may explain its lower binding ability to GalCer.
Collapse
Affiliation(s)
- K Kaneda
- Department of Microbiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo BP, Norris SJ, Rosenberg LC, Höök M. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 1995; 63:3467-72. [PMID: 7642279 PMCID: PMC173478 DOI: 10.1128/iai.63.9.3467-3472.1995] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lyme disease is a tick-borne infection that can develop into a chronic, multisystemic disorder. The causative agent, Borrelia burgdorferi, is initially deposited by the tick into the host dermis, where it associates with collagen fibers, replicates, and eventually disseminates to other tissues. We have examined the adherence of the spirochete to different components of the collagen fiber and demonstrated that decorin, a proteoglycan which decorates collagen fibers, can support the attachment of B. burgdorferi. No significant direct attachment to isolated type I or III collagens could be detected. Attachment of the spirochetes to decorin was highly specific, and the process could be inhibited by soluble decorin but not by various unlabeled, unrelated components. B. burgdorferi also bound soluble 125I-labeled decorin in a time- and concentration-dependent manner. Spirochete binding of soluble 125I-labeled decorin required intact proteoglycan and could not be inhibited by either isolated core protein or glycosaminoglycan chain. B. burgdorferi expresses two decorin-binding proteins with apparent molecular masses of 19 and 20 kDa as revealed in a Western blot (immunoblot)-type assay. Our results indicate that decorin may mediate the adherence of B. burgdorferi to collagen fibers in skin and other tissues.
Collapse
Affiliation(s)
- B P Guo
- Department of Biochemistry and Biophysics, Albert B. Alkek Institute of Biosciences and Technology, Texas A&M University, Houston 77030, USA
| | | | | | | |
Collapse
|
18
|
Masuzawa T, Kurita T, Kawabata H, Suzuki H, Yanagihara Y. Experimental induction of Lyme arthritis in outbred mice. Microbiol Immunol 1994; 38:263-8. [PMID: 7935043 DOI: 10.1111/j.1348-0421.1994.tb01774.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Outbred ddY mice inoculated with live cells of Borrelia burgdorferi strain 297 into hind footpad displayed swelling of the footpad at days 7 to 11 after inoculation. Marked neutrophilic infiltration was observed in the subcutaneous tissue and the part of bone tissue which was partially destroyed, and synovial layer of articular capsule was thickened and protruded into the joint space in the histopathological examination of footpad inoculated with live Borrelia cells. The inflammation peaked at day 7 and B. burgdorferi was cultured from bladder and heart of the mice at day 14 after inoculation. The mice inoculated with heat-inactivated cells at 56 C for 30 min did not show any significant histopathological change. In this mice model, nontreated littermates were not infected in contact with infected littermates for 14 days of experimental period. The outbred ddY mice model is useful for evaluating the effectiveness of vaccination against Lyme disease.
Collapse
Affiliation(s)
- T Masuzawa
- Department of Microbiology, School of Pharmaceutical Sciences, University of Shizuoka, Japan
| | | | | | | | | |
Collapse
|
19
|
Pachner AR, Ricalton N, Delaney E. Comparison of polymerase chain reaction with culture and serology for diagnosis of murine experimental Lyme borreliosis. J Clin Microbiol 1993; 31:208-14. [PMID: 8432804 PMCID: PMC262737 DOI: 10.1128/jcm.31.2.208-214.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
After the intradermal inoculation of mice with Borrelia burgdorferi, the antibody response, culture, and histology of blood and target organs were assessed and compared with results of a nested polymerase chain reaction (PCR) assay. Of 247 specimens of heart, brain, bladder, and blood, the tested concordance between the PCR and culture was 72%. In the 69 instances of discordance, the PCR was positive in 51 and the culture was positive in 18; thus, the PCR was concordant or more sensitive in 93% of the tested organs. In mice infected with 10 spirochetes, serology confirmed by Western blotting (immunoblotting) was more sensitive than either culture or PCR of brain, bladder, or heart specimens. The organs most commonly culture or PCR positive were the heart and bladder; the brain was infected in only 26% of the animals. DNA hybridization was helpful in confirming the PCR product as being specific and, in some cases, in demonstrating a positive product in the face of negative agarose gels. PCR was less sensitive than culture in detecting the presence of spirochetes in blood specimens, possibly because of the presence of blood inhibitors. We thus found a nested PCR assay, using primers from a genomic sequence, to be a valuable adjunct to serology and culture in the study of murine Lyme borreliosis. The assay confirmed that, after small numbers of spirochetes are injected intradermally, the heart and bladder, and less frequently the brain, are sites of persistence of the spirochetes.
Collapse
Affiliation(s)
- A R Pachner
- Department of Neurology, Georgetown University School of Medicine, Washington, D.C. 20007
| | | | | |
Collapse
|
20
|
Simon MM, Schaible UE, Wallich R, Kramer MD. A mouse model for Borrelia burgdorferi infection: approach to a vaccine against Lyme disease. IMMUNOLOGY TODAY 1991; 12:11-6. [PMID: 2015043 DOI: 10.1016/0167-5699(91)90106-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lyme disease is the most common vector-transmitted illness in the USA and Europe. The pathogen, Borrelia burgdorferi, causes a complex spectrum of disease that affects the skin, joints, nervous system and heart. Patients in the early stages of the disease can often be successfully treated with antibiotics but this becomes less reliable as the disease progresses. The specific immune responses that are detectable in patients with Lyme disease are not sufficient to protect against illness; a vaccine against the infectious agent is, therefore, desirable. In this article Markus M. Simon and colleagues present a mouse model of Borrelia burgdorferi infection. Their work suggests that the outer surface protein A (OspA) of Borrelia burgdorferi may be a suitable vaccine candidate.
Collapse
Affiliation(s)
- M M Simon
- Max-Planck-Institut für Immunbiologie, Freiburg, FRG
| | | | | | | |
Collapse
|