1
|
Winters-Bostwick GC, Giancola-Detmering SE, Bostwick CJ, Crook RJ. Three-dimensional molecular atlas highlights spatial and neurochemical complexity in the axial nerve cord of octopus arms. Curr Biol 2024; 34:4756-4766.e6. [PMID: 39326414 DOI: 10.1016/j.cub.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/28/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Octopus arms, notable for their complex anatomy and remarkable flexibility, have sparked significant interest within the neuroscience community. However, there remains a dearth of knowledge about the neurochemical organization of various cell types in the arm's nervous system. To address this gap, we used hybridization chain reaction (HCR) to identify distinct neuronal types in the axial nerve cords of the pygmy octopus, Octopus bocki, including putative dopaminergic, octopaminergic, serotonergic, GABAergic, glutamatergic, cholinergic, and peptidergic cells. We obtained high-resolution multiplexed fluorescent images at 0.28 × 0.28 × 1.0 μm voxel size from 10 arm base and arm tip cross sections (each 50 μm thick) and created three-dimensional reconstructions of the axial ganglia, illustrating the spatial distribution of multiple neuronal populations. Our analysis unveiled anatomically distinct and molecularly diverse scattered neurons, while also highlighting multiple populations of dense small neurons that appear uniformly distributed throughout the cortical layer and potential glial cells in the neuropil. Our data provide new insights into how different types of neurons may contribute to an octopus's ability to interact with its environment and execute complex tasks. In addition, our findings establish a benchmark for future studies, allowing pioneering exploration of octopus arm molecular neuroanatomy and offering exciting new avenues in invertebrate neuroscience research.
Collapse
Affiliation(s)
| | | | | | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| |
Collapse
|
2
|
Wu B, Si M, Hua L, Zhang D, Li W, Zhao C, Lu W, Chen T. Cephalopod-Inspired Chemical-Gated Hydrogel Actuation Systems for Information 3D-Encoding Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401659. [PMID: 38533903 DOI: 10.1002/adma.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Cephalopods evolve the acetylcholine-gated actuation control function of their skin muscles, which enables their dynamic/static multimode display capacities for achieving perfectly spatial control over the colors/patterns on every inch of skin. Reproduction of artificial analogs that exhibit similar multimodal display is essential to reach advanced information three-dimensional (3D) encoding with higher security than the classic 2D-encoding strategy, but remains underdeveloped. The core difficulty is how to replicate such chemical-gated actuation control function into artificial soft actuating systems. Herein, this work proposes to develop azobenzene-functionalized poly(acrylamide) (PAAm) hydrogel systems, whose upper critical solution temperature (UCST) type actuation responsiveness can be intelligently programmed or even gated by the addition of hydrophilic α-cyclodextrin (α-CD) molecules for reversible association with pendant azobenzene moieties via supramolecular host-guest interactions. By employing such α-CD-gated hydrogel actuator as an analogue of cephalopods' skin muscle, biomimetic mechanically modulated multicolor fluorescent display systems are designed, which demonstrate a conceptually new α-CD-gated "thermal stimulation-hydrogel actuation-fluorescence output" display mechanism. Consequently, high-security 3D-encoding information carriers with an unprecedented combination of single-input multiple-output, dynamic/static dual-mode and spatially controlled display capacities are achieved. This bioinspired strategy brings functional-integrated features for artificial display systems and opens previously unidentified avenues for information security.
Collapse
Affiliation(s)
- Baoyi Wu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Muqing Si
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Luqin Hua
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Wanning Li
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Chuanzhuang Zhao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wei Lu
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
3
|
Pungor JR, Niell CM. The neural basis of visual processing and behavior in cephalopods. Curr Biol 2023; 33:R1106-R1118. [PMID: 37875093 PMCID: PMC10664291 DOI: 10.1016/j.cub.2023.08.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Coleoid cephalopods (octopuses, squids and cuttlefishes) are the only branch of the animal kingdom outside of vertebrates to have evolved both a large brain and camera-type eyes. They are highly dependent on vision, with the majority of their brain devoted to visual processing. Their excellent vision supports a range of advanced visually guided behaviors, from navigation and prey capture, to the ability to camouflage based on their surroundings. However, their brain organization is radically different from that of vertebrates, as well as other invertebrates, providing a unique opportunity to explore how a novel neural architecture for vision is organized and functions. Relatively few studies have examined the cephalopod visual system using current neuroscience approaches, to the extent that there has not even been a measurement of single-cell receptive fields in their central visual system. Therefore, there remains a tremendous amount that is unknown about the neural basis of vision in these extraordinary animals. Here, we review the existing knowledge of the organization and function of the cephalopod visual system to provide a framework for examining the neural circuits and computational mechanisms mediating their remarkable visual capabilities.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
4
|
Bidel F, Meirovitch Y, Schalek RL, Lu X, Pavarino EC, Yang F, Peleg A, Wu Y, Shomrat T, Berger DR, Shaked A, Lichtman JW, Hochner B. Connectomics of the Octopus vulgaris vertical lobe provides insight into conserved and novel principles of a memory acquisition network. eLife 2023; 12:e84257. [PMID: 37410519 PMCID: PMC10325715 DOI: 10.7554/elife.84257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/22/2023] [Indexed: 07/07/2023] Open
Abstract
Here, we present the first analysis of the connectome of a small volume of the Octopus vulgaris vertical lobe (VL), a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.8 × 106 axons that sparsely innervate two parallel and interconnected feedforward networks formed by the two types of amacrine interneurons (AM), simple AMs (SAMs) and complex AMs (CAMs). SAMs make up 89.3% of the~25 × 106VL cells, each receiving a synaptic input from only a single input neuron on its non-bifurcating primary neurite, suggesting that each input neuron is represented in only~12 ± 3.4SAMs. This synaptic site is likely a 'memory site' as it is endowed with LTP. The CAMs, a newly described AM type, comprise 1.6% of the VL cells. Their bifurcating neurites integrate multiple inputs from the input axons and SAMs. While the SAM network appears to feedforward sparse 'memorizable' sensory representations to the VL output layer, the CAMs appear to monitor global activity and feedforward a balancing inhibition for 'sharpening' the stimulus-specific VL output. While sharing morphological and wiring features with circuits supporting associative learning in other animals, the VL has evolved a unique circuit that enables associative learning based on feedforward information flow.
Collapse
Affiliation(s)
- Flavie Bidel
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Yaron Meirovitch
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Richard Lee Schalek
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Xiaotang Lu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | | | - Fuming Yang
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic CenterMichmoretIsrael
| | - Daniel Raimund Berger
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adi Shaked
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| | - Jeff William Lichtman
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life Sciences, The Hebrew UniversityJerusalemIsrael
| |
Collapse
|
5
|
Chung WS, López-Galán A, Kurniawan ND, Marshall NJ. The brain structure and the neural network features of the diurnal cuttlefish Sepia plangon. iScience 2023; 26:105846. [PMID: 36624840 PMCID: PMC9823234 DOI: 10.1016/j.isci.2022.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cuttlefish are known for their rapid changes of appearance enabling camouflage and con-specific communication for mating or agonistic display. However, interpretation of their sophisticated behaviors and responsible brain areas is based on the better-studied squid brain atlas. Here we present the first detailed description of the neuroanatomical features of a tropical and diurnal cuttlefish, Sepia plangon, coupled with observations on ontogenetic changes in its visual and learning centers using a suite of MRI-based techniques and histology. We then make comparisons to a loliginid squid, treating it as a 'baseline', and also to other cuttlefish species to help construct a connectivity map of the cuttlefish brain. Differences in brain anatomy and the previously unknown neural connections associated with camouflage, motor control and chemosensory function are described. These findings link brain heterogeneity to ecological niches and lifestyle, feeding hypotheses and evolutionary history, and provide a timely, new technology update to older literature.
Collapse
Affiliation(s)
- Wen-Sung Chung
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alejandra López-Galán
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Nyoman D. Kurniawan
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Kotsyuba E, Dyachuk V. Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia. Int J Mol Sci 2023; 24:ijms24021202. [PMID: 36674710 PMCID: PMC9865615 DOI: 10.3390/ijms24021202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Mollusks comprise one of the largest phylum of marine invertebrates. With their great diversity of species, various degrees of mobility, and specific behavioral strategies, they haveoccupied marine, freshwater, and terrestrial habitats and play key roles in many ecosystems. This success is explained by their exceptional ability to tolerate a wide range of environmental stresses, such as hypoxia. Most marine bivalvemollusksare exposed to frequent short-term variations in oxygen levels in their marine or estuarine habitats. This stressfactor has caused them to develop a wide variety of adaptive strategies during their evolution, enabling to mobilize rapidly a set of behavioral, physiological, biochemical, and molecular defenses that re-establishing oxygen homeostasis. The neuroendocrine system and its related signaling systems play crucial roles in the regulation of various physiological and behavioral processes in mollusks and, hence, can affect hypoxiatolerance. Little effort has been made to identify the neurotransmitters and genes involved in oxygen homeostasis regulation, and the molecular basis of the differences in the regulatory mechanisms of hypoxia resistance in hypoxia-tolerant and hypoxia-sensitive bivalve species. Here, we summarize current knowledge about the involvement of the neuroendocrine system in the hypoxia stress response, and the possible contributions of various signaling molecules to this process. We thusprovide a basis for understanding the molecular mechanisms underlying hypoxic stress in bivalves, also making comparisons with data from related studies on other species.
Collapse
|
7
|
Songco-Casey JO, Coffing GC, Piscopo DM, Pungor JR, Kern AD, Miller AC, Niell CM. Cell types and molecular architecture of the Octopus bimaculoides visual system. Curr Biol 2022; 32:5031-5044.e4. [PMID: 36318923 PMCID: PMC9815951 DOI: 10.1016/j.cub.2022.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Cephalopods have a remarkable visual system, with a camera-type eye and high acuity vision that they use for a wide range of sophisticated visually driven behaviors. However, the cephalopod brain is organized dramatically differently from that of vertebrates and invertebrates, and beyond neuroanatomical descriptions, little is known regarding the cell types and molecular determinants of their visual system organization. Here, we present a comprehensive single-cell molecular atlas of the octopus optic lobe, which is the primary visual processing structure in the cephalopod brain. We combined single-cell RNA sequencing with RNA fluorescence in situ hybridization to both identify putative molecular cell types and determine their anatomical and spatial organization within the optic lobe. Our results reveal six major neuronal cell classes identified by neurotransmitter/neuropeptide usage, in addition to non-neuronal and immature neuronal populations. We find that additional markers divide these neuronal classes into subtypes with distinct anatomical localizations, revealing further diversity and a detailed laminar organization within the optic lobe. We also delineate the immature neurons within this continuously growing tissue into subtypes defined by evolutionarily conserved developmental genes as well as novel cephalopod- and octopus-specific genes. Together, these findings outline the organizational logic of the octopus visual system, based on functional determinants, laminar identity, and developmental markers/pathways. The resulting atlas presented here details the "parts list" for neural circuits used for vision in octopus, providing a platform for investigations into the development and function of the octopus visual system as well as the evolution of visual processing.
Collapse
Affiliation(s)
| | - Gabrielle C Coffing
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Denise M Piscopo
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Judit R Pungor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
8
|
Styfhals R, Zolotarov G, Hulselmans G, Spanier KI, Poovathingal S, Elagoz AM, De Winter S, Deryckere A, Rajewsky N, Ponte G, Fiorito G, Aerts S, Seuntjens E. Cell type diversity in a developing octopus brain. Nat Commun 2022; 13:7392. [PMID: 36450803 PMCID: PMC9712504 DOI: 10.1038/s41467-022-35198-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.
Collapse
Affiliation(s)
- Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gert Hulselmans
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Katina I Spanier
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | | | - Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Seppe De Winter
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biological Sciences, Columbia University, New York, US
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115, Berlin, Germany
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Stein Aerts
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, 3000, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Kwon KM, Pak JH, Jeon CJ. Immunocytochemical localization of the AMPA glutamate receptor subtype GluR2/3 in the squid optic lobe. Acta Histochem 2022; 124:151941. [PMID: 35963117 DOI: 10.1016/j.acthis.2022.151941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
As a major excitatory neurotransmitter in the cephalopod visual system, glutamate signaling is facilitated by ionotropic receptors, such as α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR). In cephalopods with large and well-developed brains, the optic lobes (OL) mainly process visual inputs and are involved in learning and memory. Although the presence of AMPAR in squid OL has been reported, the organization of specific AMPAR-containing neurons remains unknown. This study aimed to investigate the immunocytochemical localization of the AMPA glutamate receptor subtype 2/3-immunoreactive (GluR2/3-IR) neurons in the OL of Pacific flying squid (Tordarodes pacificus). Morphologically diverse GluR2/3-IR neurons were predominantly located in the tangential zone of the medulla. Medium-to-large GluR2/3-IR neurons were also detected. The distribution patterns and cell morphologies of calcium-binding protein (CBP)-IR neurons, specifically calbindin-D28K (CB)-, calretinin (CR)-, and parvalbumin (PV)-IR neurons, were similar to those of GluR2/3-IR neurons. However, two-color immunofluorescence revealed that GluR2/3-IR neurons did not colocalize with the CBP-IR neurons. Furthermore, the specific localizations and diverse types of GluR2/3-IR neurons that do not express CB, CR, or PV in squid OL were determined. These findings further contribute to the existing data on glutamatergic visual systems and provide new insights for understanding the visual processing mechanisms in cephalopods.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
10
|
Ventura-López C, López-Galindo L, Rosas C, Sánchez-Castrejón E, Galindo-Torres P, Pascual C, Rodríguez-Fuentes G, Juárez OE, Galindo-Sánchez CE. Sex-specific role of the optic gland in octopus maya: A transcriptomic analysis. Gen Comp Endocrinol 2022; 320:114000. [PMID: 35217062 DOI: 10.1016/j.ygcen.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
The optic glands (OG) of cephalopods are a source of molecules associated with the control of reproductive traits and lifecycle events such as sexual maturation, reproductive behavior, feeding, parental care, and senescence. However, little is known about the role of the optic gland in Octopus maya adults during mating and egg laying. RNA sequencing, de novo transcriptome assembly, ubiquity and differential expression analysis were performed. First, we analyzed the expression patterns of transcripts commonly associated with OG regulatory functions to describe their possible role once the maturation of the gonad is complete. The transcriptomic profiles of the optic gland of both sexes were compared with emphasis on the signaling pathways involved in the dimorphism of reproductive traits. Results suggest that in the OG of males, the reproductive condition (mated or non-mated) did not affect the general expression profile. In contrast, more differentially expressed genes were observed in females. In mated females, the mRNA metabolic process and the response to norepinephrine were enriched, suggesting a high cellular activity in preparation for the laying of the embryos. Whereas in egg-laying females, energetic and metabolic processes were the most represented, including the oxidation-reduction process. Finally, the gene expression patterns in senescence females suggest a physiological response to starvation as well as upregulation of genes involved retrotransposon activity. In conclusion, more substantial fluctuations in gene expression were observed in the optic glands of the fertilized females compared to the males. Such differences might be associated with the regulation of the egg-laying and the onset of senescence.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Laura López-Galindo
- Instituto de Investigaciones Oceanológicas (IIO), Universidad Autónoma de Baja California (UABC), Carretera Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, Ensenada, Baja California CP 22860, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Edna Sánchez-Castrejón
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Pavel Galindo-Torres
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Gabriela Rodríguez-Fuentes
- Unidad de Química en Sisal, Facultad de Química Universidad Nacional Autónoma de México (UNAM), Puerto de Abrigo s/n, Sisal, Hunucma, Yucatan CP97355, Mexico
| | - Oscar E Juárez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana - Ensenada No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, México.
| |
Collapse
|
11
|
Stern‐Mentch N, Bostwick GW, Belenky M, Moroz L, Hochner B. Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris. J Morphol 2022; 283:557-584. [PMID: 35107842 PMCID: PMC9303212 DOI: 10.1002/jmor.21459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a "fan-out fan-in" connectivity matrix comprising only three morphologically identified neuron types; input axons from the median superior frontal lobe (MSFL) innervating en passant millions of small amacrine interneurons (AMs), which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity; a glutamatergic synapse at the first MSFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. MSFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmitter release. 5-HT, octopamine, dopamine and nitric oxide modulate short- and long-term VL synaptic plasticity. Here, we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic MSFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites were in-line with the NO-dependent presynaptic LTP mechanism at the MSFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear γ-amino butyric acid labeling in the cell bodies of LNs supported an inhibitory VL output, yet the LNs co-expressed FMRFamide-like neuropeptides, suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized as a "deep nucleus" showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In-situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements, help integrate behavioral, physiological, pharmacological and connectome findings into a more comprehensive understanding of an efficient learning and memory network.
Collapse
Affiliation(s)
- Naama Stern‐Mentch
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Gabrielle Winters Bostwick
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
- Ocean Genome Atlas ProjectSan FranciscoUSA
| | - Michael Belenky
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Leonid Moroz
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| |
Collapse
|
12
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
13
|
Effect of Air Exposure-Induced Hypoxia on Neurotransmitters and Neurotransmission Enzymes in Ganglia of the Scallop Azumapecten farreri. Int J Mol Sci 2022; 23:ijms23042027. [PMID: 35216143 PMCID: PMC8878441 DOI: 10.3390/ijms23042027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
The nervous system expresses neuromolecules that play a crucial role in regulating physiological processes. Neuromolecule synthesis can be regulated by oxygen-dependent enzymes. Bivalves are a convenient model for studying air exposure-induced hypoxia. Here, we studied the effects of hypoxia on the expression and dynamics of neurotransmitters, and on neurotransmitter enzyme distribution, in the central nervous system (CNS) of the scallop Azumapecten farreri. We analyzed the expression of the neurotransmitters FMRFamide and serotonin (5-HT) and the choline acetyltransferase (CHAT) and universal NO-synthase (uNOS) enzymes during air exposure-induced hypoxia. We found that, in early-stage hypoxia, total serotonin content decreased in some CNS regions but increased in others. CHAT-lir cell numbers increased in all ganglia after hypoxia; CHAT probably appears de novo in accessory ganglia. Short-term hypoxia caused increased uNOS-lir cell numbers, while long-term exposure led to a reduction in their number. Thus, hypoxia weakly influences the number of FMRFamide-lir neurons in the visceral ganglion and does not affect peptide expression in the pedal ganglion. Ultimately, we found that the localization and level of synthesis of neuromolecules, and the numbers of cells expressing these molecules, vary in the scallop CNS during hypoxia exposure. This indicates their possible involvement in hypoxia resistance mechanisms.
Collapse
|
14
|
Ponte G, Taite M, Borrelli L, Tarallo A, Allcock AL, Fiorito G. Cerebrotypes in Cephalopods: Brain Diversity and Its Correlation With Species Habits, Life History, and Physiological Adaptations. Front Neuroanat 2021; 14:565109. [PMID: 33603650 PMCID: PMC7884766 DOI: 10.3389/fnana.2020.565109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/30/2020] [Indexed: 12/01/2022] Open
Abstract
Here we analyze existing quantitative data available for cephalopod brains based on classical contributions by J.Z. Young and colleagues, to cite some. We relate the relative brain size of selected regions (area and/or lobe), with behavior, life history, ecology and distribution of several cephalopod species here considered. After hierarchical clustering we identify and describe ten clusters grouping 52 cephalopod species. This allows us to describe cerebrotypes, i.e., differences of brain composition in different species, as a sign of their adaptation to specific niches and/or clades in cephalopod molluscs for the first time. Similarity reflecting niche type has been found in vertebrates, and it is reasonable to assume that it could also occur in Cephalopoda. We also attempted a phylogenetic PCA using data by Lindgren et al. (2012) as input tree. However, due to the limited overlap in species considered, the final analysis was carried out on <30 species, thus reducing the impact of this approach. Nevertheless, our analysis suggests that the phylogenetic signal alone cannot be a justification for the grouping of species, although biased by the limited set of data available to us. Based on these preliminary findings, we can only hypothesize that brains evolved in cephalopods on the basis of different factors including phylogeny, possible development, and the third factor, i.e., life-style adaptations. Our results support the working hypothesis that the taxon evolved different sensorial and computational strategies to cope with the various environments (niches) occupied in the oceans. This study is novel for invertebrates, to the best of our knowledge.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Morag Taite
- Department of Zoology, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Luciana Borrelli
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Andrea Tarallo
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - A Louise Allcock
- Department of Zoology, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
15
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Scaros AT, Croll RP, Baratte S. Immunohistochemical Approach to Understanding the Organization of the Olfactory System in the Cuttlefish, Sepia officinalis. ACS Chem Neurosci 2018; 9:2074-2088. [PMID: 29578683 DOI: 10.1021/acschemneuro.8b00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cephalopods are nontraditional but captivating models of invertebrate neurobiology, particularly in evolutionary comparisons. Cephalopod olfactory systems have striking similarities and fundamental differences with vertebrates, arthropods, and gastropods, raising questions about the ancestral origins of those systems. We describe here the organization and development of the olfactory system of the common cuttlefish, Sepia officinalis, using immunohistochemistry and in situ hybridization. FMRFamide and/or related peptides and histamine are putative neurotransmitters in olfactory sensory neurons. Other neurotransmitters, including serotonin and APGWamide within the olfactory and other brain lobes, suggest efferent control of olfactory input and/or roles in the processing of olfactory information. The distributions of neurotransmitters, along with staining patterns of phalloidin, anti-acetylated α-tubulin, and a synaptotagmin riboprobe, help to clarify the structure of the olfactory lobe. We discuss a key difference, the lack of identifiable olfactory glomeruli, in cuttlefish in comparison to other models, and suggest its implications for the evolution of olfaction.
Collapse
Affiliation(s)
- Alexia T. Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roger P. Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Sébastien Baratte
- Sorbonne Université,
MNHN, UNICAEN, UA, CNRS, IRD, Biologie des Organismes et Ecosystèmes
Aquatiques (BOREA), Paris 75005, France
| |
Collapse
|
17
|
Lopes VM, Rosa R, Costa PR. Presence and persistence of the amnesic shellfish poisoning toxin, domoic acid, in octopus and cuttlefish brains. MARINE ENVIRONMENTAL RESEARCH 2018; 133:45-48. [PMID: 29223596 DOI: 10.1016/j.marenvres.2017.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Domoic acid (DA) is a neurotoxin that causes degenerative damage to brain cells and induces permanent short-term memory loss in mammals. In cephalopod mollusks, although DA is known to accumulate primarily in the digestive gland, there is no knowledge whether DA reaches their central nervous system. Here we report, for the first time, the presence of DA in brain tissue of the common octopus (Octopus vulgaris) and the European cuttlefish (Sepia officinalis), and its absence in the brains of several squid species (Loligo vulgaris, L. forbesi and Todarodes sagittatus). We argue that such species-specific differences are related to their different life strategies (benthic/nektobenthic vs pelagic) and feeding ecologies, as squids mainly feed on pelagic fish, which are less prone to accumulate phycotoxins. Additionally, the temporal persistence of DA in octopus' brain reinforces the notion that these invertebrates can selectively retain this phycotoxin. This study shows that two highly-developed invertebrate species, with a complex central nervous system, where glutamatergic transmission is involved in vertebrate-like long-term potentiation (LTP), have the ability of retaining and possibly tolerating chronic exposure to DA, a potent neurotoxin usually acting at AMPA/kainate-like receptors. Here, we filled a gap of information on whether cephalopods accumulated this neurotoxin in brain tissue, however, further studies are needed to determine if these organisms are neurally or behaviourally impaired by DA.
Collapse
Affiliation(s)
- Vanessa M Lopes
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Portugal; IPMA - Instituto Português do Mar e da Atmosfera, Avenida de Brasília, 1449-006 Lisboa, Portugal.
| | - Rui Rosa
- MARE - Marine Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Pedro R Costa
- IPMA - Instituto Português do Mar e da Atmosfera, Avenida de Brasília, 1449-006 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
18
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
19
|
Guan Z, Cai T, Liu Z, Dou Y, Hu X, Zhang P, Sun X, Li H, Kuang Y, Zhai Q, Ruan H, Li X, Li Z, Zhu Q, Mai J, Wang Q, Lai L, Ji J, Liu H, Xia B, Jiang T, Luo SJ, Wang HW, Xie C. Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein. Curr Biol 2017; 27:2833-2842.e6. [PMID: 28889973 DOI: 10.1016/j.cub.2017.07.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 04/10/2017] [Accepted: 07/27/2017] [Indexed: 01/20/2023]
Abstract
Cephalopods, the group of animals including octopus, squid, and cuttlefish, have remarkable ability to instantly modulate body coloration and patterns so as to blend into surrounding environments [1, 2] or send warning signals to other animals [3]. Reflectin is expressed exclusively in cephalopods, filling the lamellae of intracellular Bragg reflectors that exhibit dynamic iridescence and structural color change [4]. Here, we trace the possible origin of the reflectin gene back to a transposon from the symbiotic bioluminescent bacterium Vibrio fischeri and report the hierarchical structural architecture of reflectin protein. Intrinsic self-assembly, and higher-order assembly tightly modulated by aromatic compounds, provide insights into the formation of multilayer reflectors in iridophores and spherical microparticles in leucophores and may form the basis of structural color change in cephalopods. Self-assembly and higher-order assembly in reflectin originated from a core repeating octapeptide (here named protopeptide), which may be from the same symbiotic bacteria. The origin of the reflectin gene and assembly features of reflectin protein are of considerable biological interest. The hierarchical structural architecture of reflectin and its domain and protopeptide not only provide insights for bioinspired photonic materials but also serve as unique "assembly tags" and feasible molecular platforms in biotechnology.
Collapse
Affiliation(s)
- Zhe Guan
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tiantian Cai
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhongmin Liu
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yunfeng Dou
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xuesong Hu
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Sun
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yao Kuang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiran Zhai
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Ruan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xuanxuan Li
- Beijing Computational Science Research Center, The Chinese Academy of Engineering Physics, Beijing 100084, China; Department of Engineering Physics, Tsinghua University, Beijing 100086, China
| | - Zeyang Li
- The State Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Qihui Zhu
- The Robotics Research Group, College of Engineering, Peking University, Beijing 100871, China
| | - Jingeng Mai
- The Robotics Research Group, College of Engineering, Peking University, Beijing 100871, China
| | - Qining Wang
- The Robotics Research Group, College of Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianguo Ji
- The State Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Haiguang Liu
- Beijing Computational Science Research Center, The Chinese Academy of Engineering Physics, Beijing 100084, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Jin Luo
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Computational Science Research Center, The Chinese Academy of Engineering Physics, Beijing 100084, China.
| |
Collapse
|
20
|
van der Scheer HT, Doelman A. Synapse fits neuron: joint reduction by model inversion. BIOLOGICAL CYBERNETICS 2017; 111:309-334. [PMID: 28689352 PMCID: PMC5506247 DOI: 10.1007/s00422-017-0722-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we introduce a novel simplification method for dealing with physical systems that can be thought to consist of two subsystems connected in series, such as a neuron and a synapse. The aim of our method is to help find a simple, yet convincing model of the full cascade-connected system, assuming that a satisfactory model of one of the subsystems, e.g., the neuron, is already given. Our method allows us to validate a candidate model of the full cascade against data at a finer scale. In our main example, we apply our method to part of the squid's giant fiber system. We first postulate a simple, hypothetical model of cell-to-cell signaling based on the squid's escape response. Then, given a FitzHugh-type neuron model, we derive the verifiable model of the squid giant synapse that this hypothesis implies. We show that the derived synapse model accurately reproduces synaptic recordings, hence lending support to the postulated, simple model of cell-to-cell signaling, which thus, in turn, can be used as a basic building block for network models.
Collapse
Affiliation(s)
- H. T. van der Scheer
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - A. Doelman
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Sykes AV, Almansa E, Cooke GM, Ponte G, Andrews PLR. The Digestive Tract of Cephalopods: a Neglected Topic of Relevance to Animal Welfare in the Laboratory and Aquaculture. Front Physiol 2017; 8:492. [PMID: 28769814 PMCID: PMC5511845 DOI: 10.3389/fphys.2017.00492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health and welfare of a cephalopod is essential whether it is in a research, aquaculture or public display. The inclusion of cephalopods in the European Union legislation (Directive 2010/63/EU) regulating the use of animals for scientific purposes has prompted detailed consideration and review of all aspects of the care and welfare of cephalopods in the laboratory but the information generated will be of utility in other settings. We overview a wide range of topics of relevance to cephalopod digestive tract physiology and their relationship to the health and welfare of these animals. Major topics reviewed include: (i) Feeding cephalopods in captivity which deals with live food and prepared diets, feeding frequency (ad libitum vs. intermittent) and the amount of food provided; (ii) The particular challenges in feeding hatchlings and paralarvae, as feeding and survival of paralarvae remain major bottlenecks for aquaculture e.g., Octopus vulgaris; (iii) Digestive tract parasites and ingested toxins are discussed not only from the perspective of the impact on digestive function and welfare but also as potential confounding factors in research studies; (iv) Food deprivation is sometimes necessary (e.g., prior to anesthesia and surgery, to investigate metabolic control) but what is the impact on a cephalopod, how can it be assessed and how does the duration relate to regulatory threshold and severity assessment? Reduced food intake is also reviewed in the context of setting humane end-points in experimental procedures; (v) A range of experimental procedures are reviewed for their potential impact on digestive tract function and welfare including anesthesia and surgery, pain and stress, drug administration and induced developmental abnormalities. The review concludes by making some specific recommendations regarding reporting of feeding data and identifies a number of areas for further investigation. The answer to many of the questions raised here will rely on studies of the physiology of the digestive tract.
Collapse
Affiliation(s)
- António V Sykes
- Centro de Ciências do Mar do Algarve, Universidade do AlgarveFaro, Portugal
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| | - Paul L R Andrews
- Association for Cephalopod Research (CephRes)Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnVilla Comunale, Naples, Italy
| |
Collapse
|
22
|
Bellier JP, Xie Y, Farouk SM, Sakaue Y, Tooyama I, Kimura H. Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm. Brain Struct Funct 2017; 222:3043-3061. [PMID: 28247020 DOI: 10.1007/s00429-017-1385-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/08/2017] [Indexed: 01/08/2023]
Abstract
The octopus arm contains a tridimensional array of muscles with a massive sensory-motor system. We herein provide the first evidence for the existence of serotonin (5-HT) in the octopus arm nervous system and investigated its distribution using immunohistochemistry. 5-HT-like immunoreactive (5-HT-lir) nerve cell bodies were exclusively localized in the cellular layer of the axial nerve cord. Those cell bodies emitted 5-HT-lir nerve fibers in the direction of the sucker, the intramuscular nerves cords, the ganglion of the sucker, and the intrinsic musculature. Others 5-HT-lir nerve fibers were observed in various tissues, including the cerebrobrachial tract, the skin, and the blood vessels. 5-HT was detected by high-performance liquid chromatography in various regions of the octopus arm at levels matching the density of 5-HT-lir staining. The absence of 5-HT-lir interconnections between the cerebrobrachial tract and the other components of the axial nerve cord suggests that two types of 5-HT-lir innervation exist in the arm. One type, which originates from the brain, may innervate the periphery through the cerebrobrachial tract. Another type, which originates in the cellular layer of the axial nerve cord, may form an intrinsic network in the arm. In addition, 5-HT-lir fibers likely emitted from the neuropil of the axial nerve cord were found to project into cells showing staining for peripheral choline acetyltransferase, a marker of sensory cells of the sucker. Taken together, these observations suggest that intrinsic 5-HT-lir innervation may participate in the sensory transmission in the octopus arm.
Collapse
Affiliation(s)
- Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| | - Yu Xie
- Life Science Research Center, Beihua University, Jilin, 132013, China
| | - Sameh Mohamed Farouk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Yuko Sakaue
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
23
|
Fiorito G, Affuso A, Basil J, Cole A, de Girolamo P, D'Angelo L, Dickel L, Gestal C, Grasso F, Kuba M, Mark F, Melillo D, Osorio D, Perkins K, Ponte G, Shashar N, Smith D, Smith J, Andrews PLR. Guidelines for the Care and Welfare of Cephalopods in Research -A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab Anim 2016; 49:1-90. [PMID: 26354955 DOI: 10.1177/0023677215580006] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This paper is the result of an international initiative and is a first attempt to develop guidelines for the care and welfare of cephalopods (i.e. nautilus, cuttlefish, squid and octopus) following the inclusion of this Class of ∼700 known living invertebrate species in Directive 2010/63/EU. It aims to provide information for investigators, animal care committees, facility managers and animal care staff which will assist in improving both the care given to cephalopods, and the manner in which experimental procedures are carried out. Topics covered include: implications of the Directive for cephalopod research; project application requirements and the authorisation process; the application of the 3Rs principles; the need for harm-benefit assessment and severity classification. Guidelines and species-specific requirements are provided on: i. supply, capture and transport; ii. environmental characteristics and design of facilities (e.g. water quality control, lighting requirements, vibration/noise sensitivity); iii. accommodation and care (including tank design), animal handling, feeding and environmental enrichment; iv. assessment of health and welfare (e.g. monitoring biomarkers, physical and behavioural signs); v. approaches to severity assessment; vi. disease (causes, prevention and treatment); vii. scientific procedures, general anaesthesia and analgesia, methods of humane killing and confirmation of death. Sections covering risk assessment for operators and education and training requirements for carers, researchers and veterinarians are also included. Detailed aspects of care and welfare requirements for the main laboratory species currently used are summarised in Appendices. Knowledge gaps are highlighted to prompt research to enhance the evidence base for future revision of these guidelines.
Collapse
Affiliation(s)
- Graziano Fiorito
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Association for Cephalopod Research 'CephRes', Italy
| | - Andrea Affuso
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy Animal Model Facility - BIOGEM S.C.A.R.L., Ariano Irpino (AV), Italy
| | - Jennifer Basil
- Biology Department, Brooklyn College - CUNY Graduate Center, Brooklyn, NY, USA
| | - Alison Cole
- Association for Cephalopod Research 'CephRes', Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions - University of Naples Federico II, Napoli, Italy AISAL - Associazione Italiana per le Scienze degli Animali da Laboratorio, Milano, Italy
| | - Ludovic Dickel
- Groupe mémoire et Plasticité comportementale, University of Caen Basse-Normandy, Caen, France
| | - Camino Gestal
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Spain
| | - Frank Grasso
- BioMimetic and Cognitive Robotics, Department of Psychology, Brooklyn College - CUNY, Brooklyn, NY, USA
| | - Michael Kuba
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Felix Mark
- Integrative Ecophysiology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
| | - Daniela Melillo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Daniel Osorio
- School of Life Sciences, University of Sussex, Sussex, UK
| | - Kerry Perkins
- School of Life Sciences, University of Sussex, Sussex, UK
| | | | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben-Gurion University of the Negev, Beer, Sheva, Israel
| | - David Smith
- FELASA, Federation for Laboratory Animal Science Associations
| | | | - Paul L R Andrews
- Division of Biomedical Sciences, St George's University of London, London, UK Association for Cephalopod Research 'CephRes', Italy
| |
Collapse
|
24
|
Nervous system development in cephalopods: How egg yolk-richness modifies the topology of the mediolateral patterning system. Dev Biol 2016; 415:143-156. [PMID: 27151209 DOI: 10.1016/j.ydbio.2016.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 04/30/2016] [Accepted: 04/30/2016] [Indexed: 11/22/2022]
Abstract
Cephalopods possess the most complex centralized nervous system among molluscs and the molecular determinants of its development have only begun to be explored. To better understand how evolved their brain and body axes, we studied Sepia officinalis embryos and investigated the expression patterns of neural regionalization genes involved in the mediolateral patterning of the neuroectoderm in model species. SoxB1 expression reveals that the embryonic neuroectoderm is made of several distinct territories that constitute a large part of the animal pole disc. Concentric nkx2.1, pax6/gsx, and pax3/7/msx/pax2/5/8 positive domains subdivide this neuroectoderm. Looking from dorsal to ventral sides, the sequence of these expressions is reminiscent of the mediolateral subdivision in model species, which provides good evidence for "mediolateral patterning" conservation in cephalopods. A specific feature of cephalopod development, however, includes an unconventional orientation to this mediolateral sequence: median markers (like nkx2.1) are unexpectedly expressed at the periphery of the cuttlefish embryo and lateral markers (like Pax3/7) are expressed centrally. As the egg is rich with yolk, the lips of the blastopore (that classically organizes the neural midline) remain unclosed at the lateral side of the animal pole until late stages of organogenesis, therefore reversing the whole embryo topology. These findings confirm - by means of molecular tools - the location of both ventral and dorsal poles in cephalopod embryos.
Collapse
|
25
|
Shigeno S, Ragsdale CW. The gyri of the octopus vertical lobe have distinct neurochemical identities. J Comp Neurol 2015; 523:1297-317. [DOI: 10.1002/cne.23755] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/23/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Shuichi Shigeno
- Department of Marine Biodiversity Research; Japan Agency for Marine-Earth Science and Technology; Yokosuka 237-0061 Japan
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| | - Clifton W. Ragsdale
- Department of Neurobiology; The University of Chicago; Chicago Illinois 60637
| |
Collapse
|
26
|
Burbach JPH, Grant P, Hellemons AJCGM, Degiorgis JA, Li KW, Pant HC. Differential expression of the FMRF gene in adult and hatchling stellate ganglia of the squid Loligo pealei. Biol Open 2014; 3:50-8. [PMID: 24326188 PMCID: PMC3892160 DOI: 10.1242/bio.20136890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The giant fiber system of the squid Loligo pealei mediates the escape response and is an important neurobiological model. Here, we identified an abundant transcript in the stellate ganglion (SG) that encodes a FMRFamide precursor, and characterized FMRFamide and FI/LRF-amide peptides. To determine whether FMRFamide plays a role in the adult and hatchling giant fiber system, we studied the expression of the Fmrf gene and FMRFamide peptides. In stage 29 embryos and stage 30 hatchlings, Ffmr transcripts and FMRFamide peptide were low to undetectable in the SG, in contrast to groups of neurons intensely expressing the Fmrf gene in several brain lobes, including those that innervate the SG. In the adult SG the Fmrf gene was highly expressed, but the FMRFamide peptide was in low abundance. Intense staining for FMRFamide in the adult SG was confined to microneurons and fibers in the neuropil and to small fibers surrounding giant axons in stellar nerves. This shows that the Fmrf gene in the SG is strongly regulated post-hatching, and suggests that the FMRFamide precursor is incompletely processed in the adult SG. The data suggest that the SG only employs the Fmrf gene post-hatching and restricts the biosynthesis of FMRFamide, demonstrating that this peptide is not a major transmitter of the giant fiber system. This contrasts with brain lobes that engage FMRFamide embryonically as a regulatory peptide in multiple neuronal systems, including the afferent fibers that innervate the SG. The biological significance of these mechanisms may be to generate diversity within Fmrf-expressing systems in cephalopods.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Fostering cephalopod biology research: past and current trends and topics. INVERTEBRATE NEUROSCIENCE 2014; 13:1-9. [PMID: 23690273 DOI: 10.1007/s10158-013-0156-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D'Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P. Cephalopods in neuroscience: regulations, research and the 3Rs. INVERTEBRATE NEUROSCIENCE 2014; 14:13-36. [PMID: 24385049 PMCID: PMC3938841 DOI: 10.1007/s10158-013-0165-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Collapse
|
29
|
Lee DG, Park MW, Kim BH, Kim H, Jeon MA, Lee JS. Microanatomy and ultrastructure of outer mantle epidermis of the cuttlefish, Sepia esculenta (Cephalopoda: Sepiidae). Micron 2013; 58:38-46. [PMID: 24361231 DOI: 10.1016/j.micron.2013.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/25/2022]
Abstract
This study describes the ultrastructural characteristics of external epidermis of mantle of Sepia esculenta using light and electron microscopy. The epidermis was thicker on the ventral surface than on the dorsal surface, with a higher secretory cell distribution on the ventral surface than on the dorsal surface. The epidermis was a single layer composed of epithelial cells, secretory cells, ciliated cells and neuroglial cells. Epithelial cells were columnar with well-developed microvilli on the free surface, and the microvilli were covered with glycocalyx. The epithelial cells were connected to the neighboring cells by tight junctions and membrane interdigitations of the apico-frontal surface. Well-developed microfilaments were arranged in a vertical direction in the cortical cytoplasm. The secretory cells were categorized into three types (A, B and C) in accordance with the light microscopical characteristics and ultrastructures of the secretory granules. The distribution of these cells was in the following order: Type A>Type B>Type C. SEM observation revealed that the secretory pore size of the Type A secretory cells was approximately 8.6 μm×12.2 μm. Cytoplasm displayed a red color as the result of Masson's trichrome stain and H-E stain, and contained polygonal granules of approximately 1.2 μm2 with a high electron density. The secretory pore size of the Type B secretory cells was approximately 10.1 μm×12.1 μm. As the results of AB-PAS (pH 2.5) and AF-AB (pH 2.5) reactions, the cytoplasm displayed a red color. The cells contained membrane bounded secretory granules with very low electron density. The secretory pore of the Type C secretory cells was circular shape, and approximately 5.5 μm×5.5 μm. Cytoplasm was found to be homogeneous under H-E stain and Masson's trichrome stain, and displayed a red color. As the result of AB-PAS (pH 2.5) reaction, the cytoplasm displayed a red color. The electron density of the secretory substance was the highest among the three types of secretory cells. The ciliated cells had a ciliary tuft on the free surface and were distributed throughout the mantle with the exception of the adhesive organs. Neuroglial cells were connected to the basal membrane, epithelial cells, secretory cells and nerve fibers through cytoplasmic process, and contained neurosecretory granules with high electron density within the cytoplasm.
Collapse
Affiliation(s)
- Dong Geun Lee
- Department of Sea Cucumber Research, Jeollanamdo Ocean and Fisheries Science Institute, Jindo 539-802, Republic of Korea
| | - Min Woo Park
- Southwest Sea Fisheries Research Institute, NFRDI, Yeosu 556-823, Republic of Korea
| | - Byeong Hak Kim
- Southwest Sea Fisheries Research Institute, NFRDI, Yeosu 556-823, Republic of Korea
| | - Hyejin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Mi Ae Jeon
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu 550-749, Republic of Korea.
| |
Collapse
|
30
|
Conti L, Limon A, Palma E, Miledi R. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors. THE BIOLOGICAL BULLETIN 2013; 224:47-52. [PMID: 23493508 DOI: 10.1086/bblv224n1p47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors.
Collapse
Affiliation(s)
- Luca Conti
- Grass Laboratory at the Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA.
| | | | | | | |
Collapse
|
31
|
Sakaue Y, Bellier JP, Kimura S, D'Este L, Takeuchi Y, Kimura H. Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm. Brain Struct Funct 2013; 219:323-41. [PMID: 23354679 DOI: 10.1007/s00429-012-0502-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022]
Abstract
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Collapse
Affiliation(s)
- Yuko Sakaue
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Dickel L, Darmaillacq AS, Jozet-Alves C, Bellanger C. Learning, Memory, and Brain Plasticity in Cuttlefish (Sepia officinalis). ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
33
|
Buresi A, Baratte S, Da Silva C, Bonnaud L. orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). Gene Expr Patterns 2012; 12:109-16. [PMID: 22365924 DOI: 10.1016/j.gep.2012.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/08/2012] [Accepted: 02/09/2012] [Indexed: 01/13/2023]
Abstract
The origin of cerebral structures is a major issue in both developmental and evolutionary biology. Among Lophotrochozoans, cephalopods present both a derived nervous system and an original body plan, therefore they constitute a key model to study the evolution of nervous system and molecular processes that control the neural organization. We characterized a partial sequence of an ortholog of otx2 in Sepia officinalis embryos, a gene specific to the anterior nervous system and eye development. By in situ hybridization, we assessed the expression pattern of otx2 during S. officinalis organogenesis and we showed that otx is expressed (1) in the eyes, from early to late developmental stages as observed in other species (2) in the nervous system during late developmental stages. The otx ortholog does not appear to be required for the precocious emergence of the nervous ganglia in cephalopods and is later expressed only in the most anterior ganglia of the future brain. Finally, otx expression becomes restricted to localized part of the brain, where it could be involved in the functional specification of the central nervous system of S. officinalis. These results suggest a conserved involvement of otx in eye maturation and development of the anterior neural structures in S. officinalis.
Collapse
Affiliation(s)
- Auxane Buresi
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France
| | - Sébastien Baratte
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France; Université Paris Sorbonne, Paris 4, France
| | | | - Laure Bonnaud
- Muséum National d'Histoire Naturelle (MNHN), Département Milieux et Peuplements Aquatiques (DMPA), UMR Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), MNHN CNRS 7208, IRD 207, UPMC, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
34
|
Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:789-97. [DOI: 10.1007/s00359-011-0641-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/17/2011] [Accepted: 03/23/2011] [Indexed: 11/26/2022]
|
35
|
Wollesen T, Degnan BM, Wanninger A. Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell Tissue Res 2010; 342:161-78. [PMID: 20976473 DOI: 10.1007/s00441-010-1051-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Cephalopods are unique among mollusks in exhibiting an elaborate central nervous system (CNS) and remarkable cognitive abilities. Despite a profound knowledge of the neuroanatomy and neurotransmitter distribution in their adult CNS, little is known about the expression of neurotransmitters during cephalopod development. Here, we identify the first serotonin-immunoreactive (5-HT-ir) neurons during ontogeny and describe the establishment of the 5-HT system in the pygmy squid, Idiosepius notoides. Neurons that are located dorsally to each optic lobe are the first to express 5-HT, albeit only when the lobular neuropils are already quite elaborated. Later, 5-HT is expressed in almost all lobes, with most 5-HT-ir cell somata appearing in the subesophageal mass. Further lobes with numerous 5-HT-ir cell somata are the subvertical and posterior basal lobes and the optic and superior buccal lobes. Hatching squids possess more 5-HT-ir neurons, although the proportions between the individual brain lobes remain the same. The majority of 5-HT-ir cell somata appears to be retained in the adult CNS. The overall distribution of 5-HT-ir elements within the CNS of adult I. notoides resembles that of adult Octopus vulgaris and Sepia officinalis. The superior frontal lobe of all three species possesses few or no 5-HT-ir cell somata, whereas the superior buccal lobe comprises many cell somata. The absence of 5-HT-ir cell somata in the inferior buccal lobes of cephalopods and the buccal ganglia of gastropods may constitute immunochemical evidence of their homology. This integrative work forms the basis for future studies comparing molluscan, lophotrochozoan, ecdysozoan, and vertebrate brains.
Collapse
Affiliation(s)
- Tim Wollesen
- Research Group for Comparative Zoology, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
36
|
Shomrat T, Feinstein N, Klein M, Hochner B. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 2010; 169:52-64. [PMID: 20433903 DOI: 10.1016/j.neuroscience.2010.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris and have discovered a robust activity-dependent long-term potentiation (LTP) of the synaptic input to the VL. Moreover, we have shown that the VL and its LTP are involved in behavioral long-term memory acquisition. To advance our understanding of the VL as a learning neural network we explore the possible involvement of neuromodulation in VL function. Here we examine whether the well studied serotonergic modulation in simple models of learning in gastropods mollusks is conserved in the octopus VL. We demonstrate histochemically that the VL is innervated by afferent terminals containing 5-HT immunoreactivity (5-HT-IR). Physiologically, 5-HT has a robust facilitatory effect on synaptic transmission and activity-dependent LTP induction. These results suggest that serotonergic neuromodulation is a part of a reinforcing/reward signaling system conserved in both simple and complex learning systems of mollusks. However, there are notable functional differences. First, the effective concentration of 5-HT in the VL is rather high (100 microM); secondly, only neuropilar regions but not cell bodies in the VL are innervated by terminals containing 5-HT-IR. Thirdly, repetitive or long exposures to 5-HT do not lead to a clear long-term facilitation. We propose that in the octopus VL, while the basic facilitatory properties of molluscan 5-HT system are conserved, the system has adapted to convey signals from other brain areas to reinforce the activity-dependent associations at specific sites in the large connections matrix in the VL.
Collapse
Affiliation(s)
- T Shomrat
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
37
|
Wollesen T, Cummins SF, Degnan BM, Wanninger A. FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, Idiosepius notoides. Evol Dev 2010; 12:113-30. [DOI: 10.1111/j.1525-142x.2010.00398.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Bardou I, Leprince J, Chichery R, Vaudry H, Agin V. Vasopressin/oxytocin-related peptides influence long-term memory of a passive avoidance task in the cuttlefish, Sepia officinalis. Neurobiol Learn Mem 2010; 93:240-7. [DOI: 10.1016/j.nlm.2009.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
|
39
|
Baratte S, Bonnaud L. Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis. J Comp Neurol 2009; 517:539-49. [PMID: 19795495 DOI: 10.1002/cne.22174] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Within Mollusca, cephalopods exhibit a particularly complex nervous system. The adult brain is formed from the fusion of several "typical" molluscan ganglia but it remains poorly understood how these ganglia emerge, migrate, and differentiate during embryogenesis. We studied the development of both central and peripheral nervous system by antibodies raised against alpha-tubulin and tyrosine hydroxylase (TH) in Sepia officinalis embryos to visualize neurites and catecholamine-containing neurons, respectively. In early embryos, when organs start delineating, some ganglia already exhibited a significant fiber network. TH-like immunoreactivity was detected in these fibers and in some primary sensory neurons in the embryo periphery. These data attest to the occurrence of an early embryonic sensory nervous system, likely effective, transient in part, and in relation to the perception of external cues. Concerning the peripheral nervous network, the stellate ganglia emerged as a plexus of numerous converging axons from TH-like immunoreactive sensory cells, first at the mantle edge, and then in the whole mantle surface. Later, TH-immunopositive motor fibers, originating from the stellate ganglia, penetrated the circular muscles of the mantle. These patterns reveal the setup of a mantle midline with likely attractive and repulsive properties. Our findings seem to challenge the widespread, still accepted, view of a late differentiation of cephalopod ganglia, and provides significant data for further investigations about axonal guidance during cephalopod development.
Collapse
Affiliation(s)
- S Baratte
- Laboratory Biologie des Organismes Aquatiques et Ecosystemes, UMR CNRS 7208, Museum National d'Histoire Naturelle, DMPA, 75005 Paris, France.
| | | |
Collapse
|
40
|
Animal consciousness: a synthetic approach. Trends Neurosci 2009; 32:476-84. [PMID: 19716185 DOI: 10.1016/j.tins.2009.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/18/2009] [Accepted: 05/21/2009] [Indexed: 11/22/2022]
Abstract
Despite anecdotal evidence suggesting conscious states in a variety of non-human animals, no systematic neuroscientific investigation of animal consciousness has yet been undertaken. We set forth a framework for such an investigation that incorporates integration of data from neuroanatomy, neurophysiology, and behavioral studies, uses evidence from humans as a benchmark, and recognizes the critical role of explicit verbal report of conscious experiences in human studies. We illustrate our framework with reference to two subphyla: one relatively near to mammals - birds - and one quite far -cephalopod molluscs. Consistent with the possibility of conscious states, both subphyla exhibit complex behavior and possess sophisticated nervous systems. Their further investigation may reveal common phyletic conditions and neural substrates underlying the emergence of animal consciousness.
Collapse
|
41
|
Sirakov M, Zarrella I, Borra M, Rizzo F, Biffali E, Arnone MI, Fiorito G. Selection and validation of a set of reliable reference genes for quantitative RT-PCR studies in the brain of the Cephalopod Mollusc Octopus vulgaris. BMC Mol Biol 2009; 10:70. [PMID: 19602224 PMCID: PMC2722649 DOI: 10.1186/1471-2199-10-70] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 07/14/2009] [Indexed: 11/26/2022] Open
Abstract
Background Quantitative real-time polymerase chain reaction (RT-qPCR) is valuable for studying the molecular events underlying physiological and behavioral phenomena. Normalization of real-time PCR data is critical for a reliable mRNA quantification. Here we identify reference genes to be utilized in RT-qPCR experiments to normalize and monitor the expression of target genes in the brain of the cephalopod mollusc Octopus vulgaris, an invertebrate. Such an approach is novel for this taxon and of advantage in future experiments given the complexity of the behavioral repertoire of this species when compared with its relatively simple neural organization. Results We chose 16S, and 18S rRNA, actB, EEF1A, tubA and ubi as candidate reference genes (housekeeping genes, HKG). The expression of 16S and 18S was highly variable and did not meet the requirements of candidate HKG. The expression of the other genes was almost stable and uniform among samples. We analyzed the expression of HKG into two different set of animals using tissues taken from the central nervous system (brain parts) and mantle (here considered as control tissue) by BestKeeper, geNorm and NormFinder. We found that HKG expressions differed considerably with respect to brain area and octopus samples in an HKG-specific manner. However, when the mantle is treated as control tissue and the entire central nervous system is considered, NormFinder revealed tubA and ubi as the most suitable HKG pair. These two genes were utilized to evaluate the relative expression of the genes FoxP, creb, dat and TH in O. vulgaris. Conclusion We analyzed the expression profiles of some genes here identified for O. vulgaris by applying RT-qPCR analysis for the first time in cephalopods. We validated candidate reference genes and found the expression of ubi and tubA to be the most appropriate to evaluate the expression of target genes in the brain of different octopuses. Our results also underline the importance of choosing a proper normalization strategy when analyzing gene expression by qPCR taking into appropriate account the experimental setting and variability of the sample of animals (and tissues), thus providing a set of HGK which expression appears to be unaffected by the experimental factor(s).
Collapse
Affiliation(s)
- Maria Sirakov
- Laboratorio di Neurobiologia, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Spintzik J, Springer J, Westermann B. Morphological and histological organization of the pyriform appendage of the tetrabranchiateNautilus pompilius(Cephalopoda, Mollusca). J Morphol 2009; 270:459-68. [DOI: 10.1002/jmor.10701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Pygmy squids and giant brains: Mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. J Neurosci Methods 2009; 179:63-7. [DOI: 10.1016/j.jneumeth.2009.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/12/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
|
44
|
Distribution of oxytocin-like and vasopressin-like immunoreactivities within the central nervous system of the cuttlefish, Sepia officinalis. Cell Tissue Res 2009; 336:249-66. [DOI: 10.1007/s00441-009-0763-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 01/14/2009] [Indexed: 02/03/2023]
|
45
|
D'Este L, Kimura S, Casini A, Matsuo A, Bellier JP, Kimura H, Renda TG. First visualization of cholinergic cells and fibers by immunohistochemistry for choline acetyltransferase of the common type in the optic lobe and peduncle complex ofOctopus vulgaris. J Comp Neurol 2008; 509:566-79. [DOI: 10.1002/cne.21761] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Nunes MA, Santos S, Cordeiro JM, Neves P, Silva VS, Sykes A, Morgado F, Dunant Y, Gonçalves PP. Acetylcholine release and choline uptake by cuttlefish (Sepia officinalis) optic lobe synaptosomes. THE BIOLOGICAL BULLETIN 2008; 214:1-5. [PMID: 18258770 DOI: 10.2307/25066654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe.
Collapse
Affiliation(s)
- M Alexandra Nunes
- CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Piscopo S, Moccia F, Di Cristo C, Caputi L, Di Cosmo A, Brown ER. Pre- and postsynaptic excitation and inhibition at octopus optic lobe photoreceptor terminals; implications for the function of the 'presynaptic bags'. Eur J Neurosci 2008; 26:2196-203. [PMID: 17953617 DOI: 10.1111/j.1460-9568.2007.05833.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic transmission was examined in the plexiform zone of Octopus vulgaris optic lobes using field-potential recording from optic lobe slices. Stimulation of the optic nerve produced pre- and postsynaptic field potentials. Transmission was abolished in calcium-free seawater, L- glutamate or the AMPA/Kainate receptor blocker CNQX (EC(50), 40 microm), leaving an intact presynaptic field potential. ACh markedly reduced or blocked and d-tubocurarine augmented both pre- and postsynaptic field potentials, while alpha-bungarotoxin and atropine were without effect. Paired-pulse stimulation showed short-term depression of pre- and postsynaptic components with a half-time of recovery of approximately 500 ms. The depression was partially relieved in the presence of d-tubocurarine (half-time of recovery, 350 ms). No long-term changes in synaptic strength were induced by repetitive stimulation. A polyclonal antibody raised against a squid glutamate receptor produced positive staining in the third radial layer of the plexiform zone. No positive staining was observed in the other layers. Taking into account previous morphological data and our results, we propose that the excitatory terminations of the photoreceptors are in the innermost layer of the plexiform zone where the transmitter is likely to be glutamate and postsynaptic receptors are AMPA/kainate-like. Thus, the function of the terminal bags is to provide a location for a presynaptic cholinergic inhibitory shunt. The results imply that this arrangement provides a temporal filter for visual processing and enhances the perception of moving vs. stationary objects.
Collapse
Affiliation(s)
- Stefania Piscopo
- Neurobiology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale I, 80121 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Di Cristo C, Fiore G, Scheinker V, Enikolopov G, d'Ischia M, Palumbo A, Di Cosmo A. Nitric oxide synthase expression in the central nervous system of Sepia officinalis: an in situ hybridization study. Eur J Neurosci 2007; 26:1599-610. [PMID: 17880394 DOI: 10.1111/j.1460-9568.2007.05765.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently reported the molecular cloning of nitric oxide synthase (NOS) mRNA from Sepia officinalis (SoNOS) using a strategy that involves hybridization of degenerate PCR primers to highly conserved NOS regions, combined with a RACE procedure. Here, in situ hybridization study has been performed on serial sections of the cuttlefish central nervous system to reveal localized specific staining of cell bodies in several lobes of the brain. Staining was found in many lower motor centres, including cells of the inferior and superior buccal lobes (feeding centres); in some higher motor centres (anterior basal and peduncle lobes); in learning centres (vertical, subvertical and superior frontal lobes); and in the visual system [medulla and deep retina (optic lobe)]. Positive staining was also found in the olfactory lobe. NOS-expressing cells have been detected also in the interbasal lobe. Double labelling experiments, performed on consecutive sections, showed that neurons containing NOS immunoreactivity were also positive in in situ hybridization staining. All these data support the presence of NOS in several systems in the cuttlefish brain.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Hatakeyama D, Aonuma H, Ito E, Elekes K. Localization of glutamate-like immunoreactive neurons in the central and peripheral nervous system of the adult and developing pond snail, Lymnaea stagnalis. THE BIOLOGICAL BULLETIN 2007; 213:172-186. [PMID: 17928524 DOI: 10.2307/25066633] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
50
|
Boyer C, Maubert E, Charnay Y, Chichery R. Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 2007; 1133:53-66. [PMID: 17184745 DOI: 10.1016/j.brainres.2006.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/22/2022]
Abstract
Immunohistochemistry, using antibodies raised against mammalian neurokinin A (NKA) and serotonin (5-HT), was applied in double-staining experiments to map these molecules within the vertical lobe complex (inferior frontal, superior frontal, post-frontal, vertical, subvertical and precommissural lobes). NKA-like and 5-HT immunoreactivities were detected in all the lobes of the vertical lobe complex but were never colocalized in cell bodies or fibres. Except for the cell layers of the superior frontal lobe, both types of labelled cell bodies were observed in all the lobes. Both types of immunoreactive fibres were detected in all the neuropils and interestingly revealed clear subdivisions within some lobes, e.g., 5-HT-IR fibres were more abundant in the peripheral part of the vertical lobe whereas NKA-IR ones were widely observed in both the peripheral and central parts. In cephalopods, the vertical lobe complex is involved in learning and memory; thus, our results strongly suggest that one or more NKA-like and 5-HT molecules may function as neurochemical messengers in these cognitive processes.
Collapse
Affiliation(s)
- Christophe Boyer
- Laboratoire de Psychophysiologie (EA 3211), Université de Caen, 14032 Caen cedex, France
| | | | | | | |
Collapse
|