1
|
Del Toro K, Sayaman R, Thi K, Licon-Munoz Y, Hines WC. Transcriptomic analysis of the 12 major human breast cell types reveals mechanisms of cell and tissue function. PLoS Biol 2024; 22:e3002820. [PMID: 39499736 PMCID: PMC11537416 DOI: 10.1371/journal.pbio.3002820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/29/2024] [Indexed: 11/07/2024] Open
Abstract
A fundamental question in biology, central to our understanding of cancer and other pathologies, is determining how different cell types coordinate to form and maintain tissues. Recognizing the distinct features and capabilities of the cells that compose these tissues is critical. Unfortunately, the complexity of tissues often hinders our ability to distinguish between neighboring cell types and, in turn, scrutinize their transcriptomes and generate reliable and tractable cell models for studying their inherently different biologies. We have recently introduced a novel method that permits the identification and purification of the 12 cell types that compose the human breast-nearly all of which could be reliably propagated in the laboratory. Here, we explore the nature of these cell types. We sequence mRNAs from each purified population and investigate transcriptional patterns that reveal their distinguishing features. We describe the differentially expressed genes and enriched biological pathways that capture the essence of each cell type, and we highlight transcripts that display intriguing expression patterns. These data, analytic tools, and transcriptional analyses form a rich resource whose exploration provides remarkable insights into the inner workings of the cell types composing the breast, thus furthering our understanding of the rules governing normal cell and tissue function.
Collapse
Affiliation(s)
- Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Rosalyn Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William Curtis Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
2
|
Kang DS, Moriarty A, Wang YJ, Thomas A, Hao J, Unger BA, Klotz R, Ahmmed S, Amzaleg Y, Martin S, Vanapalli S, Xu K, Smith A, Shen K, Yu M. Ectopic Expression of a Truncated Isoform of Hair Keratin 81 in Breast Cancer Alters Biophysical Characteristics to Promote Metastatic Propensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300509. [PMID: 37949677 PMCID: PMC10837353 DOI: 10.1002/advs.202300509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation. These structural changes are associated with a softer, more elastically deformable cancer cell with enhanced adhesion and clustering ability leading to greater in vivo lung metastatic burden. This work describes a novel biomechanical mechanism by which tKRT81 promotes metastasis, highlighting the importance of the biophysical characteristics of tumor cells.
Collapse
Affiliation(s)
- Diane S. Kang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Yiru Jess Wang
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Amal Thomas
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Jia Hao
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Bret A. Unger
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Shamim Ahmmed
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
| | - Stuart Martin
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| | - Siva Vanapalli
- Department of Chemical EngineeringTexas Tech UniversityLubbockTX79409USA
| | - Ke Xu
- Department of ChemistryUniversity of California at BerkeleyBerkeleyCA94720USA
| | - Andrew Smith
- Department of Molecular and Computational BiologyUSC David and Dana Dornsife College of LettersArts and SciencesUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Keyue Shen
- Department of Biomedical EngineeringViterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative MedicineKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- USC Norris Comprehensive Cancer CenterKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA90033USA
- Department of PharmacologyUniversity of Maryland School of MedicineBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreMD21201USA
| |
Collapse
|
3
|
Rijal G, Li W. Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J Biol Eng 2018; 12:20. [PMID: 30220913 PMCID: PMC6136168 DOI: 10.1186/s13036-018-0114-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Human connective tissues are complex physiological microenvironments favorable for optimal survival, function, growth, proliferation, differentiation, migration, and death of tissue cells. Mimicking native tissue microenvironment using various three-dimensional (3D) tissue culture systems in vitro has been explored for decades, with great advances being achieved recently at material, design and application levels. These achievements are based on improved understandings about the functionalities of various tissue cells, the biocompatibility and biodegradability of scaffolding materials, the biologically functional factors within native tissues, and the pathophysiological conditions of native tissue microenvironments. Here we discuss these continuously evolving physical aspects of tissue microenvironment important for human disease modeling, with a focus on tumors, as well as for tissue repair and regeneration. The combined information about human tissue spaces reflects the necessities of considerations when configuring spatial microenvironments in vitro with native fidelity to culture cells and regenerate tissues that are beyond the formats of 2D and 3D cultures. It is important to associate tissue-specific cells with specific tissues and microenvironments therein for a better understanding of human biology and disease conditions and for the development of novel approaches to treat human diseases.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| | - Weimin Li
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210 USA
| |
Collapse
|
4
|
Phillips S, Kuperwasser C. SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adh Migr 2015; 8:578-87. [PMID: 25482617 DOI: 10.4161/19336918.2014.972740] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SLUG, a member of the SNAIL family of transcriptional repressors, is known to play a diverse number of roles in the cell, and its deregulation has been observed in a variety of cancers including breast. Here, we focus on SLUG's role as a master regulator of mammary epithelial cell (MEC) fate and lineage commitment in the normal mammary gland, and discuss how aberrant SLUG expression can influence breast tumor formation, phenotype, and progression. Specifically, we discuss SLUG's involvement in MEC differentiation, stemness, cellular plasticity, and the epithelial to mesenchymal transition (EMT), and highlight the complex connection between these programs during development and disease progression. Undoubtedly, delineating how molecular factors influence lineage identity and cell-state dynamics in the normal mammary gland will contribute to our understanding of breast tumor heterogeneity.
Collapse
Key Words
- BCSC, Breast Cancer Stem Cell
- BM, Basement Membrane
- BRCA1, Breast Cancer Associated 1
- CK, Cytokeratin
- CSC, Cancer Stem Cell
- E-CAD, E-Cadherin
- EMT
- EMT, Epithelial to Mesenchymal Transition
- ERα, Estrogen Receptor
- HDAC, Histone Deacetylasae
- HMECs, Human Mammary Epithelial Cells
- IHC, Immunohistochemical
- LSD1, Lysine Specific Demethylase 1.
- ME, Myoepithelial
- MEC, Mammary Epithelial Cell
- MaSC, Mammary Stem Cell
- SLUG
- SMA, Smooth Muscle Actin
- SNAG, Snai.Gfi-1
- WT, Wild type
- breast cancer
- cellular plasticity
- differentiation
- mammary stem cells
Collapse
Affiliation(s)
- Sarah Phillips
- a Department of Developmental, Molecular & Chemical Biology ; Sackler School of Graduate Biomedical Sciences ; Tufts University School of Medicine ; Boston , MA USA
| | | |
Collapse
|
5
|
Agurs-Collins T, Dunn BK, Browne D, Johnson KA, Lubet R. Epidemiology of Health Disparities in Relation to the Biology of Estrogen Receptor–Negative Breast Cancer. Semin Oncol 2010; 37:384-401. [DOI: 10.1053/j.seminoncol.2010.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Health disparities in breast cancer: biology meets socioeconomic status. Breast Cancer Res Treat 2010; 121:281-92. [DOI: 10.1007/s10549-010-0827-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/26/2010] [Indexed: 01/30/2023]
|
7
|
Miranda SG, Wang YJ, Purdie NG, Osborne VR, Coomber BL, Cant JP. Selenomethionine stimulates expression of glutathione peroxidase 1 and 3 and growth of bovine mammary epithelial cells in primary culture. J Dairy Sci 2009; 92:2670-83. [PMID: 19448000 DOI: 10.3168/jds.2008-1901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study examined the localization of cellular glutathione peroxidase (GPx1) and extracellular glutathione peroxidase (GPx3) in lactating mammary tissue and in primary cultures of bovine mammary epithelial cells (BMEC). The effect of selenium as selenomethionine (SeMet) on the growth and viability of BMEC and GPx protein expression and activity were also studied. Single mammary epithelial cells were recovered by serial collagenase/hyaluronidase digestion from lactating bovine mammary tissue and cultured in a low-serum collagen gel system enriched with lactogenic hormones and 0, 10, 20, or 50 nM SeMet. Positive immunostaining with anti-cytokeratin and bovine anti-casein confirmed the epithelial nature and differentiated state of BMEC. Addition of SeMet to media facilitated rapid confluence of BMEC and formation of dome structures. Immunohistochemical and immunocytochemical staining revealed that both GPx1 and GPx3 are synthesized by BMEC and localized in the cytoplasm and nucleus. Up to 50 nM SeMet linearly increased BMEC number and viability over 5 d of culture. Bovine mammary epithelial cells cultured in SeMet-supplemented medium also exhibited markedly elevated GPx activity and linear increases in abundance of GPx1 and GPx3 proteins. It is apparent that SeMet degradation to release Se for synthesis of selenoproteins is carried out by BMEC. Results indicate that bovine mammary epithelial cells express GPx1 and GPx3 in vivo and in vitro; SeMet enhances expression of these selenoproteins in vitro and the growth and viability of BMEC.
Collapse
Affiliation(s)
- S G Miranda
- Department of Animal Science, University of Zulia, Maracaibo, Venezuela 4005
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Ubiquitin regulates cell functions by modifying various proteins, and cytokeratin (CK) is one of the targets of ubiquitilation. Accumulation of modified CK in various cancers has been demonstrated, and the modified CK increases the aggressiveness of the cancer by disrupting the cytoplasmic CK network and allows them to move freely. The phenotype of the cancer cells may be altered in such a way as to facilitate invasion and metastasis. Modified CK also deregulates mechanisms of mitosis and apoptosis, and leads to immortalization. Therapeutic targeting of ubiquitin or ubiquitilated proteins may reduce the malignant potential of cancer cells.
Collapse
Affiliation(s)
- Keiichi Iwaya
- Department of Diagnostic Pathology, Tokyo Medical University, Nishi-Shinjuku 6-7-1, Shinjuku-ku, Tokyo 160-0023, Japan
| | | |
Collapse
|
9
|
Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10:261-72. [PMID: 16807805 PMCID: PMC2798159 DOI: 10.1007/s10911-005-9586-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The human breast epithelium is a branching ductal system composed of an inner layer of polarized luminal epithelial cells and an outer layer of myoepithelial cells that terminate in distally located terminal duct lobular units (TDLUs). While the luminal epithelial cell has received the most attention as the functionally active milk-producing cell and as the most likely target cell for carcinogenesis, attention on myoepithelial cells has begun to evolve with the recognition that these cells play an active part in branching morphogenesis and tumor suppression. A major question that has been the subject of investigation pertains to how the luminal epithelial and myoepithelial lineages are related and precisely how they arise from a common putative stem cell population within the breast. Equally important is the question of how heterotypic signaling occurs between luminal epithelial and surrounding myoepithelial cells in normal breast morphogenesis and neoplasia. In this review we discuss data from our laboratories and from others regarding the cellular origin of human myoepithelial cells, their function in maintaining tissue polarity in the normal breast, and their role during neoplasia.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, Reykjavik, Iceland
| | - Melissa C. Adriance
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mark D. Sternlicht
- Department of Anatomy, University of California, San Francisco, California
| | - Ole W. Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, Copenhagen, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
10
|
Iwaya K, Ogawa H, Mukai Y, Iwamatsu A, Mukai K. Ubiquitin-immunoreactive degradation products of cytokeratin 8/18 correlate with aggressive breast cancer. Cancer Sci 2003; 94:864-70. [PMID: 14556659 PMCID: PMC11160294 DOI: 10.1111/j.1349-7006.2003.tb01368.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 08/04/2003] [Accepted: 08/11/2003] [Indexed: 11/27/2022] Open
Abstract
Decreased amounts of cytokeratin (CK) 8/18 in the cytoplasm of breast cancer cells correlate with a poor prognosis. Although such decreases have been attributed to suppressed gene expression, accelerated protein degradation may also be responsible. In order to investigate whether selective degradation via the ubiquitin (Ub)-dependent proteasome pathway occurs in breast cancer, one- and two-dimensional (1-D and 2-D) immunoblot analysis was performed on cancerous and normal breast tissue from 50 breast cancer patients using the anti-Ub monoclonal antibodies (mAbs) KM691 and KM690. On 1-D gel electrophoresis, one broad band or two bands were detected at about 43 kDa; these were detected only in cancer tissue. Immunoreactive bands at 43 kDa were significantly associated with aggressive morphology (P = 0.011), nuclear p53 accumulation (P = 0.015) and overexpression of Her2 / neu protein (P = 0.012). On 2-D gel electrophoresis, these bands were fractionated into a group of several spots that formed a staircase pattern at 40-45 kDa. Partial amino acid sequencing analysis demonstrated that these Ub-immunoreactive spots corresponded to CK8 and CK18; however, since they did not have an amino-terminal domain, and were located at lower molecular weight positions than intact CK8 and CK18 on the 2-D gel, they were regarded as degradation products. CK18 degradation was confirmed by confocal microscopy as loss of the frame-like network that forms the luminal structure. These results indicate that CK 8/18 degradation products are detected specifically in breast cancer and may determine its aggressiveness.
Collapse
Affiliation(s)
- Keiichi Iwaya
- Department of Pathology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | |
Collapse
|
11
|
Gudjonsson T, Rønnov-Jessen L, Villadsen R, Bissell MJ, Petersen OW. To create the correct microenvironment: three-dimensional heterotypic collagen assays for human breast epithelial morphogenesis and neoplasia. Methods 2003; 30:247-55. [PMID: 12798139 PMCID: PMC2933212 DOI: 10.1016/s1046-2023(03)00031-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The normal human breast comprises an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells separated from the connective tissue stroma by an intact basement membrane. In breast cancer, tumor cells are in direct contact with the surrounding highly activated collagenous stroma, with little or no discernible myoepithelial fence from the original double-layered structure. To understand the evolution of these two scenarios, we took advantage of a three-dimensional hydrated collagen gel approach. The contribution of myoepithelial cells to normal morphogenesis was studied by ablation and rescue experiments, and genes regulated on tumor cell-fibroblast interaction were identified in a tumor environment assay. In normal breast morphogenesis, the ability to correctly polarize sialomucin to the luminal membrane of emerging acini was used as a criterion for apical polarity and functional differentiation. In the assay of breast neoplasia, the consequence of reciprocal tumor cell-fibroblast interaction was addressed morphologically as well as by a differential display approach. Normal breast epithelial cells were purified immunomagnetically and an established cell line, MCF-7, was used as a surrogate tumor cell. With regard to the importance of myoepithelial cells in normal breast epithelial morphogenesis, the collagen gel assay elucidated the following subtleties: In contrast to culturing in basement membrane gels, luminal epithelial cells when cultured alone made structures that were all inversely polarized. This aberrant polarity could be rescued by co-culture with myoepithelial cells. The molecular activity of myoepithelial cells responsible for correct morphogenesis was narrowed down to the laminin-1 component of the basement membrane. As for the consequence of interaction of tumor cells with connective tissue fibroblasts, the assay allowed us to identify a hitherto undescribed gene referred to as EPSTI1. The relevance of the assay-based identification of regulated genes was confirmed in a series of breast carcinomas in which EPSTI1 was highly upregulated compared with normal breast. Few if any of these observations would have been possible on two-dimensional tissue culture plastic.
Collapse
Affiliation(s)
- Thorarinn Gudjonsson
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
- Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, 105 Reykjavik, Iceland
| | - Lone Rønnov-Jessen
- Zoophysiological Laboratory, The August Krogh Institute, DK-2100 Copenhagen Ø, Denmark
| | - René Villadsen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | - Mina J. Bissell
- Life Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, LBNL, 83 Room 101, Berkeley, CA 94720, USA
| | - Ole William Petersen
- Structural Cell Biology Unit, Institute of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
12
|
Péchoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol 1999; 206:88-99. [PMID: 9918697 DOI: 10.1006/dbio.1998.9133] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and alpha-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.
Collapse
Affiliation(s)
- C Péchoux
- Department of Anatomy, Section A, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | | | | | | | | |
Collapse
|
13
|
Erenburg I, Schachter B, Mira y Lopez R, Ossowski L. Loss of an estrogen receptor isoform (ER alpha delta 3) in breast cancer and the consequences of its reexpression: interference with estrogen-stimulated properties of malignant transformation. Mol Endocrinol 1997; 11:2004-15. [PMID: 9415404 DOI: 10.1210/mend.11.13.0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Comparison of mRNA ratios of a non-DNA-binding estrogen receptor (ER(alpha)) isoform, missing exon 3 (ER(alpha)delta3), to the full-length ER(alpha), in normal breast epithelium to that in primary breast cancers and breast cancer cell lines revealed a 30-fold reduction of this ratio in cancer cells (P < 0.0001). To test what functions may have been affected by the loss of ER(alpha)delta3, stable clones of MCF-7 cells expressing ectopic ER(alpha)delta3 protein, at the range of physiological ER(alpha), were generated. In vector-transfected controls the ER(alpha)delta3-mRNA and protein were less than 10% while in the ER(alpha)delta3-expressing clones, ER(alpha)delta3-mRNA and protein ranged from 36-76% of the total ER(alpha). Estrogen (E2) stimulated the expression of pS2-mRNA in pMV7 vector control cells, but the stimulation was reduced by up to 93% in ER(alpha)delta3-expressing clones. In addition, several properties associated with the transformed phenotype were also strongly affected when ER(alpha)delta3 protein was reexpressed. Compared with vector-transfected control cells, the saturation density of the ER(alpha)delta3-expressing clones was reduced by 50-68%, while their exponential growth rate was only slightly (14.5 +/- 5%) lower. The in vivo invasiveness of the ER(alpha)delta3-expressing cells was significantly reduced (P = 0.007) by up to 79%. E2 stimulated anchorage-independent growth of the pMV7 vector control cells, but reduced it to below baseline levels in ER(alpha)delta3 clones. The reduction of the pS2 response to E2 in the ER(alpha)delta3-expressing clones and the E2 block of anchorage-independent growth to below baseline were more pronounced than expected from the dominant negative function of ER(alpha)delta3. These observations suggest that E2 may activate an additional ER(alpha)delta3-dependent inhibitory pathway. The drastic reduction of ER(alpha)delta3 to ER(alpha) ratio in breast cancer, and the fact that when present in breast cancer cells this isoform leads to a suppression, rather than enhancement, of the transformed phenotype by E2 suggests that the regulation of ER(alpha)-mRNA splicing may need to be altered for the breast carcinogenesis to proceed.
Collapse
Affiliation(s)
- I Erenburg
- Department of Cell Biology, Mount Sinai School of Medicine New York 10029, USA
| | | | | | | |
Collapse
|
14
|
Jing Y, Zhang J, Waxman S, Mira-y-Lopez R. Upregulation of cytokeratins 8 and 18 in human breast cancer T47D cells is retinoid-specific and retinoic acid receptor-dependent. Differentiation 1996; 60:109-17. [PMID: 8641545 DOI: 10.1046/j.1432-0436.1996.6020109.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mamary gland is chiefly composed of luminal epithelial cells expressing cytokeratins (K) 8, 18 and 19, and basal/myoepithelial cells expressing cytokeratins 5 and 14. Human breast cancer T47D cells have a luminal phenotype and are growth-inhibited by retinoids, a class of compounds known to regulate cytokeratin expression. To extend our knowledge of retinoid action in breast cancer, we have studied the retinoid regulation of cytokeratin expression in the T47D model. We found that retinoid inhibition of T47D cell growth was accompanied by increases in K8, K18 and K19 mRNA steady-state levels (Northern blot analysis). The effect on K8 was studied in greater detail. This effect was seen with as low as 1 nM all-trans retinoic acid (tRA) and was maximal (up to 7 fold over control) with 1 microM tRA (the highest dose tested). Time-course studies revealed a detectable effect at 1 h and a maximal effect at 8-24 h. Non-retinoidal growth inhibitors (tamoxifen, BrcAMP and genistein) did not modulate K8 expression, demonstrating that the effect of tRA was specific, K8 mRNA upregulation was blocked by actinomycin D and cycloheximide, suggesting, in accordance with other studies, that tRA exerted a transcriptional effect that was secondary to de novo protein synthesis. Five retinoids known to activate retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) - tRA; 9-cis-retinoic acid, 9cRA; 13-cis RA, 13cRA; retinyl acetate; and N-(4-hydroxyphenyl) retinamide 4HPR - inhibited T47D cell growth and increased K8 expression, whereas an arotinoid (Ro-40-8757) that is not a RAR activator caused growth inhibition but did not upregulate K8. Activation of RAR alpha contributed to K8 upregulation, since this effect was partially blocked by the RAR alpha-selective antagonist Ro-41-5253. Analogous results were obtained throughout when blots were reprobed with K18 cDNA. Western blot and immunocytochemistry experiments demonstrated that protein levels of K8 and K18 increased by 2 days of treatment with 1 microM tRA. These results show that retinoids enhance the expression of cognate cytokeratin markers of luminal differentiation in T47D breast cancer cells.
Collapse
Affiliation(s)
- Y Jing
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
15
|
Peehl DM, Leung GK, Wong ST. Keratin expression: a measure of phenotypic modulation of human prostatic epithelial cells by growth inhibitory factors. Cell Tissue Res 1994; 277:11-8. [PMID: 7519968 DOI: 10.1007/bf00303075] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Expression of certain cytokeratins can be indicative of the state of differentiation of epithelial cells. The basal cells in the normal adult human prostatic epithelium are characterized by the expression of cytokeratins 5 and 14, whereas the secretory luminal cells contain cytokeratins 8 and 18. Cells cultured from the prostatic epithelium expressed cytokeratins 5, 8, and 18, and thus had features of both basal and luminal cells. Certain growth-inhibitory conditions altered keratin expression in conjunction with growth modulation. Deletion of peptide factors and hormones from the culture medium induced the expression of cytokeratins 1 and 10, associated with a squamous phenotype. These same squamous keratins were found in very dense, stratified cultures that were maintained at confluency in standard, complete medium for extended periods. Retinoic acid enhanced the expression of secretory luminal cell-associated cytokeratins 8 and 18 in semi-confluent cultures. Other growth inhibitory factors such as suramin, transforming growth factor-beta, and interferon-gamma had no effect on keratin expression. These observations indicate that the differentiation of prostatic epithelial cells can be directed toward alternate pathways, either squamous or secretory, by different growth-inhibitory conditions. However, not all growth inhibitory factors altered differentiation, demonstrating that growth inhibition in itself is not a sufficient inducer of differentiation.
Collapse
Affiliation(s)
- D M Peehl
- Department of Urology, Stanford University School of Medicine, CA 94305
| | | | | |
Collapse
|