1
|
Qi Z, Li Q, Yang S, Fu C, Hu B. Mendelian Randomization Reveals Potential Causal Relationships Between DNA Damage Repair-Related Genes and Inflammatory Bowel Disease. Biomedicines 2025; 13:231. [PMID: 39857814 PMCID: PMC11761251 DOI: 10.3390/biomedicines13010231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage repair (DDR) plays a key role in maintaining genomic stability and developing inflammatory bowel disease (IBD). However, no report about the causal association between DDR and IBD exists. Whether DDR-related genes are the precise causal association to IBD in etiology remains unclear. Herein, we employed a multi-omics summary data-based Mendelian randomization (SMR) approach to ascertain the potential causal effects of DDR-related genes in IBD. Methods: Summary statistics from expression quantitative trait loci (eQTL), DNA methylation QTL (mQTL), and protein QTL (pQTL) on European descent were included. The GWAS summarized data for IBD and its two subtypes, Crohn's disease (CD) and ulcerative colitis (UC), were acquired from the FinnGen study. We elected from genetic variants located within or near 2000 DDR-related genes in cis, which are closely associated with DDR-related gene changes. Variants were selected as instrumental variables (IVs) and assessed for causality with IBD and its subtypes using both SMR and two-sample MR (TSMR) approaches. Colocalization analysis was employed to evaluate whether a single genetic variant simultaneously influences two traits, thereby validating the pleiotropy hypothesis. Results: We identified seven DDR-related genes (Arid5b, Cox5a, Erbb2, Ube2l3, Gpx1, H2bcl2, and Mapk3), 33 DNA methylation genes, and two DDR-related proteins (CD274 and FCGR2A) which were all causally associated with IBD and its subtypes. Beyond causality, we integrated the multi-omics data between mQTL-eQTL and conducted druggability values. We found that DNA methylation of Erbb2 and Gpx1 significantly impacted their gene expression levels offering insights into the potential regulatory mechanisms of risk variants on IBD. Meanwhile, CD247 and FCGR2A could serve as targets for potential pharmacological interventions in IBD. Conclusions: Our study demonstrates the causal role of DDR in IBD based on the data-driven MR. Moreover, we found potential regulatory mechanisms of risk variants on IBD and potential pharmacological targets.
Collapse
Affiliation(s)
- Zhihao Qi
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Quan Li
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Shuhua Yang
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Chun Fu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
| | - Burong Hu
- School of Public Health, Wenzhou Medical University, Wenzhou 325035, China; (Z.Q.); (Q.L.)
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
2
|
Złowocka-Perłowska E, Baszuk P, Marciniak W, Derkacz R, Tołoczko-Grabarek A, Słojewski M, Lemiński A, Soczawa M, Matuszczak M, Kiljańczyk A, Scott RJ, Lubiński J. Blood and Serum Se and Zn Levels and 10-Year Survival of Patients after a Diagnosis of Kidney Cancer. Biomedicines 2024; 12:1775. [PMID: 39200240 PMCID: PMC11351416 DOI: 10.3390/biomedicines12081775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
The aim of the project was to evaluate the association between selenium (Se) and zinc (Zn) levels in blood and serum and kidney cancer mortality. In a prospective group of 284 consecutive, unselected patients with kidney cancer, we evaluated their 10-year survival rate in relation to the levels of Se and Zn in their blood and serum. Micronutrient levels were measured using an inductively coupled plasma mass spectrometer. Patients were divided into quartiles based on the distribution of Se and Zn levels arranged in increasing order. The following variables were taken into account in the multivariable models: age at diagnosis, gender, smoking, type of surgery and histopathological examination results. We observed a statistically significant association of all-cause mortality when subgroups with low blood selenium levels were compared to patients with high selenium levels (HR = 7.74; p < 0.001). We found, in addition, that this correlation was much stronger when only men were assessed (HR = 11.6; p < 0.001). We did not find a statistically significant association for zinc alone. When we combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV), we observed the hazard ratio for kidney cancer death to be 12.4; p = 0.016. For patients in the highest quartile of blood zinc/selenium ratio, compared to those in the lowest, the HR was 2.53; p = 0.008. Our study suggests that selenium levels, combined selenium and zinc levels (SeQI-ZnQI vs. SeQIV-ZnQIV) and zinc-to-selenium ratio (Zn/Se) are attractive targets for clinical trials aimed at improving the survival of kidney cancer patients.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Marcin Słojewski
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Artur Lemiński
- Department of Biochemical Research, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Michał Soczawa
- Department of Urology and Oncological Urology Clinic, Pomeranian Medical University, 70-204 Szczecin, Poland; (M.S.); (M.S.)
| | - Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Centre for Information-Based Medicine, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2305, Australia;
- Division of Molecular Medicine, Pathology North, NSW Pathology, Newcastle, NSW 2305, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (A.T.-G.); (M.M.); (A.K.)
| |
Collapse
|
3
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
4
|
Chen X, Fu G, Li L, Zhao Q, Ke Z, Zhang R. Selenoprotein GPX1 is a prognostic and chemotherapy-related biomarker for brain lower grade glioma. J Trace Elem Med Biol 2022; 74:127082. [PMID: 36155420 DOI: 10.1016/j.jtemb.2022.127082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Glutathione peroxidase 1 (GPX1) is a major selenoprotein in most animal tissues, primarily expressed in the cytoplasm and mitochondria of cells and peroxidase structures of certain cells. GPX1 expression is highly correlated with carcinogenesis and disease progression. The goal of the study was to determine the association between GPX1 expression and tumor therapy, and to identify GPX1 prognostic value in various malignancies. METHODS The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases were used to detect the levels of GPX1 expression in human tumor tissues and normal tissues. Indeed, correlations between GPX1 and tumor purity, tumor mutation burden (TMB), microsatellite instability (MSI), and DNA mismatch repair genes (MMRs) were explored using the TCGA cohort. Functional and enrichment analyses were performed by the GeneMANIA database and Gene Set Enrichment Analysis (GSEA), respectively. Cox regression models and Kaplan - Meier curves were used to screen for independent risk factors and estimate brain lower-grade glioma (LGG) survival probability. The Chinese Glioma Genome Atlas (CGGA) database was used to determine whether GPX1 had a race-specific effect on overall survival (OS) in LGG. The cross-interaction between GPX1 and chemoradiotherapy on LGG OS was determined by Kaplan - Meier curves. Logistic regression models of multiplicative interactions were constructed. Furthermore, the relationship between GPX1 and LGG treatment regimens was also explored through the Genomics of Drug Sensitivity in Cancer (GDSC) database. RESULTS GPX1 was highly expressed in various tumors, GPX1 overexpression was significantly correlated with the poor prognosis of LGG. GPX1 was found to be an independent predictive factor for LGG in both univariate and multivariate Cox models. The nomogram showed a high predictive accuracy (C-index: 0.804, 95% CI: 0.74-0.86). In addition, GPX1 was significantly associated with TMB, MSI, and MMRs in diverse cancers. GPX1 was involved in IL6/JAK/STAT3, inflammatory response, and apoptosis signaling pathways. Besides, non-radiotherapy, chemotherapy, and low GPX1 expression were important factors affecting the better prognosis of LGG. GPX1 acted as a tumor promoter, which has taken the worst effect on LGG survival, but a multiplicative interaction of GPX1*chemoradiotherapy may improve the poor clinical outcome. GPX1 was negatively correlated with the half inhibition concentration (IC50) of temozolomide (TMZ) (Spearman = -0.44, P = 4.52 ×10-26). CONCLUSION In LGG patients, high GPX1 expression was linked to a shorter OS. The interaction between GPX1 and chemoradiotherapy exhibits a beneficial clinical effect and chemotherapy was recommended for LGG patients, especially for those with high GPX1 expression. Besides, high GPX1 expression can predict TMZ sensitivity in LGG, providing potential evidence for chemotherapy. On the whole, this study presents a wealth of biological as well as clinical significance for the roles of GPX1 in human tumors, particularly in LGG.
Collapse
Affiliation(s)
- Xueqin Chen
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Guotao Fu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Linglan Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Zunhua Ke
- Neurosurgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi 712046, PR China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| |
Collapse
|
5
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
6
|
Cytoprotective effect of selenium polysaccharide from Pleurotus ostreatus against H2O2-induced oxidative stress and apoptosis in PC12 cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
7
|
Bhabak KP, Mahato SK, Bhattacherjee D, Barman P. Thioredoxin Reductase-triggered Fluorogenic Donor of Hydrogen Sulfide: A Model Study with Symmetrical Organopolysulfide Probe with Turn-on Near-Infrared Fluorescence Emission. J Mater Chem B 2022; 10:2183-2193. [DOI: 10.1039/d1tb02425f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the rational development of organopolysulfide-based fluorogenic donor of hydrogen sulfide (H2S) DCI-PS, which can be activated by the antioxidant selenoenzyme thioredoxin reductase (TrxR) with concomitant release of...
Collapse
|
8
|
Mitochondrial Oxidative Stress-A Causative Factor and Therapeutic Target in Many Diseases. Int J Mol Sci 2021; 22:ijms222413384. [PMID: 34948180 PMCID: PMC8707347 DOI: 10.3390/ijms222413384] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive formation of reactive oxygen species (ROS) and impairment of defensive antioxidant systems leads to a condition known as oxidative stress. The main source of free radicals responsible for oxidative stress is mitochondrial respiration. The deleterious effects of ROS on cellular biomolecules, including DNA, is a well-known phenomenon that can disrupt mitochondrial function and contribute to cellular damage and death, and the subsequent development of various disease processes. In this review, we summarize the most important findings that implicated mitochondrial oxidative stress in a wide variety of pathologies from Alzheimer disease (AD) to autoimmune type 1 diabetes. This review also discusses attempts to affect oxidative stress as a therapeutic avenue.
Collapse
|
9
|
Assessment of Glutathione Peroxidase-1 (GPX1) Gene Expression as a Specific Diagnostic and Prognostic Biomarker in Malignant Pleural Mesothelioma. Diagnostics (Basel) 2021; 11:diagnostics11122285. [PMID: 34943522 PMCID: PMC8700378 DOI: 10.3390/diagnostics11122285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor of the mesothelial lining of the thorax. It has been related to frequent exposure to asbestos. Diagnosis of malignant pleural mesothelioma is considered a criticizing problem for clinicians. Early diagnosis and sufficient surgical excision of MPM are considered the cornerstone success factors for the management of early MPM. Glutathione peroxidase-1 (GPX1) is an intracellular protein found to be extensively distributed in all cells, and it belongs to the GPX group. In the current study, we included ninety-eight patients with MPM that underwent surgery at the Zagazig University Hospital in Egypt. We assessed GPX1 gene expression level as it was thought to be related to pathogenicity of cancer in a variety of malignant tumors. We observed a significant elevation in GPX1-mRNA levels in MPM relative to the nearby normal pleural tissues. It was found to be of important diagnostic specificity in the differentiation of MPM from normal tissues. Moreover, we studied the survival of patients in correlation to the GPX1 expression levels and we reported that median overall survival was about 16 months in patients with high GPX1 expression levels, while it was found to be about 40 months in low GPX1 levels.
Collapse
|
10
|
Nie M, Hu C, Shi G, Cai M, Wang X, Zhao X. Selenium restores mitochondrial dysfunction to reduce Cr-induced cell apoptosis in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) root tips. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112564. [PMID: 34340154 DOI: 10.1016/j.ecoenv.2021.112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) disrupts the growth and physiology of plants. Selenium (Se) is considered as a promising option to help plants ameliorate Cr toxicity. To investigate the effects of exogenous Se on reactive oxygen species (ROS) burst and programmed cell death (PCD) in root tip cells under Cr stress, hydroponic experiments were carried out with Chinese cabbage seedlings grown in Hoagland solution containing 1 mg L-1 Cr and 0.1 mg L-1 Se. Results showed that Se scavenged the overproduction of H2O2 and O2-·, and alleviated the level of lipid peroxidation in root tips stressed by Cr. Moreover, Se effectively prevented DNA degradation and reduced the number of apoptotic cells in root tips. Compared with Cr treatment, Se supplementation reduced the content of ROS and malondialdehyde in mitochondria by 38.23% and 17.52%, respectively. Se application decreased the opening degree of mitochondrial permeability transition pores by 32.30%, increased mitochondrial membrane potential by 40.91%, alleviated the release of cyt c from mitochondria into cytosol by 18.42% and caused 57.40% decrease of caspase 3-like protease activity, and thus restored mitochondrial dysfunction caused by Cr stress. In addition, the alteration of Se on mitochondrial physiological properties maintained calcium homeostasis between mitochondria and cytosol, which further contributed to reducing the appearance of Cr-induced PCD. Findings suggested that Se restored mitochondrial dysfunction, which further rescued root tip cells from PCD, consequently activating defense strategies to protect plants from Cr toxicity and maintaining plant growth.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
11
|
Human glutathione peroxidase codon 198 variant increases nasopharyngeal carcinoma risk and progression. Eur Arch Otorhinolaryngol 2021; 278:4027-4034. [PMID: 33616746 DOI: 10.1007/s00405-021-06628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Glutathione peroxidase 1 (GPx-1) is a selenium-dependent detoxifying enzyme involved in the protection of cells against oxidative damage. Some genetic association studies reported significant associations between GPx-1 Pro198Leu variant and carcinogenesis across different populations; however, the impact of this variant on nasopharyngeal carcinoma (NPC) has not been explored. Therefore, the present study was planned to evaluate the potential involvement of the GPx-1 Pro198Leu variant and plasma GPx activity in the risk of developing NPC in a Tunisian population. METHODS The GPx-1 Pro198Leu genotype was determined in 327 NPC patients and 150 healthy controls by the RFLP-PCR analysis. The correlation between the GPx-1 variant and the clinicopathological parameters was examined. GPx activity was assessed in the plasma of 119 NPC patients and 58 healthy control subjects and according to GPx-1 genotypes and clinicopathological characteristics of NPC patients. RESULTS A significant association was found between GPx-1 Pro198Leu variant and NPC risk in a Tunisian population. The allelic frequencies of Pro and Leu alleles were 32% versus 68% and 41% versus 59% in NPC cases and controls, respectively. Thus, the minor 198 Leu allele increased significantly in NPC patients and appeared as a potential risk factor for NPC occurrence (OR = 1.48, CI 95% = 1.14-1.91, p = 0.002). The plasma GPx activity was significantly higher in NPC patients than in controls (p = 0.03). According to the clinicopathological characteristics of NPC patients, GPx activity decreased significantly in patients with lymph node metastasis (p = 0.004). CONCLUSION This is the first study showing a strong association between GPx-1 Pro198Leu genetic variant and NPC risk. GPx-1 Pro198Leu variant increased the development of regional lymph node metastasis. Plasma GPx activity was higher in NPC patients. Thus, GPx-1 gene could be considered as a determinant factor influencing NPC risk and progression.
Collapse
|
12
|
Wu W, Li D, Feng X, Zhao F, Li C, Zheng S, Lyu J. A pan-cancer study of selenoprotein genes as promising targets for cancer therapy. BMC Med Genomics 2021; 14:78. [PMID: 33706760 PMCID: PMC7948377 DOI: 10.1186/s12920-021-00930-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The most important health benefit of selenium (Se) is in the prevention and control of cancer. Glutathione peroxidases (GPXs) and thioredoxin reductases (TXNRDs) are selenoenzymes that are thought to play a role in oxidative stress. The differential expression of genes of the TXNRD and GPX families is closely related to carcinogenesis and the occurrence of cancer. This study comprehensively analyzed the expression profiles of seven genes in the TXNRD and GPX families, in terms of their correlations with patient survival and immune-cell subtypes, tumor microenvironment, and drug sensitivity. RESULTS The expression profiles of genes in the TXNRD and GPX families differ between different types of cancer, and also between and within individual cancer cases. The expression levels of the seven analyzed genes are related to the overall survival of patients. The TXNRD1 and TXNRD3 genes are mainly related to poor prognoses, while other genes are related to good or poor prognoses depending on the type of cancer. All of the genes were found to be correlated to varying degrees with immune-cell subtypes, level of mechanistic cell infiltration, and tumor cell stemness. The TXNRD1, GPX1, and GPX2 genes may exert dual effects in tumor mutagenesis and development, while the TXNRD1, GPX1, GPX2, and GPX3 genes were found to be related to drug sensitivity or the formation of drug resistance. CONCLUSIONS The results will greatly help in identifying the association between genes and tumorigenesis, especially in the immune response, tumor microenvironment, and drug resistance, and very important when attempting to identify new therapeutic targets.
Collapse
Affiliation(s)
- Wentao Wu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Daning Li
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaojie Feng
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Fanfan Zhao
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chengzhuo Li
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Shuai Zheng
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China
| | - Jun Lyu
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, 613 Whampoa Avenue, Tianhe District, Guangzhou, China.
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Chen S, Su X, Mi H, Dai X, Li S, Chen S, Zhang S. Comprehensive analysis of glutathione peroxidase-1 (GPX1) expression and prognostic value in three different types of renal cell carcinoma. Transl Androl Urol 2021; 9:2737-2750. [PMID: 33457246 PMCID: PMC7807338 DOI: 10.21037/tau-20-1398] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Glutathione peroxidase-1 (GPX1) is generally expressed in tissues with high oxygen tension such as the kidneys and lungs, and its main function is to degrade reactive oxygen species (ROS) and protect cells from oxidative stress. Studies have shown that GPX1 is upregulated in many tumor tissues and is closely related to tumor progression and metastasis. This study aimed to explore the possibility of GPX1 as a biomarker for kidney chromophobe cell carcinoma (KICH), kidney renal papillary cell carcinoma (KIRP), and kidney renal clear cell carcinoma (KIRC). Methods The Oncomine and GEPIA databases were used to analyze the GPX1 expression differences between tumor and normal tissues, and the UALCAN, GEPIA and DriverDBv3 databases were used to perform the survival analyses. The GeneMANIA interactive tool was then used to find the GPX1-related protein-protein interaction (PPI). Following this, the LinkedOmics database was used for the enrichment analysis of GPX1, and the Timer database was used to estimate the abundance of immune infiltration. Finally, quantitative polymerase chain reaction (qPCR) was performed on patient specimens collected in the clinic to confirm the database findings. Results In our study, we found that the expression of GPX1 in three types of renal cell carcinoma (RCC) were upregulated, and the high expression of GXP1 was related to the poor prognosis of patients with KICH and KIRC. On the contrary, KIRP patients with a high expression of GPX1 had a better prognosis. In addition, GPX1 was related to the abundance of immune cell infiltration. The results of the qPCR analysis confirmed that the expression of GPX1 in RCC was increased compared with the control group (P<0.05). Conclusions Our results indicate that the expression of GPX1 is related to the prognosis of three types of RCC. As such, GPX1 expression could be a reliable diagnostic and prognostic biomarker for RCC and, more importantly, may provide a new direction for therapeutic strategies.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaotao Su
- Guangxi Medical University, Nanning, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodi Dai
- Guangxi Medical University, Nanning, China
| | - Songheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | |
Collapse
|
14
|
Dou L, Tian Z, Zhao Q, Xu M, Zhu Y, Luo X, Qiao X, Ren R, Zhang X, Li H. Transcriptomic Characterization of the Effects of Selenium on Maize Seedling Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:737029. [PMID: 34887883 PMCID: PMC8650135 DOI: 10.3389/fpls.2021.737029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Selenium (Se) is a trace mineral element in soils that can be beneficial to plants in small amounts. Although maize is among the most economically important crops, there are few reports on the effects of Se on maize seedling growth at the molecular level. In this study, the growth of maize seedlings treated with different concentrations of Na2SeO3 was investigated, and the physiological characteristics were measured. Compared with the control, a low Se concentration promoted seedling growth, whereas a high Se concentration inhibited it. To illustrate the transcriptional effects of Se on maize seedling growth, samples from control plants and those treated with low or high concentrations of Se were subjected to RNA sequencing. The differentially expressed gene (DEG) analysis revealed that there were 239 upregulated and 106 downregulated genes in the low Se treatment groups, while there were 845 upregulated and 1,686 downregulated DEGs in the high Se treatment groups. Both the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses showed a low concentration of the Se-stimulated expression of "DNA replication" and "glutathione (GSH) metabolism"-related genes. A high concentration of Se repressed the expression of auxin signal transduction and lignin biosynthesis-related genes. The real-time quantitative reverse transcription PCR (qRT-PCR) results showed that in the low Se treatment, "auxin signal transduction," "DNA replication," and lignin biosynthesis-related genes were upregulated 1.4- to 57.68-fold compared to the control, while, in the high Se concentration treatment, auxin signal transduction and lignin biosynthesis-related genes were downregulated 1.6- to 16.23-fold compared to the control. Based on these transcriptional differences and qRT-PCR validation, it was found that a low dosage of Se may promote maize seedling growth but becomes inhibitory to growth at higher concentrations. This study lays a foundation for the mechanisms underlying the effects of Se on maize seedling growth.
Collapse
Affiliation(s)
- Lingling Dou
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Zailong Tian
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Mengting Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Yiran Zhu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
| | - Xiaoyue Luo
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xinxing Qiao
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
| | - Rui Ren
- Shaanxi Hygrogeology Engineering Geology and Environment Geology Survey Center, Xi’an, China
- *Correspondence: Rui Ren,
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xianliang Zhang,
| | - Huaizhu Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, China
- Huaizhu Li,
| |
Collapse
|
15
|
Hossain KFB, Rahman MM, Sikder MT, Hosokawa T, Saito T, Kurasaki M. Selenium modulates inorganic mercury induced cytotoxicity and intrinsic apoptosis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111262. [PMID: 32916531 DOI: 10.1016/j.ecoenv.2020.111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) in its all forms, including inorganic Hg (iHg) is an environmental contaminant due to toxicity and diseases in human. However, a little is known about the underlying mechanisms responsible for iHg toxicity. Selenium (Se) is an essential trace element, recognized as an antioxidant and protective agent against metal toxicities. The purpose of this research was to investigate ameliorations of Se counter to iHg-mediated toxicity in PC12 cells. Cytotoxic assays have been shown that iHg (5 μM) caused oxidative stress and intrinsic apoptosis via ROS generation, oxidizing glutathione, damaging DNA, degrading cell membrane integrity, down-regulating mTOR, p-mTOR, akt and ERK1, and up-regulating cleaved caspase 3 and cytochrome c release in PC12 cells 48 h after incubation. Co-treatment of Se (5 μM) inhibited intrinsic apoptosis and oxidative stress induced by iHg (5 μM) via inhibiting ROS formation, boosting GPx contents, increasing reduced glutathione, limiting DNA degradation, improving cell membrane integrity, up-regulating mTOR, p-mTOR, akt, ERK1 and caspase 3, and down-regulating cleaved caspase 3 and cytochrome c leakage in PC12 cells. In conclusion, these results recommended that excessive ROS generation acts a critical role in iHg-influenced oxidative stress and co-treatment of Se attenuates iHg-cytotoxicity through its antioxidant properties.
Collapse
Affiliation(s)
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Tajuddin Sikder
- Department of Public Health and Informatics, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Toshiyuki Hosokawa
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Takeshi Saito
- Faculty of Health Science, Hokkaido University, Sapporo, 060-0812, Japan
| | - Masaaki Kurasaki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan; Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
16
|
Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun JS, Kim JH. The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 2020; 52:1198-1208. [PMID: 32788658 PMCID: PMC7423502 DOI: 10.1038/s12276-020-0408-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 01/16/2023] Open
Abstract
As an essential nutrient and trace element, selenium is required for living organisms and its beneficial roles in human health have been well recognized. The role of selenium is mainly played through selenoproteins synthesized by the selenium metabolic system. Selenoproteins have a wide range of cellular functions including regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to various diseases, such as cardiovascular disease, cancer, liver disease, and arthropathy—Kashin–Beck disease (KBD) and osteoarthritis (OA). A skeletal developmental disorder, KBD has been reported in low-selenium areas of China, North Korea, and the Siberian region of Russia, and can be alleviated by selenium supplementation. OA, the most common form of arthritis, is a degenerative disease caused by an imbalance in matrix metabolism and is characterized by cartilage destruction. Oxidative stress serves as a major cause of the initiation of OA pathogenesis. Selenium deficiency and dysregulation of selenoproteins are associated with impairments to redox homeostasis in cartilage. We review the recently explored roles of selenium metabolism and selenoproteins in cartilage with an emphasis on two arthropathies, KBD and OA. Moreover, we discuss the potential of therapeutic strategies targeting the biological functions of selenium and selenoproteins for OA treatment. Selenium, a micronutrient found in brazil nuts, shiitake mushrooms, and most meats, may aid in treating joint diseases, including the most common form of arthritis, osteoarthritis (OA). In addition to thyroid hormone metabolism and immunity, selenium is important in antioxidant defense. Oxidative damage can destroy cartilage and harm joints, and selenium deficiency is implicated in several joint diseases. Jin-Hong Kim at Seoul National University in South Korea and co-workers reviewed selenium metabolism, focusing on OA and and Kashin–Beck disease, a skeletal development disorder prevalent in selenium-deficient areas of northeast Asia. They report that selenium-containing proteins protect cells against oxidative damage and that selenium is crucial to cartilage production. Further investigation of selenium metabolism may point the way to new treatments for OA and other joint diseases.
Collapse
Affiliation(s)
- Donghyun Kang
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Cuiyan Wu
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Byeong Jae Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea
| | - Jang-Soo Chun
- National Creative Research Initiatives Center for Osteoarthritis Pathogenesis and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea. .,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Santos DB, Colle D, Moreira ELG, Santos AA, Hort MA, Santos K, Oses JP, Razzera G, Farina M. Probucol Protects Neuronal Cells Against Peroxide-Induced Damage and Directly Activates Glutathione Peroxidase-1. Mol Neurobiol 2020; 57:3245-3257. [PMID: 32506382 DOI: 10.1007/s12035-020-01963-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Experimental evidence has shown that probucol, a hypocholesterolemic agent, is also able to increase glutathione peroxidase (GPx) activity. However, there is a lack of knowledge about the mechanism(s) involved in this event. In this study, in vitro experiments with purified GPx1 from bovine erythrocytes and cultured SH-SY5Y neuroblastoma cells, as well as in silico studies with GPx1, were performed in order to elucidate mechanisms mediating the stimulatory effect of probucol on GPx activity and to investigate the relevance of this event in terms of susceptibility against peroxide-induced cytotoxicity. In vitro experiments with purified GPx1 showed a direct stimulatory effect of probucol on the activity of GPx1, which was related to an increase in Vmax with no changes in KM. Probucol also increased GPx activity in cultured SH-SY5Y neuroblastoma cells, while the levels of GPx1 expression were not changed, corroborating the results found with the purified enzyme. In addition, probucol rendered SH-SY5Y cells more resistant to hydroperoxide-induced cytotoxicity, and this event was abolished in GPx1 knocked-down cells. In silico studies with GPx1 pointed to a potential binding site for probucol at the close vicinity of the GSH pocket. Collectively, the results presented herein indicate that GPx1 plays a central role in the probucol-induced protective effects against peroxide toxicity. This highlights a novel target (GPx1) and a new mechanism of action (direct activation) for an "old drug." The relevance of such results for in vivo conditions deserves further investigation.
Collapse
Affiliation(s)
- Danúbia B Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, 88040-900, Brazil.
| | - Dirleise Colle
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alessandra A Santos
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mariana A Hort
- Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Karin Santos
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, 88040-900, Brazil
| | - Jean P Oses
- Institute of Bioscience, Sector of Biochemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Guilherme Razzera
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, 88040-900, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
18
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
19
|
Sandsveden M, Nilsson E, Borgquist S, Rosendahl AH, Manjer J. Prediagnostic serum selenium levels in relation to breast cancer survival and tumor characteristics. Int J Cancer 2020; 147:2424-2436. [PMID: 32378183 DOI: 10.1002/ijc.33031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
Women with lower levels of serum selenium (Se) may have a worse survival in breast cancer than women with higher levels, despite no difference in incidence of the disease. Our study was conducted to test whether Se is associated with the aggressiveness of breast tumors. Both the risk of having a tumor characteristic associated with worse prognosis, as well as the overall and breast cancer-specific mortality, were studied. We identified breast cancer cases and controls within the Malmö Diet and Cancer Study, a population-based cohort with 17 035 women recruited between 1991 and 1996. Inclusion criteria were incident breast cancer. Exclusion criteria were carcinoma in situ and bilateral breast cancer. Controls were selected among breast cancer-free women both from matching (n = 694) as well as randomization (n = 492). After exclusion, 1066 cases remained and were compared to controls regarding their prediagnostic serum Se levels and subsequent risk of having a certain tumor characteristic or intrinsic subtype. We also followed breast cancer patients regarding overall and breast cancer-specific mortality, comparing different Se quartiles. No association between serum Se quartile and any tumor characteristic or intrinsic subtype was found. Lower overall mortality was found among women in the highest Se quartile compared to the lowest using an adjusted Cox proportional hazards model, hazard ratio 0.63 (95% confidence interval: 0.44-0.89). Similar results were seen for breast cancer-specific mortality, 0.60 (0.37-0.98). The results of our study support that Se is associated with a lower mortality in breast cancer, not related to established prognostic factors.
Collapse
Affiliation(s)
- Malte Sandsveden
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Emelie Nilsson
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Denmark.,Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants (Basel) 2020; 9:E420. [PMID: 32414091 PMCID: PMC7278812 DOI: 10.3390/antiox9050420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient required for optimal human health. It has long been suggested that selenium has anti-cancer properties. However, clinical trials have shown inconclusive results on the potential of Se to prevent cancer. The suggested role of Se in the prevention of cancer is centered around its role as an antioxidant. Recently, the potential of selenium as a drug rather than a supplement has been uncovered. Selenium compounds can generate reactive oxygen species that could enhance the treatment of cancer. Transformed cells have high oxidative distress. As normal cells have a greater capacity to meet oxidative challenges than tumor cells, increasing the flux of oxidants with high dose selenium treatment could result in cancer-specific cell killing. If the availability of Se is limited, supplementation of Se can increase the expression and activities of Se-dependent proteins and enzymes. In cell culture, selenium deficiency is often overlooked. We review the importance of achieving normal selenium biology and how Se deficiency can lead to adverse effects. We examine the vital role of selenium in the prevention and treatment of cancer. Finally, we examine the properties of Se-compounds to better understand how each can be used to address different research questions.
Collapse
Affiliation(s)
- Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rohan Garje
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| |
Collapse
|
21
|
Wei R, Qiu H, Xu J, Mo J, Liu Y, Gui Y, Huang G, Zhang S, Yao H, Huang X, Gan Z. Expression and prognostic potential of GPX1 in human cancers based on data mining. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:124. [PMID: 32175417 PMCID: PMC7049064 DOI: 10.21037/atm.2020.02.36] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glutathione peroxidase-1 (GPX1) is a member of the GPX family, which considered an enzyme that interacts with oxidative stress. GPX1 differential expression is closely correlated with carcinogenesis and disease progression. In this study, we used bioinformatics analysis to investigate GPX1 expression level and explore the prognostic information in different human cancers. METHODS Expression was analyzed via the Oncomine database and Gene Expression Profiling Interactive Analysis tool, and potential prognostic analysis was evaluated using the UALCAN, GEPIA, and DriverDBv3 databases. Then, the UALCAN database was used to find the promoter methylation of GPX1 in defied cancer types. While GPX1 related functional networks were found within the GeneMANIA interactive tool and Cytoscape software. Moreover, Metascape online website was used to analyze Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS We found that GPX1 was commonly overexpressed in most human cancers. High expression of GPX1 could lead to poor outcomes in Brain Lower Grade Glioma, while GPX1 over expression was correlated with better prognosis in Kidney renal papillary cell carcinoma (KIPP). High GPX1 expression was marginally associated with poor prognosis in acute myeloid leukemia (AML). Gene regulation network suggested that GPX1 mainly involved in pathways including the glutathione metabolism, ferroptosis, TP53 regulates metabolic genes, reactive oxygen species (ROS) metabolic process, and several other signaling pathways. CONCLUSIONS Our findings revealed that GPX1 showed significant expression differences among cancers and served as a prognostic biomarker for defined cancer types. The data mining effectively revealed useful information about GPX1 expression, prognostic values, and potential functional networks in cancers, thus providing researchers with an available way to further explore the mechanism underlying carcinogenesis of genes of interest in different cancers.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongtu Qiu
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Juanmei Mo
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guangyou Huang
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Shunrong Zhang
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| | - Hongfang Yao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoxiao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhichuan Gan
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning 530021, China
| |
Collapse
|
22
|
younesian O, younesian S, hosseinzadeh S, joshaghani HR. Association of Selenium and Risk of Esophageal Cancer: A Review. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
23
|
García-Quiroz J, García-Becerra R, Santos-Cuevas C, Ramírez-Nava GJ, Morales-Guadarrama G, Cárdenas-Ochoa N, Segovia-Mendoza M, Prado-Garcia H, Ordaz-Rosado D, Avila E, Olmos-Ortiz A, López-Cisneros S, Larrea F, Díaz L. Synergistic Antitumorigenic Activity of Calcitriol with Curcumin or Resveratrol is Mediated by Angiogenesis Inhibition in Triple Negative Breast Cancer Xenografts. Cancers (Basel) 2019; 11:cancers11111739. [PMID: 31698751 PMCID: PMC6896056 DOI: 10.3390/cancers11111739] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells (MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset, volume and microvessel density were significantly reduced in mice coadministered with calcitriol and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo. The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells proliferation, while potentiated calcitriol’s ability to reduce MBCDF-T cell-growth and endothelial cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in human mammary tumor cells. Whereas the results suggest different mechanisms of action of the phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition of tumor neoangiogenesis.
Collapse
Affiliation(s)
- Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Ciudad de México, Mexico
| | - Clara Santos-Cuevas
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico; (C.S.-C.); (G.J.R.-N.)
| | - Gerardo J. Ramírez-Nava
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Estado de México, Mexico; (C.S.-C.); (G.J.R.-N.)
| | - Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Nohemí Cárdenas-Ochoa
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Mariana Segovia-Mendoza
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán 04510, Ciudad de México, Mexico;
| | - Heriberto Prado-Garcia
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, Belisario Domínguez Sección XVI, Tlalpan 14080, Ciudad de México, Mexico;
| | - David Ordaz-Rosado
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas-Virreyes, Lomas de Chapultepec IV Sección, Miguel Hidalgo 11000, Ciudad de México, Mexico;
| | - Sofía López-Cisneros
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlálpan 14080, Ciudad de México, Mexico (R.G.-B.); (G.M.-G.); (N.C.-O.); (D.O.-R.); (E.A.); (S.L.-C.); (F.L.)
- Correspondence:
| |
Collapse
|
24
|
Yildiz A, Kaya Y, Tanriverdi O. Effect of the Interaction Between Selenium and Zinc on DNA Repair in Association With Cancer Prevention. J Cancer Prev 2019; 24:146-154. [PMID: 31624720 PMCID: PMC6786808 DOI: 10.15430/jcp.2019.24.3.146] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the most common cause of death worldwide. Annually, more than ten million new cancer cases are diagnosed, and more than six million deaths occur due to cancer. Nonetheless, over 80% of human cancer may be preventable through proper nutrition. Numerous nutritional compounds are effective in preventing cancer. Selenium and zinc are essential micronutrients that have important roles in reducing oxidative stress and protecting DNA from the attack of reactive oxygen species. Selenium is an essential trace element that possesses several functions in many cellular processes for cancer prevention. Meanwhile, zinc may have protective effects on tumor initiation and progression, and it is an essential cofactor of several mammalian proteins. Results show that both selenium and zinc provide an effective progression of DNA repair system; thus, cancer development that originated from DNA damage is decreased. Results mostly focus on the separate effects of these two elements on different cell types, tissues, and organs, and their combined effects are largely unknown. This review aimed to emphasize the joint role of selenium and zinc specifically on DNA repair for cancer prevention.
Collapse
Affiliation(s)
- Aysegul Yildiz
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yesim Kaya
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ozgur Tanriverdi
- Department of Medical Oncology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey.,Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
25
|
Okoko T. Kolaviron and selenium reduce hydrogen peroxide-induced alterations of the inflammatory response. J Genet Eng Biotechnol 2018; 16:485-490. [PMID: 30733764 PMCID: PMC6353656 DOI: 10.1016/j.jgeb.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/23/2018] [Accepted: 02/10/2018] [Indexed: 11/22/2022]
Abstract
The abilities of kolaviron and selenium (either separately or in combination) to prevent hydrogen peroxide-induced alterations in cell viability and activation were investigated. The cell line U937 was incubated with the antioxidants (i.e. kolaviron or selenium) for 24 h before exposure to hydrogen peroxide and cell viability was assessed via trypan blue dye exclusion assay. The U937 cells were also transformed to the macrophage form, incubated with the antioxidants before exposure to hydrogen peroxide. Subsequently, production of nitric oxide and pro-inflammatory cytokines were assessed as indices of macrophage activation. The myoblast cell line H9c2 was also incubated with Se and kolaviron for 24 h before exposure to hydrogen peroxide. Cell viability and generation of reactive oxygen species (ROS) were assessed via MTT and DCHF assays. The results revealed that hydrogen peroxide significantly reduced (p < 0.05) the viability of U937 cells which was ameliorated by kolaviron and selenium. Kolaviron and selenium also reduced hydrogen peroxide-induced secretion of nitric oxide, TNF-α, IL-1 and IL-6 by transformed U937 cells. Hydrogen peroxide also significantly reduced (p < 0.05) the viability of H9c2 cells which was significantly restored by kolaviron. Though selenium had no effect on the proliferation of H9c2 cells, co-treatment with kolaviron significantly reduced hydrogen peroxide-induced alterations. Both kolaviron and selenium also reduced hydrogen peroxide-mediated ROS production by H9c2 cells. In all cases, the combined action of kolaviron and selenium offered greater amelioration of the hydrogen peroxide-induced alterations than their separate effects (p < 0.05) but may not be synergistic or additive.
Collapse
|
26
|
Zanetti TA, Biazi BI, Baranoski A, D'Epiro GFR, Corveloni AC, Semprebon SC, Coatti GC, Mantovani MS. Response of HepG2/C3A cells supplemented with sodium selenite to hydrogen peroxide-induced oxidative stress. J Trace Elem Med Biol 2018; 50:209-215. [PMID: 30262281 DOI: 10.1016/j.jtemb.2018.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/20/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress (OS) is involved in the onset of various pathological processes, and sodium selenite (Na2SeO3) is known to have antioxidant activity. This study evaluated the cellular response of human HepG2/C3A cells supplemented with Na2SeO3 when exposed to hydrogen peroxide (H2O2)-induced OS. We analyzed cytotoxicity, cell proliferation, and genotoxicity in comparison with molecular data of mRNA and protein expression. The MTT and comet assays revealed that Na2SeO3 conferred cytoprotective and anti-genotoxic effects. In contrast, RTCA (Real-Time Cell Analysis) and flow cytometry analysis revealed that Na2SeO3 did not inhibit H2O2-induced anti-proliferative effects or cell cycle arrest (G2/M). Cells exposed simultaneously to Na2SeO3 and H2O2 showed overexpression of GPX1 mRNA, indicating that Na2SeO3 influenced the cellular antioxidant system. Furthermore, downregulation of CAT mRNA and SOD1 and PRX2 proteins induced by H2O2, was minimal after the Na2SeO3+H2O2 treatment. Although normalization of CCN2B mRNA expression by Na2SeO3 was observed after the Na2SeO3+H2O2 treatment, this was not observed for other genes such as CDKN1A, CDKN1C, and CDKN2B, which are related to cell cycle control, nor for GADD45A, which is involved in the cellular response to DNA damage. Furthermore, both CDKN1B and CDKN1C expression were downregulated in HepG2/C3A cells treated with Na2SeO3 only. Our results indicate that cellular response to Na2SeO3 involved the modulation of the antioxidant system. Na2SeO3 was unable completely recover HepG2/C3A cells from H2O2-induced oxidative damage, as evidenced by analysis of cell proliferation kinetics, cell cycle assay, and expression of key genes involved in cell cycle progression and response to DNA damage.
Collapse
Affiliation(s)
- Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil.
| | - Bruna Isabela Biazi
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Adrivanio Baranoski
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Gláucia Fernanda Rocha D'Epiro
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Amanda Cristina Corveloni
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| | - Giuliana Castello Coatti
- Human Genome and Stem-Cell Research Center. Institute of Biosciences, University of São Paulo - USP, Rua do Matão - Travessa 13, n. 106, São Paulo, São Paulo, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Rodovia Celso Garcia Cid, Pr 445 Km 380, Londrina, Paraná, Brazil
| |
Collapse
|
27
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
28
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
29
|
Verma P, Kunwar A, Arai K, Iwaoka M, Priyadarsini KI. Mechanism of radioprotection by dihydroxy-1-selenolane (DHS): Effect of fatty acid conjugation and role of glutathione peroxidase (GPx). Biochimie 2018; 144:122-133. [DOI: 10.1016/j.biochi.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022]
|
30
|
Verma P, Kunwar A, Indira Priyadarsini K. Effect of Low-Dose Selenium Supplementation on the Genotoxicity, Tissue Injury and Survival of Mice Exposed to Acute Whole-Body Irradiation. Biol Trace Elem Res 2017; 179:130-139. [PMID: 28190183 DOI: 10.1007/s12011-017-0955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
Abstract
The aim of the present study is to evaluate the radioprotective effect of low-dose selenium supplementation (multiple administrations) on radiation toxicities and mortality induced by lethal dose of whole-body irradiation (WBI). For this, BALB/c mice received sodium selenite (4 μg/kg body wt) intraperitoneally for five consecutive days and subjected to WBI at an absorbed dose of 8 Gy (60Co, 1 Gy/min). Administration of sodium selenite was continued even during the post irradiation days three times a week till the end of the experiment. The radioprotective effect was evaluated in terms of the improvement in 30 days post irradiation survival, protection from DNA damage, and biochemical and histological changes in radiosensitive organs. The results indicated that low-dose sodium selenite administration did not protect the mice from radiation-induced hematopoietic and gastrointestinal injuries and subsequent mortality. However, it significantly prevented the radiation-induced genotoxicity or DNA damage in peripheral leukocytes. Further sodium selenite administration modulated the messenger RNA (mRNA) expression of GPx1, GPx2, and GPx4 in the spleen and intestine differentially and led to a significant increase in GPx activity (∼1.5 to 2-folds) in these organs. In line with this observation, sodium selenite administration reduced the level of lipid peroxidation in the intestine. In conclusion, our study shows that low-dose sodium selenite supplementation can be an effective strategy to prevent WBI-induced genotoxicity but may not have an advantage against mortality sustained during nuclear emergencies.
Collapse
Affiliation(s)
- Prachi Verma
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - K Indira Priyadarsini
- Homi Bhabha National Institute, Mumbai, 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
31
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
32
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
33
|
Sandsveden M, Manjer J. Selenium and breast cancer risk: A prospective nested case-control study on serum selenium levels, smoking habits and overweight. Int J Cancer 2017; 141:1741-1750. [PMID: 28681438 DOI: 10.1002/ijc.30875] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/20/2023]
Abstract
Previous research has not been conclusive regarding the association between selenium (Se) and breast cancer. This study was conducted to clarify if there is an association between prediagnostic serum Se levels and breast cancer risk. A population based cohort, the Malmö Diet and Cancer Study, was used and linked with the Swedish cancer registry up to 31 December 2013. Our study included 1,186 women with breast cancer and an equal number of controls. Selenium levels were analysed from stored serum samples. The included individuals were divided into quartiles based on Se value and we compared breast cancer cases with controls using logistic regression yielding odds ratios (OR) with 95% confidence intervals. Serum Se was also analysed as a continuous variable regarding breast cancer risk. The analyses were adjusted for established risk factors and stratified on smoking status and body mass index (BMI). When comparing the highest Se quartile with the lowest, the adjusted OR for breast cancer was 0.98 (0.75-1.26). With selenium as a continuous variable the adjusted OR was 1.00 (1.00-1.01) per 10 ng/ml. When comparing the highest with the lowest Se quartile in women with BMI > 25 kg/m2 the adjusted OR was 0.77 (0.53-1.14). We conclude that it is unlikely that prediagnostic serum selenium is overall associated with breast cancer risk and no modifying effect from BMI or smoking was seen.
Collapse
Affiliation(s)
- Malte Sandsveden
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| | - Jonas Manjer
- Department of Surgery, Skåne University Hospital Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
34
|
Stupin A, Cosic A, Novak S, Vesel M, Jukic I, Popovic B, Karalic K, Loncaric Z, Drenjancevic I. Reduced Dietary Selenium Impairs Vascular Function by Increasing Oxidative Stress in Sprague-Dawley Rat Aortas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E591. [PMID: 28574428 PMCID: PMC5486277 DOI: 10.3390/ijerph14060591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
Abstract
This study aimed to determine whether low dietary Se content affects the function and mechanisms mediating the vascular relaxation of rat aortas, and to test the role of oxidative stress in observed differences. Male Sprague Dawley (SD) rats were maintained for 10 weeks on low Se (low-Se group; N = 20) or normal Se content (norm-Se group; N = 20) rat chow. Dose responses to acetylcholine (ACh; 10-9-10-5M) and the response to reduced pO₂ were tested in noradrenaline-precontracted aortic rings in the absence/presence of the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME), the cyclooxygenase 1 and 2 (COX-1, 2) inhibitor Indomethacin, and the antioxidative agent Tempol in tissue bath. mRNA expression of glutathione peroxidase 1 (GPx1), catalase (CAT), and Cu/Zn superoxide dismutase (SOD) was measured in rat aortas. Oxidative stress (Thiobarbituric Acid Reactive Substances; TBARS), antioxidative plasma capacity (ferric reducing ability of plasma assay; FRAP), and protein levels of GPx1 were measured in plasma and serum samples, respectively. Reduced ACh-induced relaxation (AChIR) (dominantly mediated by NO) in the low-Se group compared to the norm-Se group was restored by Tempol administration. Hypoxia-induced relaxation (HIR) (dominantly mediated by COX-1, 2), TBARS, and FRAP as well as GPx1 serum concentrations were similar between the groups. mRNA GPx1 expression in rat aortas was significantly decreased in the low-Se compared to the norm-Se group. These data suggest that low dietary Se content increases the local oxidative stress level, which subsequently affects the NO-mediated vascular response.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Monika Vesel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Brigita Popovic
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Krunoslav Karalic
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Zdenko Loncaric
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| |
Collapse
|
35
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
36
|
Raghuraman M, Verma P, Kunwar A, Phadnis PP, Jain VK, Priyadarsini KI. Cellular evaluation of diselenonicotinamide (DSNA) as a radioprotector against cell death and DNA damage. Metallomics 2017; 9:715-725. [DOI: 10.1039/c7mt00034k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Zhao C, Zeng H, Wu RTY, Cheng WH. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells. PLoS One 2016; 11:e0158650. [PMID: 27404728 PMCID: PMC4942091 DOI: 10.1371/journal.pone.0158650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022] Open
Abstract
Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.
Collapse
Affiliation(s)
- Changhui Zhao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin Province, 130062, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States of America
| | - Huawei Zeng
- United States Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202, United States of America
| | - Ryan T. Y. Wu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States of America
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition & Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, United States of America
| |
Collapse
|
38
|
Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J. Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:192-201. [PMID: 25638402 DOI: 10.1016/j.jplph.2014.12.014] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 05/18/2023]
Abstract
The plant glutathione peroxidase (GPX) family consists of multiple isoenzymes with distinct subcellular locations which exhibit different tissue-specific expression patterns and environmental stress responses. Contrary to most of their counterparts in animal cells, plant GPXs contain cysteine instead of selenocysteine in their active site and while some of them have both glutathione peroxidase and thioredoxin peroxidase functions, the thioredoxin regenerating system is much more efficient in vitro than the glutathione system. At present, the function of these enzymes in plants is not completely understood. The occurrence of thiol-dependent activities of plant GPX isoenzymes suggests that - besides detoxification of H2O2 and organic hydroperoxides - they may be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP(+) balance. GPXs may represent a link existing between the glutathione- and the thioredoxin-based system. The various thiol buffers, including Trx, can affect a number of redox reactions in the cells most probably via modulation of thiol status. It is still required to identify the in vivo reductant for particular GPX isoenzymes and partners that GPXs interact with specifically. Recent evidence suggests that plant GPXs does not only protect cells from stress induced oxidative damage but they can be implicated in plant growth and development. Following a more general introduction, this study summarizes present knowledge on plant GPXs, highlighting the results on gene expression analysis, regulation and signaling of Arabidopsis thaliana GPXs and also suggests some perspectives for future research.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Edit Horváth
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre of HAS, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Irma Tari
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
| |
Collapse
|
39
|
Park SO, Yoo YB, Kim YH, Baek KJ, Yang JH, Choi PC, Lee JH, Lee KR, Park KS. Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Ann Surg Treat Res 2015; 88:55-62. [PMID: 25692115 PMCID: PMC4325646 DOI: 10.4174/astr.2015.88.2.55] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/06/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
Purpose The anticancer property and cytoprotective role of selenium in chemotherapy have been reported. However, the combination effects of selenium on chemotherapy for advanced breast cancer have not yet been clearly defined. The purpose of this study was to investigate the combined effects of selenium on chemotherapy using docetaxel on breast cancer cell lines. Methods Under adherent culture conditions, two breast cancer cell lines, MDA-MB-231 and MCF-7, were treated with docetaxel at 500pM and selenium at 100nM, 1µM, or 10µM. Changes in cell growth, cell cycle duration, and degree of apoptosis after 72 hours in each treated group were evaluated. Results In the MDA-MB-231 cells, the combination therapy group (docetaxel at 500pM plus selenium at 10µM) showed a significantly decreased percentage of cell growth (15% vs. 28%; P = 0.004), a significantly increased percentage of late apoptosis (63% vs. 26%; P = 0.001), and an increased cell cycle arrest in the G2/M phase (P = 0.001) compared with the solitary docetaxel therapy group. Isobologram analysis demonstrated the synergistic effect of the combination therapy in the MDA-MB-231 cells. However, in the MCF-7 cells, no significant differences in the percentage of cell growth apoptosis, the percentage of apoptosis, and the pattern of cell cycle arrest were noted between the combination therapy groups and the solitary docetaxel therapy group. Conclusion Our in vitro study indicated that the combination of selenium with docetaxel inhibits cell proliferation through apoptosis and cell arrest in the G2/M phase in MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Sang O Park
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Yong Hun Kim
- Department of Surgery, Konkuk University Chungju Hospital, Chungju, Korea
| | - Kwang Je Baek
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Pil Cho Choi
- Department of Emergency Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Hun Lee
- Department of Emergency Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Kyeong Ryong Lee
- Department of Emergency Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Kang SW, Lee S, Lee EK. ROS and energy metabolism in cancer cells: alliance for fast growth. Arch Pharm Res 2015; 38:338-45. [PMID: 25599615 DOI: 10.1007/s12272-015-0550-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
In normal cells, the cellular reactive oxygen species (ROS) level is proportional to the activity of mitochondrial electron transport and tightly controlled by endogenous antioxidant system. However, energy metabolism and ROS homeostasis in cancer cells are much different from those in normal cells. For example, a majority of cellular glucose is metabolized through aerobic glycolysis ("Warburg effect") and the pentose phosphate pathway. Cancer cells harbor functional mitochondria, but many mutations in nuclear DNA-encoded mitochondrial genes and mitochondrial genome result in the mitochondrial metabolic reprogramming. The other characteristic of cancer cells is to maintain much higher ROS level than normal cells. Ironically, cancer cells overexpress the ROS-producing NADPH oxidase and the ROS-eliminating antioxidant enzymes, both of which enzyme systems share NADPH as a reducing power source. In this article, we review the complex connection between ROS and energy metabolisms in cancer cells.
Collapse
Affiliation(s)
- Sang Won Kang
- Department of Life Sciences, Research Center for Cell Homeostasis, Ewha Womans University, Seoul, 120-750, Republic of Korea,
| | | | | |
Collapse
|
41
|
Zhu X, Jiang M, Song E, Jiang X, Song Y. Selenium deficiency sensitizes the skin for UVB-induced oxidative damage and inflammation which involved the activation of p38 MAPK signaling. Food Chem Toxicol 2015; 75:139-45. [DOI: 10.1016/j.fct.2014.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/21/2014] [Accepted: 11/18/2014] [Indexed: 11/28/2022]
|
42
|
Erkekoglu P, Chao MW, Ye W, Ge J, Trudel LJ, Skipper PL, Kocer-Gumusel B, Engelward BP, Wogan GN, Tannenbaum SR. Cytoplasmic and nuclear toxicity of 3,5-dimethylaminophenol and potential protection by selenocompounds. Food Chem Toxicol 2014; 72:98-110. [DOI: 10.1016/j.fct.2014.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/02/2014] [Accepted: 06/30/2014] [Indexed: 01/20/2023]
|
43
|
Chao MW, Erkekoglu P, Tseng CY, Ye W, Trudel LJ, Skipper PL, Tannenbaum SR, Wogan GN. Protective effects of ascorbic acid against the genetic and epigenetic alterations induced by 3,5-dimethylaminophenol in AA8 cells. J Appl Toxicol 2014; 35:466-77. [PMID: 25178734 DOI: 10.1002/jat.3046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/06/2014] [Accepted: 06/11/2014] [Indexed: 12/25/2022]
Abstract
Exposure to monocyclic aromatic alkylanilines (MAAs), namely 2,6-dimethylaniline (2,6-DMA), 3,5-dimethylaniline (3,5-DMA) and 3-ethylaniline (3-EA), was significantly and independently associated with bladder cancer incidence. 3,5-DMAP (3,5-dimethylaminophenol), a metabolite of 3,5-DMA, was shown to induce an imbalance in cytotoxicity cellular antioxidant/oxidant status, and DNA damage in mammalian cell lines. This study was designed to evaluate the protective effect of ascorbic acid (Asc) against the cytotoxicity, reactive oxygen species (ROS) production, genotoxicity and epigenetic changes induced by 3,5-DMAP in AA8 Chinese Hamster Ovary (CHO) cells. In different cellular fractions, 3,5-DMAP caused alterations in the enzyme activities orchestrating a cellular antioxidant balance, decreases in reduced glutathione levels and a cellular redox ratio as well as increases in lipid peroxidation and protein oxidation. We also suggest that the cellular stress caused by this particular alkylaniline leads to both genetic (Aprt mutagenesis) and epigenetic changes in histones 3 and 4 (H3 and H4). This may further cause molecular events triggering different pathological conditions and eventually cancer. In both cytoplasm and nucleus, Asc provided increases in 3,5-DMAP-reduced glutathione levels and cellular redox ratio and decreases in the lipid peroxidation and protein oxidation. Asc was also found to be protective against the genotoxic and epigenetic effects initiated by 3,5-DMAP. In addition, Asc supplied protection against the cell cycle (G1 phase) arrest induced by this particular alkylaniline metabolite.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of BioScience Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan, 320; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hazane-Puch F, Champelovier P, Arnaud J, Trocmé C, Garrel C, Faure P, Laporte F. Six-day selenium supplementation led to either UVA-photoprotection or toxic effects in human fibroblasts depending on the chemical form and dose of Se. Metallomics 2014; 6:1683-92. [DOI: 10.1039/c4mt00040d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Reinke EN, Ekoue DN, Bera S, Mahmud N, Diamond AM. Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PLoS One 2014; 9:e93472. [PMID: 24691473 PMCID: PMC3972146 DOI: 10.1371/journal.pone.0093472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 02/02/2023] Open
Abstract
Glutathione peroxidase activity was previously determined to be elevated in lymphocytes obtained from patients treated with the Bcr-Abl kinase inhibitor imatinib mesylate. In order to expand upon this observation, the established chronic myelogenous leukemia cell lines KU812 and MEG-01 were treated with imatinib and the effect on several anti-oxidant proteins was determined. The levels of GPx-1 were significantly increased following treatment with imatinib. This increase was not due to altered steady-state mRNA levels, and appeared to be dependent on the expression of Bcr-Abl, as no increases were observed following imatinib treatment of cells that did not express the fusion protein. The nutrient-sensing signaling protein, mammalian target of rapamycin (mTOR), can be activated by Bcr-Abl and its activity regulates the translation of many different proteins. Treatment of those same cells used in the imatinib studies with rapamycin, an inhibitor of mTOR, resulted in elevated GPx-1 and GPx-4 protein levels independent of Bcr-Abl expression. These proteins all belong to the selenoprotein family of peptides that contain the UGA-encoded amino acid selenocysteine. Collectively, these data provide evidence of a novel means of regulating anti-oxidants of the selenoprotein family via the mTOR pathway.
Collapse
Affiliation(s)
- Emily N. Reinke
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dede N. Ekoue
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Ansong E, Yang W, Diamond AM. Molecular cross-talk between members of distinct families of selenium containing proteins. Mol Nutr Food Res 2014; 58:117-23. [PMID: 24395536 PMCID: PMC3910288 DOI: 10.1002/mnfr.201300543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 12/14/2022]
Abstract
Dietary intake of selenium has been associated with reduced risk of several cancer types, and this is likely due to its role as a specific constituent of selenium containing proteins. One of these, selenium-binding protein 1 (SBP1), is a protein of unknown function that has been shown to be reduced in tumors of diverse tissue types as compared to the corresponding normal tissue. More importantly, SBP1 has also been reported to be a predictor of clinical outcome. Levels of SBP1 are inversely associated with the levels of another protein representative of a different class of selenoproteins, glutathione peroxidase1 (GPx-1). GPx-1 is an anti-oxidant, selenocysteine containing enzyme implicated in several diseases, including cancer, due to the association of specific alleles with disease risk. The relationship between SBP1 and GPx-1 represents a unique example of a molecular interaction between selenium containing proteins with a likely significant impact on human health and disease.
Collapse
Affiliation(s)
- Emmanuel Ansong
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wancai Yang
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA,Department of Pathology, Xinxiang Medical University, Xinxiang, China
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Khera A, Vanderlelie J, Perkins A. Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta 2013; 34:594-8. [DOI: 10.1016/j.placenta.2013.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/26/2022]
|
48
|
Jerome-Morais A, Bera S, Rachidi W, Gann P, Diamond A. The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3399-406. [PMID: 23518201 PMCID: PMC3668444 DOI: 10.1016/j.bbagen.2013.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/17/2013] [Accepted: 03/06/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Significant data supports the health benefits of selenium although supplementation trials have yielded mixed results. GPx-1, whose levels are responsive to selenium availability, is implicated in cancer etiology by human genetic data. Selenium's ability to alter the phosphorylation of the H2AX, a histone protein that functions in the reduction of DNA damage by recruiting repair proteins to the damage site, following exposure to ionizing radiation and bleomycin was investigated. METHODS Human cell lines that were either exposed to selenium or were transfected with a GPx-1 expression construct were exposed to ionizing radiation or bleomycin. Phosphorylation of histone H2AX was quantified by flow cytometry and survival by the MTT assay. Phosphorylation of the Chk1 and Chk2 checkpoint proteins was quantified by western blotting. RESULTS In colon-derived cells, selenium increases GPx-1 and attenuated H2AX phosphorylation following genotoxic exposures while the viability of these cells was unaffected. MCF-7 cells and transfectants that express high GPx-1 levels were exposed to ionizing radiation and bleomycin, and H2AX phosphorylation and cell viability were assessed. GPx-1 increased H2AX phosphorylation and viability following the induction of DNA damage while enhancing the levels of activated Chk1 and Chk2. CONCLUSIONS Exposure of mammalian cells to selenium can alter the DNA damage response and do so by mechanisms that are dependent and independent of its effect on GPx-1. GENERAL SIGNIFICANCE Selenium and GPx-1 may stimulate the repair of genotoxic DNA damage and this may account for some of the benefits attributed to selenium intake and elevated GPx-1 activity.
Collapse
Affiliation(s)
- A Jerome-Morais
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - S Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - W Rachidi
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire, Lésions des AcidesNucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - P.H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - A.M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Bera S, Rosa VD, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 2013; 28:127-34. [PMID: 23204505 PMCID: PMC3570792 DOI: 10.1093/mutage/ges064] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The trace element selenium is an essential micronutrient that has received considerable attention for its potential use in the prevention of cancer. In spite of this interest, the mechanism(s) by which selenium might function as a chemopreventive remain to be determined. Considerable experimental evidence indicates that one possible mechanism by which selenium supplementation may exert its benefits is by enhancing the DNA damage repair response, and this includes data obtained using cultured cells, animal models as well as in human clinical studies. In these studies, selenium supplementation has been shown to be beneficial in reducing the frequency of DNA adducts and chromosome breaks, consequentially reducing the likelihood of detrimental mutations that ultimately contribute to carcinogenesis. The benefits of selenium can be envisioned as being due, at least in part, to it being a critical constituent of selenoproteins such as glutathione peroxidases and thioredoxin reductases, proteins that play important roles in antioxidant defence and maintaining the cellular reducing environment. Selenium, therefore, may be protective by preventing DNA damage from occurring as well as by increasing the activity of repair enzymes such as DNA glycosylases and DNA damage repair pathways that involve p53, BRCA1 and Gadd45. An improved understanding of the mechanism of selenium's impact on DNA repair processes may help to resolve the apparently contradicting data obtained from decades of animal work, human epidemiology and more recently, clinical supplementation studies.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA and
| | - Viviana De Rosa
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire Lésions des Acides Nucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France,
- Present address: Istituto di Biostrutture e Bioimmagini, CNR, Via De Amicis 95 Naples, Italy
| | - Walid Rachidi
- Université Joseph Fourier, Grenoble 1, CEA, INAC, SCIB, Laboratoire Lésions des Acides Nucléiques, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France,
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA and
| |
Collapse
|
50
|
Weeks BS, Hanna MS, Cooperstein D. Dietary selenium and selenoprotein function. Med Sci Monit 2012; 18:RA127-132. [PMID: 22847213 PMCID: PMC3560698 DOI: 10.12659/msm.883258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Selenium is a trace mineral and an essential nutrient in the human diet. Selenium is found in soil and water and consequently enters the food chain through the root ways of plants and aquatic organisms. Some areas of the world are low in soil selenium resulting in a selenium deficient population and the appearance of an associated heart disease and bone disorders that can be corrected with dietary selenium. Indeed the requirement for dietary selenium was established by these observations and while selenium deficiency is rare in the West, patients requiring long-term intravenous feedings have also show heart disease associated with a deficiency of selenium in the feeding fluids. Subsequently, it has been established that dietary selenium can improve a wide range of human health conditions even in areas with soil replete in selenium.
Collapse
Affiliation(s)
- Benjamin S Weeks
- Department of Biology and Environmental Studies Program, Adelphi University, Garden City, NY, USA.
| | | | | |
Collapse
|