1
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
2
|
Shin S, Kim CH, Son S, Lee JA, Kwon S, You DG, Lee J, Kim J, Jo DG, Ko H, Park JH. PEDF-Enriched Extracellular Vesicle for Vessel Normalization to Potentiate Immune Checkpoint Blockade Therapy. Biomater Res 2024; 28:0068. [PMID: 39355307 PMCID: PMC11443973 DOI: 10.34133/bmr.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 10/03/2024] Open
Abstract
The abnormal tumor vasculature acts as the physical and functional barrier to the infiltration and activity of effector T cells, leading to the low response rate of immune checkpoint inhibitors (ICIs). Herein, antiangiogenic extracellular vesicles that enable normalization of the tumor-associated vasculature were prepared to potentiate the efficacy of ICIs. Small extracellular vesicles were exploited as the delivery platform to protect the antiangiogenic protein, pigment epithelium-derived factor (PEDF), from proteolytic degradation. Along with the physicochemical characteristics of the PEDF-enriched extracellular vesicles (P-EVs), their inhibitory effects on migration, proliferation, and tube formation of endothelial cells were investigated in vitro. In tumor-bearing mice, it was confirmed that, compared to bare PEDFs, P-EVs efficiently reduced vessel leakiness, improved blood perfusion, and attenuated hypoxia. Consequently, when combined with anti-PD-1 antibodies, P-EVs remarkably augmented the antitumor immunity, as evidenced by increased infiltration of CD8+ T cells and reduced regulatory T cells. These results suggest that P-EVs are promising therapeutics for tumors refractory to ICIs.
Collapse
Affiliation(s)
- Sol Shin
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Ho Kim
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil You
- Massachusetts General Hospital,
Harvard Medical School, Boston, MA, USA
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongyun Kim
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Dong-Gyu Jo
- Biomedical Institute for Convergence at SKKU (BICS),
Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy,
Sungkyunkwan University, Suwon, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Hyewon Ko
- School of Pharmacy,
Sungkyunkwan University, Suwon, Republic of Korea
- Bionanotechnology Research Center,
Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology, SAIHST,
Sungkyunkwan University, Seoul 06355, Republic of Korea
- School of Chemical Engineering, College of Engineering,
Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS),
Sungkyunkwan University, Suwon 16419, Republic of Korea
- ExoStemTech Inc., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
5
|
Ke CH, Chiu YH, Huang KC, Lin CS. Exposure of Immunogenic Tumor Antigens in Surrendered Immunity and the Significance of Autologous Tumor Cell-Based Vaccination in Precision Medicine. Int J Mol Sci 2022; 24:ijms24010147. [PMID: 36613591 PMCID: PMC9820296 DOI: 10.3390/ijms24010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The mechanisms by which immune systems identify and destroy tumors, known as immunosurveillance, have been discussed for decades. However, several factors that lead to tumor persistence and escape from the attack of immune cells in a normal immune system have been found. In the process known as immunoediting, tumors decrease their immunogenicity and evade immunosurveillance. Furthermore, tumors exploit factors such as regulatory T cells, myeloid-derived suppressive cells, and inhibitory cytokines that avoid cytotoxic T cell (CTL) recognition. Current immunotherapies targeting tumors and their surroundings have been proposed. One such immunotherapy is autologous cancer vaccines (ACVs), which are characterized by enriched tumor antigens that can escalate specific CTL responses. Unfortunately, ACVs usually fail to activate desirable therapeutic effects, and the low immunogenicity of ACVs still needs to be elucidated. This difficulty highlights the significance of immunogenic antigens in antitumor therapies. Previous studies have shown that defective host immunity triggers tumor development by reprogramming tumor antigenic expressions. This phenomenon sheds new light on ACVs and provides a potential cue to improve the effectiveness of ACVs. Furthermore, synergistically with the ACV treatment, combinational therapy, which can reverse the suppressive tumor microenvironments, has also been widely proposed. Thus, in this review, we focus on tumor immunogenicity sculpted by the immune systems and discuss the significance and application of restructuring tumor antigens in precision medicine.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 111002, Taiwan
| | - Kuo-Chin Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-233-661-286
| |
Collapse
|
6
|
Bajgain P, Chavez AGT, Balasubramanian K, Fleckenstein L, Lulla P, Heslop HE, Vera J, Leen AM. Secreted Fas Decoys Enhance the Antitumor Activity of Engineered and Bystander T Cells in Fas Ligand-Expressing Solid Tumors. Cancer Immunol Res 2022; 10:1370-1385. [PMID: 36122411 PMCID: PMC9633434 DOI: 10.1158/2326-6066.cir-22-0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
T-cell immunotherapy has demonstrated remarkable clinical outcomes in certain hematologic malignancies. However, efficacy in solid tumors has been suboptimal, partially due to the hostile tumor microenvironment composed of immune-inhibitory molecules. One such suppressive agent abundantly expressed in solid tumors is Fas ligand (FasL), which can trigger apoptosis of Fas-expressing effector cells such as T cells and natural killer (NK) cells. To alleviate this FasL-induced suppression of tumor-specific immune cells in solid tumors, we describe here the development of a Fas decoy that is secreted by engineered cells upon activation and sequesters the ligand, preventing it from engaging with Fas on the surface of effector cells. We further improved the immune-stimulatory effects of this approach by creating a Fas decoy and IL15 cytokine fusion protein, which enhanced the persistence and antitumor activity of decoy-engineered as well as bystander chimeric-antigen receptor (CAR) T cells in xenograft models of pancreatic cancer. Our data indicate that secreted Fas decoys can augment the efficacy of both adoptively transferred and endogenous tumor-specific effector cells in FasL-expressing solid tumors.
Collapse
Affiliation(s)
- Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
- Center for Cancer Research, National Cancer Institute, Frederick, MD
| | - Alejandro G. Torres Chavez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| | - Kishore Balasubramanian
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| | - Lindsey Fleckenstein
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| | - Juan Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
- Marker Therapeutics, Inc., Houston, Texas
| | - Ann M. Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
7
|
Quijano-Rubio C, Silginer M, Weller M. CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models. J Neurooncol 2022; 160:299-310. [PMID: 36355258 PMCID: PMC9722998 DOI: 10.1007/s11060-022-04137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/17/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis mediator upon CD95L engagement. Strategic targeting of non-apoptotic or apoptotic CD95 signaling may hold anti-glioblastoma potential. Due to its antithetic nature, understanding the constitutive role of CD95 signaling in glioblastoma is indispensable. METHODS We abrogated constitutive Cd95 and Cd95l gene expression by CRISPR/Cas9 in murine glioma models and characterized the consequences of gene deletion in vitro and in vivo. RESULTS Expression of canonical CD95 but not CD95L was identified in mouse glioma cells in vitro. Instead, a soluble isoform-encoding non-canonical Cd95l transcript variant was detected. In vivo, an upregulation of the membrane-bound canonical CD95L form was revealed. Cd95 or Cd95l gene deletion decreased cell growth in vitro. The growth-supporting role of constitutive CD95 signaling was validated by Cd95 re-transfection, which rescued growth. In vivo, Cd95 or Cd95l gene deletion prolonged survival involving tumor-intrinsic and immunological mechanisms in the SMA-497 model. In the GL-261 model, that expresses no CD95, only CD95L gene deletion prolonged survival, involving a tumor-intrinsic mechanism. CONCLUSION Non-canonical CD95L/CD95 interactions are growth-promoting in murine glioma models, and glioma growth and immunosuppression may be simultaneously counteracted by Cd95l gene silencing.
Collapse
Affiliation(s)
- Clara Quijano-Rubio
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Wang G, Wang J, Niu C, Zhao Y, Wu P. Neutrophils: New Critical Regulators of Glioma. Front Immunol 2022; 13:927233. [PMID: 35860278 PMCID: PMC9289230 DOI: 10.3389/fimmu.2022.927233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
In cancer, neutrophils are an important part of the tumour microenvironment (TME). Previous studies have shown that circulating and infiltrating neutrophils are associated with malignant progression and immunosuppression in gliomas. However, recent studies have shown that neutrophils have an antitumour effect. In this review, we focus on the functional roles of neutrophils in the circulation and tumour sites in patients with glioma. The mechanisms of neutrophil recruitment, immunosuppression and the differentiation of neutrophils are discussed. Finally, the potential of neutrophils as clinical biomarkers and therapeutic targets is highlighted. This review can help us gain a deeper and systematic understanding of the role of neutrophils, and provide new insights for treatment in gliomas.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, China
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
9
|
Wang F, Cathcart SJ, DiMaio DJ, Zhao N, Chen J, Aizenberg MR, Shonka NA, Lin C, Zhang C. Comparison of tumor immune environment between newly diagnosed and recurrent glioblastoma including matched patients. J Neurooncol 2022; 159:163-175. [PMID: 35754074 DOI: 10.1007/s11060-022-04053-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most lethal primary brain tumor in adult patients. The disease progression, response to chemotherapy and radiotherapy at initial diagnosis, and prognosis are profoundly associated with the tumor microenvironment, especially the features of tumor-infiltrating immune cells (TII). Recurrent GBM is even more challenging to manage. Differences in the immune environment between newly diagnosed and recurrent GBM and an association with tumor prognosis are not well defined. METHODS To address this knowledge gap, we analyzed the clinical data and tissue specimens from 24 GBM patients (13 at initial diagnosis and 11 at recurrence). The expression levels of multiple immunobiological markers in patients' GBM at initial diagnosis versus at recurrence were compared, including five patients with both specimens available (paired). The distribution patterns of TII were evaluated in both the intratumoral and perivascular regions. RESULTS We found that tumors from recurrent GBM have significantly more tumor-infiltrating lymphocytes (TILs) and macrophages and higher PD-L1 and PD-1 expression than tumors at primary diagnosis and benign brain specimens from epilepsy surgery. The pattern changes of the TILs and macrophages of the five paired specimens were consistent with the unpaired patients, while the CD8 to CD4 ratio remained constant from diagnosis to recurrence in the paired tissues. The levels of TILs, macrophages, PD-1 or PD-L1+ cells at initial diagnosis did not correlate with OS. TILs, macrophages, and PD-1+ cells were increased in recurrent tumors both in intratumoral and perivascular areas, with higher distribution levels in intratumoral than perivascular regions. Higher CD4 or CD8 infiltration at recurrence was associated with a worse prognosis, respectively. CONCLUSIONS Our study elucidated that TIL and TAM tend to accumulate in perivascular region and are more abundant in recurrent GBM than newly diagnosed GBM.
Collapse
Affiliation(s)
- Fei Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Sahara J Cathcart
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nan Zhao
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Jie Chen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Aizenberg
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole A Shonka
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Chi Zhang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA.
| |
Collapse
|
10
|
Martín-Otal C, Navarro F, Casares N, Lasarte-Cía A, Sánchez-Moreno I, Hervás-Stubbs S, Lozano T, Lasarte JJ. Impact of tumor microenvironment on adoptive T cell transfer activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:1-31. [PMID: 35798502 DOI: 10.1016/bs.ircmb.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aritz Lasarte-Cía
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
11
|
Gerard CL, Delyon J, Wicky A, Homicsko K, Cuendet MA, Michielin O. Turning tumors from cold to inflamed to improve immunotherapy response. Cancer Treat Rev 2021; 101:102227. [PMID: 34656019 DOI: 10.1016/j.ctrv.2021.102227] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/30/2022]
Abstract
Immune checkpoint inhibitors have revolutionized the treatment landscape for a number of cancers over the last few decades. Nevertheless, a majority of patients still do not benefit from these treatments. Such patient-specific lack of response can be predicted, in part, from the immune phenotypes present in the tumor microenvironment. We provide a perspective on options to reprogram the tumors and their microenvironment to increase the therapeutic efficacy of immunotherapies and expand their efficacy against cold tumors. Additionally, we review data from current preclinical and clinical trials aimed at testing the different therapeutic options in monotherapy or preferably in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- C L Gerard
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - J Delyon
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - A Wicky
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland
| | - K Homicsko
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michel A Cuendet
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Molecular Modelling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Physiology and Biophysics, Weill Cornell Medicine, NY, USA.
| | - O Michielin
- Precision Oncology Center, Lausanne University Hospital (CHUV), Switzerland; Molecular Modelling Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
12
|
Scott EN, Gocher AM, Workman CJ, Vignali DAA. Regulatory T Cells: Barriers of Immune Infiltration Into the Tumor Microenvironment. Front Immunol 2021; 12:702726. [PMID: 34177968 PMCID: PMC8222776 DOI: 10.3389/fimmu.2021.702726] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are key immunosuppressive cells that promote tumor growth by hindering the effector immune response. Tregs utilize multiple suppressive mechanisms to inhibit pro-inflammatory responses within the tumor microenvironment (TME) by inhibition of effector function and immune cell migration, secretion of inhibitory cytokines, metabolic disruption and promotion of metastasis. In turn, Tregs are being targeted in the clinic either alone or in combination with other immunotherapies, in efforts to overcome the immunosuppressive TME and increase anti-tumor effects. However, it is now appreciated that Tregs not only suppress cells intratumorally via direct engagement, but also serve as key interactors in the peritumor, stroma, vasculature and lymphatics to limit anti-tumor immune responses prior to tumor infiltration. We will review the suppressive mechanisms that Tregs utilize to alter immune and non-immune cells outside and within the TME and discuss how these mechanisms collectively allow Tregs to create and promote a physical and biological barrier, resulting in an immune-excluded or limited tumor microenvironment.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angela M. Gocher
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Khalaf K, Hana D, Chou JTT, Singh C, Mackiewicz A, Kaczmarek M. Aspects of the Tumor Microenvironment Involved in Immune Resistance and Drug Resistance. Front Immunol 2021; 12:656364. [PMID: 34122412 PMCID: PMC8190405 DOI: 10.3389/fimmu.2021.656364] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and ever-changing "rogue organ" composed of its own blood supply, lymphatic and nervous systems, stroma, immune cells and extracellular matrix (ECM). These complex components, utilizing both benign and malignant cells, nurture the harsh, immunosuppressive and nutrient-deficient environment necessary for tumor cell growth, proliferation and phenotypic flexibility and variation. An important aspect of the TME is cellular crosstalk and cell-to-ECM communication. This interaction induces the release of soluble factors responsible for immune evasion and ECM remodeling, which further contribute to therapy resistance. Other aspects are the presence of exosomes contributed by both malignant and benign cells, circulating deregulated microRNAs and TME-specific metabolic patterns which further potentiate the progression and/or resistance to therapy. In addition to biochemical signaling, specific TME characteristics such as the hypoxic environment, metabolic derangements, and abnormal mechanical forces have been implicated in the development of treatment resistance. In this review, we will provide an overview of tumor microenvironmental composition, structure, and features that influence immune suppression and contribute to treatment resistance.
Collapse
Affiliation(s)
- Khalil Khalaf
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Doris Hana
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Jadzia Tin-Tsen Chou
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Chandpreet Singh
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Center, Poznań, Poland
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
14
|
Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021; 18:842-859. [PMID: 33139907 PMCID: PMC8115290 DOI: 10.1038/s41423-020-00565-9] [Citation(s) in RCA: 534] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy.
Collapse
Affiliation(s)
- Sterre T Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annegé Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
15
|
Richards DM, Merz C, Gieffers C, Krendyukov A. CD95L and Anti-Tumor Immune Response: Current Understanding and New Evidence. Cancer Manag Res 2021; 13:2477-2482. [PMID: 33758545 PMCID: PMC7981134 DOI: 10.2147/cmar.s297499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/14/2021] [Indexed: 01/26/2023] Open
Abstract
The ability of FasL/CD95L to induce apoptosis in various Fas/CD95-expressing cells has been described in the context of hematopoiesis or thymic elimination of self-reactive T cells and resolution of an acute immune response under physiological conditions. At the same time, non-apoptotic CD95 activation is widely described in cancer and shown to stimulate invasiveness of cancer cells, promote cancer progression as well as stemness of cancer cells. This paper puts emphasis on the evolving understanding of expression and the non-apoptotic activities of the CD95/CD95L signaling pathway on the function of tumor cells, tumor microenvironment and immune cells. The emerging evidence to support the role of CD95/CD95L signaling in the anti-tumor immune response will be presented in the context of various malignancies and the modalities of potential therapeutic interventions via selective CD95L inhibition in combination with traditional interventions such as RT, chemotherapy and immune checkpoint inhibitors.
Collapse
|
16
|
Lane RS, Lund AW. Non-hematopoietic Control of Peripheral Tissue T Cell Responses: Implications for Solid Tumors. Front Immunol 2018; 9:2662. [PMID: 30498499 PMCID: PMC6249380 DOI: 10.3389/fimmu.2018.02662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.
Collapse
Affiliation(s)
- Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Dermatology, Oregon Health and Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
17
|
Pfannenstiel LW, McNeilly C, Xiang C, Kang K, Diaz-Montero CM, Yu JS, Gastman BR. Combination PD-1 blockade and irradiation of brain metastasis induces an effective abscopal effect in melanoma. Oncoimmunology 2018; 8:e1507669. [PMID: 30546944 DOI: 10.1080/2162402x.2018.1507669] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 08/01/2018] [Indexed: 12/25/2022] Open
Abstract
Nearly half of melanoma patients develop brain metastases during the course of their disease. Despite advances in both localized radiation and systemic immunotherapy, brain metastases remain difficult to treat, with most patients surviving less than 5 months from the time of diagnosis. While both treatment regimens have individually shown considerable promise in treating metastatic melanoma, there is interest in combining these strategies to take advantage of potential synergy. In order to study the ability of local radiation and anti-PD-1 immunotherapy to induce beneficial anti-tumor immune responses against distant, unirradiated tumors, we used two mouse models of metastatic melanoma in the brain, representing BRAF mutant and non-mutant tumors. Combination treatments produced a stronger systemic anti-tumor immune response than either treatment alone. This resulted in reduced tumor growth and larger numbers of activated, cytotoxic CD8+ T cells, even in the unirradiated tumor, indicative of an abscopal effect. The immune-mediated effects were present regardless of BRAF status. These data suggest that irradiation of brain metastases and anti-PD-1 immunotherapy together can induce abscopal anti-tumor responses that control both local and distant disease.
Collapse
Affiliation(s)
| | - Corey McNeilly
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland, OH, USA
| | - Chaomei Xiang
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland, OH, USA
| | - Kai Kang
- Department of Translational Hematology and Oncology Research, Cleveland, OH, USA.,Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jennifer S Yu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland, OH, USA.,Department of Radiation Oncology, Cleveland, OH, USA
| | - Brian R Gastman
- Department of Immunology, Lerner Research Institute, Cleveland, OH, USA.,Dermatology and Plastic Surgery, Institutes of Head and Neck, Cleveland, OH, USA.,Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
18
|
Orrego E, Castaneda CA, Castillo M, Bernabe LA, Casavilca S, Chakravarti A, Meng W, Garcia-Corrochano P, Villa-Robles MR, Zevallos R, Mejia O, Deza P, Belmar-Lopez C, Ojeda L. Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol 2018; 7:CNS21. [PMID: 30299157 PMCID: PMC6331699 DOI: 10.2217/cns-2017-0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: Evaluation of features related to infiltrating immune cell level in glioblastoma. Methods: Tumor-infiltrating lymphocytes (TILs) through H&E staining, and TILs (CD3, CD4, CD8 and CD20) and macrophage (CD68 and CD163) levels through immunohistochemistry were evaluated through digital analysis. Results: CD68 (9.1%), CD163 (2.2%), CD3 (1.6%) and CD8 (1.6%) had the highest density. Higher CD4+ was associated with unmethylated MGMT (p = 0.016). Higher CD8+ was associated with larger tumoral size (p = 0.027). Higher CD163+ was associated with higher age (p = 0.044) and recursive partitioning analysis = 4. Women (p < 0.05), total resection (p < 0.05), MGMT-methylation (p < 0.001), radiotherapy (p < 0.001), chemotherapy (p < 0.001) and lower CD4+ (p < 0.05) were associated with longer overall survival. Conclusion: Macrophages are more frequent than TILs. Some subsets are associated with clinical features.
Collapse
Affiliation(s)
- Enrique Orrego
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Carlos A Castaneda
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru.,Faculty of Medicine, Universidad Peruana San Juan Bautista, Lima, 15067, Peru
| | - Miluska Castillo
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Luis A Bernabe
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Sandro Casavilca
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, Columbus, OH, 43210, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, Columbus, OH, 43210, USA
| | | | - Maria R Villa-Robles
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Rocio Zevallos
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Omar Mejia
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Pedro Deza
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Carolina Belmar-Lopez
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Luis Ojeda
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| |
Collapse
|
19
|
Lanitis E, Dangaj D, Irving M, Coukos G. Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol 2018; 28:xii18-xii32. [PMID: 29045511 DOI: 10.1093/annonc/mdx238] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T-lymphocytes play a critical role in cancer immunity as evidenced by their presence in resected tumor samples derived from long-surviving patients, and impressive clinical responses to various immunotherapies that reinvigorate them. Indeed, tumors can upregulate a wide array of defense mechanisms, both direct and indirect, to suppress the ability of Tcells to reach the tumor bed and mount curative responses upon infiltration. In addition, patient and tumor genetics, previous antigenic experience, and the microbiome, are all important factors in shaping the T-cell repertoire and sensitivity to immunotherapy. Here, we review the mechanisms that regulate T-cell homing, infiltration, and activity within the solid tumor bed. Finally, we summarize different immunotherapies and combinatorial treatment strategies that enable the immune system to overcome barriers for enhanced tumor control and improved patient outcome.
Collapse
Affiliation(s)
- E Lanitis
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - D Dangaj
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - M Irving
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges
| | - G Coukos
- The Ludwig Branch for Cancer Research of the University of Lausanne, Epalinges.,Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| |
Collapse
|
20
|
De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Deben C, Zwaenepoel K, Van de Kelft E, Van der Planken D, Menovsky T, Van den Bergh JM, Willemen Y, Pauwels P, Berneman ZN, Lardon F, Peeters M, Wouters A, Smits EL. Poly(I:C) primes primary human glioblastoma cells for an immune response invigorated by PD-L1 blockade. Oncoimmunology 2017; 7:e1407899. [PMID: 29399410 DOI: 10.1080/2162402x.2017.1407899] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Prognosis of glioblastoma remains dismal, underscoring the need for novel therapies. Immunotherapy is generating promising results, but requires combination strategies to unlock its full potential. We investigated the immunomodulatory capacities of poly(I:C) on primary human glioblastoma cells and its combinatorial potential with programmed death ligand (PD-L) blockade. In our experiments, poly(I:C) stimulated expression of both PD-L1 and PD-L2 on glioblastoma cells, and a pro-inflammatory secretome, including type I interferons (IFN) and chemokines CXCL9, CXCL10, CCL4 and CCL5. IFN-β was partially responsible for the elevated PD-1 ligand expression on these cells. Moreover, real-time PCR and chloroquine-mediated blocking experiments indicated that poly(I:C) triggered Toll-like receptor 3 to elicit its effect. Cocultures of poly(I:C)-treated glioblastoma cells with peripheral blood mononuclear cells enhanced lymphocytic activation (CD69, IFN-γ) and cytotoxic capacity (CD107a, granzyme B). Additional PD-L1 blockade further propagated immune activation. Besides activating immunity, poly(I:C)-treated glioblastoma cells also doubled the attraction of CD8+ T cells, and to a lesser extent CD4+ T cells, via a mechanism which included CXCR3 and CCR5 ligands. Our results indicate that by triggering glioblastoma cells, poly(I:C) primes the tumor microenvironment for an immune response. Secreted cytokines allow for immune activation while chemokines attract CD8+ T cells to the front, which are postulated as a prerequisite for effective PD-1/PD-L1 blockade. Accordingly, additional blockade of the concurrently elevated tumoral PD-L1 further reinforces the immune activation. In conclusion, our data proposes poly(I:C) treatment combined with PD-L1 blockade to invigorate the immune checkpoint inhibition response in glioblastoma.
Collapse
Affiliation(s)
- Jorrit De Waele
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Elly Marcq
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | | | - Jinthe Van Loenhout
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Christophe Deben
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Karen Zwaenepoel
- Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Erik Van de Kelft
- Department of Neurosurgery, AZ Nikolaas, Sint-Niklaas, East Flanders, Belgium
| | | | - Tomas Menovsky
- Department of Neurosurgery, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | | | - Yannick Willemen
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Hematology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Edegem, Belgium
| | - An Wouters
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Evelien Lj Smits
- Center for Oncological Research, University of Antwerp, Wilrijk, Antwerp, Belgium.,Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Antwerp, Belgium
| |
Collapse
|
21
|
Mu L, Yang C, Gao Q, Long Y, Ge H, DeLeon G, Jin L, Chang YE, Sayour EJ, Ji J, Jiang J, Kubilis PS, Qi J, Gu Y, Wang J, Song Y, Mitchell DA, Lin Z, Huang J. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression. Front Immunol 2017; 8:1451. [PMID: 29163521 PMCID: PMC5673996 DOI: 10.3389/fimmu.2017.01451] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Background Angiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL) and tumor blood-vasculatures in the context of glioma progression. Methods Paired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA) recurred as DA, DA recurred as glioblastomas (GBM), and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared. Results Upon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors). Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS) (HR = 4.199, 95% CI 1.522–11.584, p = 0.006). Conclusion The minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3+ TILs associate with tumor angiogenesis and tumor progression in glioma patients. Our results suggest that combining antiangiogenic agents with immunotherapeutic approaches may help improve the antitumor efficacy for patients with malignant gliomas.
Collapse
Affiliation(s)
- Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.,The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Qiang Gao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Long
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Haitao Ge
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Gabriel DeLeon
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Linchun Jin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Yifan Emily Chang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Jiang
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Paul S Kubilis
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yunhe Gu
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Ferber S, Tiram G, Sousa-Herves A, Eldar-Boock A, Krivitsky A, Scomparin A, Yeini E, Ofek P, Ben-Shushan D, Vossen LI, Licha K, Grossman R, Ram Z, Henkin J, Ruppin E, Auslander N, Haag R, Calderón M, Satchi-Fainaro R. Co-targeting the tumor endothelium and P-selectin-expressing glioblastoma cells leads to a remarkable therapeutic outcome. eLife 2017; 6:25281. [PMID: 28976305 PMCID: PMC5644959 DOI: 10.7554/elife.25281] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier. dPGS is able to cross the BBB, bind to P/L-selectins and accumulate selectively in intracranial tumors. We show that dPGS has dual targeting properties, as we found that P-selectin is not only expressed on tumor endothelium but also on glioblastoma cells. We delivered dPGS-PTX in combination with a peptidomimetic of the anti-angiogenic protein thrombospondin-1 (TSP-1 PM). This combination resulted in a remarkable synergistic anticancer effect on intracranial human and murine glioblastoma via induction of Fas and Fas-L, with no side effects compared to free PTX or temozolomide. This study shows that our unique therapeutic approach offers a viable alternative for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Sousa-Herves
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laura Isabel Vossen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jack Henkin
- Chemistry of Life Processes Institute, Northwestern University, Evanston, United States
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, Israel.,Department of Computer Science, University of Maryland, College Park, United States
| | - Noam Auslander
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, United States.,Department of Computer Science, University of Maryland, College Park, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Allergy reduces the risk of meningioma: a meta-analysis. Sci Rep 2017; 7:40333. [PMID: 28071746 PMCID: PMC5223136 DOI: 10.1038/srep40333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022] Open
Abstract
Meningiomas are the most common brain tumours; however, little is known regarding their aetiology. The data are inconsistent concerning atopic disease and the risk of developing meningioma. Thus, we conducted a meta-analysis to investigate the association between allergic conditions and the risk of developing meningioma. A systematic literature search was conducted using PubMed and Web of SCI from Jan 1979 to Feb 2016. Two investigators independently selected the relevant articles according to the inclusion criteria. Eight case-control studies and 2 cohort studies were included in the final analysis, comprising 5,679 meningioma cases and 55,621 control subjects. Compared with no history of allergy, the pooled odds ratio (OR) for allergic conditions was 0.81 (0.70-0.94) for meningioma in a random-effects meta-analysis. Inverse correlations of meningioma occurrence were also identified for asthma and eczema, in which the pooled ORs were 0.78 (0.70-0.86) and 0.78 (0.69-0.87), respectively. A reduced risk of meningioma occurrence was identified in hay fever; however, the association was weak (0.88, 95% CI = 0.78-0.99). The source of this heterogeneity could be the various confounding variables in individual studies. Overall, the current meta-analysis indicated that allergy reduced the risk of developing meningiomas. Large cohort studies are required to investigate this relationship.
Collapse
|
24
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Kouzegaran S, Shahraki K, Makateb A, Shahri F, Hatami N, Behnod V, Tanha AS. Prognostic Investigations of Expression Level of Two Genes FasL and Ki-67 as Independent Prognostic Markers of Human Retinoblastoma. Oncol Res 2016; 25:471-478. [PMID: 27625332 PMCID: PMC7841034 DOI: 10.3727/096504016x14721217330657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, expression of FasL and Ki-67 messenger RNA (FasL and Ki-67 mRNA) in human retinoblastoma (HRB) was examined by the immunohistochemistry method and quantitative real-time PCR. Positive expression of Ki-67 in tumor cells was detected in 16 of 30 patients (53.33%), and only 9 (30%) of the tissues from patients with retinoblastoma showed positive staining for FasL. Our results revealed that FasL expression was significantly higher in tumor tissue with invasion compared with the noninvasion form (p = 0.033). Ki-67 expression was markedly increased in tumor tissues with invasion compared with the noninvasion group (p = 0.04), but no significant correlation was found between FasL expression and differentiation (p > 0.05). In addition, Ki-67 expression was strongly linked to differentiation (p < 0.002). Expression of these FasL was correlated with shorter overall survival of patients, but its expression was not significantly associated with overall survival (p = 0.15). The impact of Ki-67 expression on survival in patients was also evaluated. Ki-67 expression level was not found to be significantly associated with shorter survival (Kaplan–Meier; p = 0.09). Univariate analysis revealed that massive choroidal invasion was correlated with poor prognosis. Taken together, the data suggest that massive choroidal invasion is also an important indicator of poor prognosis for HRB.
Collapse
Affiliation(s)
- Samaneh Kouzegaran
- Department of Pediatrics, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kourosh Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Makateb
- Department of Ophthalmology, AJA University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Shahri
- Department of Optometry, School of Rehabilitation, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Negin Hatami
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Vahid Behnod
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Saber Tanha
- Department of Anesthesia, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
26
|
Domingues P, González-Tablas M, Otero Á, Pascual D, Miranda D, Ruiz L, Sousa P, Ciudad J, Gonçalves JM, Lopes MC, Orfao A, Tabernero MD. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun 2016. [PMID: 26216710 DOI: 10.1016/j.bbi.2015.07.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.
Collapse
Affiliation(s)
- Patrícia Domingues
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María González-Tablas
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - David Miranda
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain
| | - Juana Ciudad
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Celeste Lopes
- Centre for Neurosciences and Cell Biology and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Alberto Orfao
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain; Neurosurgery Service of the University Hospital of Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la salud de Castilla y León (IECSCYL-IBSAL) and Research Unit of the University Hospital of Salamanca, Salamanca, Spain.
| |
Collapse
|
27
|
Hansen JM, Coleman RL, Sood AK. Targeting the tumour microenvironment in ovarian cancer. Eur J Cancer 2016; 56:131-143. [PMID: 26849037 PMCID: PMC4769921 DOI: 10.1016/j.ejca.2015.12.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/05/2015] [Accepted: 12/13/2015] [Indexed: 12/11/2022]
Abstract
The study of cancer initiation, growth, and metastasis has traditionally been focused on cancer cells, and the view that they proliferate due to uncontrolled growth signalling owing to genetic derangements. However, uncontrolled growth in tumours cannot be explained solely by aberrations in cancer cells themselves. To fully understand the biological behaviour of tumours, it is essential to understand the microenvironment in which cancer cells exist, and how they manipulate the surrounding stroma to promote the malignant phenotype. Ovarian cancer is the leading cause of death from gynaecologic cancer worldwide. The majority of patients will have objective responses to standard tumour debulking surgery and platinum-taxane doublet chemotherapy, but most will experience disease recurrence and chemotherapy resistance. As such, a great deal of effort has been put forth to develop therapies that target the tumour microenvironment in ovarian cancer. Herein, we review the key components of the tumour microenvironment as they pertain to this disease, outline targeting opportunities and supporting evidence thus far, and discuss resistance to therapy.
Collapse
Affiliation(s)
- Jean M Hansen
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX, USA.
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX, USA.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX, USA; Department of Cancer Biology, University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX, USA; Center for RNA Interference and Non-Coding RNA, University of Texas MD Anderson Cancer Center, 1155 Pressler St, Houston, TX, USA.
| |
Collapse
|
28
|
Lanitis E, Irving M, Coukos G. Targeting the tumor vasculature to enhance T cell activity. Curr Opin Immunol 2015; 33:55-63. [PMID: 25665467 PMCID: PMC4896929 DOI: 10.1016/j.coi.2015.01.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
T cells play a critical role in tumor immune surveillance as evidenced by extensive mouse-tumor model studies as well as encouraging patient responses to adoptive T cell therapies and dendritic cell vaccines. It is well established that the interplay of tumor cells with their local cellular environment can trigger events that are immunoinhibitory to T cells. More recently it is emerging that the tumor vasculature itself constitutes an important barrier to T cells. Endothelial cells lining the vessels can suppress T cell activity, target them for destruction, and block them from gaining entry into the tumor in the first place through the deregulation of adhesion molecules. Here we review approaches to break this tumor endothelial barrier and enhance T cell activity.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Melita Irving
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland
| | - George Coukos
- Ludwig Center for Cancer Research of the University of Lausanne, CH-1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne (CHUV), CH-1015 Lausanne, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
The role of CD95 and CD95 ligand in cancer. Cell Death Differ 2015; 22:549-59. [PMID: 25656654 PMCID: PMC4356349 DOI: 10.1038/cdd.2015.3] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/27/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023] Open
Abstract
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.
Collapse
|
30
|
Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, Schulz D, Simon M, Schlegel U, Senft C, Geletneky K, Braun C, Hartung JG, Reuter D, Metz MW, Bach F, Pietsch T. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 2015; 51:522-532. [PMID: 25616647 DOI: 10.1016/j.ejca.2014.12.019] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE A randomised, open label phase III trial was conducted to evaluate efficacy of nimotuzumab, a monoclonal antibody against epidermal growth factor receptor (EGF-R) added to standard therapy for newly diagnosed glioblastoma. PATIENTS AND METHODS 149 glioblastoma patients stratified as with or without residual tumour were randomly assigned to receive either intravenous nimotuzumab 400mg weekly added to standard radiochemotherapy followed by 400mg biweekly after twelve weeks or standard radiochemotherapy. Progression status after 52 weeks (12moPFS) and progression-free survival (PFS) based on Macdonald criteria were co-primary and overall survival (OS), toxicity and quality of life secondary end-points. RESULTS 142 patients were evaluated for efficacy (per protocol cohort). 12 moPFS was 25.6% in the experimental arm and 20.3% in the control group. In residual tumour patients (n=81) median PFS was 5.6 versus 4.0 months, (hazard ratio (HR), 0.87; 95% confidence interval (CI), 0.55-1.37), for patients without residual tumour (n=61) it was 10.6 versus 9.9 months, (HR, 1.01; 95% CI, 0.57-1.77). Median OS in patients with residual tumour was 19.5 versus 16.7 months, (HR, 0.90; 95% CI, 0.52-1.57; P=0.7061), for patients without 23.3 versus 21.0 months (HR, 0.77; 95% CI, 0.41-1.44; P=0.4068). A small cohort of MGMT non-methylated patients with residual tumour showed PFS of 6.2 versus 4.0 months (HR, 0.77; 95% CI, 0.35-1.67; P=0.4997) and OS of 19.0 versus 13.8 months (HR, 0.66; 95% CI, 0.27-1.64; P=0.3648). EGF-R amplification did not correlate with clinical efficacy of nimotuzumab. Nimotuzumab was well tolerated. CONCLUSION This study, albeit negative, contains hypothesis generating signals supporting evaluation of correlative, efficacy-predicting tumour parameters for nimotuzumab in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Oliver Heese
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
| | - Oliver Schnell
- Department of Neurosurgery, Ludwig Maximilian University München-Grosshadern, Marchioninistrasse 15, 81377 München, Germany.
| | - Gabriele Schackert
- Department of Neurosurgery, Carus University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Maximilian Mehdorn
- Department of Neurosurgery, Christian Albrecht Universität Kiel, Schittenhelmstrasse 10, 24106 Kiel, Germany.
| | - Dirk Schulz
- Department of Neurosurgery, Justus Liebig University Giessen, Klinikstrasse 33, 35392 Gießen, Germany.
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany.
| | - Uwe Schlegel
- Department of Neurology, Ruhr Universität Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| | - Christian Senft
- Department of Neurosurgery, University Hospital Frankfurt, Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany.
| | - Karsten Geletneky
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| | - Christian Braun
- Department of Neurology, University Hospital Tübingen, Hoppe-Seyler-Strasse 3, 72076 Tübingen, Germany.
| | - Joachim G Hartung
- Universität Dortmund, Fachbereich Statistik, 44221 Dortmund, Germany.
| | - Dirk Reuter
- Oncoscience AG, Wedel, Hafenstrasse 32, 22880 Wedel, Germany.
| | - Monika Warmuth Metz
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneiderstrasse 11, 97080 Würzburg, Germany.
| | - Ferdinand Bach
- Oncoscience AG, Wedel, Hafenstrasse 32, 22880 Wedel, Germany.
| | - Torsten Pietsch
- Institute for Neuropathology, University Hospital Bonn, Sigmund-Freud Strasse 25, 53105 Bonn, Germany.
| |
Collapse
|
31
|
Orr BA, Eberhart CG. Molecular pathways: not a simple tube--the many functions of blood vessels. Clin Cancer Res 2014; 21:18-23. [PMID: 25074609 DOI: 10.1158/1078-0432.ccr-13-1641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the ability of blood vessels to carry fluid and cells through neoplastic tissue is clearly important, other functions of vascular elements that drive tumor growth and progression are increasingly being recognized. Vessels can provide physical support and help regulate the stromal microenvironment within tumors, form niches for tumor-associated stem cells, serve as avenues for local tumor spread, and promote relative immune privilege. Understanding the molecular drivers of these phenotypes will be critical if we are to therapeutically target their protumorigenic effects. The potential for neoplastic cells to transdifferentiate into vascular and perivascular elements also needs to be better understood, as it has the potential to complicate such therapies. In this review, we provide a brief overview of these less conventional vascular functions in tumors.
Collapse
Affiliation(s)
- Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
32
|
Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 2014; 110:2560-2568. [PMID: 24691423 PMCID: PMC4021514 DOI: 10.1038/bjc.2014.162] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND T lymphocyte infiltration has been detected in glioma, although its significance remains unclear. The purpose of the present study was to explore the prognostic value of CD4(+) and CD8(+) tumour-infiltrating lymphocytes (TILs) in glioma, and the prognostic value of infiltrating Forkhead box protein 3 (FoxP3(+)) regulatory T cells were also investigated. METHODS CD4(+), FoxP3(+) and CD8(+) TILs were assessed by immunohistochemical staining of tissue microarray cores from 284 gliomas. Kaplan-Meier analysis and Cox proportional hazards models were used to examine the survival function of these TILs in 90 glioblastoma patients. RESULTS The number of CD8(+) TILs was inversely correlated with tumour grade (P=0.025), whereas the number of CD4(+) TILs was positively correlated with tumour grade (P=0.002). FoxP3(+) TILs were only observed in glioblastomas, but not in low-grade astrocytomas or oligodendroglial tumours. Among patients with glioblastoma, none of CD4(+) TILs, FoxP3(+) TILs and CD8(+) TILs alone was significantly associated with patient prognosis. However, the presence of high CD4(+) and low CD8(+) TIL levels was an independent predictor of poor progress-free survival (multivariate hazard ratio (HR) 1.618, 95% confidence interval (CI) 1.245-2.101, P<0.001) and poor overall survival (multivariate HR 1.508, 95% CI 1.162-1.956, P=0.002). Moreover, pseudoprogression was more often found in patients with high CD4(+) TILs and high CD8(+) TILs. CONCLUSIONS The combination of CD4(+) and CD8(+) TILs is a predictor of clinical outcome in glioblastoma patients, and a high level of CD4(+) TILs combined with low CD8(+) TILs was associated with unfavourable prognosis.
Collapse
Affiliation(s)
- S Han
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing street 155, Heping district, Shenyang 110001, China
| | - C Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Q Li
- Department of Pathology, China Medical University, Shenyang 110001, China
| | - J Dong
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing street 155, Heping district, Shenyang 110001, China
| | - Y Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing street 155, Heping district, Shenyang 110001, China
| | - Y Huang
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing street 155, Heping district, Shenyang 110001, China
| | - T Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - A Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing street 155, Heping district, Shenyang 110001, China
| |
Collapse
|
33
|
Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 2014; 20:607-15. [PMID: 24793239 PMCID: PMC4060245 DOI: 10.1038/nm.3541] [Citation(s) in RCA: 764] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
We describe a novel mechanism regulating the tumor endothelial barrier and T cell homing to tumors. Selective expression of the death mediator Fas ligand (FasL/CD95L) was detected in the vasculature of many human and mouse solid tumors but not in normal vasculature, and in these tumors it was associated with scarce CD8+ infiltration and predominance of FoxP3+ T regulatory (Treg) cells. Tumor-derived vascular endothelial growth factor A (VEGF-A), interleukin 10 (IL-10) and prostaglandin E2 (PGE2) cooperatively induced FasL expression on endothelial cells, which acquired the ability to kill effector CD8+ T cells, but not Treg cells, due to higher levels of cFLIP expression in Tregs. In the mouse, genetic or pharmacologic suppression of FasL produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells. Pharmacologic inhibition of VEGF and PGE2 attenuated tumor endothelial FasL expression, produced a significant increase in the influx of tumor-rejecting CD8+ over FoxP3+ T cells, which was FasL-dependent, and led to CD8-dependent tumor growth suppression. Thus, tumor paracrine mechanisms establish a tumor endothelial death barrier, which plays a critical role in establishing immune tolerance and determining the fate of tumors.
Collapse
|
34
|
Mauge L, Terme M, Tartour E, Helley D. Control of the adaptive immune response by tumor vasculature. Front Oncol 2014; 4:61. [PMID: 24734218 PMCID: PMC3975114 DOI: 10.3389/fonc.2014.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022] Open
Abstract
The endothelium is nowadays described as an entire organ that regulates various processes: vascular tone, coagulation, inflammation, and immune cell trafficking, depending on the vascular site and its specific microenvironment as well as on endothelial cell-intrinsic mechanisms like epigenetic changes. In this review, we will focus on the control of the adaptive immune response by the tumor vasculature. In physiological conditions, the endothelium acts as a barrier regulating cell trafficking by specific expression of adhesion molecules enabling adhesion of immune cells on the vessel, and subsequent extravasation. This process is also dependent on chemokine and integrin expression, and on the type of junctions defining the permeability of the endothelium. Endothelial cells can also regulate immune cell activation. In fact, the endothelial layer can constitute immunological synapses due to its close interactions with immune cells, and the delivery of co-stimulatory or co-inhibitory signals. In tumor conditions, the vasculature is characterized by an abnormal vessel structure and permeability, and by a specific phenotype of endothelial cells. All these abnormalities lead to a modulation of intra-tumoral immune responses and contribute to the development of intra-tumoral immunosuppression, which is a major mechanism for promoting the development, progression, and treatment resistance of tumors. The in-depth analysis of these various abnormalities will help defining novel targets for the development of anti-tumoral treatments. Furthermore, eventual changes of the endothelial cell phenotype identified by plasma biomarkers could secondarily be selected to monitor treatment efficacy.
Collapse
Affiliation(s)
- Laetitia Mauge
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Magali Terme
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France
| | - Eric Tartour
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| | - Dominique Helley
- INSERM U970, PARCC (Paris Cardiovascular Research Center), Université Paris-Descartes, Sorbonne Paris Cité , Paris , France ; Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou , Paris , France
| |
Collapse
|
35
|
Hamilton A, Sibson NR. Role of the systemic immune system in brain metastasis. Mol Cell Neurosci 2013; 53:42-51. [PMID: 23073146 DOI: 10.1016/j.mcn.2012.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022] Open
Abstract
Metastatic disease in the central nervous system (CNS) is a cause of increasing mortality amongst cancer patients. As with other types of cancer, cells of the systemic immune system play a range of important roles in the development of metastatic lesions in the CNS, both repressing and promoting tumour growth. Recent advances in immunotherapy have changed the emphasis in cancer treatment away from conventional chemotherapy and radiotherapy for certain tumour types. Despite this, our understanding of systemic immune system involvement in CNS metastases remains poor. The blood-brain barrier prevents the majority of diagnostic and therapeutic agents from crossing into the brain parenchyma until the late stages of metastatic disease. Thus, the development of immunotherapy for CNS pathologies is particularly desirable. This review draws together our current understanding in the relationships between CNS metastases and circulating systemic immune cells. We discuss the roles that circulating systemic immune cells may play in the homing of metastatic cells to the perivascular space, and the pro-metastatic and antagonistic roles that infiltrating systemic immune cells may play at sites of metastasis. This article is part of a Special Issue entitled 'Neuroinflammation in neurodegeneration and neurodysfunction'.
Collapse
Affiliation(s)
- Alastair Hamilton
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
36
|
Ho IA, Ng WH, Lam PY. FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors. Mol Cancer 2010; 9:270. [PMID: 20942909 PMCID: PMC2964619 DOI: 10.1186/1476-4598-9-270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme is the most malignant cancer of the brain and is notoriously difficult to treat due to the highly proliferative and infiltrative nature of the cells. Herein, we explored the combination treatment of pre-established human glioma xenograft using multiple therapeutic genes whereby the gene expression is regulated by both cell-type and cell cycle-dependent transcriptional regulatory mechanism conferred by recombinant HSV-1 amplicon vectors. RESULTS We demonstrated for the first time that Ki67-positive proliferating primary human glioma cells cultured from biopsy samples were effectively induced into cell death by the dual-specific function of the pG8-FasL amplicon vectors. These vectors were relatively stable and exhibited minimal cytotoxicity in vivo. Intracranial implantation of pre-transduced glioma cells resulted in better survival outcome when compared with viral vectors inoculated one week post-implantation of tumor cells, indicating that therapeutic efficacy is dependent on the viral spread and mode of viral vectors administration. We further showed that pG8-FasL amplicon vectors are functional in the presence of commonly used treatment regimens for human brain cancer. In fact, the combined therapies of pG8-FasL and pG8-FADD in the presence of temozolomide significantly improved the survival of mice bearing intracranial high-grade gliomas. CONCLUSION Taken together, our results showed that the glioma-specific and cell cycle-dependent HSV-1 amplicon vector is potentially useful as an adjuvant therapy to complement the current gene therapy strategy for gliomas.
Collapse
Affiliation(s)
- Ivy A Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610 Singapore
| | - Wai H Ng
- Department of Neurosurgery, National Neuroscience Institute, 308433 Singapore
| | - Paula Y Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610 Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
- Duke-NUS Graduate Medical School, 169547 Singapore
| |
Collapse
|
37
|
Abstract
Abnormalities of cellular immunity are commonly seen in patients with glioblastoma (GBM), and the subsequent relative immunosuppression likely contributes to poor tumor-specific responses in affected individuals. Endogenous immune regulation is likely to limit the efficacy of a wide array of immunotherapeutic strategies, therefore mandating consideration in the continued development of novel treatments for GBM. Various tumor-associated factors have been implicated as potential generators of the immunosuppressive effect. This article outlines relevant experimentation exploring the nature of immune defects in patients with GBM, including a critical discussion of tumor-secreted factors, cell-surface proteins, and more recently described populations of immunoregulatory leukocytes that have potential roles in the subversion of cellular immunity.
Collapse
Affiliation(s)
- Allen Waziri
- Department of Neurosurgery, University of Colorado Health Sciences Center, 12631 E. 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Schoenhals JE, Seyedin SN, Anderson C, Brooks ED, Li YR, Younes AI, Niknam S, Li A, Barsoumian HB, Cortez MA, Welsh JW. Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Transl Lung Cancer Res 2007; 6:148-158. [PMID: 28529897 DOI: 10.21037/tlcr.2017.03.06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of immunology has led to breakthroughs in treating non-small cell lung cancer (NSCLC). The recent approval of an anti-PD1 checkpoint drug for NSCLC has generated much interest in novel combination therapies that might provide further benefit for patients. However, a better understanding of which combinations may (or may not) work in NSCLC requires understanding the lung immune microenvironment under homeostatic conditions and the changes in that microenvironment in the setting of cancer progression and with radiotherapy. This review provides background information on immune cells found in the lung and the prognostic significance of these cell types in lung cancer. It also addresses current clinical directions for the combination of checkpoint inhibitors with radiation for NSCLC.
Collapse
Affiliation(s)
- Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Clark Anderson
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Eric D Brooks
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun R Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ahmed I Younes
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharareh Niknam
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ailin Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hampartsoum B Barsoumian
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Wang W, Tai CK, Kershaw AD, Solly SK, Klatzmann D, Kasahara N, Chen TC. Use of replication-competent retroviral vectors in an immunocompetent intracranial glioma model. Neurosurg Focus 2006; 20:E25. [PMID: 16709031 PMCID: PMC8295718 DOI: 10.3171/foc.2006.20.4.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors had previously reported on a replication-competent retrovirus (RCR) that has been demonstrated to be stable, capable of effective transduction, and able to prolong survival in an intracranial tumor model in nude mice. The purpose of this study was further investigation of this gene therapy option. METHODS The transduction efficiency of RCR in RG2, an immunocompetent intracranial tumor model, was tested in Fischer 344 rats. The immune response to the RCR vector was expressed by the quantification of CD4, CD8, and CD11/b in tumors. The pharmaceutical efficacy of the suicide gene CD in converting prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) was measured using fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy. Animal survival data were plotted on Kaplan-Meier survival curves. Finally, the biodistribution of RCR was determined using quantitative real-time polymerase chain reaction (RT-PCR) for the detection of retroviral env gene. There was no evidence of viral transduction in normal brain cells. Neither severe inflammation nor immunoreaction occurred after intracranial injection of RCR-green fluorescent protein compared with phosphate-buffered saline (PBS). The 19F-NMR spectroscopy studies demonstrated that RCR-CD was able to convert 5-FC to 5-FU effectively in vitro. The infection of RG2 brain tumors with RCR-CD and their subsequent treatment with 5-FC significantly prolonged survival compared with that in animals with RG2 transduced tumors treated with PBS. In contrast to the nude mouse model, evidence of virus dissemination to the systemic organs after intracranial injection was not detected using RT-PCR. CONCLUSIONS The RCR-mediated suicide gene therapy described in this paper effectively transduced malignant gliomas in an immunocompetent in vivo rodent model, prolonging survival, without evidence of severe intracranial inflammation, and without local transduction of normal brain cells or systemic organs.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- C E Fadul
- Section of Hematology/Oncology, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH and VA Hospital, White River Jct., VT, USA.
| | | |
Collapse
|
41
|
Abstract
Key concepts in brain tumor immunotherapy are reviewed. "Immunotherapy" can refer to a fully-developed, tumor-specific immune response, or to its individual cellular or molecular mediators. The immune response is initiated most efficiently in organized lymphoid tissue. After initiation, antigen-specific T lymphocytes (T cells) survey the tissues--including the brain. If the T cells re-encounter their antigen at a tumor site, they can be triggered to carry out their effector functions. T cells can attack tumor in many ways, directly and indirectly, through cell-cell contact, secreted factors, and attraction and activation of other cells, endogenous or blood-borne. Recent work expands the list of candidate tumor antigens: they are not limited to cell surface proteins and need not be absolutely tumor-specific. Once identified, tumor antigens can be targeted immunologically, or in novel ways. The immune response is under complex regulatory control. Most current work aims to enhance initiation of the response (for example, with tumor vaccines), rather than enhancing the effector phase at the tumor site. The effector phase includes a rich, interactive set of cells and mediators; some that are not usually stressed are of particular interest against tumor in the brain. Within the brain, immune regulation varies from site to site, and local neurochemicals (such as substance P or glutamate) can contribute to local control. Given the complexity of a tumor, the brain, and the immune response, animal models are essential, but more emphasis should be given to their limitations and to step-by-step analysis, rather than animal "cures".
Collapse
Affiliation(s)
- Lois A Lampson
- CNS & Brain Tumor Immunology Laboratory, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|