1
|
Dutta A, Kumari M, Kashyap HK. Tracking Cholesterol Flip-Flop in Mammalian Plasma Membrane through Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1651-1663. [PMID: 39807660 DOI: 10.1021/acs.langmuir.4c03717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event. We identify two discrete cholesterol flip-flop pathways: (i) a systematic rototranslational pathway and (ii) intraleaflet inversion followed by interleaflet translation (or reverse). We observe a periodic cholesterol enrichment in the exoplasmic leaflet of the PM bilayer and examine the underlying cholesterol-lipid affinities. We observe closer association between cholesterol and palmitoylsphingomyelin (PSM) lipid, relative to other lipids, and conclude that the cholesterol enrichment in the exoplasmic leaflet can be attributed to higher PSM content in that leaflet, together leading to formation of short-lived PSM-cholesterol-rich domains.
Collapse
Affiliation(s)
- Ayishwarya Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Ivanov IT, Paarvanova BK. Role of Plasma Membrane at Dielectric Relaxations and Intermembrane Interaction in Human Erythrocytes. MEMBRANES 2023; 13:658. [PMID: 37505024 PMCID: PMC10386205 DOI: 10.3390/membranes13070658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Dielectric relaxations at 1.4 MHz (βsp) and 9 MHz (γ1sp) on the erythrocyte spectrin network were studied by dielectric spectroscopy using dense suspensions of erythrocytes and erythrocyte ghost membranes, subjected to extraction with up to 0.2% volume Triton-X-100. The step-wise extraction of up to 60% of membrane lipids preserved γ1sp and gradually removed βsp-relaxation. On increasing the concentration up to 100 mM of NaCl at either side of erythrocyte plasma membranes, the βsp-relaxation was linearly enhanced, while the strength of γ1sp-relaxation remained unchanged. In media with NaCl between 100 and 150 mM βsp-relaxation became slightly inhibited, while γ1sp-relaxation almost disappeared, possibly due to the decreased electrostatic repulsion allowing erythrocytes to come into closer contact. When these media contained, at concentrations 10-30 mg/mL dextran (MW 7 kDa), polyethylene glycol or polyvinylpyrrolidone (40 kDa), or albumin or homologous plasma with equivalent concentration of albumin, the γ1sp-relaxation was about tenfold enhanced, while βsp-relaxation was strengthened or preserved. The results suggest the Maxwell-Vagner accumulation of ions on the lipid bilayer as an energy source for βsp-relaxation. While βsp-relaxation appears sensitive to erythrocyte membrane deformability, γ1sp-relaxation could be a sensitive marker for the inter-membrane interactions between erythrocytes.
Collapse
Affiliation(s)
- Ivan T Ivanov
- Department of Physics, Biophysics, Roentgenology and Radiology, Medical Faculty, Thracian University, 6000 Stara Zagora, Bulgaria
| | - Boyana K Paarvanova
- Department of Physics, Biophysics, Roentgenology and Radiology, Medical Faculty, Thracian University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
4
|
Grasso F, Fratini F, Albanese TG, Mochi S, Ciardo M, Pace T, Ponzi M, Pizzi E, Olivieri A. Identification and preliminary characterization of Plasmodium falciparum proteins secreted upon gamete formation. Sci Rep 2022; 12:9592. [PMID: 35689013 PMCID: PMC9187623 DOI: 10.1038/s41598-022-13415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria long-term elimination depends on parasite transmission control. Plasmodium sexual stage maturation in the mosquito, including egress from the host erythrocyte, is one of the prime targets for transmission-blocking interventions. This work aims to identify candidate molecules potentially involved in gamete emergence from the host erythrocyte, as novel transmission blocking targets. We analyzed by quantitative mass spectrometry the proteins released/secreted by purified Plasmodium falciparum gametocytes upon induction of gametogenesis. The proteome obtained showed a good overlap (74%) with the one previously characterized in similar conditions from gametocytes of the rodent malaria parasite P. berghei. Four candidates were selected based on comparative analysis of their abundance values in released vs total gametocyte proteome. We also characterized the P. falciparum orthologue of the microgamete surface protein (MiGS), a marker of male gametocyte secretory vesicles in murine models of malaria. The findings of this study reveal that all the selected candidate proteins are expressed in both genders and localize to vesicle-like structures that respond to gametogenesis stimuli. This result, together with the fact that the selected proteins are released during gamete emergence in both Plasmodium species, makes them interesting candidates for future functional studies to investigate their potential role in the gametogenesis process.
Collapse
Affiliation(s)
- Felicia Grasso
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Federica Fratini
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | | | - Stefania Mochi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Mariagrazia Ciardo
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Tomasino Pace
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Marta Ponzi
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy
| | - Elisabetta Pizzi
- Servizio Grandi Strumentazioni E Core Facilities, Istituto Superiore Di Sanità, Rome, Italy
| | - Anna Olivieri
- Dipartimento Di Malattie Infettive, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
5
|
Koudatsu S, Masatani T, Konishi R, Asada M, Hakimi H, Kurokawa Y, Tomioku K, Kaneko O, Fujita A. Glycosphingolipid GM3 is localized in both exoplasmic and cytoplasmic leaflets of Plasmodium falciparum malaria parasite plasma membrane. Sci Rep 2021; 11:14890. [PMID: 34290278 PMCID: PMC8295280 DOI: 10.1038/s41598-021-94037-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Lipid rafts, sterol-rich and sphingolipid-rich microdomains on the plasma membrane are important in processes like cell signaling, adhesion, and protein and lipid transport. The virulence of many eukaryotic parasites is related to raft microdomains on the cell membrane. In the malaria parasite Plasmodium falciparum, glycosylphosphatidylinositol-anchored proteins, which are important for invasion and are possible targets for vaccine development, are localized in the raft. However, rafts are poorly understood. We used quick-freezing and freeze-fracture immuno-electron microscopy to examine the localization of monosialotetrahexosylganglioside (GM1) and monosialodihexosylganglioside (GM3), putative raft microdomain components in P. falciparum and infected erythrocytes. This method immobilizes molecules in situ, minimizing artifacts. GM3 was localized in the exoplasmic (EF) and cytoplasmic leaflets (PF) of the parasite and the parasitophorous vacuole (PV) membranes, but solely in the EF of the infected erythrocyte membrane, as in the case for uninfected erythrocytes. Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) was localized solely in the PF of erythrocyte, parasite, and PV membranes. This is the first time that GM3, the major component of raft microdomains, was found in the PF of a biological membrane. The unique localization of raft microdomains may be due to P. falciparum lipid metabolism and its unique biological processes, like protein transport from the parasite to infected erythrocytes.
Collapse
Affiliation(s)
- Shiomi Koudatsu
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.,Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Rikako Konishi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Masahito Asada
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Hassan Hakimi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Yuna Kurokawa
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kanna Tomioku
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
6
|
Creative interior design by Plasmodium falciparum: Lipid metabolism and the parasite's secret chamber. Parasitol Int 2021; 83:102369. [PMID: 33905815 DOI: 10.1016/j.parint.2021.102369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Malaria parasites conceal themselves within host erythrocytes and establish a necessary logistics system through the three-membrane layered structures of these cells. To establish this system, lipid metabolism is needed for the de novo synthesis of lipids and the recycling of extracellular lipids and erythrocyte lipid components. Cholesterol supply depends on its uptake from the extracellular environment and erythrocyte cytoplasm, but phospholipids can be synthesized on their own. This differential production of lipid species creates unique modifications in the lipid profile of parasitized erythrocytes, which in turn may influence the biophysical and/or mechanical properties of organelles and vesicles and communication among them. Variations in local membrane properties possibly influence the transportation of various molecules such as parasite-derived proteins, because efficiencies in secretion, vesicle fusion and budding are partly determined by the lipid profiles. Comprehensive understanding of the parasite's lipid metabolism and the biophysics of lipid membranes provides fundamental knowledge about these pathogenic organisms and could lead to new anti-malarials.
Collapse
|
7
|
Jin Y, Liang Q, Tieleman DP. Interactions between Band 3 Anion Exchanger and Lipid Nanodomains in Ternary Lipid Bilayers: Atomistic Simulations. J Phys Chem B 2020; 124:3054-3064. [DOI: 10.1021/acs.jpcb.0c01055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yapan Jin
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Minetti G, Bernecker C, Dorn I, Achilli C, Bernuzzi S, Perotti C, Ciana A. Membrane Rearrangements in the Maturation of Circulating Human Reticulocytes. Front Physiol 2020; 11:215. [PMID: 32256383 PMCID: PMC7092714 DOI: 10.3389/fphys.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Red blood cells (RBCs) begin their circulatory life as reticulocytes (Retics) after their egress from the bone marrow where, as R1 Retics, they undergo significant rearrangements in their membrane and intracellular components, via autophagic, proteolytic, and vesicle-based mechanisms. Circulating, R2 Retics must complete this maturational process, which involves additional loss of significant amounts of membrane and selected membrane proteins. Little is known about the mechanism(s) at the basis of this terminal differentiation in the circulation, which culminates with the production of a stable biconcave discocyte. The membrane of R1 Retics undergoes a selective remodeling through the release of exosomes that are enriched in transferrin receptor and membrane raft proteins and lipids, but are devoid of Band 3, glycophorin A, and membrane skeletal proteins. We wondered whether a similar selective remodeling occurred also in the maturation of R2 Retics. Peripheral blood R2 Retics, isolated by an immunomagnetic method, were compared with mature circulating RBCs from the same donor and their membrane protein and lipid content was analyzed. Results show that both Band 3 and spectrin decrease from R2 Retics to RBCs on a "per cell" basis. Looking at membrane proteins that are considered as markers of membrane rafts, flotillin-2 appears to decrease in a disproportionate manner with respect to Band 3. Stomatin also decreases but in a more proportionate manner with respect to Band 3, hinting at a heterogeneous nature of membrane rafts. High resolution lipidomics analysis, on the contrary, revealed that those lipids that are typically representative of the membrane raft phase, sphingomyelin and cholesterol, are enriched in mature RBCs with respct to Retics, relative to total cell lipids, strongly arguing in favor of the selective retention of at least certain subclasses of membrane rafts in RBCs as they mature from Retics. Our hypothesis that rafts serve as additional anchoring sites for the lipid bilayer to the underlying membrane-skeleton is corroborated by the present results. It is becoming ever more clear that a proper lipid composition of the reticulocyte is necessary for the production of a normal mature RBC.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Claudia Bernecker
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Isabel Dorn
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Cesare Achilli
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Stefano Bernuzzi
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Cesare Perotti
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Prudent M, Delobel J, Hübner A, Benay C, Lion N, Tissot JD. Proteomics of Stored Red Blood Cell Membrane and Storage-Induced Microvesicles Reveals the Association of Flotillin-2 With Band 3 Complexes. Front Physiol 2018; 9:421. [PMID: 29780325 PMCID: PMC5945891 DOI: 10.3389/fphys.2018.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
The storage of erythrocyte concentrates (ECs) induces lesions that notably affect metabolism, protein activity, deformability of red blood cells (RBCs), as well as the release of oxygen. Band 3 is one of the proteins affected during the ex vivo aging of RBCs. This membrane protein is an anion transporter, an anchor site for the cytoskeleton and other membrane proteins as well as a binding site for glycolytic enzymes and bears blood group antigens. In the present study, band 3 complexes were isolated from RBCs stored for 7 and 42 days in average (n = 3), as well as from microvesicles (n = 3). After extraction of membrane proteins with a deoxycholate containing buffer, band 3 complexes were co-immunoprecipitated on magnetic beads coated with two anti-band 3 antibodies. Both total membrane protein extracts and eluates (containing band 3 complexes) were separated on SDS-PAGE and analyzed by bottom-up proteomics. It revealed that three proteins were present or absent in band 3 complexes stemming from long-stored or short-stored ECs, respectively, whereas the membrane protein contents remained equivalent. These potential markers for storage-induced RBC aging are adenylosuccinate lyase (ADSL), α-adducin and flotillin-2, and were further analyzed using western blots. ADSL abundance tended to increase during storage in both total membrane protein and band 3 complexes, whereas α-adducin mainly tended to stay onto the membrane extract. Interestingly, flotillin-2 was equivalently present in total membrane proteins whereas it clearly co-immunoprecipitated with band 3 complexes during storage (1.6-fold-change, p = 0.0024). Moreover, flotillin-2 was enriched (almost threefold) in RBCs compared to microvesicles (MVs) (p < 0.001) and the amount found in MVs was associated to band 3 complexes. Different types of band 3 complexes are known to exist in RBCs and further studies will be required to better understand involvement of this protein in microvesiculation during the storage of RBCs.
Collapse
Affiliation(s)
- Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Julien Delobel
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Aurélie Hübner
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Corinne Benay
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Niels Lion
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Minetti G, Achilli C, Perotti C, Ciana A. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell. Front Physiol 2018; 9:286. [PMID: 29632498 PMCID: PMC5879444 DOI: 10.3389/fphys.2018.00286] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life.
Collapse
Affiliation(s)
- Giampaolo Minetti
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Achilli
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| | - Cesare Perotti
- Servizio Immunoematologia e Medicina Trasfusionale, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annarita Ciana
- Laboratori di Biochimica, Dipartimento di Biologia e Biotecnologie, Università degli Studi di Pavia, Pavia, Italy
| |
Collapse
|
11
|
Matteucci E, Giampietro O. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker? Biomark Insights 2017. [DOI: 10.1177/117727190700200026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3–/Cl– anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore damaged proteins, it is equipped with high activity of protective enzymes. Redox changes in the cell initiate various signalling pathways. Plasma membrane oxido-reductases (PMORs) are trans-membrane electron transport systems that have been found in the membranes of all cells and have been extensively characterized in the human erythrocyte. Erythrocyte PMORs transfer reducing equivalents from intracellular reductants to extracellular oxidants, thus their most important role seems to be to enable the cell respond to changes in intra- and extra-cellular redox environments. So far the activity of erythrocyte PMORs in disease states has not been systematically investigated. This review summarizes present knowledge on erythrocyte electron transfer activity in humans (health, type 1 diabetes, diabetic nephropathy, and chronic uremia) and hypothesizes an integrated model of the functional organization of erythrocyte plasma membrane where electron pathways work in parallel with transport metabolons to maintain redox homeostasis.
Collapse
Affiliation(s)
- Elena Matteucci
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
12
|
Riske KA, Domingues CC, Casadei BR, Mattei B, Caritá AC, Lira RB, Preté PSC, de Paula E. Biophysical approaches in the study of biomembrane solubilization: quantitative assessment and the role of lateral inhomogeneity. Biophys Rev 2017; 9:649-667. [PMID: 28836235 PMCID: PMC5662047 DOI: 10.1007/s12551-017-0310-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022] Open
Abstract
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Resat-the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.
Collapse
Affiliation(s)
- Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Cleyton C Domingues
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
- Department of Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC, 200037, USA
| | - Bruna R Casadei
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
| | - Bruno Mattei
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Amanda C Caritá
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Paulo S C Preté
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil
- Departamento de Química, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), P.O. Box - 6109, Campinas, SP, CEP 13083-862, Brazil.
| |
Collapse
|
13
|
Casadei BR, De Oliveira Carvalho P, Riske KA, Barbosa RDM, De Paula E, Domingues CC. Brij detergents reveal new aspects of membrane microdomain in erythrocytes. Mol Membr Biol 2015; 31:195-205. [PMID: 25222860 DOI: 10.3109/09687688.2014.949319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.
Collapse
Affiliation(s)
- Bruna Renata Casadei
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp) , Campinas , Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte's, could be relevant also for other cell types.
Collapse
Affiliation(s)
- Annarita Ciana
- Laboratories of Biochemistry, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia , Pavia , Italy
| | | | | |
Collapse
|
15
|
Cholesterol favors the anchorage of human dystrophin repeats 16 to 21 in membrane at physiological surface pressure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1266-73. [PMID: 24440661 DOI: 10.1016/j.bbamem.2014.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 12/28/2022]
Abstract
Dystrophin (DYS) is a filamentous protein that connects the cytoskeleton and the extracellular matrix via the sarcolemma, conferring resistance to muscular cells. In this study, interactions between the DYS R16-21 fragment and lipids were examined using Langmuir films made of anionic and zwitterionic lipids. The film fluidity was modified by the addition of 15% cholesterol. Whatever the lipid mixture examined, at low surface pressure (20 mN/m) few differences appeared on the protein insertion and the presence of cholesterol did not affect the protein/lipid interactions. At high surface pressure (30 mN/m), the protein insertion was very low and occurred only in zwitterionic films in the liquid-expanded phase. In anionic films, electrostatic interactions prevented the protein insertion outright, and caused accumulation of the protein on the hydrophilic part of the monolayer. Addition of cholesterol to both lipid mixtures drastically modified the protein-lipid interactions: the DYS R16-21 insertion increased and its organization in the monolayer appeared to be more homogeneous. The presence of accessible cholesterol recognition amino-acid consensus sequences in this fragment may enhance the protein/membrane binding at physiological lateral pressure. These results suggest that the anchorage of dystrophin to the membrane in vivo may be stabilized by cholesterol-rich nano-domains in the inner leaflet of sarcolemma.
Collapse
|
16
|
Krause CD, Izotova LS, Pestka S. Analytical use of multi-protein Fluorescence Resonance Energy Transfer to demonstrate membrane-facilitated interactions within cytokine receptor complexes. Cytokine 2013; 64:298-309. [PMID: 23769803 PMCID: PMC3770794 DOI: 10.1016/j.cyto.2013.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022]
Abstract
Experiments measuring Fluorescence Resonance Energy Transfer (FRET) between cytokine receptor chains and their associated proteins led to hypotheses describing their organization in intact cells. These interactions occur within a larger protein complex or within a given nano-environment. To illustrate this complexity empirically, we developed a protocol to analyze FRET among more than two fluorescent proteins (multi-FRET). In multi-FRET, we model FRET among more than two fluorophores as the sum of all possible pairwise interactions within the complex. We validated our assumption by demonstrating that FRET among pairs within a fluorescent triplet resembled FRET between each pair measured in the absence of the third fluorophore. FRET between two receptor chains increases with increasing FRET between the ligand-binding chain (e.g., IFN-γR1, IL-10R1 and IFN-λR1) and an acylated fluorescent protein that preferentially resides within subsections of the plasma membrane. The interaction of IL-10R2 with IFN-λR1 or IL-10R1 results in decreased FRET between IL-10R2 and the acylated fluorescent protein. Finally, we analyzed FRET among four fluorescent proteins to demonstrate that as FRET between IFN-γR1 and IFN-γR2 or between IFN-αR1 and IFN-αR2c increases, FRET among other pairs of proteins changes within each complex.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School - The University of Medicine and Dentistry of New Jersey, 675 Hoes Lane West, Piscataway, NJ 08855, USA.
| | | | | |
Collapse
|
17
|
Yam XY, Birago C, Fratini F, Di Girolamo F, Raggi C, Sargiacomo M, Bachi A, Berry L, Fall G, Currà C, Pizzi E, Breton CB, Ponzi M. Proteomic analysis of detergent-resistant membrane microdomains in trophozoite blood stage of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics 2013; 12:3948-61. [PMID: 24045696 DOI: 10.1074/mcp.m113.029272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular pathogens contribute to a significant proportion of infectious diseases worldwide. The successful strategy of evading the immune system by hiding inside host cells is common to all the microorganism classes, which exploit membrane microdomains, enriched in cholesterol and sphingolipids, to invade and colonize the host cell. These assemblies, with distinct biochemical properties, can be isolated by means of flotation in sucrose density gradient centrifugation because they are insoluble in nonionic detergents at low temperature. We analyzed the protein and lipid contents of detergent-resistant membranes from erythrocytes infected by Plasmodium falciparum, the most deadly human malaria parasite. Proteins associated with membrane microdomains of trophic parasite blood stages (trophozoites) include an abundance of chaperones, molecules involved in vesicular trafficking, and enzymes implicated in host hemoglobin degradation. About 60% of the identified proteins contain a predicted localization signal suggesting a role of membrane microdomains in protein sorting/trafficking. To validate our proteomic data, we raised antibodies against six Plasmodium proteins not characterized previously. All the selected candidates were recovered in floating low-density fractions after density gradient centrifugation. The analyzed proteins localized either to internal organelles, such as the mitochondrion and the endoplasmic reticulum, or to exported membrane structures, the parasitophorous vacuole membrane and Maurer's clefts, implicated in targeting parasite proteins to the host erythrocyte cytosol or surface. The relative abundance of cholesterol and phospholipid species varies in gradient fractions containing detergent-resistant membranes, suggesting heterogeneity in the lipid composition of the isolated microdomain population. This study is the first report showing the presence of cholesterol-rich microdomains with distinct properties and subcellular localization in trophic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Xue Yan Yam
- University Montpellier II, CNRS UMR 5235, 34095 Montpellier, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
D'Auria L, Deleu M, Dufour S, Mingeot-Leclercq MP, Tyteca D. Surfactins modulate the lateral organization of fluorescent membrane polar lipids: A new tool to study drug:membrane interaction and assessment of the role of cholesterol and drug acyl chain length. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2064-73. [DOI: 10.1016/j.bbamem.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022]
|
19
|
Moreira RA, Mendanha SA, Hansen D, Alonso A. Interaction of Miltefosine with the Lipid and Protein Components of the Erythrocyte Membrane. J Pharm Sci 2013; 102:1661-9. [DOI: 10.1002/jps.23496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/09/2022]
|
20
|
Ciana A, Achilli C, Hannoush RN, Risso A, Balduini C, Minetti G. Freely turning over palmitate in erythrocyte membrane proteins is not responsible for the anchoring of lipid rafts to the spectrin skeleton: A study with bio-orthogonal chemical probes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:924-31. [DOI: 10.1016/j.bbamem.2012.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/31/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
21
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Łach A, Grzybek M, Heger E, Korycka J, Wolny M, Kubiak J, Kolondra A, Bogusławska DM, Augoff K, Majkowski M, Podkalicka J, Kaczor J, Stefanko A, Kuliczkowski K, Sikorski AF. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J Biol Chem 2012; 287:18974-84. [PMID: 22496366 DOI: 10.1074/jbc.m111.332981] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Acylation of proteins is a ubiquitous post-translational modification and a common signal for membrane association. The major palmitoylated protein in erythrocytes is MPP1, a member of the MAGUK family and an important component of the ternary complex that attaches the spectrin-based skeleton to the plasma membrane. Here we show that DHHC17 is the only acyltransferase present in red blood cells (RBC). Moreover, we give evidence that protein palmitoylation is essential for membrane organization and is crucial for proper RBC morphology, and that the effect is specific for MPP1. Our observations are based on the clinical cases of two related patients whose RBC had no palmitoylation activity, caused by a lack of DHHC17 in the membrane, which resulted in a strong decrease of the amount of detergent-resistant membrane (DRM) material. We confirmed that this loss of detergent-resistant membrane was due to the lack of palmitoylation by treatment of healthy RBC with 2-bromopalmitic acid (2-BrP, common palmitoylation inhibitor). Concomitantly, fluorescence lifetime imaging microscopy (FLIM) analyses of an order-sensing dye revealed a reduction of membrane order after chemical inhibition of palmitoylation in erythrocytes. These data point to a pathophysiological relationship between the loss of MPP1-directed palmitoylation activity and perturbed lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Łach
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Curvature factor and membrane solubilization, with particular reference to membrane rafts. Cell Biol Int 2012; 35:991-5. [PMID: 21438858 DOI: 10.1042/cbi20100786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The composition of membrane rafts (cholesterol/sphingolipid-rich domains) cannot be fully deduced from the analysis of a detergent-resistant membrane fraction after solubilization in Triton X-100 at 4°C. It is hypothesized that the membrane curvature-dependent lateral distribution of membrane components affects their solubilization. The stomatocytogenic, Triton X-100, cannot effectively solubilize membrane components, especially with regard to the outward membrane curvature.
Collapse
|
24
|
Mikhalyov I, Samsonov A. Lipid raft detecting in membranes of live erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1930-9. [DOI: 10.1016/j.bbamem.2011.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/15/2011] [Accepted: 04/04/2011] [Indexed: 11/27/2022]
|
25
|
Preté PSC, Domingues CC, Meirelles NC, Malheiros SVP, Goñi FM, de Paula E, Schreier S. Multiple stages of detergent-erythrocyte membrane interaction--a spin label study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:164-70. [PMID: 21040698 DOI: 10.1016/j.bbamem.2010.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/15/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate-and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5mM detergent. Between 3.2 and 10mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs; the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111).
Collapse
Affiliation(s)
- Paulo S C Preté
- Department of Biochemistry, Institute of Biology, State University of Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
On the association of lipid rafts to the spectrin skeleton in human erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:183-90. [PMID: 20807499 DOI: 10.1016/j.bbamem.2010.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/19/2010] [Accepted: 08/25/2010] [Indexed: 11/21/2022]
Abstract
Lipid rafts are local inhomogeneities in the composition of the plasma membrane of living cells, that are enriched in sphingolipids and cholesterol in a liquid-ordered state, and proteins involved in receptor-mediated signalling. Interactions between lipid rafts and the cytoskeleton have been observed in various cell types. They are isolated as a fraction of the plasma membrane that resists solubilization by nonionic detergents at 4°C (detergent-resistant membranes, DRMs). We have previously described that DRMs are anchored to the spectrin-based membrane skeleton in human erythrocytes and can be released by increasing the pH and ionic strength of the solubilization medium with sodium carbonate. It was unexplained why this carbonate treatment was necessary and why this requirement was not reported by other workers in this area. We show here that when contaminating leukocytes are present in erythrocyte preparations that are subjected to detergent treatment, the isolation of DRMs can occur without the requirement for carbonate treatment. This is due to the uncontrolled breakdown of erythrocyte membrane components by hydrolases that are released from contaminating neutrophils that lead to proteolytic disruption of the supramolecular assembly of the membrane skeleton. Results presented here corroborate the concept that DRMs are anchored to the membrane skeleton through electrostatic interactions that most likely involve the spectrin molecule.
Collapse
|
27
|
Domingues CC, Ciana A, Buttafava A, Casadei BR, Balduini C, de Paula E, Minetti G. Effect of Cholesterol Depletion and Temperature on the Isolation of Detergent-Resistant Membranes from Human Erythrocytes. J Membr Biol 2010; 234:195-205. [DOI: 10.1007/s00232-010-9246-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 03/04/2010] [Indexed: 12/21/2022]
|
28
|
Povlsen GK, Ditlevsen DK. The neural cell adhesion molecule NCAM and lipid rafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:183-98. [PMID: 20017023 DOI: 10.1007/978-1-4419-1170-4_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Formation of two different types of ion channels by amphotericin B in human erythrocyte membranes. J Membr Biol 2009; 230:69-81. [PMID: 19629570 DOI: 10.1007/s00232-009-9187-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
The polyene antibiotic amphotericin B (AmB) is known to form aqueous pores in lipid membranes and biological membranes. Here, membrane potential and ion permeability measurements were used to demonstrate that AmB can form two types of selective ion channels in human erythrocytes, differing in their interaction with cholesterol. We show that AmB induced a cation efflux (negative membrane polarization) across cholesterol-containing liposomes and erythrocytes at low concentrations (< or =1.0 x 10(-6) M), but a sharp reversal of such polarization was observed at concentrations greater than 1.0 x 10(-6) M AmB, an indication that aqueous pores are formed. Cation-selective AmB channels are also formed across sterol-free liposomes, but aqueous pores are only formed at AmB concentrations 10 times greater. The effect of temperature on the AmB-mediated K+ efflux across erythrocytes revealed that the energies of activation for channel formation are negative and positive at AmB concentrations that lead predominantly to the formation of cation-selective channels and aqueous pores, respectively. These findings support the conclusion that the two types of AmB channels formed in human erythrocytes differ in their interactions with cholesterol and other membrane components. In effect, a membrane lipid reorganization, as induced by incubation of erythrocytes with tetrathionate, a cross-linking agent of the lipid raft-associated protein spectrin, led to differential changes in the activation parameters for the formation of both types of channels, reflecting the different lipid environments in which such structures are formed.
Collapse
|
30
|
Murphy SC, Hiller NL, Harrison T, Lomasney JW, Mohandas N, Haldar K. Lipid rafts and malaria parasite infection of erythrocytes (Review). Mol Membr Biol 2009; 23:81-8. [PMID: 16611583 DOI: 10.1080/09687860500473440] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Infection of human erythrocytes by the malarial parasite, Plasmodium falciparum, results in complex membrane sorting and signaling events in the mature erythrocyte. These events appear to rely heavily on proteins resident in erythrocyte lipid rafts. Over the past five years, we and others have undertaken a comprehensive characterization of major proteins present in erythrocyte detergent-resistant membrane lipid rafts and determined which of these proteins traffic to the host-derived membrane that bounds the intraerythrocytic parasite. The data suggest that raft association is necessary but not sufficient for vacuolar recruitment, and that there is likely a mechanism of active uptake of a subset of erythrocyte detergent-resistant membrane proteins. Of the ten internalized proteins, few have been evaluated for a role in malarial entry. The beta(2)-adrenergic receptor and heterotrimeric G protein G(s) signaling pathway proteins regulate invasion. The implications of these differences are discussed. In addition, the latter finding indicates that erythrocytes possess important signaling pathways. These signaling cascades may have important influences on in vivo malarial infection, as well as on erythrocyte membrane flexibility and adhesiveness in sickle cell anemia. With respect to malarial infection, host signaling components alone are not sufficient to induce formation of the malarial vacuole. Parasite proteins are likely to have a major role in making the intraerythrocytic environment conducive for vacuole formation. Such interactions should be the focus of future efforts to understand malarial infection of erythrocytes since host- and parasite-targeted interventions are urgently needed to combat this terrible disease.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
31
|
Tokumasu F, Nardone GA, Ostera GR, Fairhurst RM, Beaudry SD, Hayakawa E, Dvorak JA. Altered membrane structure and surface potential in homozygous hemoglobin C erythrocytes. PLoS One 2009; 4:e5828. [PMID: 19503809 PMCID: PMC2688750 DOI: 10.1371/journal.pone.0005828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 05/05/2009] [Indexed: 01/22/2023] Open
Abstract
Background Hemoglobin C differs from normal hemoglobin A by a glutamate-to-lysine substitution at position 6 of beta globin and is oxidatively unstable. Compared to homozygous AA erythrocytes, homozygous CC erythrocytes contain higher levels of membrane-associated hemichromes and more extensively clustered band 3 proteins. These findings suggest that CC erythrocytes have a different membrane matrix than AA erythrocytes. Methodology and Findings We found that AA and CC erythrocytes differ in their membrane lipid composition, and that a subset of CC erythrocytes expresses increased levels of externalized phosphatidylserine. Detergent membrane analyses for raft marker proteins indicated that CC erythrocyte membranes are more resistant to detergent solubilization. These data suggest that membrane raft organization is modified in CC erythrocytes. In addition, the average zeta potential (a measure of surface electrochemical potential) of CC erythrocytes was ≈2 mV lower than that of AA erythrocytes, indicating that substantial rearrangements occur in the membrane matrix of CC erythrocytes. We were able to recapitulate this low zeta potential phenotype in AA erythrocytes by treating them with NaNO2 to oxidize hemoglobin A molecules and increase levels of membrane-associated hemichromes. Conclusion Our data support the possibility that increased hemichrome deposition and altered lipid composition induce molecular rearrangements in CC erythrocyte membranes, resulting in a unique membrane structure.
Collapse
Affiliation(s)
- Fuyuki Tokumasu
- Biophysical and Biochemical Parasitology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
32
|
Toledo A, Arruti C. Actin modulation of a MARCKS phosphorylation site located outside the effector domain. Biochem Biophys Res Commun 2009; 383:353-7. [DOI: 10.1016/j.bbrc.2009.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
33
|
Resistance of Human Erythrocyte Membranes to Triton X-100 and C12E8. J Membr Biol 2008; 227:39-48. [DOI: 10.1007/s00232-008-9142-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/11/2008] [Indexed: 11/24/2022]
|
34
|
Domingues C, Malheiros S, de Paula E. Solubilization of human erythrocyte membranes by ASB detergents. Braz J Med Biol Res 2008; 41:758-64. [DOI: 10.1590/s0100-879x2008000900003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 08/25/2008] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - S.V.P. Malheiros
- Universidade Estadual de Campinas, Brasil; Faculdade de Medicina de Jundiaí, Brasil
| | | |
Collapse
|
35
|
Povlsen GK, Ditlevsen DK. WITHDRAWN: The Neural Cell Adhesion Molecule NCAM and Lipid Rafts. Neurochem Res 2008. [PMID: 18548347 DOI: 10.1007/s11064-008-9759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
|
36
|
Rodi PM, Trucco VM, Gennaro AM. Factors determining detergent resistance of erythrocyte membranes. Biophys Chem 2008; 135:14-8. [PMID: 18394774 DOI: 10.1016/j.bpc.2008.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
The degree of detergent insolubility of cell membranes is a useful parameter to test the strength of lipid-lipid interactions relative to lipid-detergent interactions. Thus, solubility studies could give insights about lipid-lipid interactions relevant in domain formation. In this work we perform a detailed study of the solubilization of four different erythrocyte membrane systems: intact human and bovine erythrocytes, and human and bovine erythrocytes depleted in cholesterol with methyl-beta-cyclodextrin. Each system was incubated with different concentrations of the non-ionic detergent Triton X-100, and the insoluble fraction was characterized by determining cholesterol and phosphorus content. A distinct solubilization behavior was obtained for the four systems, which was quantified by a "detergent resistance parameter" obtained from the fit of the solubility curves. In order to correlate these findings with membrane structural parameters, we quantify the degree of acyl chain order/rigidity of the original membranes by EPR spectroscopy, finding that detergent resistance is higher when acyl chains are more rigid. Regarding compositional properties, we found a good correlation between detergent resistance parameters and the total amount of cholesterol plus sphingomyelin in the original membranes. Our results suggest that a high degree of acyl chain packing is the determinant membrane factor for resistance to the action of Triton X-100 in erythrocytes.
Collapse
Affiliation(s)
- P M Rodi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Ciudad Universitaria, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
37
|
Wilkinson DK, Turner EJ, Parkin ET, Garner AE, Harrison PJ, Crawford M, Stewart GW, Hooper NM. Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:125-32. [PMID: 17961506 DOI: 10.1016/j.bbamem.2007.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/03/2007] [Accepted: 09/13/2007] [Indexed: 11/26/2022]
Abstract
In overhydrated hereditary stomatocytosis (OHSt), the membrane raft-associated stomatin is deficient from the erythrocyte membrane. We have investigated two aspects of raft structure and function in OHSt erythrocytes. First, we have studied the distribution of other membrane and cytoskeletal proteins in rafts by analysis of detergent-resistant membranes (DRMs). In normal erythrocytes, 29% of the actin was DRM-associated, whereas in two unrelated OHSt patients the DRM-associated actin was reduced to <10%. In addition, there was a reduction in the amount of the actin-associated protein tropomodulin in DRMs from these OHSt cells. When stomatin was expressed in Madin-Darby canine kidney cells, actin association with the membrane was increased. Second, we have studied Ca2+-dependent exovesiculation from the erythrocyte membrane. Using atomic force microscopy and proteomics analysis, exovesicles derived from OHSt cells were found to be increased in number and abnormal in size, and contained greatly increased amounts of the raft proteins flotillin-1 and -2 and the calcium binding proteins annexin VII, sorcin and copine 1, while the concentrations of stomatin and annexin V were diminished. Together these observations imply that the stomatin-actin association is important in maintaining the structure and in modulating the function of stomatin-containing membrane rafts in red cells.
Collapse
Affiliation(s)
- D Katie Wilkinson
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Salzer U, Zhu R, Luten M, Isobe H, Pastushenko V, Perkmann T, Hinterdorfer P, Bosman GJCGM. Vesicles generated during storage of red cells are rich in the lipid raft marker stomatin. Transfusion 2007; 48:451-62. [PMID: 18067507 DOI: 10.1111/j.1537-2995.2007.01549.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The release of vesicles by red blood cells (RBCs) occurs in vivo and in vitro under various conditions. Vesiculation also takes place during RBC storage and results in the accumulation of vesicles in RBC units. The membrane protein composition of the storage-associated vesicles has not been studied in detail. The characterization of the vesicular membrane might hint at the underlying mechanism of the storage-associated changes in general and the vesiculation process in particular. STUDY DESIGN AND METHODS Vesicles from RBCs that had been stored for various periods were isolated and RBCs of the same RBC units were used to generate calcium-induced microvesicles. These two vesicle types were compared with respect to their size with atomic force microscopy, their raft protein content with detergent-resistant membrane (DRM) analysis, and their thrombogenic potential and activity with annexin V binding and thrombin generation, respectively. RESULTS The storage-associated vesicles and the calcium-induced microvesicles are similar in size, in thrombogenic activity, and in membrane protein composition. The major differences were the relative concentrations of the major integral DRM proteins. In storage-associated vesicles, stomatin is twofold enriched and flotillin-2 is threefold depleted. CONCLUSION These data indicate that a stomatin-specific, raft-based process is involved in storage-associated vesiculation. A model of the vesiculation process in RBCs is proposed considering the raft-stabilizing properties of stomatin, the low storage temperature favoring raft aggregation, and the previously reported storage-associated changes in the cytoskeletal organization.
Collapse
Affiliation(s)
- Ulrich Salzer
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Murphy SC, Fernandez-Pol S, Chung PH, Prasanna Murthy SN, Milne SB, Salomao M, Brown HA, Lomasney JW, Mohandas N, Haldar K. Cytoplasmic remodeling of erythrocyte raft lipids during infection by the human malaria parasite Plasmodium falciparum. Blood 2007; 110:2132-9. [PMID: 17526861 PMCID: PMC1976375 DOI: 10.1182/blood-2007-04-083873] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of detergent-resistant membrane (DRM) rafts in mature erythrocytes have facilitated identification of proteins that regulate formation of endovacuolar structures such as the parasitophorous vacuolar membrane (PVM) induced by the malaria parasite Plasmodium falciparum. However, analyses of raft lipids have remained elusive because detergents interfere with lipid detection. Here, we use primaquine to perturb the erythrocyte membrane and induce detergent-free buoyant vesicles, which are enriched in cholesterol and major raft proteins flotillin and stomatin and contain low levels of cytoskeleton, all characteristics of raft microdomains. Lipid mass spectrometry revealed that phosphatidylethanolamine and phosphatidylglycerol are depleted in endovesicles while phosphoinositides are highly enriched, suggesting raft-based endovesiculation can be achieved by simple (non-receptor-mediated) mechanical perturbation of the erythrocyte plasma membrane and results in sorting of inner leaflet phospholipids. Live-cell imaging of lipid-specific protein probes showed that phosphatidylinositol (4,5) bisphosphate (PIP(2)) is highly concentrated in primaquine-induced vesicles, confirming that it is an erythrocyte raft lipid. However, the malarial PVM lacks PIP(2), although another raft lipid, phosphatidylserine, is readily detected. Thus, different remodeling/sorting of cytoplasmic raft phospholipids may occur in distinct endovacuoles. Importantly, erythrocyte raft lipids recruited to the invasion junction by mechanical stimulation may be remodeled by the malaria parasite to establish blood-stage infection.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kriebardis AG, Antonelou MH, Stamoulis KE, Economou-Petersen E, Margaritis LH, Papassideri IS. Storage-dependent remodeling of the red blood cell membrane is associated with increased immunoglobulin G binding, lipid raft rearrangement, and caspase activation. Transfusion 2007; 47:1212-20. [PMID: 17581156 DOI: 10.1111/j.1537-2995.2007.01254.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The elucidation of the storage lesion is important for the improvement of red blood cell (RBC) storage. Ex vivo storage is also a model system for studying cell-signaling events in the senescence and programmed cell death of RBCs. The membrane hosts critical steps in these mechanisms and undergoes widespread remodeling over the storage period. STUDY DESIGN AND METHODS Fresh and CPDA-stored RBCs from 21 blood donors were evaluated as whole cells, membrane ghosts, and cytoskeletons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, immunofluorescence microscopy, and in situ assays. Band 3 content, immunoglobulin G (IgG) content, specific protein movement to and from the membrane, and caspase system activation were measured. RESULTS During storage, Band 3 protein was aggregated and its content decreased as did the content of several lipid raft-related proteins. IgG binding to the membrane increased. Sorcin and synexin moved from the cytosol to the membrane, stomatin and flotillins left the membrane, the Fas protein was oligomerized, and caspase was activated. CONCLUSION The remodeling of the RBC membrane during storage includes loss and oxidative cross-linking of Band 3 as well as IgG binding. This process occurs with lipid raft development and loss and is probably driven by caspase activation. Oxidative injury appears to be an important driver of RBC aging during storage.
Collapse
Affiliation(s)
- Anastasios G Kriebardis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Ishmael JE, Safic M, Amparan D, Vogel WK, Pham T, Marley K, Filtz TM, Maier CS. Nonmuscle myosins II-B and Va are components of detergent-resistant membrane skeletons derived from mouse forebrain. Brain Res 2007; 1143:46-59. [PMID: 17321505 DOI: 10.1016/j.brainres.2007.01.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/14/2007] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Myosins are actin-based molecular motors that may have specialized trafficking and contractile functions in cytoskeletal compartments that lack microtubules. The postsynaptic excitatory synapse is one such specialization, yet little is known about the spatial organization of myosin motor proteins in the mature brain. We used a proteomics approach to determine if class II and class V myosin isoforms are associated with Triton X-100-resistant membranes isolated from mouse forebrain. Two nonmuscle myosin isoforms (II-B and Va), were identified as components of lipid raft fractions that also contained typical membrane skeletal proteins such as non-erythrocyte spectrins, actin, alpha-actinin-2 and tubulin subunits. Other raft-associated proteins included lipid raft markers, proteins involved in cell adhesion and membrane dynamics, receptors and channels including glutamate receptor subunits, scaffolding and regulatory proteins. Myosin II-B and Va were also present in standard postsynaptic density (PSD) fractions, however retention of myosin II-B was strongly influenced by ATP status. If homogenates were supplemented with ATP, myosin II-B could be extracted from PSD I whereas myosin Va and other postsynaptic proteins were resistant to extraction. In summary, both myosin isoforms are components of a raft-associated membrane skeleton and are likely detected in standard PSD fractions as a result of their intrinsic ability to form actomyosin. Myosin II-B, however, is more loosely associated with PSD fractions than myosin Va, which appears to be a core PSD protein.
Collapse
Affiliation(s)
- Jane E Ishmael
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodi PM, Cabeza MS, Gennaro AM. Detergent solubilization of bovine erythrocytes. Comparison between the insoluble material and the intact membrane. Biophys Chem 2006; 122:114-22. [PMID: 16580771 DOI: 10.1016/j.bpc.2006.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 11/16/2022]
Abstract
Early works have shown that when biomembranes are extracted with the non-ionic detergent Triton X-100 at 4 degrees C, only a subset of the components is solubilized. The aim of this paper was to investigate the solubilization of a cell membrane at different Triton concentrations, and to compare the lipid composition and acyl chain order/mobility of the insoluble material with those of the original membrane. We choose bovine erythrocytes, because they have an uncommon composition, as they have a huge amount of sphingomyelin and phosphatidylcholine is almost absent. We determined the degree of order/mobility of the lipid acyl chains by EPR spectroscopy, using liposoluble spin labels. Incubation of bovine erythrocytes with increasing Triton X-100 concentrations yields decreasing amounts of insoluble material which is enriched in sphingomyelin and depleted in cholesterol. Complete lipid solubilization is achieved at a detergent/lipid ratio of about 60, which is much higher than the values reported for human erythrocytes, but is in line with results obtained in model systems. An insoluble pellet is still obtained at higher Triton concentrations, which seems to consist mainly of protein. A very high correlation is found between lipid chain mobility restrictions and sphingomyelin content in the lipid structures. The human erythrocyte membrane also fits well in this correlation, suggesting a significant role of sphingomyelin in determining acyl chain organization. The analogies and differences between our insoluble material and the detergent-resistant membranes (DRM) are discussed.
Collapse
Affiliation(s)
- P M Rodi
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional de Litoral, Paraje El Pozo S/N, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
43
|
Motoyama K, Arima H, Toyodome H, Irie T, Hirayama F, Uekama K. Effect of 2,6-di-O-methyl-alpha-cyclodextrin on hemolysis and morphological change in rabbit's red blood cells. Eur J Pharm Sci 2006; 29:111-9. [PMID: 16870405 DOI: 10.1016/j.ejps.2006.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/01/2006] [Accepted: 06/07/2006] [Indexed: 11/27/2022]
Abstract
The effects of 2,6-di-O-methyl-alpha-cyclodextrin (DM-alpha-CyD) on hemolysis and morphological changes in rabbit's red blood cells (RBC) were examined, compared with those of alpha-cyclodextrin (CyD) and 2-hydoxypropyl-alpha-cyclodextrin (HP-alpha-CyD). The hemolytic activity of alpha-CyDs increased in the order of HP-alpha-CyD<alpha-CyD<DM-alpha-CyD. The three alpha-CyDs induced morphological changes of RBC from discocyte to stomatocyte. At the same concentration (3mM) of alpha-CyDs, DM-alpha-CyD and alpha-CyD released phospholipids, rather than cholesterol, and DM-alpha-CyD markedly released proteins from RBC membranes, compared to alpha-CyD and HP-alpha-CyD. The treatment of RBC with DM-alpha-CyD lowered the extent of a fluorescent sphingomyelin analogue from lipid rafts of RBC membranes in a concentration-dependent manner. These results suggest that DM-alpha-CyD has higher hemolytic and morphological change activity than alpha-CyD and HP-alpha-CyD through more extraction of phospholipids including sphingomyelin and proteins, not cholesterol, from RBC membranes than alpha-CyD and HP-alpha-CyD.
Collapse
Affiliation(s)
- Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Grzybek M, Chorzalska A, Bok E, Hryniewicz-Jankowska A, Czogalla A, Diakowski W, Sikorski AF. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem Phys Lipids 2006; 141:133-41. [PMID: 16566912 DOI: 10.1016/j.chemphyslip.2006.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/20/2006] [Indexed: 11/28/2022]
Abstract
The object of this paper is to review briefly the studies on the interactions of erythroid and non-erythroid spectrins with lipids in model and natural membranes. An important progress on the identification of lipid-binding sites has recently been made although many questions remain still unanswered. In particular, our understanding of the physiological role of such interactions is still limited. Another important issue is the occurrence of spectrins in membrane rafts, how they are attached to the raft and what is their function in rafts.
Collapse
Affiliation(s)
- Michał Grzybek
- University of Wrocław, Institute of Biochemistry and Molecular Biology, Poland
| | | | | | | | | | | | | |
Collapse
|
45
|
Crameri A, Biondi E, Kuehnle K, Lütjohann D, Thelen KM, Perga S, Dotti CG, Nitsch RM, Ledesma MD, Mohajeri MH. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 2006; 25:432-43. [PMID: 16407971 PMCID: PMC1383521 DOI: 10.1038/sj.emboj.7600938] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 12/06/2005] [Indexed: 02/07/2023] Open
Abstract
The cholesterol-synthesizing enzyme seladin-1, encoded by the Dhcr24 gene, is a flavin adenine dinucleotide-dependent oxidoreductase and regulates responses to oncogenic and oxidative stimuli. It has a role in neuroprotection and is downregulated in affected neurons in Alzheimer's disease (AD). Here we show that seladin-1-deficient mouse brains had reduced levels of cholesterol and disorganized cholesterol-rich detergent-resistant membrane domains (DRMs). This was associated with inefficient plasminogen binding and plasmin activation, the displacement of beta-secretase (BACE) from DRMs to APP-containing membrane fractions, increased beta-cleavage of APP and high levels of Abeta peptides. In contrast, overexpression of seladin-1 increased both cholesterol and the recruitment of DRM components into DRM fractions, induced plasmin activation and reduced both BACE processing of APP and Abeta formation. These results establish a role of seladin-1 in the formation of DRMs and suggest that seladin-1-dependent cholesterol synthesis is involved in lowering Abeta levels. Pharmacological enhancement of seladin-1 activity may be a novel Abeta-lowering approach for the treatment of AD.
Collapse
Affiliation(s)
- Arames Crameri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Elisa Biondi
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
| | - Katrin Kuehnle
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Dieter Lütjohann
- Department of Clinical Pharmacology, University of Bonn, Germany
| | - Karin M Thelen
- Department of Clinical Pharmacology, University of Bonn, Germany
| | - Simona Perga
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
| | - Carlos G Dotti
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
- Center for Human Genetics, Catholic University of Leuven and Flanders Interuniversitary Institute for Biotechnology (VIB4), Leuven, Belgium
| | - Roger M Nitsch
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Maria Dolores Ledesma
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, Orbassano, Italy
- Center for Human Genetics, Catholic University of Leuven and Flanders Interuniversitary Institute for Biotechnology (VIB4), Leuven, Belgium
- Cavalieri Ottolenghi Scientific Institute, Università degli Studi di Torino, AO San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy. Tel.: +39 011 670 5482; Fax: +39 011 670 5449; E-mail:
| | - M Hasan Mohajeri
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Division of Psychiatry Research, University of Zurich, August-Forel Strasse 1, 8008 Zurich, Switzerland. Tel.: +41 44 634 8872; Fax: +41 44 634 8874; E-mail:
| |
Collapse
|