1
|
The Fate of Transplanted Olfactory Progenitors Is Conditioned by the Cell Phenotypes of the Receiver Brain Tissue in Cocultures. Int J Mol Sci 2020; 21:ijms21197249. [PMID: 33008128 PMCID: PMC7582579 DOI: 10.3390/ijms21197249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Among the numerous candidates for cell therapy of the central nervous system (CNS), olfactory progenitors (OPs) represent an interesting alternative because they are free of ethical concerns, are easy to collect, and allow autologous transplantation. In the present study, we focused on the optimization of neuron production and maturation. It is known that plated OPs respond to various trophic factors, and we also showed that the use of Nerve Growth Factor (NGF) allowed switching from a 60/40 neuron/glia ratio to an 80/20 one. Nevertheless, in order to focus on the integration of OPs in mature neural circuits, we cocultured OPs in primary cultures obtained from the cortex and hippocampus of newborn mice. When dissociated OPs were plated, they differentiated into both glial and neuronal phenotypes, but we obtained a 1.5-fold higher viability in cortex/OP cocultures than in hippocampus/OP ones. The fate of OPs in cocultures was characterized with different markers such as BrdU, Map-2, and Synapsin, indicating a healthy integration. These results suggest that the integration of transplanted OPs might by affected by trophic factors and the environmental conditions/cell phenotypes of the host tissue. Thus, a model of coculture could provide useful information on key cell events for the use of progenitors in cell therapy.
Collapse
|
2
|
Pas HIMFL, Winters M, Haisma HJ, Koenis MJJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med 2017; 51:1125-1133. [DOI: 10.1136/bjsports-2016-096793] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
3
|
Mosaad YM. Hematopoietic stem cells: an overview. Transfus Apher Sci 2014; 51:68-82. [PMID: 25457002 DOI: 10.1016/j.transci.2014.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022]
Abstract
Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications.
Collapse
Affiliation(s)
- Youssef Mohamed Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Zhao S, Wang Y, Gao C, Zhang J, Bao H, Wang Z, Gong P. Superparamagnetic iron oxide magnetic nanomaterial-labeled bone marrow mesenchymal stem cells for rat liver repair after hepatectomy. J Surg Res 2014; 191:290-301. [DOI: 10.1016/j.jss.2014.03.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 12/14/2022]
|
5
|
|
6
|
Abstract
Reactive stroma initiates during early prostate cancer development and coevolves with prostate cancer progression. Previous studies have defined the key markers of reactive stroma and have established that reactive stroma biology influences prostate tumorigenesis and progression. The stem/progenitor cells of origin and the mechanisms that regulate their recruitment and activation to myofibroblasts or carcinoma-associated fibroblasts are essentially unknown. Key regulatory factors have been identified, including transforming growth factor β, interleukin-8, fibroblast growth factors, connective tissue growth factor, wingless homologs-Wnts, and stromal cell-derived factor-1, among others. The biology of reactive stroma in cancer is similar to the more predictable biology of the stroma compartment during wound repair at sites where the epithelial barrier function is breached and a stromal response is generated. The coevolution of reactive stroma and the biology of how reactive stroma-carcinoma interactions regulate cancer progression and metastasis are targets for new therapeutic approaches. Such approaches are strategically designed to inhibit cancer progression by uncoupling the reactive stroma niche.
Collapse
Affiliation(s)
- David A Barron
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
7
|
Jäger M, Zilkens C, Bittersohl B, Krauspe R. Cord blood--an alternative source for bone regeneration. Stem Cell Rev Rep 2009; 5:266-77. [PMID: 19652969 DOI: 10.1007/s12015-009-9083-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/20/2009] [Indexed: 12/12/2022]
Abstract
Bone regeneration is one of the best investigated pathways in mesenchymal stromal cell (MSC) biology. Therefore strong efforts have been made to introduce tissue engineering and cell therapeutics as an alternative treatment option for patients with bone defects. This review of the literature gives an overview of MSC biology aiming for clinical application including advantages but also specific challenges and problems which are associated with cord blood derived stromal cell (CB-MSC) as a source for bone regeneration. The use of postnatal CB-MSC is ethically uncomplicated and requires no invasive harvesting procedure. Moreover, most data document a high osteogenic potential of CB-MCS and also low immunoreactivity compared with other MSC types. The expression profile of CB-MSC during osteogenic differentiation shows similarities to that of other MSC types. Within the umbilical cord different MSC types have been characterized which are potent to differentiate into osteoblasts. In contrast to a large number of in vitro investigations there are only few in vivo studies available so far.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
8
|
Filip S, Mokry J, Horacek J, English D. Stem Cells and the Phenomena of Plasticity and Diversity: A Limiting Property of Carcinogenesis. Stem Cells Dev 2008; 17:1031-8. [DOI: 10.1089/scd.2007.0234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stanislav Filip
- Department of Oncology and Radiotherapy, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Jiri Horacek
- Department of Medicine, Charles University in Prague, Faculty of Medicine and Teaching Hospital, Hradec Králové, Czech Republic
| | - Denis English
- Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Florida
| |
Collapse
|
9
|
Huang W, La Russa V, Alzoubi A, Schwarzenberger P. Interleukin-17A: A T-Cell-Derived Growth Factor for Murine and Human Mesenchymal Stem Cells. Stem Cells 2006; 24:1512-8. [PMID: 16513762 DOI: 10.1634/stemcells.2005-0156] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine expressed in activated T-cells. It is required for microbial host defense and is a potent stimulator of granulopoiesis. In a dose-dependent fashion, IL-17A expanded human mesenchymal stem cells (MSCs) and induced the proliferation of mature stroma cells in bone marrow-derived stroma cultures. Recombinant human interleukin-17A (rhIL-17A) nearly doubled colony-forming unit-fibroblast (CFU-f) frequency and almost tripled the surface area covered by stroma. In a murine transplant model, in vivo murine (m)IL-17A expression enhanced CFU-f by 2.5-fold. Enrichment of the graft with CD4(+) T-cell resulted in a 7.5-fold increase in CFU-f in normal C57BL/6, but only threefold in IL-17Ra(-/-) mice on day 14 post-transplant. In this transplant model, in vivo blockade of IL-17A in C57BL/6 mice resembled the phenotype of IL-17Ra(-/-) mice. Approximately half of the T-cell-mediated effect on MSC recovery following radiation-conditioned transplantation was attributed to the IL-17A/IL-17Ra pathway. Pluripotent MSCs have the potential of regenerating various tissues, and mature stroma cells are critical elements of the hematopoietic microenvironment (HME). The HME is pivotal for formation and maintenance of functional blood cells. As a newly identified stroma cell growth factor, IL-17A might have potential applications for novel treatment approaches involving MSCs, such as tissue graft engineering.
Collapse
Affiliation(s)
- Weitao Huang
- Department of Microbiology and Immunology, University of South Alabama, Mobile, 36688, USA
| | | | | | | |
Collapse
|
10
|
Kamolz LP, Kolbus A, Wick N, Mazal PR, Eisenbock B, Burjak S, Meissl G. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns 2005; 32:16-9. [PMID: 16368194 DOI: 10.1016/j.burns.2005.08.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stem cells have the capacity to renew or to give rise to a specialized cell types. Human umbilical cord blood (HUCB) has been explored as an alternative source of stem cells. However, its potential to differentiate into cells of other tissues is still under discussion. The aim of our study was to evaluate if HUCB stem cells could differentiate into epithelial cells under in vitro conditions. METHODS Human keratinocytes derived from adult female skin donors, were isolated and cultured on fibrin glue/fibroblast gels-control group. In the umbilical cord blood cell group, male umbilical cord blood cells were added at a 1:10 ratio to keratinocytes and co-cultured on the fibrin glue/fibroblasts gel. After 15 days of culture, the sheets were analyzed by use of histochemistry and FISH. DNA was extracted and evaluated by use of polymerase chain reaction (PCR) for detection of Y-chromosome-specific sequences. RESULTS In both groups a regular epithelial sheet consisting of three to four layers of cells was formed. Using PCR and FISH, in the umbilical cord blood cell group the presence of Y-chromosome-specific sequences in the cultured keratinocytes could be detected. In the control group, no Y-chromosome-specific sequences could be detected. CONCLUSION Our findings indicate that umbilical cord blood stem cells differentiate into epithelial cells under in vitro conditions and thereby, might serve as a starting material for isolation and expansion of cells for transplantation in patients with large skin defects.
Collapse
Affiliation(s)
- L-P Kamolz
- Division of Plastic and Reconstructive Surgery, Vienna Burn Centre, Department of Surgery, Keratinocyte Research Group, General Hospital, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
11
|
Takeda M, Yamamoto M, Isoda K, Higashiyama S, Hirose M, Ohgushi H, Kawase M, Yagi K. Availability of bone marrow stromal cells in three-dimensional coculture with hepatocytes and transplantation into liver-damaged mice. J Biosci Bioeng 2005; 100:77-81. [PMID: 16233854 DOI: 10.1263/jbb.100.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 03/22/2005] [Indexed: 12/18/2022]
Abstract
Rat bone marrow stromal cells (BMSCs) were cultured in porous hydroxyapatite (HA) disks for 2 weeks to form a cell layer on the surface. Freshly isolated hepatocytes were then inoculated into both BMSC-cultured and non-treated HA disks. Hepatocytes cocultured with BMSCs secreted significantly more albumin than those in monoculture in vitro. The cell-packed HA disks were implanted into the peritoneal cavity of Nagase analbuminemia rats (NARs), and 4 weeks later, blood samples were collected to measure the albumin concentration. The cotransplantation of BMSCs with hepatocytes significantly increased the serum albumin concentration in NARs. The HA disks coculturing mice hepatocytes and BMSCs were also implanted into mice, in which liver damage had been induced using carbon tetrachloride and phenobarbital. The decreased serum albumin level in liver-damaged mice was completely recovered by the transplantation of hepatocytes and BMSCs. The serum level of IL-6 in liver-damaged mice was also increased by the cotransplantation of BMSCs and hepatocytes. Thus, the transplantation of BMSCs appears to have a systemic effect on recipients through the increase in the serum cytokine level as well as a local effect on cotransplanted hepatocytes.
Collapse
Affiliation(s)
- Masashi Takeda
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, Tschudy KS, Tilly JC, Cortes ML, Forkert R, Spitzer T, Iacomini J, Scadden DT, Tilly JL. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122:303-15. [PMID: 16051153 PMCID: PMC11771209 DOI: 10.1016/j.cell.2005.06.031] [Citation(s) in RCA: 451] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/18/2005] [Accepted: 06/24/2005] [Indexed: 01/31/2023]
Abstract
It has been suggested that germline stem cells maintain oogenesis in postnatal mouse ovaries. Here we show that adult mouse ovaries rapidly generate hundreds of oocytes, despite a small premeiotic germ cell pool. In considering the possibility of an extragonadal source of germ cells, we show expression of germline markers in bone marrow (BM). Further, BM transplantation restores oocyte production in wild-type mice sterilized by chemotherapy, as well as in ataxia telangiectasia-mutated gene-deficient mice, which are otherwise incapable of making oocytes. Donor-derived oocytes are also observed in female mice following peripheral blood transplantation. Although the fertilizability and developmental competency of the BM and peripheral blood-derived oocytes remain to be established, their morphology, enclosure within follicles, and expression of germ-cell- and oocyte-specific markers collectively support that these cells are bona fide oocytes. These results identify BM as a potential source of germ cells that could sustain oocyte production in adulthood.
Collapse
Affiliation(s)
- Joshua Johnson
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Jessamyn Bagley
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Malgorzata Skaznik-Wikiel
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Ho-Joon Lee
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Gregor B. Adams
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Yuichi Niikura
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Katherine S. Tschudy
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Jacqueline Canning Tilly
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Maria L. Cortes
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Randolf Forkert
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Thomas Spitzer
- MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - John Iacomini
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - David T. Scadden
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| | - Jonathan L. Tilly
- Vincent Center for Reproductive Biology Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital, Harvard Medical School Boston, Massachusetts 02114
| |
Collapse
|
13
|
Piccoli C, Ria R, Scrima R, Cela O, D'Aprile A, Boffoli D, Falzetti F, Tabilio A, Capitanio N. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 2005; 280:26467-76. [PMID: 15883163 DOI: 10.1074/jbc.m500047200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This study was aimed to characterize the mitochondrial and extra-mitochondrial oxygen consuming reactions in human CD34+ hematopoietic stem cells. Cell samples were collected by apheresis following pre-conditioning by granulocyte colony-stimulating factor and isolated by anti-CD34 positive immunoselection. Polarographic analysis of the CN-sensitive endogenous cell respiration revealed a low mitochondrial oxygen consumption rate. Differential absorbance spectrometry on whole cell lysate and two-dimensional blue native-PAGE analysis of mitoplast proteins confirmed a low amount of mitochondrial respiratory chain complexes thus qualifying the hematopoietic stem cell as a poor oxidative phosphorylating cell type. Confocal microscopy imaging showed, however, that the intracellular content of mitochondria was not homogeneously distributed in the CD34+ hematopoietic stem cell sample displaying a clear inverse correlation of their density with the expression of the CD34 commitment marker. About half of the endogenous oxygen consumption was extra-mitochondrial and completely inhibitable by enzymatic scavengers of reactive oxygen species and by diphenylene iodinium. By spectral analysis, flow cytometry, reverse transcriptase-PCR, immunocytochemistry, and immunoprecipitation it was shown that the extra-mitochondrial oxygen consumption was contributed by the NOX2 and NOX4 isoforms of the O2-*. producer plasma membrane NAD(P)H oxidase with low constitutive activity. A model is proposed suggesting for the NAD(P)H oxidase a role of O2 sensor and/or ROS source serving as redox messengers in the activation of intracellular signaling pathways leading (or contributing) to mitochondriogenesis, cell survival, and differentiation in hematopoietic stem cells.
Collapse
MESH Headings
- Antigens, CD34/biosynthesis
- Cell Line
- Cells, Cultured
- Electron Transport
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Flow Cytometry
- Granulocyte-Macrophage Colony-Stimulating Factor
- Hematopoietic Stem Cells/cytology
- Humans
- Image Processing, Computer-Assisted
- Immunoblotting
- Immunohistochemistry
- Immunoprecipitation
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Biological
- NADPH Oxidases/metabolism
- Oxidation-Reduction
- Oxygen/chemistry
- Oxygen/metabolism
- Oxygen Consumption
- Phosphorylation
- Protein Binding
- Protein Structure, Quaternary
- Reactive Oxygen Species
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Spectrophotometry
Collapse
Affiliation(s)
- Claudia Piccoli
- Department of Biomedical Science, University of Foggia, Foggia, Italy 71100
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Experimental biology and medicine work with stem cells more than twenty years. The method discovered for in vitro culture of human embryonal stem cells acquired at abortions or from "surplus" embryos left from in vitro fertilization, evoked immediately ideas on the possibility to aim development and differentiation of these cells at regeneration of damaged tissues. Recently, several surprising observations proved that even tissue-specific (multipotent) stem cells are capable, under suitable conditions, of producing a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This ability is frequently called stem cell plasticity but other authors also use different names - "non-orthodox differentiation" or "transdifferentiation". In this paper we wish to raise several important questions and problems related to this theme. Let us remind some of them: Is it possible to force cells of one-type tissue to look and act as cells of another tissue? Are these changes natural? Could these transformations be used to treat diseases? What about the bioethic issue? However, the most serious task "still remains to be solved - how to detect, harvest and culture stem cells for therapy of certain diseases".
Collapse
Affiliation(s)
- S Filip
- Department of Oncology and Radiotherapy, Charles University Hospital, Sokolska Street 480, 500 05 Hradec Králové, Czech Republic.
| | | | | |
Collapse
|
15
|
Shen CN, Burke ZD, Tosh D. Transdifferentiation, metaplasia and tissue regeneration. Organogenesis 2004; 1:36-44. [PMID: 19521559 PMCID: PMC2633984 DOI: 10.4161/org.1.2.1409] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 12/16/2022] Open
Abstract
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g., tentacles and the feeding organ (manubrium)) can be generated in vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (nonpathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g., mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.
Collapse
Affiliation(s)
- Chia-Ning Shen
- Centre for Regenerative Medicine; Department of Biology and Biochemistry; University of Bath; Bath, UK
| | | | | |
Collapse
|