1
|
Lochner RH, Delfin L, Nezami BG, Cohen ML, Asa SL, Burguera B, Couce ME. Severe Obesity Associated with Pituitary Corticotroph Hyperplasia and Neoplasia:. Endocr Pract 2023:S1530-891X(23)00345-2. [PMID: 37004872 DOI: 10.1016/j.eprac.2023.03.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Obesity is associated with hypercortisolism. The incidence of corticotroph hyperplasia or lymphocyte infiltration in the pituitary of patients with obesity is unknown. METHODS Pituitary and adrenal glands from 161 adult autopsies performed between 2010 and 2019 at our institution were reviewed. Clinical history, body mass index, and cause of death were recorded Routine hematoxylin & eosin, reticulin and immunohistochemical stains for ACTH, CD3, and CD20 were done. Results were analyzed using Fisher and Chi-square statistics.Decedents were separated into 4 groups based on BMI (kg/m2): Lean (BMI <25.0), Overweight (BMI of 25.0 to 29.9), Obesity Class I (BMI of 30.0 to 34.9), and Obesity Class II-III (BMI > 34.9). RESULTS Corticotroph hyperplasia/neoplasia was identified in 44 of 161 pituitary glands. 4 of 53 (9.1%) lean patients had pituitary lesions whereas 27.3% (12) of overweight, 22.7% (10) of obesity class I and 40.9% (18) of obesity class II patients had hyperplasia (p < 0.0001). Small corticotroph tumors were identified in 15 patients; only one was a lean patient and the tumor was associated with Crooke's hyaline change of nontumorous corticotrophs. The presence of corticotroph hyperplasia and neoplasia was associated with adrenal cortical hyperplasia and lipid depletion. Microscopic foci of T lymphocytes and B lymphocytes were identified in pituitaries of patients within each weight category; no independent association between BMI and lymphocytic inflammation was found. CONCLUSION Our data indicate an association between corticotroph hyperplasia/neoplasia and obesity. It remains unclear whether obesity is the cause or effect of ACTH and cortisol excess.
Collapse
|
2
|
Marques P, Silva AL, López-Presa D, Faria C, Bugalho MJ. The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 2022; 25:363-382. [PMID: 35194709 DOI: 10.1007/s11102-022-01211-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
The microenvironment of pituitary adenomas (PAs) includes a range of non-tumoral cells, such as immune and stromal cells, as well as cell signaling molecules such as cytokines, chemokines and growth factors, which surround pituitary tumor cells and may modulate tumor initiation, progression, invasion, angiogenesis and other tumorigenic processes. The microenvironment of PAs has been actively investigated over the last years, with several immune and stromal cell populations, as well as different cytokines, chemokines and growth factors being recently characterized in PAs. Moreover, key microenvironment-related genes as well as immune-related molecules and pathways have been investigated, with immune check point regulators emerging as promising targets for immunotherapy. Understanding the microenvironment of PAs will contribute to a deeper knowledge of the complex biology of PAs, as well as will provide developments in terms of diagnosis, clinical management and ultimately treatment of patients with aggressive and/or refractory PAs.
Collapse
Affiliation(s)
- Pedro Marques
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal.
| | - Ana Luísa Silva
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Dolores López-Presa
- Pathology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Maria João Bugalho
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| |
Collapse
|
3
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 2012; 92:1-38. [PMID: 22298650 DOI: 10.1152/physrev.00003.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Collapse
Affiliation(s)
- Carolina Perez-Castro
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular,Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
5
|
Renner U, De Santana EC, Gerez J, Fröhlich B, Haedo M, Pereda MP, Onofri C, Stalla GK, Arzt E. Intrapituitary expression and regulation of the gp130 cytokine interleukin-6 and its implication in pituitary physiology and pathophysiology. Ann N Y Acad Sci 2009; 1153:89-97. [PMID: 19236332 DOI: 10.1111/j.1749-6632.2008.03970.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin (IL)-6, a member of the gp130 cytokine family, is sometimes designated as an "endocrine" cytokine because of its strong regulatory influence on hormone production. Systemically acting IL-6 derived from immune cells is a potent stimulator of the hypothalamus-pituitary-adrenal axis and therefore plays an important role in modulating immune-neuroendocrine interactions during inflammatory or infectious processes. However, IL-6 is also produced within the anterior pituitary by so-called folliculostellate (FS) cells and is also synthesized in and released by tumor cells in pituitary adenomas. Growth factors (e.g., transforming growth factor-beta), neuropeptides (e.g., pituitary adenylate cyclase-activating polypeptide), or hormones (e.g., glucocorticoids) regulate IL-6 production both in FS and pituitary tumor cells. Interestingly, components of the innate immune system, such as toll-like receptor 4 and nucleotide-binding oligomerization domains (NODs), are expressed in FS and pituitary tumor cells. Therefore, cell-wall components of bacteria (lipopolysaccharide, muramyl dipeptide, diamino pimelic acid) stimulate IL-6 production in normal and tumoral pituitary. The intrinsic IL-6 production by FS cells in normal anterior pituitary may participate in immune-neuroendocrine interactions during inflammatory processes. In pituitary adenomas, IL-6 stimulates hormone secretion, tumor cell proliferation, and the production of angiogenic factors, such as vascular endothelial growth factor-A, suggesting an important role of IL-6 in the pathophysiology and progression of pituitary adenomas.
Collapse
Affiliation(s)
- Ulrich Renner
- Max Planck Institute of Psychiatry, Neuroendocrinology Group, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Folliculo-stellate cells (FS-cells) are star-shaped and follicle-forming cells in the anterior pituitary gland that were first identified by electron microscopy as non-endocrine agranular cells. Light microscopy has revealed many of their cytophysiological features and the FS-cell is known to be positive for S-100 protein, a marker for FS-cells. So far, functions ascribed to FS-cells include the formation of an extensive and complex tridimentional network, scavenger activity by engulfing degenerated cells, paracrine regulation of endocrine cells by producing various growth factors and cytokines, such as interleukin-6, leukemia inhibitory factor, basic fibroblastic growth factor, vascular endothelial cell growth factor and follistatin, and large-scale inter-cellular communication by means of their long cytoplasmic processes and gap junctions. Moreover, their multi-potential characteristics and other cytological features support the possibility of them becoming organ-specific stem cells. This concept is yet to be resolved, however. In this review, we focus on these features of FS-cells along with some futuristic approaches.
Collapse
Affiliation(s)
- S Devnath
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
7
|
Giacomini D, Acuña M, Gerez J, Nagashima AC, Silberstein S, Páez-Pereda M, Labeur M, Theodoropoulou M, Renner U, Stalla GK, Arzt E. Pituitary action of cytokines: focus on BMP-4 and gp130 family. Neuroendocrinology 2007; 85:94-100. [PMID: 17337883 DOI: 10.1159/000100428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/18/2007] [Indexed: 11/19/2022]
Abstract
The anterior pituitary can develop benign tumors of different sizes, classified as micro- and macroadenomas, frequently associated with high levels of hormone production, leading to different associated syndromes like Cushing's disease, acromegaly or prolactinomas. Much work has been done in order to understand the signaling pathways and the factors and hormones involved in the pituitary tumorigenic process. In recent years, much evidence has been collected and it is now well documented that cytokines of the gp130 family, such as interleukin-6, that use gp130 as a common signaling protein stimulate not only the proliferation but also the hormone secretion of pituitary cells. Experiments in vivo have shown that the overexpression of the gp130 receptor resulted in pituitary abnormal growth. Moreover, it has been recently described that bone morphogenetic protein-4 (BMP-4), a member of the TGF-beta family, has a stimulatory role on lactosomatotropic cells promoting the development of prolactinomas but it has an inhibitory action on the corticotropic lineage. This inhibitory action prevents Cushing's disease progression. Furthermore, BMP-4 mediates the antiproliferative action of retinoic acid in these cells. The present review highlights the most recent work about gp130 and TGF-beta cytokine families and their role in pituitary tumorigenesis.
Collapse
Affiliation(s)
- Damiana Giacomini
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhan X, Desiderio DM. Comparative proteomics analysis of human pituitary adenomas: current status and future perspectives. MASS SPECTROMETRY REVIEWS 2005; 24:783-813. [PMID: 15495141 DOI: 10.1002/mas.20039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article will review the published research on the elucidation of the mechanisms of pituitary adenoma formation. Mass spectrometry (MS) plays a key role in those studies. Comparative proteomics has been used with the long-term goal to locate, detect, and characterize the differentially expressed proteins (DEPs) in human pituitary adenomas; to identify tumor-related and -specific biomarkers; and to clarify the basic molecular mechanisms of pituitary adenoma formation. The methodology used for comparative proteomics, the current status of human pituitary proteomics studies, and future perspectives are reviewed. The methodologies that are used in comparative proteomics studies of human pituitary adenomas are readily exportable to other different areas of cancer research.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
9
|
Theogaraj E, John CD, Christian HC, Morris JF, Smith SF, Buckingham JC. Perinatal glucocorticoid treatment produces molecular, functional, and morphological changes in the anterior pituitary gland of the adult male rat. Endocrinology 2005; 146:4804-13. [PMID: 16099861 DOI: 10.1210/en.2005-0500] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stress or glucocorticoid (GC) treatment in perinatal life can induce long-term changes in the sensitivity of the hypothalamo-pituitary-adrenocortical axis to the feedback actions of GCs and, hence, in GC secretion. These changes have been ascribed largely to changes in the sensitivity of the limbic system, and possibly the hypothalamus, to GCs. Surprisingly, the possibility that early life stress/GC treatment may also exert irreversible effects at the pituitary level has scarcely been addressed. Accordingly, we have examined the effects of pre- and neonatal dexamethasone treatment on the adult male pituitary gland, focusing on the following: 1) the integrity of the acute annexin 1 (ANXA1)-dependent inhibitory actions of GCs on ACTH secretion, a process requiring ANXA1 release from folliculostellate (FS) cells; and 2) the morphology of FS cells and corticotrophs. Dexamethasone was given to pregnant (d 16-19) or lactating (d 1-7 postpartum) rats via the drinking water (1 microg/ml); controls received normal drinking water. Pituitary tissue from the offspring was examined ex vivo at d 90. Both treatment regimens reduced ANXA1 expression, as assessed by Western blotting and quantitative immunogold labeling. In particular, the amount of ANXA1 located on the outer surface of the FS cells was reduced. By contrast, IL-6 expression was increased, particularly by the prenatal treatment. Pituitary tissue from untreated control rats responded to dexamethasone with an increase in cell surface ANXA1 and a reduction in forskolin-induced ACTH release. In contrast, pituitary tissue from rats treated prenatally or neonatally with dexamethasone was unresponsive to the steroid, although, like control tissue, it responded readily to ANXA1, which readily inhibited forskolin-driven ACTH release. Prenatal dexamethasone treatment reduced the size but not the number of FS cells. It also caused a marked reduction in corticotroph number and impaired granule margination without affecting other aspects of corticotroph morphology. Similar but less marked effects on pituitary cell morphology and number were evident in tissue from neonatally treated rats. Our study shows that, when administered by a noninvasive process, perinatal GC treatment exerts profound effects on the adult pituitary gland, impairing the ANXA1-dependent GC regulation of ACTH release and altering the cell profile and morphology.
Collapse
Affiliation(s)
- E Theogaraj
- Department of Cellular and Molecular Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Castro CP, Giacomini D, Nagashima AC, Onofri C, Graciarena M, Kobayashi K, Páez-Pereda M, Renner U, Stalla GK, Arzt E. Reduced expression of the cytokine transducer gp130 inhibits hormone secretion, cell growth, and tumor development of pituitary lactosomatotrophic GH3 cells. Endocrinology 2003; 144:693-700. [PMID: 12538632 DOI: 10.1210/en.2002-220891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two of the most potent cytokines that regulate anterior pituitary cell function are leukemia inhibitory factor and IL-6. These and others like IL-11 and ciliary neurotrophic factor are referred to as the gp130 cytokines because they share the gp130 glycoprotein as a common receptor initial signal transducer. We and others have shown that gp130 cytokines and their receptors are expressed and functional in normal and tumoral anterior pituitary cells. To study the role of gp130 cytokines in tumorigenic process, we generated gp130 cDNA gp130 sense and gp130 antisense (gp130-AS) transfected stable clones derived from lactosomatotroph GH3 cells. We examined hormone secretion and cell proliferation of these clones as well as their tumorigenic properties in athymic nude mice. Although gp130-AS clones, which have low gp130 levels and impaired signal transducer and activator of transcription 3 activity and suppressor of cytokine signaling-3 expression, showed reduced proliferation and hormone secretion (GH and prolactin) in response to gp130 cytokines, they had a normal response to gp130-independent stimuli. Moreover, gp130-AS clones showed a severely impaired in vivo tumor development. In contrast, the overexpressing gp130 clones (gp130 sense) showed no differences, compared with cells transfected with control vector. Thus, the present study provides new evidence supporting a link between gp130 and pituitary abnormal growth.
Collapse
Affiliation(s)
- Carolina Perez Castro
- Departamento de Fisiología y Biología Molecular y Celular, Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Arzt E. gp130 cytokine signaling in the pituitary gland: a paradigm for cytokine–neuro-endocrine pathways. J Clin Invest 2001. [DOI: 10.1172/jci200114660] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Arzt E. gp130 cytokine signaling in the pituitary gland: a paradigm for cytokine-neuro-endocrine pathways. J Clin Invest 2001; 108:1729-33. [PMID: 11748253 PMCID: PMC209477 DOI: 10.1172/jci14660] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- E Arzt
- Laboratorio de Fisiología y Biología Molecular, Facultad de Ciencias Exacias y Naturales, Universidad de Buenos Aires and Argentine National Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
13
|
Tomida M, Yoshida U, Mogi C, Maruyama M, Goda H, Hatta Y, Inoue K. Leukaemia inhibitory factor and interleukin 6 inhibit secretion of prolactin and growth hormone by rat pituitary MtT/SM cells. Cytokine 2001; 14:202-7. [PMID: 11448119 DOI: 10.1006/cyto.2001.0874] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat pituitary cell line, MtT/SM, has the characteristics of somatomammotrophs. The cells secrete both prolactin (PRL) and growth hormone (GH). We examined the effects of cytokines such as leukaemia inhibitory factor (LIF), interleukin 6 (IL-6), oncostatin M and interleukin 11 on the secretion of these hormones by the cells. These cytokines stimulate proliferation of the cells and inhibit the secretion of PRL by 70-80% and that of GH by 50%. They induce tyrosine phosphorylation of STAT3 in the cells. The cells containing PRL or GH decreased at 48 h after treatment of the cells with LIF or IL-6. These results suggest that the LIF/IL-6 family of cytokines inhibits the functions of mammotrophs and somatotrophs in the pituitary gland.
Collapse
Affiliation(s)
- M Tomida
- Laboratory of Carcinogenesis and Cancer Prevention, Saitama Cancer Center Research Institute, Ina, Saitama, 362-0806, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Perez Castro C, Nagashima AC, Pereda MP, Goldberg V, Chervin A, Largen P, Renner U, Stalla GK, Arzt E. The gp130 cytokines interleukin-11 and ciliary neurotropic factor regulate through specific receptors the function and growth of lactosomatotropic and folliculostellate pituitary cell lines. Endocrinology 2000; 141:1746-53. [PMID: 10803585 DOI: 10.1210/endo.141.5.7442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two of the most potent cytokines regulating anterior pituitary cell function are leukemia inhibitory factor and interleukin-6 (IL-6), which belong to the cytokine receptor family using the common gp130 signal transducer. We studied the actions of two other members of this family, IL-11 and ciliary neurotropic factor (CNTF), on folliculostellate (FS) cells (TtT/GF cell line) and lactosomatotropic cells (GH3 cell line). The messenger RNA (mRNA) for the alpha-chain specific for the IL-11 receptor (1.7 kb) and CNTF receptor (2 kb) are expressed on both cell types. In addition, we detected CNTF receptor mRNA in normal rat anterior pituitary cells. IL-11 (1.25-5 nM) dose dependently stimulated the proliferation of FS cells. CNTF, at doses from 0.4-2 nM, also significantly stimulated the growth of these cells. In addition, both cytokines significantly stimulated proliferation of lactosomatotropic GH3 cells, and CNTF stimulated hormone production (GH and PRL) at 24 h by these cells. At 16-72 h, IL-11 stimulates the secretion of the angiogenic factor vascular endothelial growth factor by FS cells. In addition, both GH3 and FS cells express CNTF mRNA. These data suggest that IL-11 and CNTF may act as growth and regulatory factors in anterior pituitary cells.
Collapse
Affiliation(s)
- C Perez Castro
- Department de Biología, FCEN, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Inoue K, Couch EF, Takano K, Ogawa S. The structure and function of folliculo-stellate cells in the anterior pituitary gland. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:205-18. [PMID: 10495875 DOI: 10.1679/aohc.62.205] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The folliculo-stellate cells (FS cells) in the anterior pituitary gland are characterized by their star-like appearance and their ability to form follicles. Although FS cells do not produce any pituitary hormones, their special tendency to surrounding endocrine cells with their long cytoplasmic processes suggests that they regulate endocrine cells by intercellular communication. In spite of many morphological and cytophysiological studies recently performed, a precise understanding of the major functions of FS cells in the pituitary gland remains obscure. We review here the morphological characteristics of FS cells and their suspected functions in the anterior pituitary gland. It is well established that the FS cell produces many kinds of growth factors, i.e., fibroblast growth factor, vascular endothelial cell growth factor and interleukin 6. The biological significances of these growth factors in the anterior pituitary gland are also discussed in this paper. The origin and differentiation of FS cells, especially the possibility that the FS cell is a kind of stem cell which has the potential to differentiate into endocrine cells, is also presented.
Collapse
Affiliation(s)
- K Inoue
- Department of Regulation Biology, Faculty of Science, Saitama University, Urawa, Japan.
| | | | | | | |
Collapse
|
16
|
Abstract
The spatial and proportional representation of the various cell groups in the anterior pituitary is fairly constant, although it may differ between sexes. Recognizable changes occur in a number of physiological and pathological situations. The relative roles of hormones and growth factors in these processes are not fully elucidated, nor are their kinetics. In this paper, published work on basal proliferation, growth factor expression and the growth of specific cell types is reviewed. In addition, we present new data to indicate that the maximum level of proliferation in the anterior pituitary of the male Sprague-Dawley rat occurs around 28 days. We have also demonstrated a circadian rhythm of mitosis in the adult male, with a peak around 1100 h. Cell kinetic analysis suggests a duration for G2 of about 2 hours, and for S phase of 10 1/2 to 11 hours. Finally, we provide data which confirm that the expansion of the corticotroph population after bilateral adrenalectomy is partly the result of an early proliferative response in both corticotrophs and other pituitary cells. Our data also suggest that a further expansion takes place which may reflect differentiation of a population other than committed corticotrophs.
Collapse
Affiliation(s)
- A M McNicol
- University Department of Pathology, Royal Infirmary, Glasgow, UK.
| | | |
Collapse
|
17
|
Affiliation(s)
- P L Dahia
- Department of Endocrinology, St. Bartholomew's Hospital, London, United Kingdom
| | | |
Collapse
|
18
|
|
19
|
Abstract
Cytokines are important partners in the bidirectional network interrelating the immune and the neuroendocrine systems. These substances and their specific receptors, initially thought to be exclusively present in the immune system, have recently been shown to be also expressed in the neuroendocrine system. Cytokines can modulate the responses of all endocrine axes by acting at both the central and the peripheral levels. To explain how systemic cytokines may gain access to the brain, several mechanisms have been proposed, including an active transport through the blood-brain barrier, a passage at the circumventricular organ level, as well as a neuronal pathway through the vagal nerve. The immune-neuroendocrine interactions are involved in numerous physiological and pathophysiological conditions and seem to play an important role to maintain homeostasis.
Collapse
Affiliation(s)
- R C Gaillard
- Division of Endocrinology and Metabolism, University Hospital (CHUV), Lausanne/Switzerland
| |
Collapse
|
20
|
Arzt E, Pereda MP, Castro CP, Pagotto U, Renner U, Stalla GK. Pathophysiological role of the cytokine network in the anterior pituitary gland. Front Neuroendocrinol 1999; 20:71-95. [PMID: 9882537 DOI: 10.1006/frne.1998.0176] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence has demonstrated that cytokines and other growth factors act in the anterior pituitary gland. Using the traditional criteria employed to determine autocrine or paracrine functions our review shows that, in addition to their role as lymphocyte messengers, certain cytokines are autocrine or paracrine regulators of anterior pituitary function and growth. The cytokines known to regulate and/or be expressed in the anterior pituitary include the inflammatory cytokine family (IL-1 and its endogenous antagonist, IL-1ra; TNF-alpha, and IL-6), the Th1-cytokines (IL-2 and IFN-gamma), and other cytokines such as LIF, MIF, and TGF-beta. This review examines at the cellular, molecular, and physiological levels whether: (1) each cytokine alters some aspect of pituitary physiology; (2) receptors for the cytokine are expressed in the gland; and (3) the cytokine is produced in the anterior pituitary. Should physiological stimuli regulate pituitary cytokine production, this would constitute additional proof of their autocrine/paracrine role. In this context, we analyze in this review the current literature on the actions of cytokines known to regulate anterior pituitary hormone secretion, selecting the in vivo studies that support the direct action of the cytokine in the anterior pituitary. Further support for direct regulatory action is provided by in vitro studies, in explant cultures or pituitary cell lines. The cytokine receptors that have been demonstrated in the pituitary of several species are also discussed. The endogenous production of the homologous cytokines and the regulation of this expression are analyzed. The evidence indicating that cytokines also regulate the growth and proliferation of pituitary cells is reviewed. This action is particularly important since it suggests that intrinsically produced cytokines may play a role in the pathogenesis of pituitary adenomas. The complex cell to cell communication involved in the action of these factors is discussed.
Collapse
Affiliation(s)
- E Arzt
- Dept. de Biología, FCEN, Buenos Aires, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
21
|
Renner U, Gloddek J, Pereda MP, Arzt E, Stalla GK. Regulation and role of intrapituitary IL-6 production by folliculostellate cells. Domest Anim Endocrinol 1998; 15:353-62. [PMID: 9785039 DOI: 10.1016/s0739-7240(98)00027-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Interleukin-6, mainly produced by monocytes and macrophages is known to influence the secretion of anterior pituitary hormones and is, therefore, considered to play an important role in the interaction between the immune system and the endocrine system. However, IL-6 represents not only a lymphocyte message but is also produced within the anterior pituitary. Folliculostellate (FS) cells have been identified as the source of the intrapituitary IL-6 production in the normal pituitary, whereas in pituitary adenomas IL-6 is produced by the tumor cells themselves. The present review summarizes the knowledge about the regulation of the intrapituitary IL-6 synthesis and release in FS cells. Moreover, the possible roles of the intrinsic IL-6 production for function and growth of normal and adenomatous endocrine pituitary cells are discussed.
Collapse
Affiliation(s)
- U Renner
- Max-Planck-Institute of Psychiatry, Department of Endocrinology, Munich, Germany
| | | | | | | | | |
Collapse
|
22
|
Abstract
gp130-Related cytokines such as interleukin-6 and leukemia-inhibitory factor (LIF) act on the adenohypophysis in a paracrine manner, affecting both its differentiation and the function of specific cell types, notably the proopiomelanocortin (POMC) cells. They act on POMC cells in synergism with corticotrophin-releasing hormone, inducing ACTH secretion. gp130-Related cytokines as well as their receptors are expressed in the pituitary. LIF knockout mice show reduced stress-induced ACTH secretion, which can be restored by LIF replacement, suggesting a physiologic role for LIF.
Collapse
Affiliation(s)
- S Melmed
- Cedars-Sinai Research Institute, Department of Endocrinology and Metabolism, UCLA School of Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
23
|
Spangelo BL, Farrimond DD, Thapa M, Bulathsinghala CM, Bowman KL, Sareh A, Hughes FM, Goldstein AL, Badamchian M. Thymosin fraction 5 inhibits the proliferation of the rat neuroendocrine MMQ pituitary adenoma and C6 glioma cell lines in vitro. Endocrinology 1998; 139:2155-62. [PMID: 9529005 DOI: 10.1210/endo.139.4.5935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines such as interleukin-1 (IL-1) and IL-6 stimulate the hypothalamic-pituitary-adrenal (HPA) axis. In addition, these proteins affect pituitary cell proliferation in vitro. Thymosin fraction 5 (TF5) is a partially purified preparation of the bovine thymus that enhances immune system functioning. Because TF5 similarly stimulates the HPA axis, we examined the effects of this preparation on neuroendocrine tumor cell proliferation. Cells of the PRL-secreting rat anterior pituitary adenoma, MMQ (5-50 x 10(3) cells/well), were exposed to vehicle (RPMI-1640 containing 2.5% FCS, 7.5% horse serum, and antibiotics) or TF5 (100-500 microg/ml) for up to 96 h and the proliferation of MMQ cells monitored using the MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide). TF5-mediated inhibition of cell proliferation was dependent on both TF5 concentration and the initial MMQ cell number. Minimal reductions in optical densities resulted from exposure to 100 microg/ml TF5, whereas the highest concentration of this preparation (i.e. 500 microg/ml) completely blocked MMQ cell division. The concentration-dependent effects of TF5 were particularly striking at initial plating densities of 25 and 50 x 10(3) MMQ cells/well; in contrast, all concentrations of TF5 completely inhibited MMQ cell growth at 5 and 10 x 10(3) cells/well. The antiproliferative actions of TF5 on MMQ cells were demonstrable within 24 h and remained for up to 96 h as determined by the MTT assay and actual cell counts. Because the highest densities of MMQ cells were partially refractive to the antiproliferative effects of TF5, we examined the effects of PRL (1-1000 nM) and MMQ cell conditioned medium (50%) on TF5 inhibition of MMQ adenoma proliferation. The TF5 concentration-dependent inhibition of MMQ cell growth was largely reversed by the 50% conditioned medium, whereas PRL slightly potentiated the antiproliferative actions of TF5. The proliferation of the rat C6 glioma cell line (10-30 x 10(3) cells/well) demonstrated greater sensitivity to TF5: concentrations as low as 10 microg/ml TF5 inhibited C6 cell proliferation (P < 0.01), and near-maximal inhibition was noted at 200 microg/ml TF5. Significant reductions in MMQ and C6 cell viabilities accompanied decreases in cell number and morphological analysis indicated these cells were dying by apoptosis. The peptides thymosin alpha1 (T alpha1), thymosin beta4 (T beta4), MB35, and MB40 had no effect on either MMQ or C6 cell proliferation, indicating that these TF5 components are not the principle active peptides. Therefore, TF5 was further separated into 60 fractions by preparative reverse phase HPLC. HPLC fractions 17, 25, 26, and 27 significantly suppressed MMQ cell proliferation (P < 0.01) to the same extent as TF5; other HPLC fractions had no effect. These data demonstrate a new biological property of TF5: the inhibition of cell proliferation and the induction of apoptosis in neuroendocrine tumor cells. The proliferation effects were time and concentration dependent and could be partially reversed by an activity present in the MMQ cell conditioned medium. Thus, TF5 and cytokines have opposite effects on adenoma cells because IL-2 and IL-6 stimulate GH3 cell proliferation. We propose that circulating thymic peptides may act to prevent pituitary adenoma and glioma tumor formation, an action opposed by autocrine growth factors secreted by these tumors.
Collapse
Affiliation(s)
- B L Spangelo
- Department of Chemistry, University of Nevada Las Vegas, 89154, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The complex range of pituitary regulatory mechanisms reviewed here underlies the critical function of the pituitary in sustaining all higher life forms. Thus, the ultimate net secretion of pituitary hormones is determined by signal integration from all three tiers of pituitary control. It is clear from our current knowledge that the trophic hormone cells of the anterior pituitary are uniquely specialized to respond to these signals. Unravelling their diversity and complexity will shed light upon the normal function of the master gland. Understanding these control mechanisms will lead to novel diagnosis and therapy of disordered pituitary function (357).
Collapse
Affiliation(s)
- D Ray
- Cedars-Sinai Research Institute, UCLA School of Medicine 90048-1865, USA
| | | |
Collapse
|
25
|
Pereda MP, Goldberg V, Chervín A, Carrizo G, Molina A, Andrada J, Sauer J, Renner U, Stalla GK, Arzt E. Interleukin-2 (IL-2) and IL-6 regulate c-fos protooncogene expression in human pituitary adenoma explants. Mol Cell Endocrinol 1996; 124:33-42. [PMID: 9027322 DOI: 10.1016/s0303-7207(96)03924-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that interleukin-2 (IL-2) and IL-6, which are expressed in the anterior pituitary, affect anterior pituitary cell proliferation in normal rats and cell lines. Here we examined their effects on the c-fos expression by human anterior pituitary adenomas. Adenoma cells in culture do not express c-fos mRNA. In adenoma explants, however, c-fos expression was detected and was regulated by IL-2 or IL-6. In different tumors (ACTH-, PRL-, GH-secreting and non functioning adenomas), these interleukins had inhibitory or stimulatory effects but the kind of response does not seem to be associated to tumor type or size. Using blocking antibodies, we observed that intrinsic IL-2 and IL-6 regulate c-fos expression in the same way. Our data suggest that IL-2 and IL-6 are not only involved in the regulation of pituitary adenoma function but may also, given the role of c-fos in cell proliferation, be implicated in the development of human pituitary adenomas.
Collapse
Affiliation(s)
- M P Pereda
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|