1
|
Hao W, Cha R, Wang M, Li J, Guo H, Du R, Zhou F, Jiang X. Ligand-Modified Gold Nanoparticles as Mitochondrial Modulators: Regulation of Intestinal Barrier and Therapy for Constipation. ACS NANO 2023; 17:13377-13392. [PMID: 37449942 DOI: 10.1021/acsnano.3c01656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Intestinal metabolism-related diseases, such as constipation, inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, could be associated with the dysfunction of intestinal mitochondria. The mitochondria of intestinal epithelial cells are of great significance for promoting intestinal motility and maintaining intestinal metabolism. It is necessary for the prophylaxis and therapy of intestinal metabolism-related diseases to improve mitochondrial function. We investigated the effect of 4,6-diamino-2-pyrimidinethiol-modified gold nanoparticles (D-Au NPs) on intestinal mitochondria and studied the regulatory role of D-Au NPs on mitochondria metabolism-related disease. D-Au NPs improved the antioxidation capability of mitochondria, regulated the mitochondrial metabolism, and maintained intestinal cellular homeostasis via the activation of AMPK and regulation of PGC-1α with its downstream signaling (UCP2 and DRP1), enhancing the intestinal mechanical barrier. D-Au NPs improved the intestinal mitochondrial function to intervene in the emergence of constipation, which could help develop drugs to treat and prevent mitochondrial metabolism-related diseases. Our findings provided an in-depth understanding of the mitochondrial effects of Au NPs for improving human intestinal barriers.
Collapse
Affiliation(s)
- Wenshuai Hao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Mingzheng Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Juanjuan Li
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Hongbo Guo
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
2
|
Tang K, Kong D, Peng Y, Guo J, Zhong Y, Yu H, Mai Z, Chen Y, Chen Y, Cui T, Duan S, Li T, Liu N, Zhang D, Ding Y, Huang J. Ginsenoside Rc attenuates DSS-induced ulcerative colitis, intestinal inflammatory, and barrier function by activating the farnesoid X receptor. Front Pharmacol 2022; 13:1000444. [PMID: 36386150 PMCID: PMC9649634 DOI: 10.3389/fphar.2022.1000444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 08/03/2023] Open
Abstract
Objectives: Farnesoid X receptor (FXR) activation is involved in ameliorating inflammatory bowel disease (IBD), such as ulcerative colitis (UC), and inflammatory regulation may be involved in its mechanism. Ginsenoside Rc (Rc) is a major component of Panax ginseng, and it plays an excellent role in the anti-inflammatory processes. Our aim is to explore the alleviative effect of Rc on dextran sulfate sodium (DSS)-induced inflammation and deficiencies in barrier function based on FXR signaling. Materials and Methods: In vitro, we treated human intestinal epithelial cell lines (LS174T) with LPS to explore the anti-inflammatory effect of Rc supplementation. In vivo, a DSS-induced IBD mice model was established, and the changes in inflammatory and barrier function in colons after Rc treatment were measured using the disease activity index (DAI), hematoxylin and eosin (H&E) staining, immunofluorescence, ELISA, and qPCR. Molecular docking analysis, luciferase reporter gene assay, and qPCR were then used to analyze the binding targets of Rc. DSS-induced FXR-knockout (FXR-/-) mice were used for further validation. Results: Rc significantly recovered the abnormal levels of inflammation indexes (TNF-α, IL-6, IL-1β, and NF-KB) induced by LPS in LS174T. DSS-induced C57BL/6 mice exhibited a significantly decreased body weight and elevated DAI, as well as a decrease in colon weight and length. Increased inflammatory markers (TNF-α, IL-6, IL-1β, ICAM1, NF-KB, F4/80, and CD11b displayed an increased expression) and damaged barrier function (Claudin-1, occludin, and ZO-1 displayed a decreased expression) were observed in DSS-induced C57BL/6 mice. Nevertheless, supplementation with Rc mitigated the increased inflammatory and damaged barrier function associated with DSS. Further evaluation revealed an activation of FXR signaling in Rc-treated LS174T, with FXR, BSEP, and SHP found to be upregulated. Furthermore, molecular docking indicated that there is a clear interaction between Rc and FXR, while Rc activated transcriptional expression of FXR in luciferase reporter gene assay. However, these reversal abilities of Rc were not observed in DSS-induced FXR-/- mice. Conclusion: Our findings suggest that Rc may ameliorate inflammation and barrier function in the intestine, which in turn leads to the attenuation of DSS-induced UC, in which Rc may potentially activate FXR signaling to protect the intestines from DSS-induced injury.
Collapse
Affiliation(s)
- Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danli Kong
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhenhua Mai
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanling Chen
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwei Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Naihua Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Hou Q, Zhu S, Zhang C, Huang Y, Guo Y, Li P, Chen X, Wen Y, Han Q, Liu F. Berberine improves intestinal epithelial tight junctions by upregulating A20 expression in IBS-D mice. Biomed Pharmacother 2019; 118:109206. [PMID: 31306972 DOI: 10.1016/j.biopha.2019.109206] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
To investigate effects of berberine exerts on A20 expression and regulation of intestinal epithelial tight junctions via the TNF-α-NF-κB-MLCK pathway in Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D). C57BL/6 wild type (WT) and A20 IEC-KO mice (48 each) were randomly divided into normal control (NC), model control (MC), rifaximin and berberine groups (12 mice per group). An experimental model of IBS-D was established using 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. rifaximin and berberine mice were treated with rifaximin and berberine, respectively. Intestinal epithelial space of WT berberine mice improved more than A20 IEC-KO berberine mice compared to MC mice. WT berberine mice exhibited greater expression of A20 compared with MC mice(P < 0.01). TNF-α, NF-kB p65, MLCK, MLC, TRAF6 and RIP1 levels in A20 IEC-KO and WT berberine mice were all decreased compared to MC mice(P all<0.05). NF-κB p65, MLCK and TRAF6 levels were increased in A20 IEC-KO berberine mice as compared to WT berberine mice (P all<0.05). Intestinal epithelial levels of occludin, claudin-1, ZO-1 and F-actin increased in all berberine mice (P all<0.01-0.05), while occludin, claudin-1, and ZO-1 levels were lower in A20 IEC-KO berberine mice(P < 0.05). Berberine downregulates abnormal activation of the TNF-α-NF-κB-MLCK pathway by upregulating expression of A20 in a mouse model of IBS-D, thereby protecting intestinal epithelial tight junctions and repairing the damage IBS-D causes to the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Qiuke Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Shuilian Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Changrong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yongquan Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yajuan Guo
- Inernational Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xinlin Chen
- Department of Preventive Medicine and Health Statistics, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. Int J Biol Macromol 2019; 131:949-958. [DOI: 10.1016/j.ijbiomac.2019.03.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
|
5
|
Drown BS, Shirai T, Rack JGM, Ahel I, Hergenrother PJ. Monitoring Poly(ADP-ribosyl)glycohydrolase Activity with a Continuous Fluorescent Substrate. Cell Chem Biol 2018; 25:1562-1570.e19. [PMID: 30318463 PMCID: PMC6309520 DOI: 10.1016/j.chembiol.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Abstract
The post-translational modification (PTM) and signaling molecule poly(ADP-ribose) (PAR) has an impact on diverse biological processes. This PTM is regulated by a series of ADP-ribosyl glycohydrolases (PARG enzymes) that cleave polymers and/or liberate monomers from their protein targets. Existing methods for monitoring these hydrolases rely on detection of the natural substrate, PAR, commonly achieved via radioisotopic labeling. Here we disclose a general substrate for monitoring PARG activity, TFMU-ADPr, which directly reports on total PAR hydrolase activity via release of a fluorophore; this substrate has excellent reactivity, generality (processed by the major PARG enzymes), stability, and usability. A second substrate, TFMU-IDPr, selectively reports on PARG activity only from the enzyme ARH3. Use of these probes in whole-cell lysate experiments has revealed a mechanism by which ARH3 is inhibited by cholera toxin. TFMU-ADPr and TFMU-IDPr are versatile tools for assessing small-molecule inhibitors in vitro and probing the regulation of ADP-ribosyl catabolic enzymes.
Collapse
Affiliation(s)
- Bryon S Drown
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Tomohiro Shirai
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul J Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Casselbrant A, Söfteland JM, Hellström M, Malinauskas M, Oltean M. Luminal Polyethylene Glycol Alleviates Intestinal Preservation Injury Irrespective of Molecular Size. J Pharmacol Exp Ther 2018; 366:29-36. [PMID: 29739826 DOI: 10.1124/jpet.117.247023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/26/2018] [Indexed: 08/30/2023] Open
Abstract
Intestinal preservation injury (IPI) and the resulting mucosa injury raise several serious challenges early after intestinal transplantation. The current clinical approach using only vascular perfusion allows the shortest preservation period among the abdominal organs. The experimental addition of luminal polyethylene glycol (PEG) solutions has been repeatedly suggested to alleviate preservation injury, improve graft quality, and prolong the preservation time. We investigated whether the molecular mass of PEG in solution influences the development of intestinal preservation injury. Small intestines of Sprague-Dawley rats were perfused with University of Wisconsin solution. Group 1 underwent vascular perfusion only (clinical control), group 2 received additional luminal PEG3350 Da, group 3 received luminal PEG10000 Da, and group 4 received luminal PEG20000 Da (n = 8/group). Tissue samples were obtained after 4, 8, and 14 hours. We studied the tissue damage (Chiu/Park score, Goblet cells, apoptosis, tight junctions), activation of c-Jun NH2-terminal kinase (JNK), and p38-mitogen-activated protein kinase (MAPK), and we performed Ussing chamber assessments. Mucosal morphologic and electrophysiologic parameters were significantly improved in the groups receiving luminal PEG. There was significantly less apoptotic activity in groups 2, 3, and 4. Both MAPKs revealed an activation peak after 4 hours with group 3 showing lesser p38-MAPK activation. PEG 20 kDa interfered with protein immunodetection. The results indicate that luminal solutions of PEG of medium and large molecular mass significantly delay the onset and development of IPI, providing further evidence that luminal interventions may allow for longer cold storage intervals of intestinal grafts.
Collapse
Affiliation(s)
- Anna Casselbrant
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education (A.C.) and Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine (J.M.S., M.H., M.O.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania (M.M.); and The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden (J.M.S., M.O.)
| | - John M Söfteland
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education (A.C.) and Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine (J.M.S., M.H., M.O.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania (M.M.); and The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden (J.M.S., M.O.)
| | - Mats Hellström
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education (A.C.) and Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine (J.M.S., M.H., M.O.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania (M.M.); and The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden (J.M.S., M.O.)
| | - Mantas Malinauskas
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education (A.C.) and Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine (J.M.S., M.H., M.O.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania (M.M.); and The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden (J.M.S., M.O.)
| | - Mihai Oltean
- Institute of Clinical Sciences, Department of Gastrosurgical Research and Education (A.C.) and Institute of Clinical Sciences, Laboratory for Transplantation and Regenerative Medicine (J.M.S., M.H., M.O.), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania (M.M.); and The Transplant Institute, Sahlgrenska University Hospital, Gothenburg, Sweden (J.M.S., M.O.)
| |
Collapse
|
7
|
Song MJ, Davidovich N, Lawrence GG, Margulies SS. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. J Biomech 2016; 49:1330-1335. [PMID: 26592435 PMCID: PMC4864146 DOI: 10.1016/j.jbiomech.2015.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
We found that stretching Type I rat alveolar epithelial cell (RAEC) monolayers at magnitudes that correspond to high tidal-volume mechanical ventilation results in the production of reactive oxygen species, including nitric oxide and superoxide. Scavenging superoxide with Tiron eliminated the stretch-induced increase in cell monolayer permeability, and similar results were reported for rats ventilated at large tidal volumes, suggesting that oxidative stress plays an important role in barrier impairment in ventilator-induced lung injury associated with large stretch and tidal volumes. In this communication we show that mechanisms that involve oxidative injury are also present in a novel precision cut lung slices (PCLS) model under identical mechanical loads. PCLSs from healthy rats were stretched cyclically to 37% change in surface area for 1 hour. Superoxide was visualized using MitoSOX. To evaluate functional relationships, in separate stretch studies superoxide was scavenged using Tiron or mito-Tempo. PCLS and RAEC permeability was assessed as tight junction (TJ) protein (occludin, claudin-4 and claudin-7) dissociation from zona occludins-1 (ZO-1) via co-immunoprecipitation and Western blot, after 1h (PCLS) or 10min (RAEC) of stretch. Superoxide was increased significantly in PCLS, and Tiron and mito-Tempo dramatically attenuated the response, preventing claudin-4 and claudin-7 dissociation from ZO-1. Using a novel PCLS model for ventilator-induced lung injury studies, we have shown that uniform, biaxial, cyclic stretch generates ROS in the slices, and that superoxide scavenging that can protect the lung tissue under stretch conditions. We conclude that PCLS offer a valuable platform for investigating antioxidant treatments to prevent ventilation-induced lung injury.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nurit Davidovich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gladys G Lawrence
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK, Kiela PR. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice. J Biol Chem 2016; 291:8918-30. [PMID: 26912654 DOI: 10.1074/jbc.m116.714386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) synthesize and bind branched polymers of ADP-ribose to acceptor proteins using NAD as a substrate and participate in the control of gene transcription and DNA repair. PARP1, the most abundant isoform, regulates the expression of proinflammatory mediator cytokines, chemokines, and adhesion molecules, and inhibition of PARP1 enzymatic activity reduced or ameliorated autoimmune diseases in several experimental models, including colitis. However, the mechanism(s) underlying the protective effects of PARP1 inhibition in colitis and the cell types in which Parp1 deletion has the most significant impact are unknown. The objective of the current study was to determine the impact of Parp1 deletion on the innate immune response to mucosal injury and on the gut microbiome composition. Parp1 deficiency was evaluated in DSS-induced colitis in WT, Parp1(-/-), Rag2(-/-), and Rag2(-/-)×Parp1(-/-) double knock-out mice. Genome-wide analysis of the colonic transcriptome and fecal 16S amplicon profiling was performed. Compared with WT, we demonstrated that Parp1(-/-) were protected from dextran-sulfate sodium-induced colitis and that this protection was associated with a dramatic transcriptional reprogramming in the colon. PARP1 deficiency was also associated with a modulation of the colonic microbiota (increases relative abundance of Clostridia clusters IV and XIVa) and a concomitant increase in the frequency of mucosal CD4(+)CD25(+) Foxp3(+) regulatory T cells. The protective effects conferred by Parp1 deletion were lost in Rag2(-/-) × Parp1(-/-) mice, highlighting the role of the adaptive immune system for full protection.
Collapse
Affiliation(s)
- Claire B Larmonier
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Kareem W Shehab
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Daniel Laubitz
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Deepa R Jamwal
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Fayez K Ghishan
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Pawel R Kiela
- From the Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
9
|
Colgan SP, Curtis VF, Lanis JM, Glover LE. Metabolic regulation of intestinal epithelial barrier during inflammation. Tissue Barriers 2015; 3:e970936. [PMID: 25838978 DOI: 10.4161/21688362.2014.970936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal mucosa has proven to be an interesting tissue for which to investigate disease-related metabolism. In this review, we outline some evidence that implicates metabolic signaling as important features of barrier in the healthy and disease. Studies from cultured cell systems, animal models and human patients have revealed that metabolites generated within the inflammatory microenvironment are central to barrier regulation. These studies have revealed a prominent role for hypoxia and hypoxia-inducible factor (HIF) at key steps in adenine nucleotide metabolism and within the creatine kinase pathway. Results from animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes and barrier function. Studies underway to elucidate the contribution of immune responses will provide additional insight into how metabolic changes contribute to the complexity of the gastrointestinal tract and how such information might be harnessed for therapeutic benefit.
Collapse
Key Words
- AMP, adenosine monophosphate
- CK, creatine kinase
- ChIP, chromatin immunoprecipitation
- Colitis
- HIF, hypoxia-inducible factor
- PHD, prolyl hydroxylase
- PMN, polymorphonuclear leukcoyte, neutrophil
- TJ, tight junction
- VASP, vasodilator-stimulated
- ZO-1, zonula occludens-1
- creatine
- epithelium
- inflammation
- metabolism
- mucosa
- murine model
- neutrophil
- nucleoside
- nucleotidase
- nucleotide
- phosphocreatine
Collapse
Affiliation(s)
- Sean P Colgan
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Valerie F Curtis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Jordi M Lanis
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| | - Louise E Glover
- Departments of Medicine and the Mucosal Inflammation Program; University of Colorado School of Medicine ; Aurora, CO USA
| |
Collapse
|
10
|
Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 2014; 12:5677-97. [PMID: 25421323 PMCID: PMC4245551 DOI: 10.3390/md12115677] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial-derived lipopolysaccharides (LPS) can cause defective intestinal barrier function and play an important role in the development of inflammatory bowel disease. In this study, a nanocarrier based on chitosan and fucoidan was developed for oral delivery of berberine (Ber). A sulfonated fucoidan, fucoidan-taurine (FD-Tau) conjugate, was synthesized and characterized by Fourier transform infrared (FTIR) spectroscopy. The FD-Tau conjugate was self-assembled with berberine and chitosan (CS) to form Ber-loaded CS/FD-Tau complex nanoparticles with high drug loading efficiency. Berberine release from the nanoparticles had fast release in simulated intestinal fluid (SIF, pH 7.4), while the release was slow in simulated gastric fluid (SGF, pH 2.0). The effect of the berberine-loaded nanoparticles in protecting intestinal tight-junction barrier function against nitric oxide and inflammatory cytokines released from LPS-stimulated macrophage was evaluated by determining the transepithelial electrical resistance (TEER) and paracellular permeability of a model macromolecule fluorescein isothiocyanate-dextran (FITC-dextran) in a Caco-2 cells/RAW264.7 cells co-culture system. Inhibition of redistribution of tight junction ZO-1 protein by the nanoparticles was visualized using confocal laser scanning microscopy (CLSM). The results suggest that the nanoparticles may be useful for local delivery of berberine to ameliorate LPS-induced intestinal epithelia tight junction disruption, and that the released berberine can restore barrier function in inflammatory and injured intestinal epithelial.
Collapse
|
11
|
Davidovich N, DiPaolo BC, Lawrence GG, Chhour P, Yehya N, Margulies SS. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am J Respir Cell Mol Biol 2013; 49:156-64. [PMID: 23526210 DOI: 10.1165/rcmb.2012-0252oc] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mechanical ventilation with high tidal volumes has been associated with pulmonary alveolar flooding. Understanding the mechanisms underlying cyclic stretch-induced increases in alveolar epithelial permeability may be important in designing preventive measures for acute lung injury. In this work, we assessed whether cyclic stretch leads to the generation of reactive oxygen species in type I-like alveolar epithelial cells, which increase monolayer permeability via activation of NF-κB and extracellular signal-regulated kinase (ERK). We cyclically stretched type I-like rat primary alveolar epithelial cells at magnitudes of 12, 25, and 37% change in surface area (ΔSA) for 10 to 120 minutes. High levels of reactive oxygen species and of superoxide and NO specifically were detected in cells stretched at 37% ΔSA for 10 to 120 minutes. Exogenous superoxide and NO stimulation increased epithelial permeability in unstretched cells, which was preventable by the NF-κB inhibitor MG132. The cyclic stretch-induced increase in permeability was decreased by the superoxide scavenger tiron and by MG132. Furthermore, tiron had a dramatic protective effect on in vivo lung permeability under mechanical ventilation conditions. Cyclic stretch increased the activation of the NF-κB signaling pathway, which was significantly decreased with the ERK inhibitor U0126. Altogether, our in vitro and in vivo data demonstrate the sensitivity of permeability to stretch- and ventilation-induced superoxide production, suggesting that using antioxidants may be helpful in the prevention and treatment of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Nurit Davidovich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
12
|
Agrawal T, Sharvani V, Nair D, Medigeshi GR. Japanese encephalitis virus disrupts cell-cell junctions and affects the epithelial permeability barrier functions. PLoS One 2013; 8:e69465. [PMID: 23894488 PMCID: PMC3722119 DOI: 10.1371/journal.pone.0069465] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/11/2013] [Indexed: 02/07/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20-30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.
Collapse
Affiliation(s)
- Tanvi Agrawal
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Vats Sharvani
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Deepa Nair
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Guruprasad R. Medigeshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Gurgaon, India
- * E-mail:
| |
Collapse
|
13
|
Dixit P, Jain DK, Rajpoot JS. Differential effect of oxidative stress on intestinal apparent permeability of drugs transported by paracellular and transcellular route. Eur J Drug Metab Pharmacokinet 2012; 37:203-9. [PMID: 22718103 DOI: 10.1007/s13318-012-0099-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Increased intestinal permeability of macromolecules is a common feature of oxidative stress-induced gastrointestinal diseases; how it affects the absorption of drugs is not investigated. Hence, it was proposed to study the influence of hydrogen peroxide-induced oxidative stress on permeability of atenolol and metoprolol using a modified everted rat intestine technique. Atenolol was chosen as a marker of paracellular drug transport and metoprolol was selected to represent transcellular drug transport. Wistar rats were used as a source of intestine, which was everted using a glass rod, mounted on permeability apparatus, having test drug (100 μg/ml in Krebs) in donor compartment. Samples were taken from receiver compartment every 5 min for 60 min, and analyzed by HPLC. For induction of oxidative stress isolated ileum was incubated in H₂O₂ (200 μM) containing Krebs for 15 min and then again permeability was estimated. Extent of oxidative stress was determined by estimating lipid peroxidation using thiobarbituric acid assay, which was found to be increased by 42 % in hydrogen peroxide treated rat intestine as compared to control group. The mean apparent permeability of atenolol and metoprolol was found to be 0.054 ± 0.024 × 10⁻⁴ and 0.84 ± 0.14 × 10⁻⁴ cm/s, respectively, in control group rat intestinal segments. After exposure to hydrogen peroxide, there was a significant increase in the mean permeability of atenolol (0.11 ± 0.01 × 10⁻⁴ cm/s), however, metoprolol permeability was unaltered (0.94 ± 0.047 × 10⁻⁴ cm/s). The marked increase in the apparent permeability of atenolol may be attributed to rupture of intestinal barrier. In conclusion, the present study reports the differential effect of oxidative stress-induced damage on drug transport across rat intestine.
Collapse
Affiliation(s)
- Pankaj Dixit
- College of Pharmacy, IPS Academy, Rajendranagar, A-B Road, Indore 452012, MP, India.
| | | | | |
Collapse
|
14
|
Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, Haseloff RF. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal 2011; 15:1195-219. [PMID: 21235353 DOI: 10.1089/ars.2010.3542] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The occludin-like proteins belong to a family of tetraspan transmembrane proteins carrying a marvel domain. The intrinsic function of the occludin family is not yet clear. Occludin is a unique marker of any tight junction and is found in polarized endothelial and epithelial tissue barriers, at least in the adult vertebrate organism. Occludin is able to oligomerize and to form tight junction strands by homologous and heterologous interactions, but has no direct tightening function. Its oligomerization is affected by pro- and antioxidative agents or processes. Phosphorylation of occludin has been described at multiple sites and is proposed to play a regulatory role in tight junction assembly and maintenance and, hence, to influence tissue barrier characteristics. Redox-dependent signal transduction mechanisms are among the pathways modulating occludin phosphorylation and function. This review discusses the novel concept that occludin plays a key role in the redox regulation of tight junctions, which has a major impact in pathologies related to oxidative stress and corresponding pharmacologic interventions.
Collapse
Affiliation(s)
- Ingolf E Blasig
- Leibniz-Institut für Molekulare Pharmakologie, Berlin-Buch, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Yasar M, Uysal B, Kaldirim U, Oztas Y, Sadir S, Ozler M, Topal T, Coskun O, Kilic A, Cayci T, Poyrazoglu Y, Oter S, Korkmaz A, Guven A. Poly(ADP-ribose) polymerase inhibition modulates experimental acute necrotizing pancreatitis-induced oxidative stress, bacterial translocation and neopterin concentrations in rats. Exp Biol Med (Maywood) 2010; 235:1126-33. [PMID: 20705631 DOI: 10.1258/ebm.2010.010091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various studies have been performed to find out novel treatment strategies for acute necrotizing pancreatitis (ANP). Inhibition of poly(ADP-ribose) polymerase (PARP) is shown to reduce inflammation in several pathological conditions. We aimed to evaluate the efficacy of benzamide, a PARP inhibitor, in an experimental model of ANP. Thirty Sprague-Dawley rats were divided into three groups: sham-operated, ANP and ANP + benzamide groups. All groups except the sham-operated group were subjected to the ANP procedure, induced by infusing of 1 mL/kg of 3% sodium taurocholate into the common biliopancreatic duct. The ANP + benzamide group received 100 mg/kg/day benzamide intraperitoneally for a total of three days after induction of pancreatitis. The surviving animals were killed at the fourth day and the pancreas was harvested for biochemical, microbiological and histological analysis. Blood samples were also obtained from the animals. In the ANP group, a significant increase was observed in concentrations of serum amylase and neopterin and tissue oxidative stress indices (malondialdehyde, superoxide dismutase and glutathione peroxidase). Almost all of these changes were found to be reversed to near their normal values in the ANP + benzamide group. Histological injury scores were significantly higher in the ANP group than in the sham group (P < 0.05, ANP versus sham), and were significantly lower in the ANP + benzamide group than in the ANP group (P < 0.05, ANP + benzamide versus ANP). Evaluation of bacterial translocation identified significantly fewer infected sites in the ANP + benzamide group than in the ANP animals (P < 0.01). We observed that inhibition of PARP with benzamide reduced the severity, the mortality, the bacterial translocation rates and the neopterin concentrations in an experimental ANP model in rats. These findings suggest that it may be possible to improve the outcome of ANP by using PARP inhibitors.
Collapse
Affiliation(s)
- Mehmet Yasar
- Noncommissioned Officer Health College, Gulhane Military Medical Academy, Etlik, Ankara 06018, Turkey
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Crisafulli C, Mazzon E, Galuppo M, Paterniti I, Caminiti R, Cuzzocrea S. Olprinone attenuates the development of ischemia/reperfusion injury of the gut. Intensive Care Med 2010; 36:1235-47. [PMID: 20349038 DOI: 10.1007/s00134-010-1798-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/03/2009] [Indexed: 11/29/2022]
|
17
|
Erythropoietin inhibits the increase of intestinal labile zinc and the expression of inflammatory mediators after traumatic brain injury in rats. ACTA ACUST UNITED AC 2009; 66:730-6. [PMID: 19276746 DOI: 10.1097/ta.0b013e318184b4db] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The objective of this study was to determine the effect of erythropoietin (Epo) on the intestinal labile zinc and the inflammatory factor in rats after traumatic brain injury (TBI). METHODS Male Sprague-Dawley rats were randomly divided into nine groups: (a) normal group; (b) sham-operation group; (c, d, e, f, and g) TBI group, killed at 1 hour, 6 hour, 24 hour, and 72 hour and 7 days postinjury, respectively; (h and i) TBI + saline and TBI + Epo, killed at 24 hour or 72 hour postinjury. Parietal brain contusion was produced by a free-falling weight on the exposed dura of the right parietal lobe. Intestinal labile zinc, the tumor necrosis factor-alpha, interleukin (IL)-8, and wet/dry weight ratio were investigated in different groups. RESULTS The gut contains a certain amount of labile zinc in normal animals and TBI caused obviously gradual increment of intestinal liabled zinc. The levels of inflammatory mediators and the gut wet/dry weight ratio were also found to increase in the trauma group (p < 0.05). There was a highly positive correlation between the abundance of zinc fluorescence and these proinflammation factors. Epo significantly reduced the intestinal labile zinc, the inflammatory mediators, and the gut wet/dry weight ratio compared with TBI group (p < 0.05). CONCLUSIONS Epo can protect intestine from TBI-induced injury by attenuating intestinal inflammation and labile zinc accumulation in vivo.
Collapse
|
18
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
19
|
Inoue OJ, Freeman DE, Wallig MA, Clarkson RB. In vitro effects of reactive oxygen metabolites, with and without flunixin meglumine, on equine colonic mucosa. Am J Vet Res 2007; 68:305-12. [PMID: 17331021 DOI: 10.2460/ajvr.68.3.305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of reactive oxygen metabolites (ROMs), with and without flunixin meglumine, on equine right ventral colon (RVC) in vitro. ANIMALS 18 healthy horses and ponies. PROCEDURES In 3 groups of 6 animals each, short-circuit current and conductance were measured in RVC mucosa in Ussing chambers. The 3 groups received physiologic saline (0.9% NaCl) solution, IV, 10 minutes before euthanasia and tissue incubation in Krebs-Ringer-bicarbonate (KRB) solution; flunixin meglumine (1.1 mg/kg, IV) 10 minutes before euthanasia and tissue incubation in KRB solution; or physiologic saline solution, IV, 10 minutes before euthanasia and incubation in KRB solution with 2.7 x 10(5)M flunixin meglumine. Incubation conditions included control (no addition) and ROM systems, including addition of 1 mM xanthine and 80 mU of xanthine oxidase (to produce the superoxide radical), 1 mM H(2)O(2), and 1 mM H(2)O(2) and 0.5 mM ferrous sulfate (to produce the hydroxyl radical). RESULTS All ROMs that were added or generated significantly increased the short-circuit current except in tissues coincubated with flunixin meglumine, and they induced mild epithelial vacuolation and apoptosis, but did not disrupt the epithelium nor change conductance, lactate dehydrogenase release, or [(3)H]mannitol flux. CONCLUSIONS AND CLINICAL RELEVANCE Responses to ROMs could be attributed to increased chloride secretion and inhibited neutral NaCl absorption in equine RVC, possibly by stimulating prostaglandin production. The ROMs examined under conditions of this study could play a role in prostaglandin-mediated colonic secretion in horses with enterocolitis without causing direct mucosal injury.
Collapse
Affiliation(s)
- Olivia J Inoue
- Department of Veterinary Clinical Medicine, College of Veterinary, Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
20
|
Caglikulekci M, Dirlik M, Pata C, Plasse M, Tamer L, Ogetman Z, Ercan B. Effect of N-acetylcysteine on blood and tissue lipid peroxidation in lipopolysaccharide-induced obstructive jaundice. J INVEST SURG 2006; 19:175-84. [PMID: 16809227 DOI: 10.1080/08941930600674702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In obstructive jaundice, free radical production is increased and antioxidative activity is reduced. N-Acetylcysteine (NAC) has a beneficial effect with anti-inflammatory and antioxidant activity, acting as a free radical scavenger. NAC inhibits inducible nitric oxide synthase, suppresses cytokine expression/release, and inhibits adhesion molecule expression and nuclear factor kappa B. The aim of this study was to investigate the effects of NAC on liver/renal tissue and serum lipid peroxidation in lipopolysaccharide (LPS)-induced obstructive jaundice. We randomized 60 rats into 6 groups: group 1, Sham; group 2, obstructive jaundice (OJ) induced after bile-duct ligation; group 3, OJ + NAC (100 mg kg- 1 subcutaneously); group 4, OJ + LPS (10 mg kg-1); group 5, OJ + NAC + LPS; and group 6, OJ + LPS + NAC. For each group, the biochemical markers of lipid peroxidation and the antioxidant products were measured in serum and liver/renal tissue after sacrifice. Almost all lipid peroxidation products levels were increased and antioxidant products levels were decreased in groups who received LPS (groups 4, 5, and 6), but the effect was less remarkable when NAC was administered before LPS (group 5). The same trend was seen for groups with OJ +/- LPS who did not received NAC or received it after induced toxemia (groups 2, 4, and 6) as compared to groups 1 and 3. Moreover, in the case of OJ + LPS, rats treated with NAC before LPS (group 5) had lower lipid peroxidation products levels and higher antioxidant products levels as compared to those who did not received NAC (group 4). This phenomenon was not reproducible with NAC administered after LPS (group 6). Thus, results of this study showed that NAC prevents the deleterious effects of LPS in obstructive jaundice by reducing lipid peroxidation in serum and liver/renal tissue if administered before LPS. Nonetheless, NAC failed to prevent the lipid peroxidation in the case of established endotoxemia in obstructive jaundice.
Collapse
Affiliation(s)
- Mehmet Caglikulekci
- Department of General Surgery, Mersin University Medical School, Mersin, Turkey.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lobo SM, Orrico SRP, Queiroz MM, Cunrath GS, Chibeni GSA, Contrin LM, Cury PM, Burdmann EDA, de Oliveira Machado AM, Togni P, De Backer D, Preiser JC, Szabó C, Vincent JL. Pneumonia-induced sepsis and gut injury: effects of a poly-(ADP-ribose) polymerase inhibitor. J Surg Res 2005; 129:292-7. [PMID: 16139303 DOI: 10.1016/j.jss.2005.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 05/19/2005] [Accepted: 05/23/2005] [Indexed: 11/23/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is commonly associated with nosocomial pneumonia. Ileal mucosal injury may be induced by severe lung infection. During septic shock, peroxynitrite-mediated DNA strand-breaks activate the enzyme poly-(ADP)-ribose polymerase (PARP) resulting in cellular energetic suppression and cell dysfunction. The aim of this study was to determine whether gut injury could be demonstrated in sepsis induced by P. aeruginosa and the effects of a PARP inhibitor (PJ34) on the associated gut injury. MATERIALS AND METHODS After baseline measurements, 20 rabbits were randomized into three groups: Sham (n = 5): transtracheally inoculated (TI) with 2 ml of phosphate buffer solution (PBS); P. aeruginosa + saline (n = 8), TI with 4 x 10(12) CFU/ml of P. aeruginosa in 2 ml/kg of PBS + i.v. saline; and P. aeruginosa + PJ34 (n = 7), TI with 4 x 10(12) CFU/ml of P. aeruginosa and i.v. treatment with PJ34. RESULTS P. aeruginosa caused a hyperdynamic response with increased blood flow also in the superior mesenteric artery. No significant differences were found in luminal gut lactate concentrations or PCO(2)-gap between groups. Histological specimens showed moderate or diffuse alveolar infiltrate in the P. aeruginosa + saline group (6/8) and in the P. aeruginosa + PJ34 group (6/7). Gut wet-to-dry weight ratio was significantly higher in the P. aeruginosa + saline group than in Shams (7.5 +/- 0.8 versus 6.4 +/- 0.7, P < 0.05) and significantly lower in the P. aeruginosa + PJ34 group (6.1 + 0.5, P < 0.05 versus the other groups). Blood cultures were positive in 1/5 (Sham), 8/8 (P. aeruginosa + saline group) and 4/7 (P. aeruginosa + PJ34 group) (RR 0.57 CI 95% 0.30-1.08). CONCLUSIONS Pharmacological inhibition of PARP reduces gut inflammation and may limit bacterial translocation.
Collapse
Affiliation(s)
- Suzana M Lobo
- Intensive Care Unit, Hospital de Base, Faculdade de Medicina, Sao Jose do Rio Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The activation of poly(ADP-ribose) polymerase (PARP) is well considered to play an important role in various patho-physiological conditions like inflammation and shock. A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants (such as peroxynitrite) as mediators of inflammation and shock. ROS (e.g., superoxide, peroxynitrite, hydroxyl radical and hydrogen peroxide) are all potential reactants capable of initiating DNA single strand breakage, with subsequent activation of the nuclear enzyme poly(ADP-ribose) synthetase (PARS), leading to eventual severe energy depletion of the cells, and necrotic-type cell death. During the last years, numerous experimental studies have clearly demonstrated the beneficial effects of PARP inhibition in cell cultures through rodent models and more recently in pre-clinical large animal models of acute and chronic inflammation. The aim of this review is to describe recent experimental evidence implicating PARP as a pathophysiological modulator of acute and chronic inflammation.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Institute of Pharmacology, University of Messina, Torre Biologica, Policlinico Universitario Via C. Valeria, Gazzi, 98100 Messina, Italy.
| |
Collapse
|
23
|
Han X, Fink MP, Yang R, Delude RL. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock 2004; 21:261-70. [PMID: 14770040 DOI: 10.1097/01.shk.0000112346.38599.10] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We tested the hypothesis that increased production of nitric oxide (NO.) associated with lipopolysaccharide (LPS)-induced systemic inflammation leads to functionally significant alterations in the expression and/or targeting of key tight junction (TJ) proteins in ileal and colonic epithelium. Wild-type or inducible NO. synthase (iNOS) knockout male C57B1/6J mice were injected intraperitoneally with 2 mg/kg Escherichia coli O111:B4 LPS. iNOS was inhibited using intraperitoneal L-N(6)-(1-iminoethyl)lysine (L-NIL; 5 mg/kg). Immunoblotting of total protein and NP-40 insoluble proteins revealed decreased expression and decreased TJ localization, respectively, of the TJ proteins, zonula occludens (ZO)-1, ZO-2, ZO-3, and/or occludin in ileal mucosa and colonic mucosa (total protein only) after injection of C57B1/6J mice with LPS. Immunohistochemistry showed deranged distribution of ZO-1 and occludin in both tissues from endotoxemic mice. Endotoxemia was associated with evidence of gut epithelial barrier dysfunction evidenced by increased ileal mucosal permeability to fluorescein isothiocyanate-dextran (Mr=4 kDa) and increased bacterial translocation to mesenteric lymph nodes. Pharmacologic inhibition of iNOS activity using L-NIL or genetic ablation of the iNOS gene ameliorated LPS-induced changes in TJ protein expression and gut mucosal barrier function. These results support the view that at least one mechanism contributing to the pathogenesis of gastrointestinal epithelial dysfunction secondary to systemic inflammation is increased iNOS-dependent NO. production leading to altered expression and localization of key TJ proteins.
Collapse
Affiliation(s)
- Xiaonan Han
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | |
Collapse
|
24
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 629] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
25
|
Barollo M, D'Incà R, Scarpa M, Medici V, Cardin R, Fries W, Angriman I, Sturniolo GC. Effects of iron deprivation or chelation on DNA damage in experimental colitis. Int J Colorectal Dis 2004; 19:461-466. [PMID: 15067556 DOI: 10.1007/s00384-004-0588-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS In inflammatory bowel diseases iron contributes to the formation of DNA adducts through the production of hydroxyl radicals. The aim of our study was to evaluate the effects of dietary or pharmacological iron deprivation in an experimental model of colitis in the rat and its potential protective effect against DNA damage. METHODS Colitis was induced in rats by intracolonic instillation of dinitrobenzene sulphonic acid. Rats were assigned to an iron-deprived diet or to desferrioxamine preceding the induction of colitis. The severity of colitis was assessed by the presence of bloody diarrhea, colonic macroscopic damage score, body-weight variations and the amount of DNA colonic adducts. Hepatic and colonic iron concentrations were measured. RESULTS Treated rats experienced less diarrhea and did not lose weight in comparison to untreated animals. The macroscopic damage score was significantly reduced in the iron-deprived diet for the 5-week group (P=0.03). Liver and colonic iron levels were significantly more reduced in the iron-deprived groups than in the standard diet group (P<0.03 and P<0.01 after a 3- and 5-week iron-deprived diet, respectively). DNA adduct formation was significantly reduced in the groups deprived of iron for 5 weeks (P<0.001) or treated with desferrioxamine (P<0.01). CONCLUSIONS The degree of colitis caused by DNBS is macroscopically improved by dietary iron deprivation and to a lesser extent by pharmacological chelation; genomic damage is reduced by dietary iron deprivation or chelation, and this may have clinical implications on cancer prevention.
Collapse
Affiliation(s)
- M Barollo
- Department of Surgical and Gastroenterological Sciences, University of Padua, Via Giustiniani 2, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee NPY, Cheng CY. Nitric Oxide/Nitric Oxide Synthase, Spermatogenesis, and Tight Junction Dynamics1. Biol Reprod 2004; 70:267-76. [PMID: 14522829 DOI: 10.1095/biolreprod.103.021329] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During spermatogenesis, preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium, must traverse the blood-testis barrier (BTB) to gain entry to the adluminal compartment for further development at late stage VIII and early stage IX of the epithelial cycle. As such, the timely opening and closing of the BTB is crucial to spermatogenesis. A compromise in this process can lead to infertility. Moreover, the BTB is unique in its relative localization in the seminiferous epithelium compared to the tight junctions (TJs) found in other epithelia. Sertoli cell TJs are situated near the basal lamina in the testis, closest to the basement membrane (a modified form of extracellular matrix [ECM]), unlike TJs found in other epithelia, which are found nearest the apical portion of an epithelium, farthest away from ECM. Needless to say, BTB function in the testis is maintained by intricate regulatory mechanisms. In addition to hormones and cytokines, nitric oxide (NO) was recently shown to be a putative TJ regulator in the testis. Perhaps equally important, TJ dynamics in the testis were shown to be regulated, at least in part, by occludin, a TJ-integral membrane protein, via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway. This minireview summarizes recent advances in the field regarding the role of NO in testicular function, with special emphasis regarding its role in TJ dynamics and the likely implications of these studies for male contraceptive development.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
27
|
Han X, Fink MP, Uchiyama T, Yang R, Delude RL. Increased iNOS activity is essential for hepatic epithelial tight junction dysfunction in endotoxemic mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G126-36. [PMID: 12946943 DOI: 10.1152/ajpgi.00231.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We tested the hypothesis that increased production of nitric oxide (NO*) by inducible NO* synthase (iNOS) is a key factor responsible for alterations in the expression, localization, and function of key tight junction (TJ) proteins in mice challenged with lipopolysaccharide (LPS, endotoxin). Endotoxemia was associated with hepatobiliary epithelial barrier dysfunction, as evidenced by increased plasma-to-bile leakage of FITC-labeled dextran (relative molecular mass 40 kDa) and increased circulating levels of bile acids and conjugated bilirubin. Immunoblotting revealed decreased expression of zonula occludens (ZO)-1, ZO-2, ZO-3, and occludin in liver after injection of C57Bl/6J mice with 2 mg/kg Escherichia coli 0111:B4 LPS. Nonidet P-40-insoluble (i.e., TJ-associated) occludin and ZO-1 were virtually undetectable 12 and 18 h after injecting LPS. Immunofluorescence microscopy also revealed deranged subcellular localization of ZO-1 and occludin in endotoxemic mice. Pharmacological inhibition of iNOS activity using l-N6-(1-iminoethyl)lysine (5 mg/kg) or genetic ablation of iNOS ameliorated LPS-induced changes in hepatobiliary barrier function, and these strategies partially preserved TJ protein expression and localization. Steady-state levels of occludin and ZO-3 transcripts decreased transiently after injecting LPS but returned toward normal by 12 and 24 h after induction of endotoxemia, respectively. These results support the view that iNOS-dependent NO* production is an important factor contributing to hepatobiliary epithelial barrier dysfunction resulting from systemic inflammation and suggest that iNOS induction may play a role in the development of cholestatic jaundice in patients with severe sepsis.
Collapse
Affiliation(s)
- Xiaonan Han
- Deptartment of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
28
|
Prasad M, Goyal RK. Differential modulation of voltage-dependent K+ currents in colonic smooth muscle by oxidants. Am J Physiol Cell Physiol 2003; 286:C671-82. [PMID: 14613888 DOI: 10.1152/ajpcell.00137.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of oxidants on voltage-dependent K+ currents was examined in mouse colonic smooth muscle cells. Exposure to either chloramine-T (Ch-T), an agent known to oxidize both cysteine and methionine residues, or the colon-specific oxidant monochloramine (NH2Cl) completely suppressed the transient outward K+ current (Ito) while simultaneously enhancing the sustained delayed rectifier K+ current (Idr). In contrast, the cysteine-specific oxidants hydrogen peroxide (H2O2) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) exhibited partial and slow suppression of Ito by inducing a shift in channel availability of -18 mV without affecting Idr. After enhancement by NH2Cl or Ch-T, Idr was sensitive to 10 mM tetraethylammonium but not to other K+ channel blockers, suggesting that it represented activation of the resting Idr and not a separate K+ conductance. Extracellular dithiothreitol (DTT) partially reversed the effect of H2O2 and DTNB on Ito but not the actions of NH2Cl and Ch-T on either Idr or Ito. Dialysis of myocytes with GSH (5 mM) or DTT (5 mM) prevented suppression of Ito by H2O2 and DTNB but did not alter the effects of NH2Cl or Ch-T on either Idr or Ito. Ch-T and NH2Cl completely blocked Ito generated by murine K(v)4.1, 4.2, and 4.3 in Xenopus oocytes, an effect not reversible by intracellular DTT. In contrast, intracellular DTT reversed the effect of H2O2 and DTNB on the cloned channels. These results suggest that I(to) is suppressed via modification of both methionine and cysteine residues, whereas enhancement of Idr likely results from methionine oxidation alone.
Collapse
Affiliation(s)
- Madhu Prasad
- Department of Surgery, Veterans Affairs Medical Center, West Roxbury, MA 02132, USA.
| | | |
Collapse
|
29
|
Yang R, Han X, Uchiyama T, Watkins SK, Yaguchi A, Delude RL, Fink MP. IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 2003; 285:G621-9. [PMID: 12773301 DOI: 10.1152/ajpgi.00177.2003] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We sought to determine the role of IL-6 as a mediator of the alterations in gut barrier function that occur after hemorrhagic shock and resuscitation (HS/R). C57Bl/6 wild-type (WT) and IL-6 knockout (KO) mice on a C57Bl/6 background were subjected to either a sham procedure or HS/R. Organ and tissue samples were obtained 4 h after resuscitation. In WT mice, HS/R significantly increased ileal mucosal permeability to fluorescein isothiocyanate-labeled dextran (average molecular mass, 4 kDa) and bacterial translocation to mesenteric lymph nodes. These alterations in gut barrier function were not observed in IL-6 KO animals. HS/R increased ileal steady-state mRNA levels for IL-6, TNF, and IL-10 in WT but not in IL-6 KO mice. Ileal mucosal expression of the tight junction protein, ZO-1, decreased after HS/R in WT but not IL-6 KO mice. Collectively, these data support the view that expression of IL-6 is essential for the development of gut barrier dysfunction after HS/R.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Dirlik M, Caglikulekci M, Cinel I, Cinel L, Tamer L, Pata C, Kanik A, Ocal K, Ogetman Z, Aydin S. The effect of PARS inhibition on ileal histopathology, apoptosis and lipid peroxidation in LPS-induced obstructive jaundice. Pharmacol Res 2003; 48:139-49. [PMID: 12798666 DOI: 10.1016/s1043-6618(03)00100-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In our experimental study, we investigated the protective effect of 3-aminobenzamide (3-AB), the poly (ADP-ribose) synthetase (PARS inhibitor), on the ileal histopathology and the apoptosis in lipopolysaccharide (LPS)-induced inflammation in rats with obstructive jaundice (OJ). We randomized 40 rats into five groups. Group 1: sham group; Group 2: OJ group; Group 3: OJ+LPS; Group 4: OJ+3-AB+LPS; Group 5: OJ+LPS+3-AB. At the fifth day; the rats were jaundiced. In Group 3; 10 mg kg(-1) LPS was injected intraperitoneally at the fifth day and then after 6h the rats were sacrificed. In Group 4; 10 mg kg(-1) 3-AB was administrated intraperitoneally at the fifth day and repeated daily for 3 days and at the eighth day, 10 mg kg(-1) LPS was injected intraperitoneally. In Group 5, 10 mg kg(-1) LPS was injected intraperitoneally at the fifth day and after 6h 10 mg kg(-1) 3-AB was administrated intraperitoneally and repeated daily for 3 days. At the eighth day, rats were sacrificed. Blood samples were taken for detection of serum MDA levels. Ileum samples were taken after relaparotomy for histopathological examination to evaluate the endotoxin-related intestinal injury and Caspase-3 apoptosis and for detection of tissue MDA and ATPase activities. There was marked destruction of villous and crypt epithelial cells and extensive apoptosis in Groups 3 and 5 in histopathological examination. In Group 4, the scores of intestinal mucosal damage and apoptotic cells were reduced significantly (P<0.05). On the other hand, the scores of intestinal mucosal damage and apoptotic cells were not improved in Group 5. After the administration of 3-AB (Group 4), serum and ileal MDA levels decreased, ileal ATPase increased as compared to Groups 1 and 2. Our study showed that 3-AB prevented the mucosal damage and apoptotic loss of intestinal epithelial cells significantly if it was administrated before LPS. However, 3-AB failed to prevent the mucosal damage and apoptotic loss of intestinal epithelial cells significantly if there was established endotoxemia in OJ.
Collapse
Affiliation(s)
- Musa Dirlik
- Department of General Surgery, Faculty of Medicine, Mersin University Medical School, Zeytinlibahçe Caddesi, Eski Otogar Yani 33079, Mersin, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee NPY, Cheng CY. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3',5'-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 2003; 144:3114-29. [PMID: 12810568 DOI: 10.1210/en.2002-0167] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) synthase (NOS) catalyzes the oxidation of L-arginine to NO. NO plays a crucial role in regulating various physiological functions, possibly including junction dynamics via its effects on cAMP and cGMP, which are known modulators of tight junction (TJ) dynamics. Although inducible NOS (iNOS) and endothelial NOS (eNOS) are found in the testis and have been implicated in the regulation of spermatogenesis, their role(s) in TJ dynamics, if any, is not known. When Sertoli cells were cultured at 0.5-1.2 x 10(6) cells/cm(2) on Matrigel-coated dishes or bicameral units, functional TJ barrier was formed when the barrier function was assessed by quantifying transepithelial electrical resistance across the cell epithelium. The assembly of the TJ barrier was shown to associate with a significant plummeting in the levels of iNOS and eNOS, seemingly suggesting that their presence by producing NO might perturb TJ assembly. To further confirm the role of NOS on the TJ barrier function in vitro, zinc (II) protoporphyrin-IX (ZnPP), an NOS inhibitor and a soluble guanylate cyclase inhibitor, was added to the Sertoli cell cultures during TJ assembly. Indeed, ZnPP was found to facilitate the assembly and maintenance of the Sertoli cell TJ barrier, possibly by inducing the production of TJ-associated proteins, such as occludin. Subsequent studies by immunoprecipitation and immunoblotting have shown that iNOS and eNOS are structurally linked to TJ-integral membrane proteins, such as occludin, and cytoskeletal proteins, such as actin, vimentin, and alpha-tubulin. When the cAMP and cGMP levels in these ZnPP-treated samples were quantified, a ZnPP-induced reduction of intracellular cGMP, but not cAMP, was indeed detected. Furthermore, 8-bromo-cGMP, a cell membrane-permeable analog of cGMP, could also perturb the TJ barrier dose dependently similar to the effects of 8-bromo-cAMP. KT-5823, a specific inhibitor of protein kinase G, was shown to facilitate the Sertoli cell TJ barrier assembly. Cytokines, such as TGF-beta and TNF-alpha, known to perturb the Sertoli cell TJ barrier, were also shown to stimulate Sertoli cell iNOS and eNOS expression dose dependently in vitro. Collectively, these results illustrate NOS is an important physiological regulator of TJ dynamics in the testis, exerting its effects via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
32
|
Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness. Curr Opin Crit Care 2003; 9:143-51. [PMID: 12657978 DOI: 10.1097/00075198-200304000-00011] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Tight junctions between adjacent epithelial cells are essential for the maintenance of compositionally distinct fluid compartments in various organs, such as the liver, lungs, kidneys, and intestine. These epithelial organs are commonly affected in the condition known as multiple organ dysfunction syndrome, which can complicate the clinical course of patients with sepsis or other conditions associated with poorly controlled systemic inflammation. The gut serves as a useful model for this problem, and studies using reductionist in vitro models and experiments carried out using laboratory animals are starting to clarify the cellular and biochemical mechanisms that are responsible for intestinal epithelial hyperpermeability secondary to critical illness. RECENT FINDINGS One key factor that has been identified is excessive production of nitric oxide and related species, although other factors, such as increased expression of the cytokine interleukin 6, appear to be important as well. A newly described, cytokine-like molecule, high-mobility group B1, increases permeability of cultured epithelial monolayers in vitro and murine ileal mucosa in vivo. SUMMARY Epithelial dysfunction may be a common final pathway contributing to organ dysfunction in sepsis and other forms of critical illness.
Collapse
Affiliation(s)
- Mitchell P Fink
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15260, USA.
| |
Collapse
|
33
|
Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO*-dependent and -independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 2003; 19:229-37. [PMID: 12630522 DOI: 10.1097/00024382-200303000-00006] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intestinal epithelial barrier function is impaired after the exposure of enterocytes to proinflammatory cytokines. The mechanism(s) responsible for this phenomenon remain incompletely understood. We used cultured monolayers of Caco-2 enterocyte-like cells to characterize the effect of cytomix, a mixture of interferon-gamma, tumor necrosis factor-alpha, and interleukin-1beta, on the expression and localization of several tight junctions proteins. Cells were stimulated with cytomix in the presence or absence of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1 -oxyl-3-oxide (cPTIO), an NO* scavenger. Some cells were treated with (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-ium-1,2-diolate] (DETA-NONOate), an NO* donor. Tight junction protein expression was measured in cellular extracts by Western blotting and localized in cells using immunofluorescence. Steady-state mRNA levels were determined using semi-quantitative reverse-transcription polymerase chain reaction. Incubation of cells with DETA-NONOate or cytomix decreased epithelial barrier function, decreased expression of ZO-1 mRNA, decreased expression of ZO-1, ZO-3, and occludin protein, and increased expression of claudin-1 protein. The effects of cytomix on barrier function and tight junction protein expression were modulated by cPTIO. Cytomix caused incorrect subcellular localization of ZO-1, occludin, and claudin-1, and this was modulated by co-incubation with cPTIO. DETA-NONOate caused similar protein mislocalization as observed with cytomix. The effectiveness of cPTIO in maintaining tight junction protein expression and correct subcellular localization was less apparent at early time points (12 h) compared with later points, suggesting an NO*-independent effect of cytokines on barrier function. Thus, cytomix appears to increase the permeability of Caco-2 monolayers through NO*-dependent and -independent mechanisms that are associated with changes in the expression and/or targeting of proteins involved in tight junction function.
Collapse
Affiliation(s)
- Xiaonan Han
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
34
|
Sappington PL, Han X, Yang R, Delude RL, Fink MP. Ethyl pyruvate ameliorates intestinal epithelial barrier dysfunction in endotoxemic mice and immunostimulated caco-2 enterocytic monolayers. J Pharmacol Exp Ther 2003; 304:464-76. [PMID: 12490623 DOI: 10.1124/jpet.102.043182] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ethyl pyruvate (EP) solution ameliorates ileal mucosal hyperpermeability and decreases the expression of several proinflammatory genes in ileal and/or colonic mucosa when it is used instead of Ringer's lactate solution (RLS) to resuscitate mice from hemorrhagic shock. To test the hypothesis that EP can ameliorate gut barrier dysfunction induced by other forms of inflammation, we incubated Caco-2 monolayers for 24 to 48 h with cytomix (a mixture of interferon-gamma, tumor necrosis factor-alpha, and interleukin-1beta) in the presence or absence of graded concentrations of EP or sodium pyruvate. Cytomix increased the permeability of Caco-2 monolayers to fluorescein isothiocyanate-labeled dextran (FD4; average molecular mass 4 kDa), but this effect was inhibited by adding 0.1 to 10 mM EP (but not similar concentrations of sodium pyruvate) to the culture medium. EP inhibited several other cytomix-induced phenomena, including nuclear factor-kappaB activation, inducible nitric oxide synthase mRNA expression, and nitric oxide production. Cytomix altered the expression and localization of the tight junctional proteins, ZO-1 and occludin, but this effect was prevented by EP. Delayed treatment with EP solution instead of RLS ameliorated ileal mucosal hyperpermeability to FD4 and bacterial translocation to mesenteric lymph nodes in mice challenged with lipopolysaccharide (LPS). These data support the view that EP ameliorates cytokine- and/or LPS-induced derangements in intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Penny L Sappington
- Department of Critical Care Medicine, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Carrier J, Aghdassi E, Cullen J, Allard JP. Iron supplementation increases disease activity and vitamin E ameliorates the effect in rats with dextran sulfate sodium-induced colitis. J Nutr 2002; 132:3146-50. [PMID: 12368409 DOI: 10.1093/jn/131.10.3146] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inflammatory bowel disease is often associated with iron deficiency anemia and oral iron supplementation may be required. However, iron may increase oxidative stress through the Fenton reaction and thus exacerbate the disease. This study was designed to determine in rats with dextran sulfate sodium (DSS)-induced colitis whether oral iron supplementation increases intestinal inflammation and oxidative stress and whether the addition of an antioxidant, vitamin E, would reduce this detrimental effect. Four groups of rats that consumed 50 g/L DSS in drinking water were studied for 7 d and were fed: a control, nonpurified diet (iron, 270 mg, and dl-alpha-tocopherol acetate, 49 mg/kg); diet + iron (iron, 3000 mg/kg); diet + vitamin E (dl-alpha-tocopherol acetate, 2000 mg/kg) and the diet + both iron and vitamin E, each at the same concentrations as above. Body weight change, rectal bleeding, histological scores, plasma and colonic lipid peroxides (LPO), plasma 8-isoprostane, colonic glutathione peroxidase (GPx) and plasma vitamin E were measured. Iron supplementation increased disease activity as demonstrated by higher histological scores and heavier rectal bleeding. This was associated with an increase in colonic and plasma LPO and plasma 8-isoprostane as well as a decrease in colonic GPx. Vitamin E supplementation decreased colonic inflammation and rectal bleeding but did not affect oxidative stress, suggesting another mechanism for reducing inflammation. In conclusion, oral iron supplementation resulted in an increase in disease activity in this model of colitis. This detrimental effect on disease activity was reduced by vitamin E. Therefore, the addition of vitamin E to oral iron supplementation may be beneficial.
Collapse
Affiliation(s)
- Julie Carrier
- Department of Medicine, University of Toronto, Ontario M5G-2C4, Canada
| | | | | | | |
Collapse
|
36
|
Cinel I, Oral U. Nitric oxide synthase, poly(ADP-ribose) synthetase, and ischemic preconditioning. Crit Care Med 2002; 30:2167-8. [PMID: 12352071 DOI: 10.1097/00003246-200209000-00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Liaudet L. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness. Curr Opin Clin Nutr Metab Care 2002; 5:175-84. [PMID: 11844985 DOI: 10.1097/00075197-200203000-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.
Collapse
Affiliation(s)
- Lucas Liaudet
- Critical Care Division, Department of Internal Medicine, University Hospital, Lausanne, Switzerland.
| |
Collapse
|