1
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Katru SC, Balakrishnan AS, Munirathinam G, Hadadianpour A, Smith SA, Kalyanasundaram R. Identification and characterization of a novel nematode pan allergen (NPA) from Wuchereria bancrofti and their potential role in human filarial tropical pulmonary eosinophilia (TPE). PLoS Negl Trop Dis 2024; 18:e0011972. [PMID: 38354188 PMCID: PMC10898765 DOI: 10.1371/journal.pntd.0011972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Tropical pulmonary eosinophilia (TPE) is a chronic respiratory syndrome associated with Lymphatic Filariasis (LF), a tropical parasitic infection of the human, transmitted by mosquitoes. The larval form of LF (microfilariae) are trapped in the lungs of TPE subjects have a major role in initiating the TPE syndrome. To date, there are no reports on the potential allergen that is responsible for generating parasite-specific IgE in TPE. METHODOLOGY/PRINCIPAL FINDINGS In this project, we screened a cDNA expression library of the microfilarial stages of Wuchereria bancrofti with monoclonal IgE antibodies prepared from subjects with clinical filarial infections. Our studies identified a novel molecule that showed significant sequence similarity to an allergen. A blast analysis showed the presence of similar proteins in a number of nematodes parasites. Thus, we named this molecule as Nematode Pan Allergen (NPA). Subsequent functional analysis showed that NPA is a potent allergen that can cause release of histamine from mast cells, induce secretion of proinflammatory cytokines from alveolar macrophages and promote accumulation of eosinophils in the tissue, all of which occur in TPE lungs. CONCLUSIONS/SIGNIFICANCE Based on our results, we conclude that the NPA protein secreted by the microfilariae of W. bancrofti may play a significant role in the pathology of TPE syndrome in LF infected individuals. Further studies on this molecule can help design an approach to neutralize the NPA in an attempt to reduce the pathology associated with TPE in LF infected subjects.
Collapse
Affiliation(s)
- Samuel Christopher Katru
- Department of Biomedical Sciences, University of Illinois, College of Medicine Rockford, Rockford, IL, United States of America
| | - Anand Setty Balakrishnan
- Department of Biomedical Sciences, University of Illinois, College of Medicine Rockford, Rockford, IL, United States of America
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, College of Medicine Rockford, Rockford, IL, United States of America
| | - Azadeh Hadadianpour
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, A2210 Medical Center North, Nashville, Tennessee, United States of America
| | - Scott A. Smith
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, A2210 Medical Center North, Nashville, Tennessee, United States of America
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, University of Illinois, College of Medicine Rockford, Rockford, IL, United States of America
| |
Collapse
|
3
|
Tomljenovic L, McHenry LB. A reactogenic "placebo" and the ethics of informed consent in Gardasil HPV vaccine clinical trials: A case study from Denmark. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2024; 35:159-180. [PMID: 38788092 PMCID: PMC11191454 DOI: 10.3233/jrs-230032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/18/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Medical ethics guidelines require of clinical trial investigators and sponsors to inform prospective trial participants of all known and potential risks associated with investigational medical products, and to obtain their free informed consent. These guidelines also require that clinical research be so designed as to minimize harms and maximize benefits. OBJECTIVE To examine Merck's scientific rationale for using a reactogenic aluminum-containing "placebo" in Gardasil HPV vaccine pre-licensure clinical trials. METHODS We examined the informed consent form and the recruitment brochure for the FUTURE II Gardasil vaccine trial conducted in Denmark; and we interviewed several FUTURE II trial participants and their treating physicians. We also reviewed regulatory documentation related to Gardasil vaccine approval process and the guidelines on evaluation of adjuvants used in human vaccines. RESULTS It was found that the vaccine manufacturer Merck made several inaccurate statements to trial participants that compromised their right to informed consent. First, even though the study protocol listed safety testing as one of the study's primary objectives, the recruitment brochure emphasized that FUTURE II was not a safety study, and that the vaccine had already been proven safe. Second, the advertising material for the trial and the informed consent forms stated that the placebo was saline or an inactive substance, when, in fact, it contained Merck's proprietary highly reactogenic aluminum adjuvant which does not appear to have been properly evaluated for safety. Several trial participants experienced chronic disabling symptoms, including some randomized to the adjuvant "placebo" group. CONCLUSION In our view, the administration of a reactive placebo in Gardasil clinical trials was without any possible benefit, needlessly exposed study subjects to risks, and was therefore a violation of medical ethics. The routine use of aluminum adjuvants as "placebos" in vaccine clinical trials is inappropriate as it hinders the discovery of vaccine-related safety signals.
Collapse
Affiliation(s)
| | - Leemon B. McHenry
- Department of Philosophy, California State University, Northridge, CA, USA
| |
Collapse
|
4
|
Caraballo L, Llinás-Caballero K. The Relationship of Parasite Allergens to Allergic Diseases. Curr Allergy Asthma Rep 2023; 23:363-373. [PMID: 37269427 PMCID: PMC10354133 DOI: 10.1007/s11882-023-01089-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Helminth infections modify the natural history of allergic diseases, by either decreasing or increasing their symptoms. Several helminth components are involved in the increasing of the allergic response and symptoms, overcoming the concomitant immunosuppression of helminthiases. However, the role of individual IgE-binding molecules in this process remains to be defined. RECENT FINDINGS We updated the list of helminth allergens and IgE-binding molecules, their effects on asthma presentation, and their impact on allergy diagnosis. Data from genetic and epigenetic studies of ascariasis are analyzed. A new species-specific A. lumbricoides allergen has been discovered, with potential use in molecular diagnosis. Most helminth IgE-binding components are not officially classified as allergens in the WHO/IUIS database, although there is evidence of their influence increasing allergic manifestations. Further immunological characterization of these components is needed to better understand their mechanisms of action and evaluate the ways in which they can influence the diagnosis of allergy.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
5
|
Aktar A, Shan L, Koussih L, Almiski MS, Basu S, Halayko A, Okwor I, Uzonna JE, Gounni AS. PlexinD1 Deficiency in Lung Interstitial Macrophages Exacerbates House Dust Mite-Induced Allergic Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1272-1279. [PMID: 35110420 DOI: 10.4049/jimmunol.2100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Interstitial macrophages (IMs) are key regulators of allergic inflammation. We previously showed that the absence of semaphorin 3E (Sema3E) exacerbates asthma features in both acute and chronic asthma models. However, it has not been studied whether Sema3E, via its receptor plexinD1, regulates IM function in allergic asthma. Therefore, we investigated the role of plexinD1 deficiency on IMs in allergic asthma. We found that the absence of plexinD1 in IMs increased airway hyperresponsiveness, airway leukocyte numbers, allergen-specific IgE, goblet cell hyperplasia, and Th2/Th17 cytokine response in the house dust mite (HDM)-induced allergic asthma model. Muc5ac, Muc5b, and α-SMA genes were increased in mice with Plxnd1-deficient IMs compared with wild-type mice. Furthermore, plexinD1-deficient bone marrow-derived macrophages displayed reduced IL-10 mRNA expression, at both the baseline and following HDM challenge, compared with their wild-type counterpart mice. Our data suggest that Sema3E/plexinD1 signaling in IMs is a critical pathway that modulates airway inflammation, airway resistance, and tissue remodeling in the HDM murine model of allergic asthma. Reduced IL-10 expression by plexinD1-deficient macrophages may account for these enhanced allergic asthma features.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, MB, Canada
| | - Mohamed S Almiski
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; and
| | - Sujata Basu
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew Halayko
- Department of Physiology and Physiopathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ifeoma Okwor
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada;
| |
Collapse
|
6
|
Movassagh H, Shan L, Duke-Cohan JS, Chakir J, Halayko AJ, Koussih L, Gounni AS. Downregulation of semaphorin 3E promotes hallmarks of experimental chronic allergic asthma. Oncotarget 2017; 8:98953-98963. [PMID: 29228740 PMCID: PMC5716780 DOI: 10.18632/oncotarget.22144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022] Open
Abstract
Guidance cues such as semaphorins are attractive novel therapeutic targets for allergic disorders. We have previously described an inhibitory effect of semaphorin 3E (Sema3E) on human airway smooth muscle cell function. We have further addressed a canonical role for Sema3E in acute model of allergic asthma in vivo. Considering the chronic nature of the disease, the potential implication of Sema3E to alleviate long-lasting deficits should be investigated. Expression of Sema3E in a chronic model of allergic asthma was assessed after exposure to house dust mite (HDM) as a clinically relevant allergen. Chronic features of allergic asthma including airway hyper-responsiveness (AHR), inflammation, and remodeling were studied in Sema3E-deficient mice. Additionally, the effect of exogenous Sema3E treatment was evaluated in prophylactic and therapeutic experimental models. We have demonstrated that expression of Sema3E is robustly suppressed in the airways upon chronic HDM exposure. Chronic allergic airway disease was significantly augmented in Sema3E-deficient mouse model which was associated with an increased AHR, remodeling, and Th2/Th17 inflammation. Intranasal Sema3E administration restored chronic deficits of allergic asthma in mice. Data from this study unveil a key regulatory role of Sema3E in chronic course of asthma via orchestration of impaired inflammatory and remodeling responses.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Lianyu Shan
- Department of Immunology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, Boston, MA, USA
| | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie du Quebec, Universite´ Laval, Quebec City, QC, Canada
| | - Andrew J Halayko
- Department of Physiology & Pathophysiology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Latifa Koussih
- Department of Immunology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Movassagh H, Shan L, Duke-Cohan JS, Halayko AJ, Uzonna JE, Gounni AS. Semaphorin 3E Alleviates Hallmarks of House Dust Mite-Induced Allergic Airway Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28634005 DOI: 10.1016/j.ajpath.2017.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Semaphorins are an essential family of guidance cues ubiquitously expressed in various organs, which play diverse developmental, homeostatic, and pathological roles. Semaphorin 3E (Sema3E), initially identified as a neuronal chemorepellent, is involved in the regulation of cell migration, proliferation, and angiogenesis. However, expression and function of Sema3E in allergic asthma has not been extensively investigated. We determined the expression of Sema3E in the airways and its effect on airway inflammation, hyperresponsiveness, and remodeling as pathological features of allergic asthma provoked by house dust mite in vivo. Our data indicate that exposure to house dust mite markedly reduces Sema3E expression in mouse airways. More important, replenishment of Sema3E by intranasal administration of exogenous Sema3E protects mice from allergic asthma by reducing eosinophilic inflammation, serum IgE level, and T helper cell 2/T helper cell 17 cytokine response. The regulatory effect of Sema3E on cytokine response was sustained on allergen recall response in the lymph nodes and spleen. Furthermore, goblet cell hyperplasia, collagen deposition, and airway hyperresponsiveness were significantly diminished on Sema3E treatment. The inhibitory effect of Sema3E was associated with a reduction of pulmonary CD11b+ conventional dendritic cells and regulation of CD4+ T-cell cytokine response. Collectively, our data represent a novel approach to treating allergic asthma via regulation of immune response to house dust mite.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jude E Uzonna
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
8
|
Movassagh H, Shan L, Mohammed A, Halayko AJ, Gounni AS. Semaphorin 3E Deficiency Exacerbates Airway Inflammation, Hyperresponsiveness, and Remodeling in a Mouse Model of Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2017; 198:1805-1814. [PMID: 28108561 DOI: 10.4049/jimmunol.1601514] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Abstract
Semaphorin 3E (Sema3E) plays a crucial role in axon guidance, vascular patterning, and immune regulation. Nevertheless, the role of Sema3E in asthma is still elusive. In this study, we show that genetic ablation of Sema3E in mice results in increased lung granulocytosis, airway hyperresponsiveness, mucus overproduction, collagen deposition, and Th2/Th17 inflammation. Transfer of Sema3e-/- bone marrow progenitor cells to irradiated wild-type (WT) recipients exacerbates airway hyperresponsiveness and inflammation, whereas transfer of WT bone marrow progenitor cells ameliorates asthma pathology in Sema3e-/- recipients. Sema3e-/- mice display a higher frequency of CD11b+ pulmonary dendritic cells than their WT controls at the baseline and after sensitization with house dust mite. Adoptive transfer of CD11b+ pulmonary dendritic cells from Sema3e-/- mice into WT recipients increases house dust mite-induced Th2/Th17 inflammation in the airway. Together, these findings identify Sema3E as a novel regulatory molecule in allergic asthma that acts upstream of proallergic events and suggest that targeting this molecule could be a novel approach to treat allergic asthma.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Ashfaque Mohammed
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Andrew J Halayko
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5 Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| |
Collapse
|
9
|
Movassagh H, Saati A, Nandagopal S, Mohammed A, Tatari N, Shan L, Duke-Cohan JS, Fowke KR, Lin F, Gounni AS. Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 198:1023-1033. [PMID: 27913633 DOI: 10.4049/jimmunol.1601093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022]
Abstract
Neutrophil migration is an essential step in leukocyte trafficking during inflammatory responses. Semaphorins, originally discovered as axon guidance cues in neural development, have been shown to regulate cell migration beyond the nervous system. However, the potential contribution of semaphorins in the regulation of neutrophil migration is not well understood. This study examines the possible role of a secreted chemorepellent, Semaphorin 3E (Sema3E), in neutrophil migration. In this study, we demonstrated that human neutrophils constitutively express Sema3E high-affinity receptor, PlexinD1. Sema3E displayed a potent ability to inhibit CXCL8/IL-8-induced neutrophil migration as determined using a microfluidic device coupled to real-time microscopy and a transwell system in vitro. The antimigratory effect of Sema3E on human neutrophil migration was associated with suppression of CXCL8/IL-8-mediated Ras-related C3 botulinum toxin substrate 1 GTPase activity and actin polymerization. We further addressed the regulatory role of Sema3E in the regulation of neutrophil migration in vivo. Allergen airway exposure induced higher neutrophil recruitment into the lungs of Sema3e-/- mice compared with wild-type controls. Administration of exogenous recombinant Sema3E markedly reduced allergen-induced neutrophil recruitment into the lungs, which was associated with alleviation of allergic airway inflammation and improvement of lung function. Our data suggest that Sema3E could be considered an essential regulatory mediator involved in modulation of neutrophil migration throughout the course of neutrophilic inflammation.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abeer Saati
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Saravanan Nandagopal
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ashfaque Mohammed
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Nazanin Tatari
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215; and
| | - Keith R Fowke
- Department of Medical Microbiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Francis Lin
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
10
|
Balakrishna S, Prabhune AA. Gamma-glutamyl transferases: A structural, mechanistic and physiological perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1288-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Helminths: Immunoregulation and Inflammatory Diseases-Which Side Are Trichinella spp. and Toxocara spp. on? J Parasitol Res 2013; 2013:329438. [PMID: 23365718 PMCID: PMC3556843 DOI: 10.1155/2013/329438] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/01/2012] [Indexed: 11/17/2022] Open
Abstract
Macropathogens, such as multicellular helminths, are considered masters of immunoregulation due to their ability to escape host defense and establish chronic infections. Molecular crosstalk between the host and the parasite starts immediately after their encounter, which influences the course and development of both the innate and adaptive arms of the immune response. Helminths can modulate dendritic cells (DCs) function and induce immunosuppression which is mediated by a regulatory network that includes regulatory T (Treg) cells, regulatory B (Breg) cells, and alternatively activated macrophages (AAMs). In this way, helminths suppress and control both parasite-specific and unrelated immunopathology in the host such as Th1-mediated autoimmune and Th2-mediated allergic diseases. However, certain helminths favour the development or exacerbation of allergic responses. In this paper, the cell types that play an essential role in helminth-induced immunoregulation, the consequences for inflammatory diseases, and the contrasting effects of Toxocara and Trichinella infection on allergic manifestations are discussed.
Collapse
|
12
|
Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS Negl Trop Dis 2008; 2:e326. [PMID: 18958170 PMCID: PMC2569413 DOI: 10.1371/journal.pntd.0000326] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/01/2008] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION While we lack a complete understanding of the molecular mechanisms by which parasites establish and achieve protection from host immune responses, it is accepted that many of these processes are mediated by products, primarily proteins, released from the parasite. Parasitic nematodes occur in different life stages and anatomical compartments within the host. Little is known about the composition and variability of products released at different developmental stages and their contribution to parasite survival and progression of the infection. METHODOLOGY/PRINCIPAL FINDINGS To gain a deeper understanding on these aspects, we collected and analyzed through 1D-SDS PAGE and LC-MS/MS the Excretory-Secretory Products (ESP) of adult female, adult male and microfilariae of the filarial nematode Brugia malayi, one of the etiological agents of human lymphatic filariasis. This proteomic analysis led to the identification of 228 proteins. The list includes 76 proteins with unknown function as well as also proteins with potential immunoregulatory properties, such as protease inhibitors, cytokine homologues and carbohydrate-binding proteins. Larval and adult ESP differed in composition. Only 32 proteins were shared between all three stages/genders. Consistent with this observation, different gene ontology profiles were associated with the different ESP. CONCLUSIONS/SIGNIFICANCE A comparative analysis of the proteins released in vitro by different forms of a parasitic nematode dwelling in the same host is presented. The catalog of secreted proteins reflects different stage- and gender-specific related processes and different strategies of immune evasion, providing valuable insights on the contribution of each form of the parasite for establishing the host-parasite interaction.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Tropical pulmonary eosinophilia is predominantly seen in the tropical and subtropical regions of the world. It is being increasingly reported from other parts of world, however, due to increases in global travel and migration. This review focuses attention on recent developments. RECENT FINDINGS Tropical pulmonary eosinophilia is an occult form of human filariasis. The gamma-glutaryl transpeptidase found in the infective L3 stage larvae of Brugia malayi has been found to have similarities with the gamma-glutaryl transpeptidase present on the surface of human pulmonary epithelium. It has, therefore, been proposed that filarial gamma-glutaryl transpeptidase may play an important role in the pathogenesis of tropical eosinophilia. Airway hyperresponsiveness, manifesting as asthma-like syndrome, has been reported in tropical pulmonary eosinophilia and it has been suggested that interleukin-4 induces and interferon-gamma suppresses filarial-induced airway hyperresponsiveness. The intense eosinophilic alveolitis seen in acute tropical pulmonary eosinophilia is suppressed by 3 weeks of treatment with diethylcarbamazine citrate. A mild eosinophilic alveolitis along with radiological, physiological and hematological abnormalities, though with reduced intensity, persists in some patients however. SUMMARY A chronic mild interstitial lung disease has been found to persist in tropical pulmonary eosinophilia despite treatment.
Collapse
|
14
|
Obwaller A, Duchêne M, Walochnik J, Wiedermann G, Auer H, Aspöck H. Association of autoantibodies against small nuclear ribonucleoproteins (snRNPs) with symptomatic Toxocara canis infestation. Parasite Immunol 2004; 26:327-33. [PMID: 15679629 DOI: 10.1111/j.0141-9838.2004.00716.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated the occurrence of autoantibodies in the course of infestations with helminth parasites and a number of target proteins have been identified. Sera from patients suffering from toxocarosis, a disease caused by the parasitic roundworm Toxocara canis, and from healthy individuals were tested for autoantibodies by immunofluorescence and immunoblot assays using HEp-2 cells as antigen. A considerable proportion of the sera from patients with toxocarosis-associated symptoms were autoantibody-positive, with a speckled staining pattern in the immunofluorescence test (62%) and with anti-snRNP reactivity in the immunoblot assay (98%). In contrast, significantly fewer sera from asymptomatic individuals scored positive in these assays (18% in the immunofluorescence test, P < 0.005; 24% in the immunoblot, P < 0.005). Although the causative link between Toxocara infestation and the occurrence of autoantibodies is still unclear, our results show that increased amounts of autoantibodies are associated with clinical symptoms of inflammation. Thus a serum test for autoantibodies in toxocarosis patients might be a valuable gatekeeper assay for the decision for or against anti-inflammatory treatment.
Collapse
Affiliation(s)
- Andreas Obwaller
- Department of Medical Parasitology, Clinical Institute of Hygiene and Medical Microbiology, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
15
|
Lobos E, Nutman TB, Hothersall JS, Moncada S. Elevated immunoglobulin E against recombinant Brugia malayi gamma-glutamyl transpeptidase in patients with bancroftian filariasis: association with tropical pulmonary eosinophilia or putative immunity. Infect Immun 2003; 71:747-53. [PMID: 12540554 PMCID: PMC145369 DOI: 10.1128/iai.71.2.747-753.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major allergen of the lymphatic filarial nematode Brugia malayi, a homologue of gamma-glutamyl transpeptidase (gamma-GT), is involved in the pathology of tropical pulmonary eosinophilia (TPE) through its potent allergenicity and the induction of antibodies against the host pulmonary epithelium. To investigate the immunoglobulin G (IgG) subclass and IgE responses to recombinant B. malayi gamma-GT, we analyzed the results obtained from 51 patients with differing clinical manifestations of bancroftian filariasis. gamma-GT-specific IgG1, rather than IgG4, was the predominant IgG subclass, particularly in patients with TPE (geomean, 6,321 ng/ml; range, 78 to 354,867 ng/ml) and was 75 times higher than in patients with elephantiasis (CP) (P < 0.003) and 185 times higher than in endemic normal individuals (ENL) (P < 0.010). IgG2 responses were low and IgG3 was almost absent, with no significant differences among the groups. gamma-GT-specific IgG4 responses were significantly elevated in those with subclinical microfilaremia (MF) compared to the CP and ENL groups and correlated with the presence of circulating filarial antigen (CAg). More significantly, gamma-GT-specific IgE antibody levels were strikingly elevated in patients with TPE (geomean, 681 ng/ml; range, 61 to 23,841 ng/ml) and in the ENL group (geomean, 106 ng/ml; range, 13 to 1,405 ng/ml) whereas the gamma-GT-specific IgE level was 44 and 61 times lower in those with MF and CP, respectively (P < 0.001). Elevated gamma-GT-specific IgE/IgG4 ratios were demonstrated in patients with TPE (ratio, 45) and ENL (ratio, 107). Because expression of gamma-GT in Brugia infective third-stage larvae (L3) was demonstrated by immunoblot analysis, the elevated gamma-GT-specific IgE antibodies appear to be associated not only with pulmonary pathology but also with possible resistance to infection in lymphatic filariasis.
Collapse
Affiliation(s)
- Edgar Lobos
- The Wolfson Institute for Biomedical Research, University College London, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Abstract
Filarial infections remain significant causes of disability in tropical areas worldwide. However, insights into the developmental and molecular biology of the parasite and the immunobiology of the host response to infection have advanced our understanding, even as progress is being made towards implementing eradication programs. This article summarizes some of the recent advances in the understanding of filarial biology and parasite immune evasion mechanisms, and reviews those newer aspects of diagnosis and treatment most relevant to clinicians.
Collapse
Affiliation(s)
- Paul B. Keiser
- Laboratory of Parasitic Diseases, Building 4, Room B1-05, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA. pkeise
| | | |
Collapse
|