1
|
Marzeda AM, Schwenzer A, Didov BS, Woolcock K, Richard JB, Jennings LK, Julé AM, Yang N, Davidson S, Sansom S, Cribbs AP, Dendrou CA, Yue WW, Goodyear CS, Raza K, Midwood KS. Investigating endogenous immune-mediated monocyte memory in rheumatoid arthritis. Ann Rheum Dis 2025:S0003-4967(25)00883-0. [PMID: 40350372 DOI: 10.1016/j.ard.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES Inflammation triggered by endogenous stimuli that signal cellular stress or tissue injury must be tightly controlled to balance robust protection from intrinsic danger while avoiding catastrophic destruction of healthy tissues. Here, we assess the contribution of innate memory to this balance. METHODS Memory evoked by the extracellular matrix protein tenascin-C, a damage-associated, toll-like receptor 4 (TLR4) agonist, was compared to that induced by the pathogenic TLR4 agonist lipopolysaccharide (LPS) by transcriptomic and epigenetic profiling of monocytes from healthy individuals or people wirh rheumatoid arthritis (RA), and tissue macrophages from the RA synovium. RESULTS Tenascin-C reprograms monocyte response to subsequent threats, inducing concomitantly suppressed and enhanced responses to rechallenge. Comparative analysis of tenascin-C and LPS revealed common and distinct gene expression signatures, effects controlled transcriptionally and associated with stimulus-specific epigenetic mediators. Altered responses following rechallenge after priming with tenascin-C were not limited to subsequent TLR4 activation but were evident in response to various pathogenic and endogenous stimuli detected by different receptors. In healthy monocytes primed with tenascin-C, rechallenge with stimuli found at high levels in the joints of people with RA resulted in trained responses that were not induced by LPS, including genes associated with chronic inflammation, tissue destruction, altered metabolism, and poor treatment response in RA. The expression of a large subset of these genes was elevated in monocytes from people with RA in the absence of any stimulation and in RA synovial macrophage populations associated with disease flare. Moreover, higher levels of permissive complexes within key epigenetic nodes and increased bivalent modification creating poised loci within endogenously trained genes were observed in RA cells. CONCLUSIONS These data highlight how innate reprogramming during 'sterile' inflammatory diseases contributes to chronicity, uncovering pathways unique to endogenous immune triggers that could provide disease-specific points of intervention without engendering global immune suppression.
Collapse
Affiliation(s)
- Anna M Marzeda
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anja Schwenzer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Bogdan S Didov
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Birmingham, University of Glasgow, University of Oxford, University of Newcastle, UK
| | - Kieran Woolcock
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Birmingham, University of Glasgow, University of Oxford, University of Newcastle, UK
| | - Jean-Baptiste Richard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Libby K Jennings
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Amélie M Julé
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nan Yang
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sarah Davidson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Steve Sansom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Calliope A Dendrou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Birmingham, University of Glasgow, University of Oxford, University of Newcastle, UK
| | - Karim Raza
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Birmingham, University of Glasgow, University of Oxford, University of Newcastle, UK; National Institute for Health and Care Research Birmingham Biomedical Research Centre and Clinical Research Facility, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK; Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Kim S Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), University of Birmingham, University of Glasgow, University of Oxford, University of Newcastle, UK.
| |
Collapse
|
2
|
Suciu I, Pamies D, Peruzzo R, Wirtz PH, Smirnova L, Pallocca G, Hauck C, Cronin MTD, Hengstler JG, Brunner T, Hartung T, Amelio I, Leist M. G × E interactions as a basis for toxicological uncertainty. Arch Toxicol 2023; 97:2035-2049. [PMID: 37258688 PMCID: PMC10256652 DOI: 10.1007/s00204-023-03500-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of "genetic" influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present "gene expression" influences is summarized here as Ge. Also, the concept of "environment" needs some re-consideration in situations where exposure timing (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects Ge. This implies that it changes the model system. The interaction of Ge with Et might be denoted as Ge × Et. We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM).
Collapse
Affiliation(s)
- Ilinca Suciu
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany
| | - David Pamies
- Department of Biological Sciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Petra H Wirtz
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457, Constance, Germany
- Biological Work and Health Psychology, Department of Psychology, University of Konstanz, 78457, Constance, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Christof Hauck
- Department of Cell Biology, University of Konstanz, 78457, Constance, Germany
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, 44139, Dortmund, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CAAT Europe, University of Konstanz, 78457, Constance, Germany
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Constance, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated By the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Constance, Germany.
- CAAT Europe, University of Konstanz, 78457, Constance, Germany.
| |
Collapse
|
3
|
Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci 2019; 102:1866-1882. [DOI: 10.3168/jds.2018-15243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022]
|
4
|
Wallach D. The cybernetics of TNF: Old views and newer ones. Semin Cell Dev Biol 2016; 50:105-14. [DOI: 10.1016/j.semcdb.2015.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
|
5
|
Krishna S, Dodd CA, Filipov NM. Behavioral and monoamine perturbations in adult male mice with chronic inflammation induced by repeated peripheral lipopolysaccharide administration. Behav Brain Res 2016; 302:279-90. [PMID: 26802725 DOI: 10.1016/j.bbr.2016.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/27/2015] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Considering the limited information on the ability of chronic peripheral inflammation to induce behavioral alterations, including on their persistence after inflammatory stimuli termination and on associated neurochemical perturbations, this study assessed the effects of chronic (0.25 mg/kg; i.p.; twice weekly) lipopolysaccharide (LPS) treatment on selected behavioral, neurochemical and molecular measures at different time points in adult male C57BL/6 mice. Behaviorally, LPS-treated mice were hypoactive after 6 weeks, whereas significant hyperactivity was observed after 12 weeks of LPS and 11 weeks after 13 week LPS treatment termination. Similar biphasic responses, i.e., early decrease followed by a delayed increase were observed in the open field test center time, suggestive of, respectively, increased and decreased anxiety. In a forced swim test, mice exhibited increased immobility (depressive behavior) at all times they were tested. Chronic LPS also produced persistent increase in splenic serotonin (5-HT) and time-dependent, brain region-specific alterations in striatal and prefrontocortical dopamine and 5-HT homeostasis. Microglia, but not astrocytes, were activated by LPS early and late, but their activation did not persist after LPS treatment termination. Above findings demonstrate that chronic peripheral inflammation initially causes hypoactivity and increased anxiety, followed by persistent hyperactivity and decreased anxiety. Notably, chronic LPS-induced depressive behavior appears early, persists long after LPS termination, and is associated with increased splenic 5-HT. Collectively, our data highlight the need for a greater focus on the peripheral/central monoamine alterations and lasting behavioral deficits induced by chronic peripheral inflammation as there are many pathological conditions where inflammation of a chronic nature is a hallmark feature.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Celia A Dodd
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
6
|
Wirthgen E, Hoeflich A. Endotoxin-Induced Tryptophan Degradation along the Kynurenine Pathway: The Role of Indolamine 2,3-Dioxygenase and Aryl Hydrocarbon Receptor-Mediated Immunosuppressive Effects in Endotoxin Tolerance and Cancer and Its Implications for Immunoparalysis. JOURNAL OF AMINO ACIDS 2015; 2015:973548. [PMID: 26881062 PMCID: PMC4736209 DOI: 10.1155/2015/973548] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/28/2015] [Accepted: 12/06/2015] [Indexed: 12/16/2022]
Abstract
The degradation of tryptophan (TRP) along the kynurenine pathway plays a crucial role as a neuro- and immunomodulatory mechanism in response to inflammatory stimuli, such as lipopolysaccharides (LPS). In endotoxemia or sepsis, an enhanced activation of the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO) is associated with a higher mortality risk. It is assumed that IDO induced immunosuppressive effects provoke the development of a protracted compensatory hypoinflammatory phase up to a complete paralysis of the immune system, which is characterized by an endotoxin tolerance. However, the role of IDO activation in the development of life-threatening immunoparalysis is still poorly understood. Recent reports described the impact of inflammatory IDO activation and aryl hydrocarbon receptor- (AhR-) mediated pathways on the development of LPS tolerance and immune escape of cancer cells. These immunosuppressive mechanisms offer new insights for a better understanding of the development of cellular dysfunctions in immunoparalysis. This review provides a comprehensive update of significant biological functions of TRP metabolites along the kynurenine pathway and the complex regulation of LPS-induced IDO activation. In addition, the review focuses on the role of IDO-AhR-mediated immunosuppressive pathways in endotoxin tolerance and carcinogenesis revealing the significance of enhanced IDO activity for the establishment of life-threatening immunoparalysis in sepsis.
Collapse
Affiliation(s)
- Elisa Wirthgen
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Germany
| |
Collapse
|
7
|
Hato T, Winfree S, Kalakeche R, Dube S, Kumar R, Yoshimoto M, Plotkin Z, Dagher PC. The macrophage mediates the renoprotective effects of endotoxin preconditioning. J Am Soc Nephrol 2015; 26:1347-62. [PMID: 25398784 PMCID: PMC4446880 DOI: 10.1681/asn.2014060561] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/27/2014] [Indexed: 12/18/2022] Open
Abstract
Preconditioning is a preventative approach, whereby minimized insults generate protection against subsequent larger exposures to the same or even different insults. In immune cells, endotoxin preconditioning downregulates the inflammatory response and yet, preserves the ability to contain infections. However, the protective mechanisms of preconditioning at the tissue level in organs such as the kidney remain poorly understood. Here, we show that endotoxin preconditioning confers renal epithelial protection in various models of sepsis in vivo. We also tested the hypothesis that this protection results from direct interactions between the preconditioning dose of endotoxin and the renal tubules. This hypothesis is on the basis of our previous findings that endotoxin toxicity to nonpreconditioned renal tubules was direct and independent of immune cells. Notably, we found that tubular protection after preconditioning has an absolute requirement for CD14-expressing myeloid cells and particularly, macrophages. Additionally, an intact macrophage CD14-TRIF signaling pathway was essential for tubular protection. The preconditioned state was characterized by increased macrophage number and trafficking within the kidney as well as clustering of macrophages around S1 proximal tubules. These macrophages exhibited increased M2 polarization and upregulation of redox and iron-handling molecules. In renal tubules, preconditioning prevented peroxisomal damage and abolished oxidative stress and injury to S2 and S3 tubules. In summary, these data suggest that macrophages are essential mediators of endotoxin preconditioning and required for renal tissue protection. Preconditioning is, therefore, an attractive model to investigate novel protective pathways for the prevention and treatment of sepsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Momoko Yoshimoto
- Pediatrics and The Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana
| | | | | |
Collapse
|
8
|
Bohannon JK, Hernandez A, Enkhbaatar P, Adams WL, Sherwood ER. The immunobiology of toll-like receptor 4 agonists: from endotoxin tolerance to immunoadjuvants. Shock 2014; 40:451-62. [PMID: 23989337 DOI: 10.1097/shk.0000000000000042] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS, endotoxin) is a structural component of the gram-negative outer membrane. The lipid A moiety of LPS binds to the LPS receptor complex expressed by leukocytes, endothelial cells, and parenchymal cells and is the primary component of gram-negative bacteria that is recognized by the immune system. Activation of the LPS receptor complex by native lipid A induces robust cytokine production, leukocyte activation, and inflammation, which is beneficial for clearing bacterial infections at the local level but can cause severe systemic inflammation and shock at higher challenge doses. Interestingly, prior exposure to LPS renders the host resistant to shock caused by subsequent LPS challenge, a phenomenon known as endotoxin tolerance. Treatment with lipid A has also been shown to augment the host response to infection and to serve as a potent vaccine adjuvant. However, the adverse effects associated with the pronounced inflammatory response limit the use of native lipid A as a clinical immunomodulator. More recently, analogs of lipid A have been developed that possess attenuated proinflammatory activity but retain attractive immunomodulatory properties. The lipid A analog monophosphoryl lipid A exhibits approximately 1/1,000th of the toxicity of native lipid A but retains potent immunoadjuvant activity. As such, monophosphoryl lipid A is currently used as an adjuvant in several human vaccine preparations. Because of the potency of lipid A analogs as immunoadjuvants, numerous laboratories are actively working to identify and develop new lipid A mimetics and to optimize their efficacy and safety. Based on those characteristics, lipid A analogs represent an attractive family of immunomodulators.
Collapse
Affiliation(s)
- Julia K Bohannon
- *Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; †Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas; and ‡School of Medicine, The University of Tennessee Health Science Center, Memphis; and §Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
9
|
Kubera M, Curzytek K, Duda W, Leskiewicz M, Basta-Kaim A, Budziszewska B, Roman A, Zajicova A, Holan V, Szczesny E, Lason W, Maes M. A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4 months. Brain Behav Immun 2013; 31:96-104. [PMID: 23313516 DOI: 10.1016/j.bbi.2013.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 02/07/2023] Open
Abstract
Chronic activation of immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways plays an important role in the pathophysiology of clinical depression. Increased IgA responses directed against LPS of gram-negative bacteria, indicating increased bacterial translocation, may be one of the drivers underpinning these pathways. There is a strong association between signs of bacterial translocation and chronicity of depression and O&NS, but not pro-inflammatory cytokines. The aims of the present study were to: (1) develop a new neurobehavioral model of (chronic) depression (anhedonic behavior) that may reflect chronic LPS stimulation and is associated with increased oxidative stress, and (2) to delineate the effects of fluoxetine on this new depression model. We established that in female mice repeated LPS injections once daily for 5 days (from 750 μg/kg to a maximal dose 1250 μg/kg; increasing doses for the first three days which were then gradually decreased on day 4 and 5) at a one-month interval and this repeated for 4 consecutive months induced chronic anhedonia (estimated by the preference to drink a 1% sucrose) lasting for at least 7 weeks. Chronic LPS administration significantly decreased thymus weight, proliferative activity of splenocytes, production of interferon (IFN)γ and interleukin-(IL)10, and increased superoxide and corticosterone production. Treatment with fluoxetine for 3 weeks abolished the neurobehavioral effects of LPS. The antidepressant effect of fluoxetine was accompanied by increased production of IL-10 and reduced superoxide and corticosterone production. Our results suggest that repeated intermittent LPS injections to female mice may be a useful model of chronic depression and in particular for the depressogenic effects of long standing activation of the toll-like receptor IV complex.
Collapse
Affiliation(s)
- Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 2013; 127:344-54. [PMID: 22900942 DOI: 10.1111/j.1600-0447.2012.01908.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Depression is accompanied by activation of immuno-inflammatory and oxidative and nitrosative stress (IO&NS) pathways, and increased IgM/IgA responses to lipopolysaccharide (LPS) of gram-negative commensal bacteria. The latter suggests that bacterial translocation has caused IgM/IgA responses directed against LPS. Bacterial translocation may drive IO&NS responses. METHOD To examine the associations between IgM/IgA responses to LPS and IO&NS measurements, including plasma/serum interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin, lysozyme, oxidized LDL (oxLDL) antibodies, peroxides, and IgM (auto)immune responses against malondialdehyde (MDA), azelaic acid, phophatidyl inositol (Pi), NO-tryptophan and NO-tyrosine in depressed patients and controls. RESULTS We found significant positive associations between IgM/IgA responses to LPS and oxLDL antibodies, IgM responses against MDA, azelaic acid, Pi, NO-tryptophan, and NO-tyrosine. The IgA responses to LPS were correlated with lysozyme. There were no significant positive correlations between the IgM/IgA responses to LPS and IL-1 and neopterin. CONCLUSION The findings show that in depression there is an association between increased bacterial translocation and lysozyme production, an antibacterial compound, O&NS processes, and autoimmune responses directed against O&NS generated neoantigenic determinants. It is suggested that bacterial translocation may drive IO&NS pathways in depression and thus play a role in its pathophysiology.
Collapse
Affiliation(s)
- M Maes
- Maes Clinics @ Tria, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
11
|
Kanaan Z, Barnett R, Gardner S, Keskey B, Druen D, Billeter A, Cheadle WG. Differential microRNA (miRNA) expression could explain microbial tolerance in a novel chronic peritonitis model. Innate Immun 2012; 19:203-12. [PMID: 23060456 DOI: 10.1177/1753425912460557] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We observed persistent peritoneal bacteria despite a transient early innate immune response to intraperitoneal (IP) Klebsiella pneumoniae. Pretreatment with LPS prior to peritonitis induced a tolerant pattern of pro-inflammatory cytokine protein production over 72 h, but not at the mRNA level. MicroRNAs (miRNAs) regulate inflammatory cytokines and may explain this paradox. After pretreatment with IP LPS or saline, C57BL/6 mice were given 10(3) CFU of K. pneumoniae IP. Total RNA was isolated from peritoneal exudate cells (4 h, 24 h and 48 h following infection). mRNA and miRNA expression levels were detected and bioinformatics pathway analysis was performed, followed by measuring TNF-α, IL-1β, IL-6 and High-mobility Group Box 1 (HMBG1) protein levels. Of 88 miRNAs studied, 30 were significantly dysregulated at all time points in the LPS-pretreated group, including MiR-155, -146a, -142-3p, -299, and -200c -132 and -21. TNF-α, regulated by miR-155 and miR-146a, was decreased in the LPS-pretreated group at all time points (P < 0.05), as were HMGB1, a key alarmin regulated by miR-146, -142-3p, -299 and -200c (P < 0.05), and IL-1β and IL-6, both regulated by miR-132and miR-21 respectively (P < 0.05). Specific dysregulation of miR-155, -146a, -142-3p, -299, and -200c -132 and -21 with their corresponding effects on the TLR and NF-κB signaling pathways during inflammation, suggests a plausible mechanism for tolerance in this novel chronic model with persistent peritoneal infection.
Collapse
Affiliation(s)
- Ziad Kanaan
- Department of Internal Medicine, Wayne State University, School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Macrophage Genetic Reprogramming During Chronic Peritonitis is Augmented by LPS Pretreatment. J Surg Res 2012; 175:289-97. [DOI: 10.1016/j.jss.2011.04.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 11/18/2022]
|
13
|
Pacheco-López G, Bermúdez-Rattoni F. Brain-immune interactions and the neural basis of disease-avoidant ingestive behaviour. Philos Trans R Soc Lond B Biol Sci 2011; 366:3389-405. [PMID: 22042916 PMCID: PMC3189354 DOI: 10.1098/rstb.2011.0061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuro-immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as 'sickness behaviour'. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Physiology and Behaviour Laboratory, ETH (Swiss Federal Institute of Technology)-Zurich, Schwerzenbach 8603, Switzerland
| | - Federico Bermúdez-Rattoni
- Neuroscience Division, Cellular Physiology Institute, UNAM (National University of Mexico), Mexico City 04510, Mexico
| |
Collapse
|
14
|
Zebeli Q, Sivaraman S, Dunn S, Ametaj B. Intermittent parenteral administration of endotoxin triggers metabolic and immunological alterations typically associated with displaced abomasum and retained placenta in periparturient dairy cows. J Dairy Sci 2011; 94:4968-83. [DOI: 10.3168/jds.2011-4194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022]
|
15
|
Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 2011; 8:388-403. [PMID: 21822296 DOI: 10.1038/cmi.2011.26] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Md A Nahid
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
16
|
Zhang J, Qu JM, He LX. IL-12 suppression, enhanced endocytosis and up-regulation of MHC-II and CD80 in dendritic cells during experimental endotoxin tolerance. Acta Pharmacol Sin 2009; 30:582-8. [PMID: 19349963 DOI: 10.1038/aps.2009.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM The aim of this study was to investigate endocytosis, MHC-II expression and co-stimulatory molecule expression, as well as interleukin-12 (IL-12) production, in bone marrow dendritic cells (DCs) derived from endotoxin tolerant mice. METHODS Endotoxin tolerance was induced in C57BL/10J mice through four consecutive daily intraperitoneal injections of 1.0 mg/kg of 055:B5 Escherichia coli lipopolysaccharide (LPS). Bone marrow DCs were isolated in the presence of GM-CSF and IL-4 and purified by anti-CD11c Micro beads. FITC-dextran uptake by DCs was tested by flow cytometric analysis and the percentage of dextran-containing cells was calculated using a fluorescence microscope. The expression of surface MHC-II, CD40, CD80, and CD86 was also detected by flow cytometric analysis. An ELISA was used for the measurement of IL-12 production by DCs with or without LPS stimulation. RESULTS Endotoxin tolerance was successfully induced in C57BL/10J mice, evidenced by an attenuated elevation of systemic TNF-alpha. DCs from endotoxin tolerant mice possessed enhanced dextran endocytosis ability. The expression of surface MHC-II and CD80 was higher in DCs from endotoxin tolerant mice than in DCs from control mice, whereas the expression of CD40 and CD86 was not altered. Compared with DCs from normal control mice, DCs from endotoxin tolerant mice produced less IL-12 after subsequent in vitro stimulation with LPS. CONCLUSION These data suggest enhanced endocytosis, selective up-regulation of MHC-II and CD80 and IL-12 suppression in DCs during in vivo induction of endotoxin tolerance.
Collapse
|
17
|
Scott MJ, Liu S, Shapiro RA, Vodovotz Y, Billiar TR. Endotoxin uptake in mouse liver is blocked by endotoxin pretreatment through a suppressor of cytokine signaling-1-dependent mechanism. Hepatology 2009; 49:1695-708. [PMID: 19296467 PMCID: PMC2677122 DOI: 10.1002/hep.22839] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The liver is the main organ that clears lipopolysaccharide (LPS) and hepatocytes are a major cell-type involved in LPS uptake. LPS tolerance, or desensitization, is important in negative regulation of responses to LPS, but little is known about its mechanisms in hepatocytes. Primary isolated C57BL/6 hepatocytes, and liver in vivo, internalized fluorescent LPS, and this was dependent on Toll-like receptor 4 (TLR4) at the cell surface but not on TLR4-TIR signaling through MyD88. LPS clearance from plasma was also TLR4-dependent. Pretreatment of C57BL/6 hepatocytes with LPS prevented uptake of LPS 24 hours later and this LPS-mediated suppression was dependent on TLR4 signaling through MyD88. Many regulators of TLR4 signaling have been identified and implicated in LPS desensitization, including suppressor of cytokine signaling 1 (SOCS1). SOCS1 mRNA and protein expression increased after LPS stimulation in hepatocytes and in whole liver. LPS uptake in hepatocytes and liver was significantly reduced following infection with adenoviral vectors overexpressing SOCS1. Similarly, inhibition of SOCS1 using small interfering (si)RNA-mediated knockdown prevented LPS desensitization in hepatocytes. SOCS1 is known to interact with Toll/IL-1 receptor associated protein (TIRAP) and cause TIRAP ubiquitination and degradation, which regulates TLR signaling. We have also shown previously that TIRAP regulates LPS uptake in hepatocytes. SOCS1 coimmunoprecipitated with TIRAP in wild type hepatocyte cell lysates up to 8 hours after LPS stimulation, but not at later times. In the same samples, ubiquitinated TIRAP was detected after 4 hours and up to 8 hours after LPS stimulation, but not at later times. CONCLUSION These data indicate hepatocytes are desensitized by LPS in a TLR4 signaling-dependent manner. LPS-induced SOCS1 upregulation increases degradation of TIRAP and prevents subsequent LPS uptake. The exploitation of these mechanisms of LPS desensitization in the liver may be important in future sepsis therapies.
Collapse
Affiliation(s)
- Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
18
|
Lenz AM, Turina M, Alard P, Gardner SA, Cheadle WG. Microbial tolerance in secondary peritonitis is dose dependent. Cell Immunol 2009; 258:98-106. [DOI: 10.1016/j.cellimm.2009.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/20/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
|
19
|
Wheeler DS, Lahni PM, Denenberg AG, Poynter SE, Wong HR, Cook JA, Zingarelli B. Induction of endotoxin tolerance enhances bacterial clearance and survival in murine polymicrobial sepsis. Shock 2008; 30:267-73. [PMID: 18197145 PMCID: PMC2754132 DOI: 10.1097/shk.0b013e318162c190] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fundamental mechanisms that underlie endotoxin tolerance remain to be elucidated, and the clinical significance of endotoxin tolerance in the context of active systemic infection remains in question. We hypothesized that the endotoxin tolerance phenotype would result in decreased inflammation at the expense of altered bacterial clearance and, thus, higher mortality in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Endotoxin tolerance was induced in C57Bl/6 mice with 5 mg/kg LPS or vehicle 18 h before subsequent CLP. Lung tissue, peritoneal fluid, and blood were collected at 1, 3, 6, and 18 h after surgery for subsequent analysis. Peritoneal macrophages were isolated for ex vivo phagocytosis assay. In separate experiments, mice were allowed to recover, and survival was monitored for 7 days. Endotoxin tolerance attenuated plasma TNF-alpha and IL-6 at 6 h after CLP. Peritoneal fluid cytokines were significantly attenuated as well. Endotoxin tolerance significantly improved bacterial clearance in both blood and peritoneal fluid after CLP. Similarly, ex vivo phagocytosis by primary peritoneal macrophages and RAW264.7 murine peritoneal macrophages was significantly improved after induction of the endotoxin tolerance phenotype. Contrary to our original hypothesis, we conclude that endotoxin tolerance significantly attenuates the host inflammatory response, augments bacterial clearance, and improves survival in this murine model of polymicrobial sepsis.
Collapse
Affiliation(s)
- Derek S Wheeler
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The course of every infection is different. The same pathogen can lead to subclinical, mild, severe or lethal infections in individuals. But is this just chance or determined by individual differences--on the side of the host as well as on the side of the pathogen? If so, we might need to consider these variations for treatment decisions. Indeed, we now understand that genetic polymorphisms and health status represent inborn and acquired risk factors. Similarly, pathogens impress with an increasing number of already identified virulence factors and host response modifiers. The emerging, more complex, view of the factors determining course and outcome of infections promises to enable more tailored and thus, hopefully, more effective treatment decisions.
Collapse
Affiliation(s)
- Corinna Hermann
- Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
21
|
Pacheco-Lopez G, Niemi MB, Engler H, Engler A, Riether C, Doenlen R, Espinosa E, Oberbeck R, Schedlowski M. Weakened [corrected] taste-LPS association during endotoxin tolerance. Physiol Behav 2007; 93:261-6. [PMID: 17920645 DOI: 10.1016/j.physbeh.2007.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/25/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
In naive individuals, the administration of bacterial lipopolysaccharide (LPS) provokes a rapid systemic increase in pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, inducing an acute phase response including sickness behavior. Strong associative learning occurs when relevant gustatory/olfactory stimuli precede the activation of the immune system, affecting long-term individual food selection and nutritional strategies. Repeated LPS administration results in the development of an endotoxin tolerance status, characterized by a drastic reduction in the LPS-induced cytokine response. Here we investigated how the postprandial categorization of a relevant taste (0.2% saccharin) changed after administration of a high dose of LPS (0.5 mg/kg i.p.) in LPS-tolerant animals. Determination of the consummatory fluid intake revealed that, in contrast to LPS-naive rats, taste-LPS association did not occur during endotoxin tolerance. Ninety minutes after the single association trial, the plasma responses of TNF-alpha, IL-1beta and IL-6 were completely blunted in LPS-tolerant animals, which also resulted in low LPS-adipsogenic and LPS-anorexic effects. These findings indicate that an identical immune challenge can result in completely different neuro-behavioral consequences depending on the immune history of the individual, thus revealing part of the complex interconnection between the immune and neuro-endocrine systems in regulating food selection and consumption during the infectious process.
Collapse
Affiliation(s)
- G Pacheco-Lopez
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cuschieri J, Billigren J, Maier RV. Endotoxin tolerance attenuates LPS-induced TLR4 mobilization to lipid rafts: a condition reversed by PKC activation. J Leukoc Biol 2006; 80:1289-97. [PMID: 16959900 DOI: 10.1189/jlb.0106053] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endotoxin tolerance is characterized by attenuated macrophage activation to subsequent LPS challenge and can be reversed through nonspecific protein kinase C (PKC) activation, and activation by LPS within naïve cells requires the activation of the cell surface receptors CD14 and TLR4 on lipid rafts. The effect of PKC activation and endotoxin tolerance on lipid raft receptor complex assembly is unknown and the focus of this study. Tolerance was induced in THP-1 cells through LPS pre-exposure. Naïve and tolerant cells were stimulated with LPS, with or without PMA pretreatment to activate PKC. TLR4 surface expression and LPS binding were determined by flow cytometry and immunohistochemistry. Cellular and lipid raft protein was analyzed for the presence and activation of the TLR4 complex components. Harvested supernatants were examined for TNF-alpha production. Total TLR4 surface expression and LPS binding were not affected by tolerance induction. LPS stimulation of naïve cells resulted in TLR4 and heat shock protein (HSP)70 lipid raft mobilization, MAPK activation, and TNF-alpha production. LPS stimulation of tolerant cells was associated with attenuation of all of these cellular events. Although PKC activation by PMA had no effect on naïve cells, it did result in reversal in tolerance-induced suppression of TLR4 and HSP70 lipid raft mobilization, MAPK activation, and TNF-alpha production. In addition, the effects associated with PMA were reversed with exposure to a myristoylated PKC-zeta pseudosubstrate. Thus, endotoxin tolerance appears to be induced through attenuated TLR4 formation following LPS stimulation. This complex formation appears to be PKC-dependent, and restoration of PKC activity reverses tolerance.
Collapse
Affiliation(s)
- Joseph Cuschieri
- University of Washington, Harborview Medical Center, 325 9th Avenue, Box 359796, Seattle, WA 98104, USA.
| | | | | |
Collapse
|
23
|
Cagiola M, Giulio S, Miriam M, Katia F, Paola P, Macrì A, Pasquali P. In vitro down regulation of proinflammatory cytokines induced by LPS tolerance in pig CD14+ cells. Vet Immunol Immunopathol 2006; 112:316-20. [PMID: 16740319 DOI: 10.1016/j.vetimm.2006.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
LPS tolerance is characterized by a reduced sensitivity to subsequent challenge of LPS. In human and mouse models LPS tolerance is closely associated with marked unbalanced production of leukocyte-derived inflammatory mediators which, when overexpressed, led to septic syndrome and shock. Here we characterized the in vitro induction of LPS tolerance in porcine CD14+ spleen cells in order to give insights into LPS tolerance in pigs. Following LPS stimulation, TNF-alpha and, to a minor extent, IL-8 production showed a significant reduction in CD14+ spleen monocytes that were pretreated with LPS in comparison to naïve cells, while IL-1beta production was slightly influenced by LPS stimulation and it was not affected by subsequent LPS challenge. Our findings showed that porcine CD14+ cells undergo a process, which resembles LPS tolerance, providing evidence that swine represent a valuable and useful model to perform experiments to study LPS tolerance and its biological significance.
Collapse
Affiliation(s)
- Monica Cagiola
- Istituto Zooprofilattico dell'Umbria e delle Marche, Via Salvemini 1, 006100 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Varma TK, Durham M, Murphey ED, Cui W, Huang Z, Lin CY, Toliver-Kinsky T, Sherwood ER. Endotoxin priming improves clearance of Pseudomonas aeruginosa in wild-type and interleukin-10 knockout mice. Infect Immun 2005; 73:7340-7. [PMID: 16239532 PMCID: PMC1273831 DOI: 10.1128/iai.73.11.7340-7347.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxin (lipopolysaccharide [LPS]) tolerance is an altered state of immunity caused by prior exposure to LPS, in which production of many cytokines, including gamma interferon (IFN-gamma) and interleukin-12 (IL-12), are reduced but secretion of the anti-inflammatory cytokine IL-10 is increased in response to a subsequent LPS challenge. This pattern of cytokine production is also characteristic of postinflammatory immunosuppression. Therefore, we hypothesized that LPS-primed mice would exhibit an impaired ability to respond to systemic infection with the opportunistic pathogen Pseudomonas aeruginosa. We further hypothesized that depletion of IL-10 would reverse the endotoxin-tolerant state. To test this hypothesis, systemic clearance of Pseudomonas aeruginosa was measured for LPS-primed wild-type and IL-10-deficient mice. LPS-primed wild-type mice exhibited significant suppression of LPS-induced IFN-gamma and IL-12 but increased IL-10 production in blood and spleen compared to levels exhibited by saline-primed wild-type mice. The suppressed production of IFN-gamma and IL-12 caused by LPS priming was ablated in the spleens, but not blood, of IL-10 knockout mice. LPS-primed wild-type mice cleared Pseudomonas aeruginosa from lungs and blood more effectively than saline-primed mice. LPS-primed IL-10-deficient mice were particularly efficient in clearing Pseudomonas aeruginosa after systemic challenge. These studies show that induction of LPS tolerance enhanced systemic clearance of Pseudomonas aeruginosa and that this effect was augmented by neutralization of IL-10.
Collapse
Affiliation(s)
- Tushar K Varma
- Department of Anesthesiology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77550-5050, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dalpke AH, Lehner MD, Hartung T, Heeg K. Differential effects of CpG-DNA in Toll-like receptor-2/-4/-9 tolerance and cross-tolerance. Immunology 2005; 116:203-12. [PMID: 16162269 PMCID: PMC1817820 DOI: 10.1111/j.1365-2567.2005.02211.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) tolerance is a state of refractoriness towards a second stimulation by LPS after a preceding stimulation. LPS is recognized by Toll-like receptor-4 (TLR-4), which belongs to a group of pattern recognition receptors mediating activation of innate immunity by microbial components. To date, it is not known in detail to what extent other TLR-dependent stimuli also induce tolerance and whether preceding and challenging stimuli are interchangeable. We have examined tolerance induction in detail for lipoteichoic acid (LTA), LPS and CpG-DNA, which are recognized by TLR-2, -4 and -9, respectively. In RAW264.7 macrophages, all three stimuli induced tolerance towards a subsequent challenge with the same stimulus used for priming, as well as cross-tolerance towards subsequent challenge with other stimuli signalling via different TLRs. However, whereas LPS/LTA cross-tolerance was also functional in an in vivo model of galactosamine (GalN)-primed liver damage, pretreatment with CpG only protected against GalN/CpG challenge and failed to induce cross-tolerance for LPS and LTA. CpG-DNA pretreatment even enhanced tumour necrosis factor (TNF)-alpha production and liver damage upon subsequent challenge with LPS or LTA. Stimulation with CpG-DNA resulted in a peculiar sensitization for interferon (IFN)-gamma secretion. The data indicate that, in contrast to in vitro macrophage desensitization, the in vivo consequences of repeated TLR stimulation greatly differ amongst different TLR ligands.
Collapse
Affiliation(s)
- Alexander H Dalpke
- Institute of Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|
26
|
Elsasser TH, Blum JW, Kahl S. Characterization of calves exhibiting a novel inheritable TNF-α hyperresponsiveness to endotoxin: associations with increased pathophysiological complications. J Appl Physiol (1985) 2005; 98:2045-55. [PMID: 15661839 DOI: 10.1152/japplphysiol.01050.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A subpopulation of calves, herein termed “hyperresponders” (HPR), was identified and defined by the patterns of plasma TNF-α concentrations that developed following two challenges with endotoxin (LPS, 0.8 μg Escherichia coli 055:B5 LPS/kg0.75live body wt) separated by 5 days. The principle characteristic of HPR calves was a failure to develop tolerance to repeated LPS challenge that was evident in the magnitude of the TNF-α concentrations and prolonged severity of pathological sequellae. Whereas calves failing to develop LPS tolerance were identified on the basis of their excessive in vivo plasma TNF-α concentration responses, in vitro TNF-α responses of peripheral blood mononuclear cells isolated from each calf and challenged with LPS or PMA did not correlate or predict the magnitude of in vivo plasma TNF response of the calf. Intentional breeding to obtain calves from bulls and/or cows documented as HPR resulted in offspring displaying the HPR character when similar progeny calves were tested with LPS in vivo, with extensive controls in place to account for sources of variability in the general TNF-α response to LPS that might compromise interpretation of the data. Feed intake, clinical serology and hematology profiles, and acute-phase protein responses of HPR calves following LPS were significantly different from those of calves displaying tolerance. These results suggest that the pattern of plasma TNF-α changes that evolve from a low-level double LPS challenge effectively reveal the presence of a genetic potential for animals to display excessive or prolonged pathological response to LPS-related stress and compromised prognosis for recovery.
Collapse
Affiliation(s)
- T H Elsasser
- Growth Biology Laboratory, US Department of Agriculture, Agricultural Research Service, B-200, Rm. 201, B.A.R.C.-east, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
27
|
Vallès A, Martí O, Armario A. Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study. J Neurochem 2005; 93:1177-88. [PMID: 15934938 DOI: 10.1111/j.1471-4159.2005.03100.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently found that a single endotoxin administration to rats reduced the hypothalamic-pituitary-adrenal response to another endotoxin administration 4 weeks later, which may be an example of the well-known phenomenon of endotoxin tolerance. However, the time elapsed between the two doses of endotoxin was long enough to consider the above results as an example of late tolerance, whose mechanisms are poorly characterized. To know if the brain plays a role in this phenomenon and to characterize the putative areas involved, we compared the c-fos mRNA response after a final dose of endotoxin in animals given vehicle or endotoxin 4 weeks before. Endotoxin caused a widespread induction of c-fos mRNA in the brain, similar to that previously reported by other laboratories. Whereas most of the brain areas were not sensitive to the previous experience with endotoxin, a few showed a reduced response in endotoxin-pretreated rats: the parvocellular and magnocellular regions of the paraventricular hypothalamic nucleus, the central amygdala, the lateral division of the bed nucleus and the locus coeruleus. We hypothesize that late tolerance to endotoxin may involve plastic changes in the brain, likely to be located in the central amygdala. The reduced activation of the central amygdala in rats previously treated with endotoxin may, in turn, reduce the activation of other brain areas, including the hypothalamic paraventicular nucleus.
Collapse
Affiliation(s)
- Astrid Vallès
- Departament de Biologia Cel.lular, de Fisiologia i d'Immunologia, Unitat de Fisiologia Animal, Facultat de Ciències and Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Deiters U, Gumenscheimer M, Galanos C, Mühlradt PF. Toll-like receptor 2- and 6-mediated stimulation by macrophage-activating lipopeptide 2 induces lipopolysaccharide (LPS) cross tolerance in mice, which results in protection from tumor necrosis factor alpha but in only partial protection from lethal LPS doses. Infect Immun 2003; 71:4456-62. [PMID: 12874325 PMCID: PMC166003 DOI: 10.1128/iai.71.8.4456-4462.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients or experimental animals previously exposed to lipopolysaccharide (LPS) become tolerant to further LPS challenge. We investigated the potential of the macrophage-activating lipopeptide 2 (MALP-2) to induce in vivo cross tolerance to tumor necrosis factor alpha (TNF-alpha) and LPS. MALP-2-induced tolerance could be of practical interest, as MALP-2 proved much less pyrogenic in rabbits than LPS. Whereas LPS signals via Toll-like receptor 4 (TLR4), MALP-2 uses TLR2 and TLR6. LPS-mediated cytokine release was studied in mice pretreated with intraperitoneal injections of MALP-2. No biologically active TNF-alpha could be detected in the serum of MALP-2-treated animals when challenged with LPS 24 or 72 h later, whereas suppression of LPS-dependent interleukin (IL)-6 lasted for only 24 h. Protection from lethal TNF-alpha shock was studied in galactosamine-treated mice. Dose dependently, MALP-2 prevented death from lethal TNF-alpha doses in TLR4(-/-) but not in TLR2(-/-) mice, with protection lasting from 5 to 24 h. To assay protection from LPS, mice were pretreated with MALP-2 doses of up to 10 micro g. Five and 24 h later, the animals were simultaneously sensitized and challenged by intravenous coinjection of galactosamine and a lethal dose of 50 ng of LPS. There was only limited protection (four of seven mice survived) when mice were challenged 5 h after MALP-2 pretreatment, and no protection when mice were challenged at later times. The high effectiveness of MALP-2 in suppressing TNF-alpha, the known ways of biological inactivation, and low pyrogenicity make MALP-2 a potential candidate for clinical use.
Collapse
Affiliation(s)
- Ursula Deiters
- Department of Experimental Immunology, German Research Centre for Biotechnology, Immunobiology Research Group, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
29
|
Diterich I, Rauter C, Kirschning CJ, Hartung T. Borrelia burgdorferi-induced tolerance as a model of persistence via immunosuppression. Infect Immun 2003; 71:3979-87. [PMID: 12819085 PMCID: PMC162029 DOI: 10.1128/iai.71.7.3979-3987.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
If left untreated, infection with Borrelia burgdorferi sensu lato may lead to chronic Lyme borreliosis. It is still unknown how this pathogen manages to persist in the host in the presence of competent immune cells. It was recently reported that Borrelia suppresses the host's immune response, thus perhaps preventing the elimination of the pathogen (I. Diterich, L. Härter, D. Hassler, A. Wendel, and T. Hartung, Infect. Immun. 69:687-694, 2001). Here, we further characterize Borrelia-induced immunomodulation in order to develop a model of this anergy. We observed that the different Borrelia preparations that we tested, i.e., live, heat-inactivated, and sonicated Borrelia, could desensitize human blood monocytes, as shown by attenuated cytokine release upon restimulation with any of the different preparations. Next, we investigated whether these Borrelia-specific stimuli render monocytes tolerant, i.e. hyporesponsive, towards another Toll-like receptor 2 (TLR2) agonist, such as lipoteichoic acid from gram-positive bacteria, or towards the TLR4 agonist lipopolysaccharide. Cross-tolerance towards all tested stimuli was induced. Furthermore, using primary bone marrow cells from TLR2-deficient mice and from mice with a nonfunctional TLR4 (strain C3H/HeJ), we demonstrated that the TLR2 was required for tolerance induction by Borrelia, and using neutralizing antibodies, we identified interleukin-10 as the key mediator involved. Although peripheral blood mononuclear cells tolerized by Borrelia exhibited reduced TLR2 and TLR4 mRNA levels, the expression of the respective proteins on monocytes was not decreased, ruling out the possibility that tolerance to Borrelia is attributed to a reduced TLR2 expression. In summary, we characterized tolerance induced by B. burgdorferi, describing a model of desensitization which might mirror the immunosuppression recently attributed to the persistence of Borrelia in immunocompetent hosts.
Collapse
Affiliation(s)
- Isabel Diterich
- Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | |
Collapse
|
30
|
Ruckdeschel K, Richter K. Lipopolysaccharide desensitization of macrophages provides protection against Yersinia enterocolitica-induced apoptosis. Infect Immun 2002; 70:5259-64. [PMID: 12183578 PMCID: PMC128233 DOI: 10.1128/iai.70.9.5259-5264.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pathogenic Yersinia spp. uncouple an array of signal transduction pathways in macrophages to disrupt their response to infection. This compels the macrophage to undergo apoptosis. Our study shows that macrophages that had acquired tolerance to Yersinia infection by preexposure to lipopolysaccharide were considerably protected against Y. enterocolitica-induced apoptosis. The desensitization of macrophages by lipopolysaccharide, which is thought to be a self-protective, adaptive response to sustained bacterial stimulation, may represent an immune mechanism that aids in overcoming Yersinia-mediated apoptosis and infection.
Collapse
Affiliation(s)
- Klaus Ruckdeschel
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, 80336 Munich, Germany.
| | | |
Collapse
|