1
|
Carter MJ, Bogdanov YD, Smith RC, Cox KL, Frampton S, Ferson L, Foxall RB, Hussain K, Strefford JC, Beers SA, Cragg MS. The ETS-family transcription factor PU.1 is a critical regulator of the inhibitory Fcγ receptor IIB expression in humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf109. [PMID: 40420414 DOI: 10.1093/jimmun/vkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/10/2025] [Indexed: 05/28/2025]
Abstract
The inhibitory Fc gamma receptor IIB (FcγRIIB) is a critical determinant of humoral immunity. By providing feedback inhibition, through inhibitory signalling or competition for antibody Fc engagement, it counterbalances and contextualises cellular responses to signals emanating from co-ligated activating receptors, such as the B-cell receptor and activating FcγR. These activities collectively suppress the emergence of B- cell-mediated autoimmune disease and immune complex-mediated pathologies. However, FcγRIIB upregulation within the tumour microenvironment limits the efficacy of monoclonal antibody (mAb)-mediated immunotherapy of cancer. While the functional significance of FcγRIIB is well established in mice, its physiological roles and the regulatory mechanisms governing its expression remain incompletely understood in humans. Here we characterise the molecular determinants of FcγRIIB expression in human immune models and primary cells. Our findings reveal that the ETS-family transcription factor PU.1 plays a crucial role in regulating basal and inducible FcγRIIB expression. Moreover, when co-expressed, PU.1 co-operates with the related ETS-family member SPIB to drive FcγRIIB expression. PU.1 binding to the proximal FcγRIIB promoter elicits transcription, at least in part, through recruitment of the CBP/p300 transcriptional co-activators. Interestingly, similar mechanisms are also observed at the proximal promoters of the activating FcγRI and FcγRIIA, suggesting that additional, potentially lineage specific, factors cooperate with PU.1 to drive the distinct expression patterns of these FcγR. These insights pave the way for future investigations aimed at understanding the molecular mechanisms responsible for cell lineage-specific FcγR expression and subsequently manipulating them for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew J Carter
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Yury D Bogdanov
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Rosanna C Smith
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Kerry L Cox
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Sarah Frampton
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Lili Ferson
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Russel B Foxall
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Khiyam Hussain
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Jonathan C Strefford
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Cancer Genomics Group, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Stephen A Beers
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mark S Cragg
- Antibody & Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Lim CS, Gu JK, Ma Q. The ETS domain-containing hematopoietic transcription factor PU.1 mediates the induction of arachidonate 5-lipoxygenase by multi-walled carbon nanotubes in macrophages in vitro. Arch Toxicol 2025; 99:597-610. [PMID: 39688681 PMCID: PMC11852812 DOI: 10.1007/s00204-024-03925-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Exposure to fibrogenic multi-walled carbon nanotubes (MWCNTs) induces the production of proinflammatory lipid mediators (LMs) in myeloid cells to instigate inflammation. The molecular underpinnings of LM production in nanotoxicity remain unclear. Here we report that PU.1, an ETS domain-containing master regulator of hematopoiesis, critically regulates the induction of arachidonate 5-lypoxygenase (Alox5) and the production of LMs. MWCNTs (Mitsui-7) at 2.5 or 10 µg/mL induced the expression of Alox5 in murine and human macrophages at both mRNA and protein levels, accompanied by marked elevation of chemotactic LM leukotriene B4 (LTB4). Induction is comparable to those by potent M1 inducers. Carbon black, an amorphous carbon material control, did not increase Alox5 expression or LTB4 production at equivalent doses. MWCNTs induced the expression of a heterologous luciferase reporter under the control of the murine Alox5 promoter. Deletional analysis of the 2 kb promoter uncovered multiple inhibitory and activating activities. The proximal 250 bp region had the largest activation that was further increased by MWCNTs. The Alox5 promoter contains four PU box-like enhancers. PU.1 bond to each of the enhancers constitutively, which was further increased by MWCNTs. Knockdown of PU.1 using specific small hairpin-RNA blocked the basal and induced expression of Alox5 and the production of LTB4 as well as prostaglandin E2. The results demonstrate a critical role of PU.1 in mediating MWCNTs-induced expression of Alox5 and production of proinflammatory LMs, revealing a molecular framework where the hematopoietic transcription factor PU.1 is activated to orchestrate multiple proinflammatory responses to sterile particulates.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Ja Kook Gu
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA.
| |
Collapse
|
3
|
Wang T, Wang J, Sun T, Zhang R, Li Y, Hu T. PU.1 regulates osteoarthritis progression via CSF1R in synovial cells. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167525. [PMID: 39313038 DOI: 10.1016/j.bbadis.2024.167525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
This study elucidates the molecular mechanisms driving osteoarthritis (OA) by focusing on the transcription factor PU.1's role in synovial cells, specifically macrophages and fibroblast-like synoviocytes (FLS). Analyzing OA-related synovial gene expression from the GEO database highlighted immune regulation pathways in OA. Using protein-protein interaction and the JASPAR database, we pinpointed essential genes in OA development. Synovial tissues from OA patients and controls revealed pronounced PU.1 and its target CSF1R presence. In a surgically induced OA mouse model with PU.1 and CSF1R knockdown, ChIP assays confirmed PU.1's binding to the CSF1R promoter. Dual luciferase reporter assays and immunohistochemistry validated PU.1's regulatory impact on CSF1R transcription. Combined analysis of microarrays GSE55235 and GSE206848 showed heightened PU.1 expression in OA, associated with immune regulation in macrophages. In vitro findings aligned with in vivo results, emphasizing PU.1's influence on macrophage polarization and FLS-induced inflammation. PU.1's direct activation of CSF1R transcription underpins its key role in OA progression. This research offers insights into OA's molecular basis, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Gerontology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Jiakai Wang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Tao Sun
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Rong Zhang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China
| | - Yishuo Li
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Tianyu Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
4
|
Tu J, Chen W, Huang W, Wang X, Fang Y, Wu X, Zhang H, Liu C, Tan X, Zhu X, Wang H, Han D, Chen Y, Wang A, Zhou Y, Xue Z, Xue H, Yan S, Zhang L, Li Z, Yang C, Deng Y, Zhang S, Zhu C, Wei W. Positive feedback loop PU.1-IL9 in Th9 promotes rheumatoid arthritis development. Ann Rheum Dis 2024; 83:1707-1721. [PMID: 39164066 PMCID: PMC11672030 DOI: 10.1136/ard-2024-226067] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVES T helper 9 (Th9) cells are recognised for their characteristic expression of the transcription factor PU.1 and production of interleukin-9 (IL-9), which has been implicated in various autoimmune diseases. However, its precise relationship with rheumatoid arthritis (RA) pathogenesis needs to be further clarified. METHODS The expression levels of PU.1 and IL-9 in patients with RA were determined by ELISA, western blotting (WB) and immunohistochemical staining. PU.1-T cell-conditional knockout (KO) mice, IL-9 KO and IL-9R KO mice were used to establish collagen antibody-induced arthritis (CAIA), respectively. The inhibitor of PU.1 and IL-9 blocking antibody was used in collagen-induced arthritis (CIA). In an in vitro study, the effects of IL-9 were investigated using siRNAs and IL-9 recombinant proteins. Finally, the underlying mechanisms were further investigated by luciferase reporter analysis, WB and Chip-qPCR. RESULTS The upregulation of IL-9 expression in patients with RA exhibited a positive correlation with clinical markers. Using CAIA and CIA model, we demonstrated that interventions targeting PU.1 and IL-9 substantially mitigated the inflammatory phenotype. Furthermore, in vitro assays provided the proinflammatory role of IL-9, particularly in the hyperactivation of macrophages and fibroblast-like synoviocytes. Mechanistically, we uncovered that PU.1 and IL-9 form a positive feedback loop in RA: (1) PU.1 directly binds to the IL-9 promoter, activating its transcription and (2) Th9-derived IL-9 induces PU.1 via the IL-9R-JAK1/STAT3 pathway. CONCLUSIONS These results support that the PU.1-IL-9 axis forms a positive loop in Th9 dysregulation of RA. Targeting this signalling axis presents a potential target approach for treating RA.
Collapse
MESH Headings
- Interleukin-9/metabolism
- Interleukin-9/genetics
- Interleukin-9/immunology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/immunology
- Animals
- Trans-Activators/genetics
- Humans
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Mice, Knockout
- Mice
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Feedback, Physiological
- T-Lymphocytes, Helper-Inducer/immunology
- Male
- Female
- Up-Regulation
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinming Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Huiru Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Chong Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yizhao Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Anqi Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Zimeng Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Hui Xue
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Chunlan Yang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, China
| | - Shihao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
G C B, Hoyt LJ, Dovat S, Dong F. Upregulation of nuclear protein Hemgn by transcriptional repressor Gfi1 through repressing PU.1 contributes to the anti-apoptotic activity of Gfi1. J Biol Chem 2024; 300:107860. [PMID: 39374784 PMCID: PMC11550643 DOI: 10.1016/j.jbc.2024.107860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Gfi1 is a transcriptional repressor that plays a critical role in hematopoiesis. The repressive activity of Gfi1 is mediated mainly by its SNAG domain that interacts with and thereby recruits the histone demethylase LSD1 to its target genes. An important function of Gfi1 is to protect hematopoietic cells against stress-induced apoptosis, which has been attributed to its participation in the posttranscriptional modifications of p53 protein, leading to suppression of p53 activity. In this study, we show that Gfi1 upregulated the expression of Hemgn, a nuclear protein, through a 16-bp promoter region spanning from +47 to +63 bp relative to the transcription start site (TSS), which was dependent on its interaction with LSD1. We further demonstrate that Gfi1, Ikaros, and PU.1 are bound to this 16-bp region. However, while Ikaros activated Hemgn and collaborated with Gfi1 to augment Hemgn expression, it was not required for Gfi1-mediated Hemgn upregulation. In contrast, PU.1 repressed Hemgn and inhibited Hemgn upregulation by Gfi1. Notably, PU.1 knockdown and deficiency, while augmenting Hemgn expression, abolished Hemgn upregulation by Gfi1. PU.1 (Spi-1) is repressed by Gfi1. We show here that PU.1 repression by Gfi1 preceded and correlated well with Hemgn upregulation. Thus, our data strongly suggest that Gfi1 upregulates Hemgn by repressing PU.1. In addition, we demonstrate that Hemgn upregulation contributed to the anti-apoptotic activity of Gfi1 in a p53-independent manner.
Collapse
Affiliation(s)
- Binod G C
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Laney Jia Hoyt
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
6
|
Yang Y, Han X, Sun L, Shao F, Yin Y, Zhang W. ETS Transcription Factors in Immune Cells and Immune-Related Diseases. Int J Mol Sci 2024; 25:10004. [PMID: 39337492 PMCID: PMC11432452 DOI: 10.3390/ijms251810004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development, differentiation, and function of immune cells are precisely regulated by transcription factors. The E26 transformation-specific (ETS) transcription factor family is involved in various physiological and pathological processes by regulating cell proliferation, differentiation, and apoptosis. Emerging evidence has suggested that ETS family proteins are intimately involved in the development and function of immune cells. This review summarizes the role of the ETS family in immune cells and immune-related disorders. Seven transcription factors within the ETS family, including PU.1, ETV5, ETV6, ETS1/2, ELK3, and ELF1, play essential roles in the development and function of T cells, B cells, macrophages, neutrophils, and dendritic cells. Furthermore, they are involved in the occurrence and development of immune-related diseases, including tumors, allergies, autoimmune diseases, and arteriosclerosis. This review is conducive to a comprehensive overview of the role of the ETS family in immune cells, and thus is informative for the development of novel therapeutic strategies targeting the ETS family for immune-related diseases.
Collapse
Affiliation(s)
- Yaxu Yang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Xue Han
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Lijun Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| | - Fangyu Shao
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Yue Yin
- Department of Pharmacology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.H.); (F.S.)
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Y.); (L.S.)
| |
Collapse
|
7
|
Dobransky A, Root M, Hafner N, Marcum M, Sharifi HJ. CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X. Viruses 2024; 16:1313. [PMID: 39205287 PMCID: PMC11360348 DOI: 10.3390/v16081313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The Human Immunodeficiency Virus (HIV) encodes several proteins that contort the host cell environment to promote viral replication and spread. This is often accomplished through the hijacking of cellular ubiquitin ligases. These reprogrammed complexes initiate or enhance the ubiquitination of cellular proteins that may otherwise act to restrain viral replication. Ubiquitination of target proteins may alter protein function or initiate proteasome-dependent destruction. HIV Viral Protein R (Vpr) and the related HIV-2 Viral Protein X (Vpx), engage the CRL4-DCAF1 ubiquitin ligase complex to target numerous cellular proteins. In this review we describe the CRL4-DCAF1 ubiquitin ligase complex and its interactions with HIV Vpr and Vpx. We additionally summarize the cellular proteins targeted by this association as well as the observed or hypothesized impact on HIV.
Collapse
Affiliation(s)
| | | | | | | | - H. John Sharifi
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
8
|
Harrer DC, Eder M, Barden M, Pan H, Herr W, Abken H. Ectopic PU.1 Expression Provides Chimeric Antigen Receptor (CAR) T Cells with Innate Cell Capacities Including IFN-β Release. Cancers (Basel) 2024; 16:2737. [PMID: 39123467 PMCID: PMC11311516 DOI: 10.3390/cancers16152737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved extraordinary success in eliminating B cell malignancies; however, so far, it has shown limited efficacy in the treatment of solid tumors, which is thought to be due to insufficient CAR T cell activation. We hypothesized that the transcription factor PU.1, a master regulator of innate cell functionality, may augment pro-inflammatory CAR T cell activation. T cells were engineered with a CEA-specific CAR together with the constitutive expression of PU.1. CAR-redirected T cell activation was recorded for canonical functionality in vitro under conditions of prolonged repetitive antigen exposure. Ectopic PU.1 expression in CAR T cells upregulated the costimulatory receptors CD40, CD80, CD86, and CD70, which, unexpectedly, did not augment effector functions but hampered the upregulation of 4-1BB, decreased IL-2 production, reduced CAR T cell proliferation, and impaired their cytotoxic capacities. Under "stress" conditions of repetitive engagement of cognate tumor cells, CAR T cells with ectopic PU.1 showed reduced persistence, and finally failed to control the growth of cancer cells. Mechanistically, PU.1 caused CAR T cells to secrete IFN-β, a cytokine known to promote CAR T cell attrition and apoptosis. Collectively, PU.1 can polarize the functional capacities of CAR T cells towards innate cells.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Matthias Eder
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| | - Wolfgang Herr
- Department of Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division of Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany; (M.E.); (M.B.); (H.P.); (H.A.)
| |
Collapse
|
9
|
Sangeeta, Mishra SK, Bhattacherjee A. Role of Shape Deformation of DNA-Binding Sites in Regulating the Efficiency and Specificity in Their Recognition by DNA-Binding Proteins. JACS AU 2024; 4:2640-2655. [PMID: 39055163 PMCID: PMC11267559 DOI: 10.1021/jacsau.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Accurate transcription of genetic information is crucial, involving precise recognition of the binding motifs by DNA-binding proteins. While some proteins rely on short-range hydrophobic and hydrogen bonding interactions at binding sites, others employ a DNA shape readout mechanism for specific recognition. In this mechanism, variations in DNA shape at the binding motif resulted from either inherent flexibility or binding of proteins at adjacent sites are sensed and capitalized by the searching proteins to locate them specifically. Through extensive computer simulations, we investigate both scenarios to uncover the underlying mechanism and origin of specificity in the DNA shape readout mechanism. Our findings reveal that deformation in shape at the binding motif creates an entropy funnel, allowing information about altered shapes to manifest as fluctuations in minor groove widths. This signal enhances the efficiency of nonspecific search of nearby proteins by directing their movement toward the binding site, primarily driven by a gain in entropy. We propose this as a generic mechanism for DNA shape readout, where specificity arises from the alignment between the molecular frustration of the searching protein and the ruggedness of the entropic funnel governed by molecular features of the protein and arrangement of the DNA bases at the binding site, respectively.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujeet Kumar Mishra
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. Nat Commun 2024; 15:5514. [PMID: 38951492 PMCID: PMC11217462 DOI: 10.1038/s41467-024-49635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
Affiliation(s)
- Maria C Virgilio
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barkha Ramnani
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - W Miguel Disbennett
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Post-Baccalaureate Research Education Program (PREP), University of Michigan, Ann Arbor, MI, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Lubow
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- ImmunoVec, Inc., Los Angeles, CA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA
| | - Kathleen L Collins
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Halasz H, Malekos E, Covarrubias S, Yitiz S, Montano C, Sudek L, Katzman S, Liu SJ, Horlbeck MA, Namvar L, Weissman JS, Carpenter S. CRISPRi screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation and inflammatory signaling. Proc Natl Acad Sci U S A 2024; 121:e2322524121. [PMID: 38781216 PMCID: PMC11145268 DOI: 10.1073/pnas.2322524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation. We successfully identified numerous noncoding and protein-coding genes that can positively or negatively regulate inflammation and differentiation. To understand the functional roles of lncRNAs in both processes, we chose to further study the lncRNA LOUP [lncRNA originating from upstream regulatory element of SPI1 (also known as PU.1)], as it emerged as a top hit in both screens. Not only does LOUP regulate its neighboring gene, the myeloid fate-determining factor SPI1, thereby affecting monocyte to macrophage differentiation, but knockdown of LOUP leads to a broad upregulation of NFkB-targeted genes at baseline and upon TLR4-NFkB activation. LOUP also harbors three small open reading frames capable of being translated and are responsible for LOUP's ability to negatively regulate TLR4/NFkB signaling. This work emphasizes the value of high-throughput screening to rapidly identify functional lncRNAs in the innate immune system.
Collapse
Affiliation(s)
- Haley Halasz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Eric Malekos
- Department of Biomolecular Engineering, University of California Santa Cruz, CA95064
| | - Sergio Covarrubias
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Samira Yitiz
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Christy Montano
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Lisa Sudek
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Sol Katzman
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - S. John Liu
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
| | - Max A. Horlbeck
- Department of Radiation Oncology, University of California, San Francisco, CA94158
- Department of Neurological Surgery, University of California, San Francisco, CA94158
- Department of Pediatrics, Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA02115
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Leila Namvar
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, CA95064
| |
Collapse
|
12
|
Hussein R, Abou-Shanab AM, Badr E. A multi-omics approach for biomarker discovery in neuroblastoma: a network-based framework. NPJ Syst Biol Appl 2024; 10:52. [PMID: 38760476 PMCID: PMC11101461 DOI: 10.1038/s41540-024-00371-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neuroblastoma (NB) is one of the leading causes of cancer-associated death in children. MYCN amplification is a prominent genetic marker for NB, and its targeting to halt NB progression is difficult to achieve. Therefore, an in-depth understanding of the molecular interactome of NB is needed to improve treatment outcomes. Analysis of NB multi-omics unravels valuable insight into the interplay between MYCN transcriptional and miRNA post-transcriptional modulation. Moreover, it aids in the identification of various miRNAs that participate in NB development and progression. This study proposes an integrated computational framework with three levels of high-throughput NB data (mRNA-seq, miRNA-seq, and methylation array). Similarity Network Fusion (SNF) and ranked SNF methods were utilized to identify essential genes and miRNAs. The specified genes included both miRNA-target genes and transcription factors (TFs). The interactions between TFs and miRNAs and between miRNAs and their target genes were retrieved where a regulatory network was developed. Finally, an interaction network-based analysis was performed to identify candidate biomarkers. The candidate biomarkers were further analyzed for their potential use in prognosis and diagnosis. The candidate biomarkers included three TFs and seven miRNAs. Four biomarkers have been previously studied and tested in NB, while the remaining identified biomarkers have known roles in other types of cancer. Although the specific molecular role is yet to be addressed, most identified biomarkers possess evidence of involvement in NB tumorigenesis. Analyzing cellular interactome to identify potential biomarkers is a promising approach that can contribute to optimizing efficient therapeutic regimens to target NB vulnerabilities.
Collapse
Affiliation(s)
- Rahma Hussein
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Ahmed M Abou-Shanab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Eman Badr
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
13
|
Collins A, Swann JW, Proven MA, Patel CM, Mitchell CA, Kasbekar M, Dellorusso PV, Passegué E. Maternal inflammation regulates fetal emergency myelopoiesis. Cell 2024; 187:1402-1421.e21. [PMID: 38428422 PMCID: PMC10954379 DOI: 10.1016/j.cell.2024.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.
Collapse
Affiliation(s)
- Amélie Collins
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Neonatology-Perinatology, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - James W Swann
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chandani M Patel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Monica Kasbekar
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Hematology/Oncology, Department of Internal Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
14
|
Virgilio MC, Ramnani B, Chen T, Disbennett WM, Lubow J, Welch JD, Collins KL. HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.21.533528. [PMID: 36993393 PMCID: PMC10055223 DOI: 10.1101/2023.03.21.533528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
HIV-1 Vpr promotes efficient spread of HIV-1 from macrophages to T cells by transcriptionally downmodulating restriction factors that target HIV-1 Envelope protein (Env). Here we find that Vpr induces broad transcriptomic changes by targeting PU.1, a transcription factor necessary for expression of host innate immune response genes, including those that target Env. Consistent with this, we find silencing PU.1 in infected macrophages lacking Vpr rescues Env. Vpr downmodulates PU.1 through a proteasomal degradation pathway that depends on physical interactions with PU.1 and DCAF1, a component of the Cul4A E3 ubiquitin ligase. The capacity for Vpr to target PU.1 is highly conserved across primate lentiviruses. In addition to impacting infected cells, we find that Vpr suppresses expression of innate immune response genes in uninfected bystander cells, and that virion-associated Vpr can degrade PU.1. Together, we demonstrate Vpr counteracts PU.1 in macrophages to blunt antiviral immune responses and promote viral spread.
Collapse
|
15
|
Liu Z, Lu T, Ma L, Zhang Y, Li D. DNA demethylation of promoter region orchestrates SPI-1-induced ADAMTS-5 expression in articular cartilage of osteoarthritis mice. J Cell Physiol 2024; 239:e31170. [PMID: 38149721 DOI: 10.1002/jcp.31170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent joint diseases in aged people and characterized by articular cartilage degeneration, synovial inflammation, and abnormal bone remodeling. Recent advances in OA research have clearly shown that OA development is associated with aberrant DNA methylation status of many OA-related genes. As one of most important cartilage degrading proteases in OA, a disintegrin and metalloproteinase with thrombospondin motifs subtype 5 (ADAMTS-5) is activated to mediate cartilage degradation in human OA and experimental murine OA models. The pathological factors and signaling pathways mediating ADAMTS-5 activation during OA development are not well defined and have been a focus of intense research. ADAMTS-5 promoter is featured by CpG islands. So far there have been no reports concerning the DNA methylation status in ADAMTS-5 promoter during OA development. In this study, we sought to investigate DNA methylation status in ADAMTS-5 promoter, the role of DNA methylation in ADAMTS-5 activation in OA, and the underlying mechanisms. The potential for anti-OA intervention therapy which is based on modulating DNA methylation is also explored. Our results showed that DNA methyltransferases 1 (Dnmt1) downregulation-associated ADAMTS-5 promoter demethylation played an important role in ADAMTS-5 activation in OA, which facilitated SPI-1 binding on ADAMTS-5 promoter to activate ADAMTS-5 expression. More importantly, OA pathological phenotype of mice was alleviated in response to Dnmt1-induced DNA methylation of ADAMTS-5 promoter. Our study will benefit not only for deeper insights into the functional role and regulation mechanisms of ADAMTS-5 in OA, but also for the discovery of disease-modifying OA drugs on the basis of ADAMTS-5 via modulating DNA methylation status.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tongxin Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuankai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Deqiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
16
|
Mallorson R, Miyagi E, Kao S, Sukegawa S, Saito H, Fabryova H, Morellatto Ruggieri L, Mediouni S, Valente ST, Strebel K. Transcriptional regulation of the HIV-1 inhibitory factor human mannose receptor 1 by the myeloid-specific transcription factor PU.1. J Virol 2024; 98:e0170223. [PMID: 38078733 PMCID: PMC10804955 DOI: 10.1128/jvi.01702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 01/04/2024] Open
Abstract
HIV-1 infection of human macrophages leads to the downmodulation of human mannose receptor 1 (hMRC1), a cell-surface glycoprotein that is involved in the host innate immune response. We previously reported that downmodulation of hMRC1 involves the transactivator of transcription (Tat)-dependent transcriptional silencing of the hMRC1 promoter. However, the inhibitory effect of Tat on hMRC1 transcription was indirect and involved inhibition of the transcriptional activator PU.1, which normally upregulates hMRC1 expression in macrophages and other myeloid cells. We cloned a 284-bp fragment of the hMRC1 promoter, and within it, we identified four PU.1 box elements. We assessed the relative contribution of each of the four PU.1 boxes to PU.1-dependent transcriptional regulation and, surprisingly, found that only one of the four PU.1 boxes [PU.1(b)] was critically required for PU.1-mediated upregulation of luciferase expression. Transfer of this PU.1 box to a heterologous promoter conferred PU.1 responsiveness to an otherwise PU.1 insensitive promoter. Electrophoretic mobility shift assays identified this PU.1 box as a direct binding site for PU.1 both in the context of the hMRC1 promoter and the heterologous promoter. Furthermore, mutational analysis of the PU.1 protein identified the C-terminal DNA-binding domain in PU.1 as the region responsible for interaction with the PU.1 box. Recombinant HIV-1 Tat protein did not bind to the hMRC1 promoter element but efficiently interfered with the binding of PU.1 protein to the hMRC1 promoter. Thus, Tat is likely to inhibit the formation of active PU.1 transcription complexes, presumably by binding to and depleting common transcriptional cofactors.IMPORTANCEHIV-1 infection of cells results in the modulation of cellular gene expression by virus-encoded proteins in a manner that benefits the virus. We reported that HIV-1 transactivator of transcription (Tat) dysregulates the expression of the human mannose receptor 1 (hMRC1). hMRC1 is involved in the innate immune response of macrophages to foreign pathogens. Tat does not act directly on the hMRC1 promoter but instead inhibits PU.1, a cellular transcription factor regulating hMRC1 gene expression. Here, we characterize the PU.1-dependent regulation of hMRC1 expression. We identified four potential PU.1 binding sites in the hMRC1 promoter region but found that only one, PU.1(b), functioned as a true binding site for PU.1. Transfer of the PU.1(b) box to a heterologous promoter did not activate this promoter per se but rendered it responsive to PU.1. Our results support the view that PU.1 acts as a transcriptional co-factor whose activity can be regulated by HIV-1 Tat.
Collapse
Affiliation(s)
- Rosa Mallorson
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Eri Miyagi
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sandra Kao
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Sayaka Sukegawa
- Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideki Saito
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | - Helena Fabryova
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Sonia Mediouni
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Susana T. Valente
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Klaus Strebel
- Viral Biochemistry Section, Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Zhang G, Lu J, Zheng J, Mei S, Li H, Zhang X, Ping A, Gao S, Fang Y, Yu J. Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage. Neural Regen Res 2024; 19:161-170. [PMID: 37488863 PMCID: PMC10479839 DOI: 10.4103/1673-5374.375343] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 07/26/2023] Open
Abstract
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage. The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation. However, the effect of Spi1 on intracerebral hemorrhage remains unclear. In this study, we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome. We showed that high Spi1 expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis, glycolysis, and autophagy, as well as debris clearance and sustained remyelination. Notably, microglia with higher levels of Spi1 expression were characterized by activation of pathways associated with a variety of hemorrhage-related cellular processes, such as complement activation, angiogenesis, and coagulation. In conclusion, our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage. This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shuhao Mei
- Department of Neurosurgery, Huashan Hospital of Fudan University School of Medicine, Shanghai, China
| | - Huaming Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaotao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - An Ping
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang Province, China
| |
Collapse
|
18
|
Wang Z, Wang Q, Tao Y, Chen J, Yuan Z, Wang P. Characterization of immune microenvironment in patients with HPV-positive and negative head and neck cancer. Sci Data 2023; 10:694. [PMID: 37828063 PMCID: PMC10570276 DOI: 10.1038/s41597-023-02611-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Human papillomavirus (HPV) status strongly predicts positive clinical outcomes in patients with head and neck squamous cell cancer (HNSCC); however, the potential reasons have not been fully elucidated. Here, we characterized the immune context in HPV+ and HPV- HNSCC by integrating scRNA-seq and bulk RNA-seq data. In scRNA-seq data, HPV + HNSCC displayed increased B cells, plasma cells, CD4+ effector T cells, and decreased macrophages and mast cells. This finding was validated using bulk-cell data. Plasma cells predicted improved survival, and macrophages were associated with survival disadvantage. 1403 upregulated and 1877 downregulated differential expressed genes (DEGs) were obtained. Gene Ontology and KEGG enrichment analysis showed these DEGs focused on cytokine-related activity. Transcriptional analysis of B and plasma cells revealed associations between B-cell surface marker FCER2 and improved survival. In vitro assays confirmed the ability of FCER2 to suppress cellular proliferation and migration of HPV + tumors. In conclusion, our analysis revealed a heterogeneous tumor immune environment (TME) for HPV+ and HPV- HNSCC. Further, FCER2+ B cells contribute to antitumor immunity.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Qingxin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Jingru Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Peiguo Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China.
| |
Collapse
|
19
|
Tu J, Chen W, Fang Y, Han D, Chen Y, Jiang H, Tan X, Xu Z, Wu X, Wang H, Zhu X, Hong W, Li Z, Zhu C, Wang X, Wei W. PU.1 promotes development of rheumatoid arthritis via repressing FLT3 in macrophages and fibroblast-like synoviocytes. Ann Rheum Dis 2023; 82:198-211. [PMID: 36198439 PMCID: PMC9887374 DOI: 10.1136/ard-2022-222708] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To uncover the function and underlying mechanism of an essential transcriptional factor, PU.1, in the development of rheumatoid arthritis (RA). METHODS The expression and localisation of PU.1 and its potential target, FMS-like tyrosine kinase 3 (FLT3), in the synovium of patients with RA were determined by western blot and immunohistochemical (IHC) staining. UREΔ (with PU.1 knockdown) and FLT3-ITD (with FLT3 activation) mice were used to establish collagen antibody-induced arthritis (CAIA). For the in vitro study, the effects of PU.1 and FLT3 on primary macrophages and fibroblast-like synoviocytes (FLS) were investigated using siRNAs. Mechanistically, luciferase reporter assays, western blotting, FACS and IHC were conducted to show the direct regulation of PU.1 on the transcription of FLT3 in macrophages and FLS. Finally, a small molecular inhibitor of PU.1, DB2313, was used to further illustrate the therapeutic effects of DB2313 on arthritis using two in vivo models, CAIA and collagen-induced arthritis (CIA). RESULTS The expression of PU.1 was induced in the synovium of patients with RA when compared with that in osteoarthritis patients and normal controls. FLT3 and p-FLT3 showed opposite expression patterns compared with PU.1 in RA. The CAIA model showed that PU.1 was an activator, whereas FLT3 was a repressor, of the development of arthritis in vivo. Moreover, results from in vitro assays were consistent with the in vivo results: PU.1 promoted hyperactivation and inflammatory status of macrophages and FLS, whereas FLT3 had the opposite effects. In addition, PU.1 inhibited the transcription of FLT3 by directly binding to its promoter region. The PU.1 inhibitor DB2313 clearly alleviated the effects on arthritis development in the CAIA and CIA models. CONCLUSIONS These results support the role of PU.1 in RA and may have therapeutic implications by directly repressing FLT3. Therefore, targeting PU.1 might be a potential therapeutic approach for RA.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weile Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Haifeng Jiang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Zhen Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Huihui Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiangling Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Zhenbao Li
- College of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Zeng Y, Cao S, Chen M. Integrated analysis and exploration of potential shared gene signatures between carotid atherosclerosis and periodontitis. BMC Med Genomics 2022; 15:227. [PMID: 36316672 PMCID: PMC9620656 DOI: 10.1186/s12920-022-01373-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Increasing evidence has suggested an association between carotid atherosclerosis (CAS) and periodontitis (PD); however, the mechanisms have not been fully understood. This study aims to investigate the shared genes and molecular mechanisms underlying the co-pathogenesis of CAS and PD. METHODS Gene Expression Omnibus (GEO) datasets GSE100927 and GSE10334 were downloaded, and differentially expressed genes (DEGs) shared by both datasets were identified. The functional enrichment analysis of these overlapping DEGs was then conducted. A protein-protein interaction (PPI) network was created using the STRING database and Cytoscape software, and PPI key genes were identified using the cytoHubba plugin. Then, weighted gene co-expression network analysis (WGCNA) was performed on GSE100927 and GSE10334, and the gene modules most correlated with CAS and PD were identified as key modules. The genes in key modules overlapping with PPI key genes were determined to be the key crosstalk genes. Subsequently, the key crosstalk genes were validated in three independent external datasets (GSE43292 [CAS microarray dataset], GSE16134 [PD microarray dataset], and GSE28829 [CAS microarray dataset]). In addition, the immune cell patterns of PD and CAS were evaluated by single-sample gene set enrichment analysis (ssGSEA), and the correlation of key crosstalk genes with each immune cell was calculated. Finally, we investigated the transcription factors (TFs) that regulate key crosstalk genes using NetworkAnalyst 3.0 platform. RESULTS 355 overlapping DEGs of CAS and PD were identified. Functional enrichment analysis highlighted the vital role of immune and inflammatory pathways in CAS and PD. The PPI network was constructed, and eight PPI key genes were identified by cytoHubba, including CD4, FCGR2A, IL1B, ITGAM, ITGAX, LCK, PTPRC, and TNF. By WGCNA, the turquoise module was identified as the most correlated module with CAS, and the blue module was identified as the most correlated module with PD. Ultimately, ITGAM and LCK were identified as key crosstalk genes as they appeared both in key modules and PPI key genes. Expression levels of ITGAM and LCK were significantly elevated in the case groups of the test datasets (GSE100927 and GSE10334) and validation datasets (GSE43292, GSE16134, and GSE28829). In addition, the expression of multiple immune cells was significantly elevated in PD and CAS compared to controls, and the two key crosstalk genes were both significantly associated with CD4 T cells. Finally, SPI1 was identified as a potential key TF, which regulates the two key crosstalk genes. CONCLUSION This study identified the key crosstalk genes and TF in PD and CAS, which provides new insights for further studies on the co-morbidity mechanisms of CAS and PD from an immune and inflammatory perspective.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Minghua Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China.
| |
Collapse
|
21
|
Tuerxun K, Midtbö K, Särndahl E, Vorontsov E, Karlsson R, Persson A, Kruse R, Eklund D, the X‐HiDE Consortium. Cytokine responses to LPS in reprogrammed monocytes are associated with the transcription factor PU.1. J Leukoc Biol 2022; 112:679-692. [PMID: 35285058 PMCID: PMC9790682 DOI: 10.1002/jlb.3a0421-216r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/30/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are functionally immunosuppressive cells that arise and expand during extensive inflammatory conditions by increased hematopoietic output or reprogramming of immune cells. In sepsis, an increase of circulating MDSCs is associated with adverse outcomes, but unique traits that can be used to identify increased activity of MDSCs are lacking. By using endotoxin tolerance as a model of sepsis-induced monocytic MDSCs (M-MDSC-like cells), this study aims to identify the mediator and transcriptional regulator profile associated with M-MDSC activity. After analyzing 180 inflammation-associated proteins, a profile of differentially expressed cytokines was found in M-MDSC-like cells versus normal monocytes stimulated with LPS. These cytokines were associated with 5 candidate transcription factors, where particularly PU.1 showed differential expression on both transcriptional and protein levels in M-MDSC-like cells. Furthermore, inhibition of PU.1 led to increased production of CXCL5 and CCL8 in M-MDSC-like cells indicating its role in regulating the ability of M-MDSC-like cells to recruit other immune cells. Taken together, the study identifies a unique profile in the pattern of immune mediators defining M-MDSC activity upon LPS stimulation, which offers a functional link to their contribution to immunosuppression.
Collapse
Affiliation(s)
- Kedeye Tuerxun
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Kristine Midtbö
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Eva Särndahl
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Egor Vorontsov
- Proteomics Core Facility, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute of BiomedicineSahlgrenska Academy of the University of GothenburgSweden,Department of Clinical MicrobiologySahlgrenska University Hospital, Region Västra GötalandSweden,Nanoxis Consulting ABGothenburgSweden
| | - Alexander Persson
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Robert Kruse
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden,Department of Clinical Research Laboratory, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Daniel Eklund
- Faculty of Medicine and Health, School of Medical SciencesÖrebro UniversityÖrebroSweden,Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | | |
Collapse
|
22
|
Bruch P, Giles HAR, Kolb C, Herbst SA, Becirovic T, Roider T, Lu J, Scheinost S, Wagner L, Huellein J, Berest I, Kriegsmann M, Kriegsmann K, Zgorzelski C, Dreger P, Zaugg JB, Müller‐Tidow C, Zenz T, Huber W, Dietrich S. Drug-microenvironment perturbations reveal resistance mechanisms and prognostic subgroups in CLL. Mol Syst Biol 2022; 18:e10855. [PMID: 35959629 PMCID: PMC9372727 DOI: 10.15252/msb.202110855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
The tumour microenvironment and genetic alterations collectively influence drug efficacy in cancer, but current evidence is limited and systematic analyses are lacking. Using chronic lymphocytic leukaemia (CLL) as a model disease, we investigated the influence of 17 microenvironmental stimuli on 12 drugs in 192 genetically characterised patient samples. Based on microenvironmental response, we identified four subgroups with distinct clinical outcomes beyond known prognostic markers. Response to multiple microenvironmental stimuli was amplified in trisomy 12 samples. Trisomy 12 was associated with a distinct epigenetic signature. Bromodomain inhibition reversed this epigenetic profile and could be used to target microenvironmental signalling in trisomy 12 CLL. We quantified the impact of microenvironmental stimuli on drug response and their dependence on genetic alterations, identifying interleukin 4 (IL4) and Toll-like receptor (TLR) stimulation as the strongest actuators of drug resistance. IL4 and TLR signalling activity was increased in CLL-infiltrated lymph nodes compared with healthy samples. High IL4 activity correlated with faster disease progression. The publicly available dataset can facilitate the investigation of cell-extrinsic mechanisms of drug resistance and disease progression.
Collapse
Affiliation(s)
- Peter‐Martin Bruch
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Holly AR Giles
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- Collaboration for Joint PhD Degree between EMBL and Heidelberg UniversityFaculty of BiosciencesHeidelbergGermany
| | - Carolin Kolb
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Sophie A Herbst
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Tina Becirovic
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
| | - Tobias Roider
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | | | - Sebastian Scheinost
- German Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumour DiseasesHeidelbergGermany
| | - Lena Wagner
- German Cancer Research Center (DKFZ)HeidelbergGermany
- National Center for Tumour DiseasesHeidelbergGermany
| | | | | | - Mark Kriegsmann
- Institute of PathologyUniversity of HeidelbergHeidelbergGermany
| | | | | | - Peter Dreger
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
| | - Judith B Zaugg
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | - Carsten Müller‐Tidow
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
| | - Thorsten Zenz
- Department of HematologyUniversity of ZürichZürichSwitzerland
| | - Wolfgang Huber
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
| | - Sascha Dietrich
- Department of Medicine VHeidelberg University HospitalHeidelbergGermany
- Molecular Medicine Partnership Unit (MMPU)HeidelbergGermany
- EMBL HeidelbergHeidelbergGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
23
|
The Myeloid-Specific Transcription Factor PU.1 Upregulates Mannose Receptor Expression but Represses Basal Activity of the HIV-LTR Promoter. J Virol 2022; 96:e0065222. [PMID: 35766490 PMCID: PMC9327697 DOI: 10.1128/jvi.00652-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human mannose receptor 1 (MRC1) is a cell surface receptor expressed in macrophages and other myeloid cells that inhibits human immunodeficiency virus type 1 (HIV-1) particle release by tethering virions to producer cell membranes. HIV-1 counteracts MRC1 expression by inhibiting mrc1 transcription. Here, we investigated the mechanism of MRC1 downregulation in HIV-1-infected macrophages. We identified the myeloid cell-specific transcription factor PU.1 as critical for regulating MRC1 expression. In the course of our study, we recognized a complex interplay between HIV-1 Tat and PU.1 transcription factors: Tat upregulated HIV-1 gene expression but inhibited mrc1 transcription, whereas PU.1 inhibited HIV-1 transcription but activated MRC1 expression. Disturbing this equilibrium by silencing PU.1 resulted in increased HIV-1 gene expression and reduced MRC1 promoter activity. Our study identified PU.1 as a central player in transcriptional control, regulating a complex interplay between viral and host gene expression in HIV-infected macrophages. IMPORTANCE HIV-1 replication in primary human cells depends on the activity of virus-encoded proteins but also involves cellular factors that can either promote (viral dependency factors) or inhibit (host restriction factors) virus replication. In previous work, we identified human MRC1 as a macrophage-specific host restriction factor that inhibits the detachment of viral particles from infected cells. Here, we report that HIV-1 counteracts this effect of MRC1 by imposing a transcriptional block on cellular MRC1 gene expression. The transcriptional inhibition of the MRC1 gene is accomplished by Tat, an HIV-1 factor whose best-described function actually is the enhancement of HIV-1 gene expression. Thus, HIV-1 has evolved to use the same protein for (i) activation of its own gene expression while (ii) inhibiting expression of MRC1 and other host factors.
Collapse
|
24
|
Steele LA, Spiller KL, Cohen S, Rom S, Polyak B. Temporal Control over Macrophage Phenotype and the Host Response via Magnetically Actuated Scaffolds. ACS Biomater Sci Eng 2022; 8:3526-3541. [PMID: 35838679 DOI: 10.1021/acsbiomaterials.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.
Collapse
Affiliation(s)
- Lindsay A Steele
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 712, Philadelphia 19104, Pennsylvania, United States
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva Blvd. 1, Bldg. 42, Room 328, Beer-Sheva 84105, Israel
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia 19140, Pennsylvania, United States.,Center for Substance Abuse Research, Temple University, 3500 N. Broad Street, Medical Education and Research Building, Room 842, Philadelphia 19140, Pennsylvania, United States
| | - Boris Polyak
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| |
Collapse
|
25
|
Staats K, Sosa BR, Kuyl EV, Niu Y, Suhardi V, Turajane K, Windhager R, Greenblatt MB, Ivashkiv L, Bostrom MPG, Yang X. Intermittent parathyroid hormone increases stability and improves osseointegration of initially unstable implants. Bone Joint Res 2022; 11:260-269. [PMID: 35502760 PMCID: PMC9130671 DOI: 10.1302/2046-3758.115.bjr-2021-0489.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. Methods 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology. Results iPTH reduced radiological signs of loosening and led to an increase in peri-implant bone formation over the course of four weeks (timepoints: one week, two weeks, and four weeks). Observational histological analysis shows that iPTH prohibits the progression of fibrosis. Delaying iPTH treatment until after onset of peri-implant fibrosis still resulted in enhanced osseointegration and implant stability. Despite initial instability, iPTH increased the mean pull-out strength of the implant from 8.41 N (SD 8.15) in the PBS-control group to 21.49 N (SD 10.45) and 23.68 N (SD 8.99) in the immediate and delayed iPTH groups, respectively. Immediate and delayed iPTH increased mean peri-implant bone volume fraction (BV/TV) to 0.46 (SD 0.07) and 0.34 (SD 0.10), respectively, compared to PBS-control mean BV/TV of 0.23 (SD 0.03) (PBS-control vs immediate iPTH, p < 0.001; PBS-control vs delayed iPTH, p = 0.048; immediate iPTH vs delayed iPTH, p = 0.111). Conclusion iPTH treatment mediated successful osseointegration and increased bone mechanical strength, despite initial implant instability. Clinically, this suggests that initially unstable implants may be osseointegrated with iPTH treatment. Cite this article: Bone Joint Res 2022;11(5):260–269.
Collapse
Affiliation(s)
- Kevin Staats
- Hospital for Special Surgery, New York City, New York, USA.,Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Branden R Sosa
- Hospital for Special Surgery, New York City, New York, USA
| | | | - Yingzhen Niu
- Hospital for Special Surgery, New York City, New York, USA
| | | | | | - Reinhard Windhager
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | | | | | - Xu Yang
- Hospital for Special Surgery, New York City, New York, USA
| |
Collapse
|
26
|
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 2022; 13:861351. [PMID: 35386689 PMCID: PMC8977485 DOI: 10.3389/fimmu.2022.861351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have shown to be involved in immune cell development, affecting from self-renewal of stem cells and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins have been vastly associated with both myeloid and lymphoid leukemias. Recently, there has been accumulating evidence suggesting that TETs regulate immune cell function during innate and adaptive immune responses, thereby modulating inflammation. In this work, we pursue to review the current and recent evidence on the mechanistic aspects by which TETs regulate immune cell maturation and function. We will also discuss the complex interplay of TET expression and activity by several factors to modulate a multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel pharmacological approach to target inflammation-related diseases and myeloid and lymphoid leukemias, when their activity is dysregulated.
Collapse
Affiliation(s)
- Christian Gerecke
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Caue Egea Rodrigues
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Thomas Homann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
27
|
Huang J, Chen W, Jie Z, Jiang M. Comprehensive Analysis of Immune Implications and Prognostic Value of SPI1 in Gastric Cancer. Front Oncol 2022; 12:820568. [PMID: 35237521 PMCID: PMC8882873 DOI: 10.3389/fonc.2022.820568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The transcription factor Spi-1 proto-oncogene (SPI1, also known as PU.1) is a key regulator of signal communication in the immune system and is essential for the development of myeloid cells and lymphocytes. However, the potential role of SPI1 in gastric cancer (GC) and the correlations between SPI1 and immune infiltration remain unclear. Methods In the present study, multiple databases including ONCOMINE, TIMER, Kaplan–Meier Plotter, and The Cancer Genome Atlas were used to explore the expression levels and prognostic value of SPI1 in GC. cBioPortal was used to explore the possible reasons for the increased expression of SPI1 in GC. The correlations between SPI1 expression and tumor-infiltrating immune cells (TICs) were analyzed using CIBERSORT and TIMER. Gene set enrichment analysis was used to determine the biological function of SPI1 in the development of GC. In addition, a risk signature based on SPI1-related immunomodulators was constructed to accurately evaluate the prognosis of patients with GC. The upregulation of SPI1 expression in GC was further confirmed through immunohistochemistry, western blotting, and real-time quantitative PCR (RT-qPCR) assay. Results The expression of SPI1 was increased significantly in GC according to multiple databases, and high expression of SPI1 was related to poor prognosis and progression of GC. The main factor influencing the high expression of SPI1 mRNA in GC may be diploidy, not DNA methylation. Moreover, immunohistochemistry, western blotting, and RT-qPCR assays also confirmed the upregulated expression of SPI1 in GC. CIBERSORT analysis revealed that SPI1 expression was correlated with seven types of TICs (naive B cells, resting memory CD4 T cells, activated memory CD4 T cells, activated natural killer cells, resting natural killer cells, M2 macrophages, and resting dendritic cells). Gene set enrichment analysis indicated that SPI1 might be related to immune activation in GC and participate in cell cycle regulation. In addition, based on SPI1-related immunomodulators, we developed multiple-gene risk prediction signatures and constructed a nomogram that can independently predict the clinical outcome of GC. Conclusion The results of the present study suggest that SPI1 has a critical role in determining the prognosis of GC patients and may be a potential immunotherapeutic target.
Collapse
Affiliation(s)
- Jianfeng Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenzheng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhigang Jie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Mengmeng Jiang, ; Zhigang Jie,
| | - Mengmeng Jiang
- Department of Emergency Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Mengmeng Jiang, ; Zhigang Jie,
| |
Collapse
|
28
|
Raczkowski HL, DeKoter RP. Lineage-instructive functions of the E26-transformation-specific-family transcription factor Spi-C in immune cell development and disease. WIREs Mech Dis 2021; 13:e1519. [PMID: 34730294 DOI: 10.1002/wsbm.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Abstract
Cell fate decisions during hematopoiesis are the consequence of a complex mixture of inputs from cell-intrinsic and cell-extrinsic factors. In rare cases, expression of a single transcription factor, or a few key factors, may be sufficient to dictate lineage differentiation in a precursor cell. The E26-transformation-specific-family transcription factor Spi-C has emerged as an example of a lineage-instructive factor involved in the generation of mature, specialized subsets of both myeloid and lymphoid cells. Spi-C can instruct differentiation of splenic precursors into red pulp macrophages responsible for phagocytosing senescent red blood cells. In the B cell compartment, Spi-C acts as a key regulator of cell fate decisions at the pro-B to pre-B cell stage and for plasma cell differentiation. Spi-C regulates key genes including Nfkb1, Bach2, Syk, and Blnk to regulate cell cycle entry and B cell differentiation. Here, we review the biology of the lineage-instructive transcription factor Spi-C and its contribution to mechanisms of disease in macrophages and B cells. This article is categorized under: Cancer > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Hannah L Raczkowski
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Center for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
29
|
Xiang N, Fang X, Sun XG, Zhou YB, Ma Y, Zhu C, Li XP, Wang GS, Tao JH, Li XM. Expression profile of PU.1 in CD4 +T cells from patients with systemic lupus erythematosus. Clin Exp Med 2021; 21:621-632. [PMID: 33966135 DOI: 10.1007/s10238-021-00717-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with complex genetic predisposing factors involved. PU.1 is an important member of the ETS transcription factors family which has diverse functions such as regulating the proliferation, differentiation of immune cells and multiple inflammatory cytokines. Previous studies preliminary explored the relation between PU.1 and SLE. To further explain the potential role of PU.1 in the pathogenesis of SLE, 40 SLE patients and 20 age-sex matched healthy controls (HC) were recruited in this study. Flow cytometry was used to test the percentages of CD4+PU.1+T cells in peripheral blood mononuclear cells (PBMCs) from patients with SLE and HC. Expression levels of PU.1 mRNA in CD4+T cells from SLE patients and HC were analyzed by real-time transcription-polymerase chain reaction. Expression levels of plasma IL-1β, IL-9, IL-18, IL-6, IFN-α, TNF-α, IL-10 and TGF-β1 were measured by enzyme-linked immunosorbent assay. The percentage of CD4+PU.1+T cells in PBMCs from patients with SLE was significantly higher than that from HC (P < 0.001). In addition, the PU.1 mRNA expression in CD4+T cells from SLE patients was increased than that from HC (P = 0.002). In SLE patients, no significant correlation was found between the percentage of CD4+PU.1+T cells and the expression of PU.1 mRNA in CD4+T cells (P > 0.05). Associations of PU.1 mRNA expression in CD4+T cells with major clinical and laboratory parameters of SLE patients were also analyzed, but no significant correlations were found. Consistent with previous studies, SLE patients had increased IL-1β, IL-18, IL-6, IFN-α, TNF-α and IL-10 plasma concentrations than HC (P < 0.01). The expression level of plasma TGF-β1 was significantly decreased in SLE patients than in HC (P < 0.001). In SLE patients, the expression level of IL-1β was positive correlated with PU.1 mRNA expression in CD4+T cells (P = 0.001). Our study first time evaluated the expression profile of PU.1 in CD4+T cells from SLE patients confirming that PU.1 may participate in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Ge Sun
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Ying-Bo Zhou
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Yan Ma
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiang-Pei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Guo-Sheng Wang
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital, Hefei, 230001, Anhui, China.
| |
Collapse
|
30
|
Nersisyan S, Ahlers AK, Lange T, Wicklein D, Galatenko A, Bohnenberger H, Elakad O, Conradi LC, Genduso S, Maar H, Schiecke A, Maltseva D, Raygorodskaya M, Makarova J, Schumacher U, Tonevitsky A. Low expression of CD24 is associated with poor survival in colorectal cancer. Biochimie 2021; 192:91-101. [PMID: 34637894 DOI: 10.1016/j.biochi.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
In this study we analyzed expression of CD24 in a cohort of colorectal cancer patients using immunohistochemistry staining of CD24. We found a significant association between absence or low expression of CD24 (10% of membranous and 55% of cytoplasmic staining) and shortened patient survival. Protein localization played a crucial role in the prognosis: membranous form was the major and prognostic one in primary tumors, while cytoplasmic expression was elevated in liver metastases compared to the primary tumors and contained prognostic information. Then, using The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) RNA-seq data, we showed that CD24 mRNA level was two-fold decreased in primary colorectal cancers compared to adjacent normal mucosa. Like the protein staining data, ten percent of patients with the lowest mRNA expression levels of CD24 in primary tumors had reduced survival compared to the ones with higher expression. To explain these findings mechanistically, shRNA-mediated CD24 knockdown was performed in HT-29 colorectal cancer cells. It resulted in the increase of cell migration in vitro, no changes in proliferation and apoptosis, and a slight decrease in cell invasion. As increased cell migration is a hallmark of metastasis formation, this finding corroborates the association of a decreased CD24 expression with poor prognosis. Differential gene expression analysis revealed upregulation of genes involved in cell migration in the group of patients with low CD24 expression, including integrin subunit α3 and α3, β3 subunits of laminin 332. Further co-expression analysis identified SPI1, STAT1 and IRF1 transcription factors as putative master-regulators in this group.
Collapse
Affiliation(s)
- Stepan Nersisyan
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Ann-Kristin Ahlers
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexei Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
| | | | - Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Lena-Christin Conradi
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, Germany
| | - Sandra Genduso
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Schiecke
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Maria Raygorodskaya
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia
| | - Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia; SRC Bioclinicum, Moscow, Russia.
| |
Collapse
|
31
|
Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and Molecular Correlates of NLRC5 Expression in Patients With Melanoma. Front Bioeng Biotechnol 2021; 9:690186. [PMID: 34307322 PMCID: PMC8299757 DOI: 10.3389/fbioe.2021.690186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
NLRC5 is an important regulator in antigen presentation and inflammation, and its dysregulation promotes tumor progression. In melanoma, the impact of NLRC5 expression on molecular phenotype, clinical characteristics, and tumor features is largely unknown. In the present study, public datasets from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioPortal were used to address these issues. We identify that NLRC5 is expressed in both immune cells and melanoma cells in melanoma samples and its expression is regulated by SPI1 and DNA methylation. NLRC5 expression is closely associated with Breslow thickness, Clark level, recurrence, pathologic T stage, and ulceration status in melanoma. Truncating/splice mutations rather than missense mutations in NLRC5 could compromise the expression of downstream genes. Low expression of NLRC5 is associated with poor prognosis, low activity of immune-related signatures, low infiltrating level of immune cells, and low cytotoxic score in melanoma. Additionally, NLRC5 expression correlates with immunotherapy efficacy in melanoma. In summary, these findings suggest that NLRC5 acts as a tumor suppressor in melanoma via modulating the tumor immune microenvironment. Targeting the NLRC5 related pathway might improve efficacy of immunotherapy for melanoma patients.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhiwen Wang
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
33
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
34
|
Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, Wong M, Mühlebner A, van Vliet EA, Aronica E, Mills JD. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol 2021; 31:e12949. [PMID: 33786950 PMCID: PMC8412124 DOI: 10.1111/bpa.12949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a congenital disorder characterized by cortical malformations and concomitant epilepsy caused by loss‐of‐function mutations in the mTOR suppressors TSC1 or TSC2. While the underlying molecular changes caused by mTOR activation in TSC have previously been investigated, the drivers of these transcriptional change have not been fully elucidated. A better understanding of the perturbed transcriptional regulation could lead to the identification of novel pathways for therapeutic intervention not only in TSC, but other genetic epilepsies in which mTOR activation plays a key role, such as focal cortical dysplasia 2b (FCD). Here, we analyzed RNA sequencing data from cortical tubers and a tsc2−/− zebrafish. We identified differential expression of the transcription factors (TFs) SPI1/PU.1, IRF8, GBX2, and IKZF1 of which SPI1/PU.1 and IRF8 targets were enriched among the differentially expressed genes. Furthermore, for SPI1/PU.1 these findings were conserved in TSC zebrafish model. Next, we confirmed overexpression of SPI1/PU.1 on the RNA and protein level in a separate cohort of surgically resected TSC tubers and FCD tissue, in fetal TSC tissue, and a Tsc1GFAP−/− mouse model of TSC. Subsequently, we validated the expression of SPI1/PU.1 in dysmorphic cells with mTOR activation in TSC tubers. In fetal TSC, we detected SPI1/PU.1 expression prenatally and elevated RNA Spi1 expression in Tsc1GFAP−/− mice before the development of seizures. Finally, in vitro, we identified that in astrocytes and neurons SPI1 transcription was driven by H2O2‐induced oxidative stress, independent of mTOR. We identified SPI1/PU.1 as a novel TF involved in the pro‐inflammatory gene expression of malformed cells in TSC and FCD 2b. This transcriptional program is activated in response to oxidative stress and already present prenatally. Importantly, SPI1/PU.1 protein appears to be strictly limited to malformed cells, as we did not find SPI1/PU.1 protein expression in mice nor in our in vitro models.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Floor E Jansen
- Department of Pediatric Neurology, Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Michael Wong
- Department of Neurology, Washington University, Saint Louis, MO, USA
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Clinical and Experimental Epilepsy, UCL, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
35
|
Wei X, Li H, Guo Y, Zhao X, Liu Y, Zou X, Zhou L, Yuan Y, Qin Y, Mao C, Huang G, Yu Y, Deng Q, Feng W, Xu J, Wang M, Liu S, Yang H, Liu L, Liu C, Gu Y. An ATAC-seq Dataset Uncovers the Regulatory Landscape During Axolotl Limb Regeneration. Front Cell Dev Biol 2021; 9:651145. [PMID: 33869207 PMCID: PMC8044901 DOI: 10.3389/fcell.2021.651145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaoyu Wei
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Hanbo Li
- BGI-Shenzhen, Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Yang Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Yang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Xuanxuan Zou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Li Zhou
- BGI-Shenzhen, Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Yue Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Yating Qin
- BGI-Shenzhen, Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Chunyan Mao
- BGI-Shenzhen, Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Yeya Yu
- BGI-Shenzhen, Shenzhen, China
- BGI College, Zhengzhou University, Zhengzhou, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Weimin Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | - Jiangshan Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Shanshan Liu
- BGI-Shenzhen, Shenzhen, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Huanming Yang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Longqi Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Ying Gu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
36
|
De Smedt J, van Os EA, Talon I, Ghosh S, Toprakhisar B, Furtado Madeiro Da Costa R, Zaunz S, Vazquez MA, Boon R, Baatsen P, Smout A, Verhulst S, van Grunsven LA, Verfaillie CM. PU.1 drives specification of pluripotent stem cell-derived endothelial cells to LSEC-like cells. Cell Death Dis 2021; 12:84. [PMID: 33446637 PMCID: PMC7809369 DOI: 10.1038/s41419-020-03356-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
To date, there is no representative in vitro model for liver sinusoidal endothelial cells (LSECs), as primary LSECs dedifferentiate very fast in culture and no combination of cytokines or growth factors can induce an LSEC fate in (pluripotent stem cell (PSC)-derived) endothelial cells (ECs). Furthermore, the transcriptional programmes driving an LSEC fate have not yet been described. Here, we first present a computational workflow (CenTFinder) that can identify transcription factors (TFs) that are crucial for modulating pathways involved in cell lineage specification. Using CenTFinder, we identified several novel LSEC-specific protein markers, such as FCN2 and FCN3, which were validated by analysis of previously published single-cell RNAseq data. We also identified PU.1 (encoded by the SPI1 gene) as a major regulator of LSEC-specific immune functions. We show that SPI1 overexpression (combined with the general EC TF ETV2) in human PSCs induces ECs with an LSEC-like phenotype. The ETV2-SPI1-ECs display increased expression of LSEC markers, such as CD32B and MRC1, as well as several of the proposed novel markers. More importantly, ETV2-SPI1-ECs acquire LSEC functions, including uptake of FSA-FITC, as well as labelled IgG. In conclusion, we present the CenTFinder computational tool to identify key regulatory TFs within specific pathways, in this work pathways of lineage specification, and we demonstrate its use by the identification and validation of PU.1 as a master regulator for LSEC fating.
Collapse
Affiliation(s)
- Jonathan De Smedt
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Elise Anne van Os
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Irene Talon
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Sreya Ghosh
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Burak Toprakhisar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Samantha Zaunz
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Marta Aguirre Vazquez
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Ruben Boon
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Pieter Baatsen
- Electron Microscopy Platform of VIB Bio Imaging Core at KU Leuven and VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Ayla Smout
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefaan Verhulst
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology research group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Wang D, Zou X, Fai Au K. A network-based computational framework to predict and differentiate functions for gene isoforms using exon-level expression data. Methods 2020; 189:54-64. [PMID: 32534132 DOI: 10.1016/j.ymeth.2020.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/22/2020] [Accepted: 06/06/2020] [Indexed: 12/23/2022] Open
Abstract
MOTIVATION Alternative splicing makes significant contributions to functional diversity of transcripts and proteins. Many alternatively spliced gene isoforms have been shown to perform specific biological functions under different contexts. In addition to gene-level expression, the advances of high-throughput sequencing offer a chance to estimate isoform-specific exon expression with a high resolution, which is informative for studying splice variants with network analysis. RESULTS In this study, we propose a novel network-based analysis framework to predict isoform-specific functions from exon-level RNA-Seq data. In particular, based on exon-level expression data, we firstly propose a unified framework, referred to as Iso-Net, to integrate two new mathematical methods (named MINet and RVNet) that infer co-expression networks at different data scenarios. We demonstrate the superior prediction accuracy of Iso-Net over the existing methods for most simulation data, especially in two extreme cases: sample size is very small and exon numbers of two isoforms are quite different. Furthermore, by defining relevant quantitative measures (e.g., Jaccard correlation coefficient) and combining differential co-expression network analysis and GO functional enrichment analysis, a co-expression network analysis framework is developed to predict functions of isoforms and further, to discover their distinct functions within the same gene. We apply Iso-Net to study gene isoforms for several important transcription factors in human myeloid differentiation with the exon-level RNA-Seq data from three different cell lines. AVAILABILITY AND IMPLEMENTATION Iso-Net is open source and freely available from https://github.com/Dingjie-Wang/Iso-Net.
Collapse
Affiliation(s)
- Dingjie Wang
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA; School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China
| | - Xiufen Zou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China; Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China.
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, OH 43210, USA.
| |
Collapse
|
38
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
39
|
Moles R, Sarkis S, Galli V, Omsland M, Purcell DFJ, Yurick D, Khoury G, Pise-Masison CA, Franchini G. p30 protein: a critical regulator of HTLV-1 viral latency and host immunity. Retrovirology 2019; 16:42. [PMID: 31852501 PMCID: PMC6921414 DOI: 10.1186/s12977-019-0501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
The extraordinarily high prevalence of HTLV-1 subtype C (HTLV-1C) in some isolated indigenous communities in Oceania and the severity of the health conditions associated with the virus impress the great need for basic and translational research to prevent and treat HTLV-1 infection. The genome of the virus’s most common subtype, HTLV-1A, encodes structural, enzymatic, and regulatory proteins that contribute to viral persistence and pathogenesis. Among these is the p30 protein encoded by the doubly spliced Tax-orf II mRNA, a nuclear/nucleolar protein with both transcriptional and post-transcriptional activity. The p30 protein inhibits the productive replication cycle via nuclear retention of the mRNA that encodes for both the viral transcriptional trans-activator Tax, and the Rex proteins that regulate the transport of incompletely spliced viral mRNA to the cytoplasm. In myeloid cells, p30 inhibits the PU-1 transcription factor that regulates interferon expression and is a critical mediator of innate and adaptive immunity. Furthermore, p30 alters gene expression, cell cycle progression, and DNA damage responses in T-cells, raising the hypothesis that p30 may directly contribute to T cell transformation. By fine-tuning viral expression while also inhibiting host innate responses, p30 is likely essential for viral infection and persistence. This concept is supported by the finding that macaques, a natural host for the closely genetically related simian T-cell leukemia virus 1 (STLV-1), exposed to an HTLV-1 knockout for p30 expression by a single point mutation do not became infected unless reversion and selection of the wild type HTLV-1 genotype occurs. All together, these data suggest that inhibition of p30 may help to curb and eventually eradicate viral infection by exposing infected cells to an effective host immune response.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Damian F J Purcell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - David Yurick
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Georges Khoury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Cynthia A Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
40
|
Jiang Q, Zhao H, Li R, Zhang Y, Liu Y, Wang J, Wang X, Ju Z, Liu W, Hou M, Huang J. In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins. BMC Genet 2019; 20:46. [PMID: 31096910 PMCID: PMC6524300 DOI: 10.1186/s12863-019-0749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background Single-nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) and their target binding sites affect miRNA function and are involved in biological processes and diseases, including bovine mastitis, a frequent inflammatory disease. Our previous study has shown that bta-miR-2899 is significantly upregulated in the mammary gland tissue of mastitis-infected cow than that of healthy cows. Results In the present study, we used a customized miRNAQTLsnp software and identified 5252 SNPs in 691 bovine pre-miRNAs, which are also located within the quantitative trait loci (QTLs) that are associated with mastitis and udder conformation-related traits. Using luciferase assay in the bovine mammary epithelial cells, we confirmed a candidate SNP (rs109462250, g. 42,198,087 G > A) in the seed region of bta-miR-2899 located in the somatic cell score (SCS)-related QTL (Chr.18: 33.9–43.9 Mbp), which affected the interaction of bta-miR-2899 and its putative target Spi-1 proto-oncogene (SPI1), a pivotal regulator in the innate and adaptive immune systems. Quantitative real-time polymerase chain reaction results showed that the relative expression of SPI1 in the mammary gland of AA genotype cows was significantly higher than that of GG genotype cows. The SNP genotypes were associated with SCS in Holstein cows. Conclusions Altogether, miRNA-related SNPs, which influence the susceptibility to mastitis, are one of the plausible mechanisms underlying mastitis via modulating the interaction of miRNAs and immune-related genes. These miRNA-QTL-SNPs, such as the SNP (rs109462250) of bta-miR-2899 may have implication for the mastitis resistance breeding program in Holstein cattle. Electronic supplementary material The online version of this article (10.1186/s12863-019-0749-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China.,College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Rongling Li
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Yaran Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Yong Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Wenhao Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Minghai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, 250131, Shandong, People's Republic of China. .,College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
41
|
Łakomiak A, Brzuzan P, Jakimiuk E, Florczyk M, Woźny M. Molecular characterization of the cyclin-dependent protein kinase 6 in whitefish (Coregonus lavaretus) and its potential interplay with miR-34a. Gene 2019; 699:115-124. [PMID: 30858134 DOI: 10.1016/j.gene.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent protein kinase 6 (CDK6) plays a pivotal role in the regulation of the cell cycle and cell proliferation in mammals, and disruption of its expression by various microRNAs has been implicated in the pathogenesis of multiple human cancers. In mammals, miR-34a acts as a downstream effector of p53, and thus indirectly targets Cdk6, abrogating its effects. However, no studies have been done so far to examine the mechanistic involvement of miR-34a in the silencing of cdk6 in fish. In the present study, we found that the cDNA sequence of whitefish cdk6 has a 3'UTR region that contains a binding site for miR-34a. Using a luciferase reporter assay, we demonstrated that whitefish cdk6 is a direct target of miR-34a in vitro. In order to confirm this relationship in vivo, we measured the miR-34a and cdk6 mRNA expression patterns in the liver of whitefish after short-term (8, 24, and 48 h) and long-term (14 and 28 days) exposure to microcystin-LR (MC-LR), a known hepatotoxin and tumor promoter. In contrast to the in vitro findings, we noticed an up-regulation of miR-34a and cdk6 expression after long-term MC-LR treatment. While these results indicate that both, miR-34a and cdk6 are responsive to MC-LR treatment, they do not support the presence of a miR-34a:cdk6 mRNA regulatory pair in the MC-LR-challanged whitefish liver in vivo. On the other hand, our findings suggests that cell regulatory elements, partnering with either miR-34a or cdk6, are worthy of further screening to better understand the molecular mechanisms that underlie the physiological response of fish challenged with hepatotoxic environmental pollutants like microcystins.
Collapse
Affiliation(s)
- Alicja Łakomiak
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland.
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Ewa Jakimiuk
- Division of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-950 Olsztyn, Poland
| | - Maciej Florczyk
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
42
|
Rhee J, Solomon LA, DeKoter RP. A role for ATP Citrate Lyase in cell cycle regulation during myeloid differentiation. Blood Cells Mol Dis 2019; 76:82-90. [PMID: 30853332 DOI: 10.1016/j.bcmd.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Differentiation of myeloid progenitor cells into macrophages is accompanied by increased PU.1 concentration and increasing cell cycle length, culminating in cell cycle arrest. Induction of PU.1 expression in a cultured myeloid cell line expressing low PU.1 concentration results in decreased levels of mRNA encoding ATP-Citrate Lyase (ACL) and cell cycle arrest. ACL is an essential enzyme for generating acetyl-CoA, a key metabolite for the first step in fatty acid synthesis and for histone acetylation. We hypothesized that ACL may play a role in cell cycle regulation in the myeloid lineage. In this study, we found that acetyl-CoA or acetate supplementation was sufficient to rescue cell cycle progression in cultured BN cells treated with an ACL inhibitor or induced for PU.1 expression. Acetyl-CoA supplementation was also sufficient to rescue cell cycle progression in BN cells treated with a fatty acid synthase (FASN) inhibitor. We demonstrated that acetyl-CoA was utilized in both fatty acid synthesis and histone acetylation pathways to promote proliferation. Finally, we found that Acly mRNA transcript levels decrease during normal macrophage differentiation from bone marrow precursors. Our results suggest that regulation of ACL activity is a potentially important point of control for cell cycle regulation in the myeloid lineage.
Collapse
Affiliation(s)
- Jess Rhee
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada; Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada.
| |
Collapse
|
43
|
Tetrahydroxystilbene glycoside antagonizes β-amyloid-induced inflammatory injury in microglia cells by regulating PU.1 expression. Neuroreport 2019; 29:787-793. [PMID: 29668503 PMCID: PMC5999375 DOI: 10.1097/wnr.0000000000001032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibiting β-amyloid (Aβ)-induced microglial activation is proposed as an effective strategy for the treatment of Alzheimer’s disease. Tetrahydroxystilbene glycoside (TSG) is the main active ingredient of Polygonum multiflorum and has a wide range of biological properties, including antiinflammation. Here, we focused on the function and regulatory mechanism of TSG in Aβ-induced N9 and BV2 cells. The results showed that Aβ treatment induced the activation of microglia cells and the production of inflammatory molecules, including inducible nitric oxide synthase, nitric oxide, cyclooxygenase 2, and prostaglandin E2, which were significantly inhibited by TSG pretreatment. Furthermore, we found Aβ exposure increased the levels of microglial M1 markers, interleukin (IL)-1β, IL-6, and tumor necrosis factor α, and the pretreatment of TSG suppressed the increase of M1 markers and enhanced the levels of M2 markers, including IL-10, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and arginase-1. PU.1 overexpression was found to eradicate the anti-inflammatory effects of TSG in Aβ-induced microglial cells. Taken together, these findings indicate that TSG attenuates Aβ-induced microglial activation and polarizes microglia towards M2 phenotype, which may be closely associated with the regulation of PU.1.
Collapse
|
44
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
45
|
Xia W, Luo P, Hua P, Ding P, Li C, Xu J, Zhou H, Gu Q. Discovery of a New Pterocarpan-Type Antineuroinflammatory Compound from Sophora tonkinensis through Suppression of the TLR4/NFκB/MAPK Signaling Pathway with PU.1 as a Potential Target. ACS Chem Neurosci 2019; 10:295-303. [PMID: 30223643 DOI: 10.1021/acschemneuro.8b00243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation underlies many neuro-degenerative diseases. In this paper, we report the identification of a new pterocarpan-type anti-inflammatory compound named sophotokin isolated from Sophora tonkinensis. S. tonkinensis has been used traditionally for treatment of conditions related to inflammation. Our initial screening showed that sophotokin dose-dependently inhibits lipopolysaccharide (LPS)-stimulated production of NO, TNF-α, PGE2, and IL-1β in microglial cells. This antineuroinflammatory effect was associated with sophotokin's blockade of LPS-induced production of the inflammatory mediators iNOS and COX-2. Western blot and qPCR analysis demonstrated that sophotokin inhibits both the p38-MAPK and NF-κB signal pathways. Further studies revealed that sophotokin also suppresses the expression of cluster differentiation 14 (CD14) in the toll-like receptor 4 (TLR4) signaling pathway. Following down-regulation of MyD88 and TRAF6, sophotokin inhibits the activation of the NF-κB and MAPK signal pathways in LPS-induced BV-2 cells. In silico studies suggested that sophotokin could interact with PU.1-DNA complex through hydrogen binding at sites 1 and 2 of the complex, blocking the DNA binding. This suggests that PU.1 may be a potential target of sophotokin. Taken together, these results suggest that sophotokin may have therapeutic potential for diseases related to neuroinflammation. The mechanism of antineuroinflammatory effects involves inhibition of the TLR4 signal pathway at the sites of NF-κB and MAPK with PU.1 as a likely upstream target.
Collapse
Affiliation(s)
- Wenjuan Xia
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Pan Luo
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Peng Ding
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Chanjuan Li
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
46
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
47
|
Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, Yang L, Fan X, Tang Y, Liu N, Lei X, Wu H. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. eLife 2018; 7:38314. [PMID: 30412053 PMCID: PMC6251627 DOI: 10.7554/elife.38314] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled β-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a β-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.
Collapse
Affiliation(s)
- Haichuan Zhu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Liuzhen Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yilin Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Bingjie Dong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Weilong Guo
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Mei Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Lu Yang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xiaoying Fan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Yuliang Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ningshu Liu
- Drug Discovery Oncology, Bayer Pharmaceuticals, Berlin, Germany
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hong Wu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| |
Collapse
|
48
|
Pulugulla SH, Workman R, Rutter NW, Yang Z, Adamik J, Lupish B, Macar DA, El Abdouni S, Esposito EX, Galson DL, Camacho CJ, Madura JD, Auron PE. A combined computational and experimental approach reveals the structure of a C/EBPβ-Spi1 interaction required for IL1B gene transcription. J Biol Chem 2018; 293:19942-19956. [PMID: 30355733 DOI: 10.1074/jbc.ra118.005627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
We previously reported that transcription of the human IL1B gene, encoding the proinflammatory cytokine interleukin 1β, depends on long-distance chromatin looping that is stabilized by a mutual interaction between the DNA-binding domains (DBDs) of two transcription factors: Spi1 proto-oncogene at the promoter and CCAAT enhancer-binding protein (C/EBPβ) at a far-upstream enhancer. We have also reported that the C-terminal tail sequence beyond the C/EBPβ leucine zipper is critical for its association with Spi1 via an exposed residue (Arg-232) located within a pocket at one end of the Spi1 DNA-recognition helix. Here, combining in vitro interaction studies with computational docking and molecular dynamics of existing X-ray structures for the Spi1 and C/EBPβ DBDs, along with the C/EBPβ C-terminal tail sequence, we found that the tail sequence is intimately associated with Arg-232 of Spi1. The Arg-232 pocket was computationally screened for small-molecule binding aimed at IL1B transcription inhibition, yielding l-arginine, a known anti-inflammatory amino acid, revealing a potential for disrupting the C/EBPβ-Spi1 interaction. As evaluated by ChIP, cultured lipopolysaccharide (LPS)-activated THP-1 cells incubated with l-arginine had significantly decreased IL1B transcription and reduced C/EBPβ's association with Spi1 on the IL1B promoter. No significant change was observed in direct binding of either Spi1 or C/EBPβ to cognate DNA and in transcription of the C/EBPβ-dependent IL6 gene in the same cells. These results support the notion that disordered sequences extending from a leucine zipper can mediate protein-protein interactions and can serve as druggable targets for regulating gene promoter activity.
Collapse
Affiliation(s)
- Sree H Pulugulla
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Riley Workman
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Nathan W Rutter
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Zhiyong Yang
- the Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Juraj Adamik
- the Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Brian Lupish
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - David A Macar
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Samir El Abdouni
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Deborah L Galson
- the Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,; the Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Carlos J Camacho
- the Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffry D Madura
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282; Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Philip E Auron
- From the Departments of Biological Sciences and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282; the Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219.
| |
Collapse
|
49
|
Shakerian L, Ghorbani S, Talebi F, Noorbakhsh F. MicroRNA-150 targets PU.1 and regulates macrophage differentiation and function in experimental autoimmune encephalomyelitis. J Neuroimmunol 2018; 323:167-174. [PMID: 30196828 DOI: 10.1016/j.jneuroim.2018.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
PU.1 is a transcription factor which is expressed in myeloid cells. Herein, we investigated the expression of PU.1 and its potentially targeting miRNAs in the central nervous system (CNS) of mice with experimental autoimmune encephalitis (EAE) and in cultured primary macrophages. PU.1 levels where highly induced in EAE spinal cords and in activated macrophages; this was associated with a significant reduction in miR-150-5p levels at chronic phase of disease and in activated cells. Luciferase assays confirmed the PU.1-miR-150-5p interaction. Overexpression of miR-150-5p in macrophages decreased the expression of proinflammatory cytokines and shifted the polarization of macrophages away from the M1-like phenotype.
Collapse
Affiliation(s)
- Leila Shakerian
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 2017; 8:1426. [PMID: 29127283 PMCID: PMC5681560 DOI: 10.1038/s41467-017-01605-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.
Collapse
|