1
|
Wang H, Ruan G, Li Y, Liu X. The Role and Potential Application of IL-12 in the Immune Regulation of Tuberculosis. Int J Mol Sci 2025; 26:3106. [PMID: 40243848 PMCID: PMC11988481 DOI: 10.3390/ijms26073106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, affecting millions annually and leading to substantial mortality, particularly in developing countries. The pathogen's ability to persist latently and evade host immunity, combined with the emergence of drug-resistant strains, underscores the need for innovative therapeutic strategies. This review highlights the crucial role of interleukin-12 (IL-12) in coordinating immune responses against TB, focusing on its potential as an immunotherapy target. IL-12, a key Th1 cytokine, enhances cellular immunity by promoting Th1 cell differentiation and IFN-γ production, vital for Mtb clearance. By stimulating cytotoxic T lymphocytes and establishing immune memory, IL-12 supports robust host defense mechanisms. However, the complexity of IL-12 biology, including its roles in pro-inflammatory and regulatory pathways, necessitates a nuanced understanding for effective therapeutic use. Recent studies have shown how IL-12 impacts T cell synapse formation, exosome-mediated bystander activation, and interactions with other cytokines in shaping T cell memory. Genetic defects in the IL-12/IFN-γ axis link to susceptibility to mycobacterial diseases, highlighting its importance in TB immunity. The review also addresses challenges like cytokine imbalances seen in TNF-α/IFN-γ synergy, which exacerbate inflammation, and the implications for IL-12-based interventions. Research into modulating IL-12, including its use as an adjuvant and in recombinant vaccines, promises improved TB treatment outcomes and vaccine efficacy. The review concludes by stressing the need for continued investigation into IL-12's molecular mechanisms towards precision immunotherapies to combat TB and its complications.
Collapse
Affiliation(s)
- Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Guiren Ruan
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Yuanchun Li
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (H.W.); (G.R.); (Y.L.)
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing 100730, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Chen S, Xu H, Pan T, Nie Y, Zhang X, Chen F, Xie Q, Chen W. A Comprehensive Analysis of the ceRNA Network and Hub Genes in Avian Leukosis Virus Subgroup J and Infectious Bursal Disease Virus Superinfection. Animals (Basel) 2024; 14:3449. [PMID: 39682415 DOI: 10.3390/ani14233449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In the realm of poultry production, viral superinfections pose significant challenges, causing substantial economic losses worldwide. Among these, avian leukosis virus subgroup J (ALV-J) and infectious bursal disease virus (IBDV) are particularly concerning as they frequently lead to superinfections in chicken, further exacerbating production losses and health complications. Our previous research delved into the pathogenicity and immunosuppressive effects of these superinfections through in vitro and in vivo analyses. Yet, the underlying key genes and pathways governing this phenomenon remained elusive. In this study, we randomly selected three chickens at 21 days post infection from each treatment group (ALV-J, IBDV, ALV-J+IBDV, and control group) to collect the bursa of Fabricius samples for full transcriptome analysis. Utilizing these data, we constructed a comprehensive circRNA/lncRNA-miRNA-mRNA network which elucidated both synergistic and specific activations during the superinfection. Notably, three pivotal genes (FILIP1L, DCX, and MYPN) were pinpointed in datasets reflecting synergistic activations. Conversely, four other genes (STAP, HKR6, XKR4, and TLR5) emerged in datasets associated with specific activations. Further exploration revealed diverse significant GO terms and pathways associated with both synergistic and distinct activation processes. These ceRNA network and core genes potentially wield substantial influence over the synergistic or specific activation of tumorigenesis and pathogenesis induced by ALV-J and IBDV. These findings could help develop targeted therapies and improve disease control in poultry, reducing economic losses.
Collapse
Affiliation(s)
- Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Huijuan Xu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingxi Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Nie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Feng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Weiguo Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| |
Collapse
|
3
|
Bayyurt B, Baltacı S, Şahin NÖ, Arslan S, Bakır M. Relationship of Toll-Like Receptor 7, 9, and 10 Polymorphisms and the Severity of Coronavirus Disease 2019. Jpn J Infect Dis 2024; 77:161-168. [PMID: 38296538 DOI: 10.7883/yoken.jjid.2023.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic that is still affecting people and has caused many deaths. Toll-like receptors (TLRs) have an important role in the binding of disease agents to the host cell, disease susceptibility and severity, and host disease resistance. In this study, we investigated the frequencies of TLR7 (C.4-151 A/G), TLR9 (T-1486C and G2848A), and TLR10 (720A/C and 992T/A) single nucleotide polymorphisms in 150 cases with COVID-19 and 171 control samples. We also examined whether TLR7, TLR9, and TLR10 were related to COVID-19 severity. Furthermore, we analyzed the association between COVID-19 and some clinical parameters. Polymerase chain reaction based on restriction fragment length polymorphisms performed for the TLR7, TLR9, and TLR10 single nucleotide polymorphisms. TLR7 C.4-151 A/G G allele and GG genotype; TLR9 T-1486C C allele and TC, CC genotypes; and TLR10 720A/C C allele; TLR10 992T/A A allele and AA genotype frequencies were statistically significant in cases with COVID-19 compared with controls (P < 0.05*). In addition, there was a statistically significant difference in the distribution of TLR7, TLR9, and TLR10 allele and genotype frequencies between the severity groups (P < 0.05*). Our findings suggest that TLR7, TLR9, and TLR10 polymorphisms may be crucial for the clinical course and susceptibility to infection.
Collapse
Affiliation(s)
- Burcu Bayyurt
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| | - Sevgi Baltacı
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| | - Nil Özbilüm Şahin
- Department of Molecular Biology and Genetic, Faculty of Science, Sivas Cumhuriyet University, Turkey
| | - Serdal Arslan
- Department of Medical Biology, Faculty of Medicine, Mersin University, Turkey
| | - Mehmet Bakır
- Departments of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Turkey
| |
Collapse
|
4
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
5
|
Xu L, Hu W, Zhang J, Qu J. Knockdown of versican 1 in lung fibroblasts aggravates Lipopolysaccharide-induced acute inflammation through up-regulation of the SP1-Toll-like Receptor 2-NF-κB Axis: a potential barrier to promising Versican-targeted therapy. Int Immunopharmacol 2023; 121:110406. [PMID: 37311354 DOI: 10.1016/j.intimp.2023.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Versican participates in various pathological processes like inflammation and fibrosis and is a potential therapeutic target for inflammatory diseases. Versican 1 (V1) has increased expression in inflammatory diseases, but its role is unclear. We explored the effects of V1 on acute lung inflammation to determine whether targeting V1 had therapeutic potential. METHODS Human fetal lung fibroblast (HFL1) was transfected with or without V1-inhibiting lentivirus and treated with LPS. The expression levels of inflammatory cytokines, V1, cellular signaling pathway and Toll-like receptors (TLRs) were detected by qPCR, ELISA and western blot. The migration and adhesion of neutrophils and monocytes to HFL1s were performed. The activity of transcriptional factors was determined by dual-luciferase reporter assay. RESULTS Inflammatory factors increased dramatically and continuously with V1 knockdown and LPS stimulation (P < 0.01), orchestrating migration of inflammatory cells and an enhanced inflammatory reaction. V1-knockdown increased TLR2 (P < 0.01) and activated the NF-κB pathway, which was partially reversed with a TLR2 neutralizing antibody and an NF-κB inhibitor. Explosion of LPS-induced inflammation was induced by knockdown of V1 via the SP1-TLR2-NF-κB axis. CONCLUSION Increased expression of V1 might be protective in acute inflammation, and an infection-induced cytokine storm might be a severe complication of V1-targeted interventions.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Geriatrics, Chongqing General Hospital and Chongqing Clinical Research Center for Geriatric Diseases, Chongqing, China; Department of Pulmonary and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Franco-Trepat E, Alonso-Pérez A, Guillán-Fresco M, López-Fagúndez M, Pazos-Pérez A, Crespo-Golmar A, Belén Bravo S, López-López V, Jorge-Mora A, Cerón-Carrasco JP, Lois Iglesias A, Gómez R. β Boswellic Acid Blocks Articular Innate Immune Responses: An In Silico and In Vitro Approach to Traditional Medicine. Antioxidants (Basel) 2023; 12:371. [PMID: 36829930 PMCID: PMC9952103 DOI: 10.3390/antiox12020371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is hallmarked as a silent progressive rheumatic disease of the whole joint. The accumulation of inflammatory and catabolic factors such as IL6, TNFα, and COX2 drives the OA pathophysiology into cartilage degradation, synovia inflammation, and bone destruction. There is no clinical available OA treatment. Although traditional ayurvedic medicine has been using Boswellia serrata extracts (BSE) as an antirheumatic treatment for a millennium, none of the BSE components have been clinically approved. Recently, β boswellic acid (BBA) has been shown to reduce in vivo OA-cartilage loss through an unknown mechanism. We used computational pharmacology, proteomics, transcriptomics, and metabolomics to present solid evidence of BBA therapeutic properties in mouse and primary human OA joint cells. Specifically, BBA binds to the innate immune receptor Toll-like Receptor 4 (TLR4) complex and inhibits both TLR4 and Interleukin 1 Receptor (IL1R) signaling in OA chondrocytes, osteoblasts, and synoviocytes. Moreover, BBA inhibition of TLR4/IL1R downregulated reactive oxygen species (ROS) synthesis and MAPK p38/NFκB, NLRP3, IFNαβ, TNF, and ECM-related pathways. Altogether, we present a solid bulk of evidence that BBA blocks OA innate immune responses and could be transferred into the clinic as an alimentary supplement or as a therapeutic tool after clinical trial evaluations.
Collapse
Affiliation(s)
- Eloi Franco-Trepat
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - María Guillán-Fresco
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Miriam López-Fagúndez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Andrés Pazos-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Antía Crespo-Golmar
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Verónica López-López
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alberto Jorge-Mora
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - José P. Cerón-Carrasco
- Centro Universitario de la Defensa, Universidad Politécnica de Cartagena, C/Coronel López Peña S/N, Base Aérea de San Javier, Santiago de La Ribera, 30720 Murcia, Spain
| | - Ana Lois Iglesias
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Huang Q, Yang H, Yang D, Hao Y, Yu S, Guo Z, Tian L, Cai X, Huang B, Zhang A, Wang G, Du T. A synthetic toll-like receptor 7 agonist inhibits porcine reproductive and respiratory syndrome virus replication in piglets. Vet Microbiol 2022; 271:109475. [DOI: 10.1016/j.vetmic.2022.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
|
8
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
9
|
Shen X, Zhao J, Wang Q, Chen P, Hong Y, He X, Chen D, Liu H, Wang Y, Cai X. The Invasive Potential of Hepatoma Cells Induced by Radiotherapy is Related to the Activation of Stellate Cells and Could be Inhibited by EGCG Through the TLR4 Signaling Pathway. Radiat Res 2022; 197:365-375. [PMID: 35051295 DOI: 10.1667/rade-21-00129.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
Post-radiotherapy recurrence and metastasis of liver cancer were thought to arise from the invasion and metastasis of residual hepatocellular carcinoma cells, but it has now been shown to be closely related to the increased metastatic potential of residual liver cancer cells mediated by radiotherapy. The changes of liver microenvironment after radiotherapy also provide a favorable condition for promoting the metastatic potential of hepatocellular carcinoma. Studies have shown that radiation-induced activation of hepatic stellate cells (HSCs) is one of the main changes in the microenvironment of hepatocellular carcinoma. Therefore, we hypothesized that activated HSCs are involved in regulating the metastatic capacity of residual cancer cells after radiotherapy. The present study observed that 48 h co-culture of three human hepatoma cell lines (MHCC97-L, Hep-3B, LM3) with a irradiated human HSC line (LX-2) in a transwell chamber could significantly improve the invasion of the human hepatoma cells; and the culture supernatant of activated HSCs could also enhance the invasion of the hepatoma cells. In contrast, co-culture with irradiated hepatoma cells enhanced the invasion of LX-2 cells. In vitro, irradiation enhanced the activation phenotype and the toll like receptor 4 (TLR4) signaling pathway of LX-2 cells or primary mouse HSCs, which upregulated intercellular cell adhesion molecule-1 (ICAM1), laminin receptor (67 LR), Interleukin- 6 (IL-6), and CX3C chemokine ligand 1 (CX3CL1) and downregulated toll-interacting proteins. The compound (-)-epigallocatechin-3-gallate (EGCG) inhibited signal transduction of activated TLR4 and radiation-induced invasion of LX-2 cells by binding to 67 LR. These observations indicated that the enhancement of the metastatic potential of hepatoma cells after irradiation was relevant to the activation of HSCs, and the activation of TLR4 signaling pathway was involved in this process, which was inhibited by EGCG. Our results will help enhance the therapeutic efficacy of liver cancer stereotactic body radiation therapy to prevent and decrease the risks of post-radiotherapy recurrence and metastasis.
Collapse
Affiliation(s)
- Xiaoyun Shen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Jia Zhao
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Qi Wang
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Ping Chen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yiyang Hong
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaoyan He
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Dafang Chen
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Hui Liu
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yifan Wang
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiujun Cai
- Key Laboratory of Endoscopic Technology Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
10
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
11
|
Wang X, Chen Z, Murani E, D'Alessandro E, An Y, Chen C, Li K, Galeano G, Wimmers K, Song C. A 192 bp ERV fragment insertion in the first intron of porcine TLR6 may act as an enhancer associated with the increased expressions of TLR6 and TLR1. Mob DNA 2021; 12:20. [PMID: 34407874 PMCID: PMC8375133 DOI: 10.1186/s13100-021-00248-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Background Toll-like receptors (TLRs) play important roles in building innate immune and inducing adaptive immune responses. Associations of the TLR genes polymorphisms with disease susceptibility, which are the basis of molecular breeding for disease resistant animals, have been reported extensively. Retrotransposon insertion polymorphisms (RIPs), as a new type of molecular markers developed recently, have great potential in population genetics and quantitative trait locus mapping. In this study, bioinformatic prediction combined with PCR-based amplification was employed to screen for RIPs in porcine TLR genes. Their population distribution was examined, and for one RIP the impact on gene activity and phenotype was further evaluated. Results Five RIPs, located at the 3' flank of TLR3, 5' flank of TLR5, intron 1 of TLR6, intron 1 of TLR7, and 3' flank of TLR8 respectively, were identified. These RIPs were detected in different breeds with an uneven distribution among them. By using the dual luciferase activity assay a 192 bp endogenous retrovirus (ERV) in the intron 1 of TLR6 was shown to act as an enhancer increasing the activities of TLR6 putative promoter and two mini-promoters. Furthermore, real-time quantitative polymerase chain reaction (qPCR) analysis revealed significant association (p < 0.05) of the ERV insertion with increased mRNA expression of TLR6, the neighboring gene TLR1, and genes downstream in the TLR signaling pathway such as MyD88 (Myeloid differentiation factor 88), Rac1 (Rac family small GTPase 1), TIRAP (TIR domain containing adaptor protein), Tollip (Toll interacting protein) as well as the inflammatory factors IL6 (Interleukin 6), IL8 (Interleukin 8), and TNFα (Tumor necrosis factor alpha) in tissues of 30 day-old piglet. In addition, serum IL6 and TNFα concentrations were also significantly upregulated by the ERV insertion (p < 0.05). Conclusions A total of five RIPs were identified in five different TLR loci. The 192 bp ERV insertion in the first intron of TLR6 was associated with higher expression of TLR6, TLR1, and several genes downstream in the signaling cascade. Thus, the ERV insertion may act as an enhancer affecting regulation of the TLR signaling pathways, and can be potentially applied in breeding of disease resistant animals. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-021-00248-w.
Collapse
Affiliation(s)
- XiaoYan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zixuan Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Enrico D'Alessandro
- Department of Veterinary Science, Unit of Animal Production, University of Messina, 98168, Messina, Italy
| | - Yalong An
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kui Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Grazia Galeano
- Department of Veterinary Science, Unit of Animal Production, University of Messina, 98168, Messina, Italy
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
12
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J Exp Med 2021; 218:211734. [PMID: 33533916 PMCID: PMC7849819 DOI: 10.1084/jem.20201387] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 12/25/2022] Open
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Capucine Picard
- Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale, Necker Hospital for Sick Children, Paris, France.,Université de Paris, Institut National de la Santé et de la Recherche Médicale Unite Mixte de Recherche 1163, Institut Imagine, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U944, Centre National de la Recherche Scientifique 7212, Hôpital Saint-Louis, Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France
| |
Collapse
|
14
|
Onodi F, Bonnet-Madin L, Meertens L, Karpf L, Poirot J, Zhang SY, Picard C, Puel A, Jouanguy E, Zhang Q, Le Goff J, Molina JM, Delaugerre C, Casanova JL, Amara A, Soumelis V. SARS-CoV-2 induces human plasmacytoid pre-dendritic cell diversification via UNC93B and IRAK4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33442685 PMCID: PMC7805442 DOI: 10.1101/2020.07.10.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fanny Onodi
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Lucie Bonnet-Madin
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Laurent Meertens
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Léa Karpf
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Justine Poirot
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Capucine Picard
- Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,Study center for primary immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux (AP-HP) de Paris, Paris, France, EU.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérôme Le Goff
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Michel Molina
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Constance Delaugerre
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France.,Laboratoire de Virologie et Département des Maladies Infectieuses, Hôpital Saint-Louis, APHP, 75010 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France, EU.,Université de Paris; INSERM UMR 1163 Institut Imagine, France EU.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France, EU.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ali Amara
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U944 CNRS 7212, Hôpital Saint-Louis, 75010 Paris, France
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, F-75010, Paris, France
| |
Collapse
|
15
|
Yasmeen F, Seo H, Javaid N, Kim MS, Choi S. Therapeutic Interventions into Innate Immune Diseases by Means of Aptamers. Pharmaceutics 2020; 12:pharmaceutics12100955. [PMID: 33050544 PMCID: PMC7600108 DOI: 10.3390/pharmaceutics12100955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 12/25/2022] Open
Abstract
The immune system plays a crucial role in the body's defense system against various pathogens, such as bacteria, viruses, and parasites, as well as recognizes non-self- and self-molecules. The innate immune system is composed of special receptors known as pattern recognition receptors, which play a crucial role in the identification of pathogen-associated molecular patterns from diverse microorganisms. Any disequilibrium in the activation of a particular pattern recognition receptor leads to various inflammatory, autoimmune, or immunodeficiency diseases. Aptamers are short single-stranded deoxyribonucleic acid or ribonucleic acid molecules, also termed "chemical antibodies," which have tremendous specificity and affinity for their target molecules. Their features, such as stability, low immunogenicity, ease of manufacturing, and facile screening against a target, make them preferable as therapeutics. Immune-system-targeting aptamers have a great potential as a targeted therapeutic strategy against immune diseases. This review summarizes components of the innate immune system, aptamer production, pharmacokinetic characteristics of aptamers, and aptamers related to innate-immune-system diseases.
Collapse
|
16
|
Jacobsen-Pereira CH, Cardoso CC, Gehlen TC, Regina Dos Santos C, Santos-Silva MC. Immune response of Brazilian farmers exposed to multiple pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110912. [PMID: 32800247 DOI: 10.1016/j.ecoenv.2020.110912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Occupational exposure to pesticides has been identified as a factor that predisposes to disorders of the immune system. Immunosuppression, autoimmunity, cancer of various organs and other diseases in people who apply these products have been reported by the studies. This study aimed to investigate the relationship between occupational exposure to pesticides and the immunological profile in 43 farmers exposed to mixtures of pesticides for at least 15 years. A control group composed of 30 individuals without a history of occupational exposure to pesticides was also evaluated. Peripheral blood samples were processed by flow cytometry and cells were labelled with an 8-color monoclonal antibody panel. Plasma cytokines were also measured. Significant increase in classical monocytes (p < 0.001) and dendritic cells (p < 0.001) in the exposed group was observed as well in total T cells (p = 0.04), central memory CD8 T cells (p = 0.02) and effector memory CD8 T cells (p = 0.01). On the other hand, the activation markers of T cells as the expression of CD57, HLA-DR, CD25 and CD28 were evaluated and no difference was found between groups. When the B cells were analyzed, a significant decrease in total B cells (p = 0.01), regulatory B cells (p < 0.001) and plasmablasts (p < 0.001) in the exposed group, compared to healthy controls, was observed. Pro-inflammatory IL-6 was significantly elevated (p = 0.04) in the plasma of farmers compared to that of controls. The constant antigenic stimulus that occurs during exposure to pesticides can favor the recruitment of dendritic cells and macrophages (APCs) presents in the skin and respiratory tract. In the secondary lymphoid organs, the CD4 T and B cells that process such antigens are possibly undergoing proliferative exhaustion, with the consequent depletion of all mature B subpopulations. The resulting drop in humoral immunity may be offset by an increase in the number of circulating CD8 T lymphocytes due to their cytotoxic action.
Collapse
Affiliation(s)
| | - Chandra Chiappin Cardoso
- Postgraduate Program in Pharmacy of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Tais Cristina Gehlen
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Claudia Regina Dos Santos
- Laboratory of Toxicology, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil
| | - Maria Claudia Santos-Silva
- Division of Clinical Analysis, Flow Cytometry Service, University Hospital of the Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil; Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianopolis, SC, 88040-900, Brazil.
| |
Collapse
|
17
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Huang W, Yang J, He C, Yang J. RP105 plays a cardioprotective role in myocardial ischemia reperfusion injury by regulating the Toll‑like receptor 2/4 signaling pathways. Mol Med Rep 2020; 22:1373-1381. [PMID: 32626996 PMCID: PMC7339787 DOI: 10.3892/mmr.2020.11242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
The revascularization of blood vessels after myocardial infarction can lead to serious myocardial damage. Previous studies showed that radioprotective 105 kDa protein (RP105) is a specific negative regulator of myocardial ischemia reperfusion injury (MIRI). RP105 can modulate the Toll‑like receptor (TLR)2/TLR4 signaling pathways. However, the synergistic effect of TLR2/4 regulated by RP105 during MIRI requires further investigation. To determine this effect, a MIRI model was established in rats in the present study. The expression of RP105 was depleted by transfecting RP105‑siRNA and then detected using western blotting. Furthermore, the myocardium tissue was stained with the hematoxylin and eosin staining. Knockdown of RP105 promoted the activity of serum myocardial enzymes during MIRI and increased myocardial infarction. The present results indicated that knockdown of RP105 activated the TLR2/4 signaling pathway by modulating the myeloid differentiation primary response 88 and NF‑κB signaling pathways. Furthermore, decreased expression of RP105 promoted myocardial cell apoptosis, which induced the damage of myocardial ischemic reperfusion. The present results suggested both TLR2 and TLR4 as key targets of RP105, thus RP105 may be a promising candidate to facilitate the development of novel therapeutic strategies for MIRI.
Collapse
Affiliation(s)
- Weiling Huang
- Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jian Yang
- Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Chao He
- Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jun Yang
- Institute of Cardiovascular Diseases, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
19
|
Wang D, Zhou M, Wang Y, Sun S. Suppression of high-mobility group box 1 ameliorates xerostomia in a Sjögren syndrome-triggered mouse model. Can J Physiol Pharmacol 2020; 98:351-356. [PMID: 31935120 DOI: 10.1139/cjpp-2019-0337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Xerostomia is a self-conscious symptom. High-mobility group box 1 (HMGB1) promotes pro-inflammatory effects in many diseases. This study aimed to clarify the role of HMGB1 in Sjögren syndrome (SS)-triggered xerostomia. Nonobese diabetic (NOD)/Ltj mice were used to establish an SS-triggered xerostomia model. The results showed that saliva production was decreased and anti-Sjögren syndrome B (anti-SSB) level was increased in SS. PCR, Western blot, and immunohistochemistry experiments indicated that the HMGB1 and aquaporin 5 (AQP5) levels were enhanced and diminished in SS compared with those in the control, respectively. While the mice were treated with anti-HMGB1, xerostomia was reversed due to the elevated saliva production and reduced anti-SSB level. In addition, it was found that the inhibition of HMGB1 restrained the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) axis activation. The TLR4 and p-IκB levels were alleviated, while the IκBα and NF-κB p65 levels were augmented. The NF-κB p65 binding activity was attenuated via the electrophoretic mobility shift assay (EMSA) after anti-HMGB1 treatment. Moreover, the repression of HMGB1 facilitated the expression of AQP5. These findings demonstrate that suppression of HMGB1 ameliorates SS-triggered xerostomia via suppressing the HMGB1/TLR4/NF-κB signaling pathway and upregulating AQP5 expression.
Collapse
Affiliation(s)
- Di Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Yan Wang
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
- Department of Nephrology, Xijing Hospital, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, Shaanxi 710032, People’s Republic of China
| |
Collapse
|
20
|
The novel small-molecule antagonist MMG-11 preferentially inhibits TLR2/1 signaling. Biochem Pharmacol 2019; 171:113687. [PMID: 31678495 DOI: 10.1016/j.bcp.2019.113687] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 2 (TLR2) forms heterodimers with either TLR1 or TLR6 to induce protective early inflammatory responses to pathogen- and damage-associated molecular patterns. However, excessive activation is associated with inflammatory and metabolic diseases. Several TLR2 antagonists have been described but pharmacological characterization is still at an early stage. Previously, we identified the potent and selective TLR2 antagonist MMG-11 by computational modelling and experimental validation. Here, we characterized the TLR2 antagonists MMG-11 and CU-CPT22 as well as the TIR-domain binding TLR2 antagonist C29 in TLR-overexpressing promoter cells as well as human and mouse macrophages. In line with our recent studies, MMG-11 abrogated pro-inflammatory cytokine secretion and NF-κB activation induced by different bacterial TLR2 agonists. MMG-11 preferentially inhibited TLR2/1 signaling in promoter cells stably expressing TLR2 heterodimers and mouse macrophages. Furthermore, the TLR2 antagonist blocked ligand-induced interaction of TLR2 with MyD88 and reduced MAP kinase and NF-κB activation. MMG-11 and CU-CPT22 but not C29 displaced Pam3CSK4 in an indirect binding assay confirming the competitive mode of action of MMG-11 and CU-CPT22. Isobologram analysis revealed additive and synergistic effects when the non-competitive antagonist C29 was combined with the competitive antagonist MMG-11 or CU-CPT22, respectively. In conclusion, we provide evidence that MMG-11 acts as a competitive antagonist with a predominance for the TLR2/1 heterodimer in human and mouse cells. Our results also indicate that MMG-11 is a model compound for studying TLR2 signaling.
Collapse
|
21
|
Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. Eur J Med Chem 2019; 179:744-752. [DOI: 10.1016/j.ejmech.2019.06.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
22
|
Yang L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. Innate Immune Evasion of Alphaherpesvirus Tegument Proteins. Front Immunol 2019; 10:2196. [PMID: 31572398 PMCID: PMC6753173 DOI: 10.3389/fimmu.2019.02196] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Alphaherpesviruses are a large family of highly successful human and animal DNA viruses that can establish lifelong latent infection in neurons. All alphaherpesviruses have a protein-rich layer called the tegument that, connects the DNA-containing capsid to the envelope. Tegument proteins have a variety of functions, playing roles in viral entry, secondary envelopment, viral capsid nuclear transportation during infection, and immune evasion. Recently, many studies have made substantial breakthroughs in characterizing the innate immune evasion of tegument proteins. A wide range of antiviral tegument protein factors that control incoming infectious pathogens are induced by the type I interferon (IFN) signaling pathway and other innate immune responses. In this review, we discuss the immune evasion of tegument proteins with a focus on herpes simplex virus type I.
Collapse
Affiliation(s)
- Linjiang Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Zandieh Z, Ashrafi M, Aflatoonian K, Aflatoonian R. Human sperm DNA damage has an effect on immunological interaction between spermatozoa and fallopian tube. Andrology 2019; 7:228-234. [DOI: 10.1111/andr.12574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Z. Zandieh
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Anatomy Department School of Medicine Iran University of Medical Sciences Tehran Iran
| | - M. Ashrafi
- Shahid Akbar Abadi Clinical Research Development Unit (ShACRDU) Iran University of Medical Sciences Tehran Iran
| | - K. Aflatoonian
- School of Medicine Iran University of Medical Sciences Tehran Iran
| | - R. Aflatoonian
- Department of Endocrinology and Female Infertility Reproductive Biomedicine Research Center Royan Institute for Reproductive Biomedicine ACECR Tehran Iran
| |
Collapse
|
24
|
Zhang M, Wu J, Han J, Shu H, Liu K. Isolation of polysaccharides from Dendrobium officinale leaves and anti-inflammatory activity in LPS-stimulated THP-1 cells. Chem Cent J 2018; 12:109. [PMID: 30377844 PMCID: PMC6768017 DOI: 10.1186/s13065-018-0480-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Dendrobium officinale stem is rich in polysaccharides, which play a great role in the medicinal effects of this plant. However, little was known about the polysaccharides from Dendrobium officinale leaves. Two kinds of polysaccharides in the leaves, DLP-1 and DLP-2, were obtained by hot water extraction, alcohol sedimentation and chromatographic separation (DEAE-52 cellulose column and Sephadex G-100 column). The average molecular weights were determined as 28,342 Da and 41,143 Da, respectively. Monosaccharide compositions were analyzed using gas chromatography–mass spectrometer. DLP-1 was composed of d-(+)-galactose, dl-arabinose, and l-(+)-rhamnose with a molar ratio of 3.21:1.11:0.23, and traces of d-xylose, d-glucose, and d-(+)-mannose. DLP-2 was consisted of d-glucose and d-(+)-galactose with a molar ratio of 3.23:1.02, and traces of d-xylose, dl-arabinose. Then, we established inflammatory cell model by LPS acting THP-1 cells to investigate the anti-inflammatory effects of DLP-1 and DLP-2. The results indicated that DLP-1 (5 μg/mL) and DLP-2 (50 μg/mL) were effective in protecting THP-1 cells from LPS-stimulated cytotoxicity, as well as inhibiting reactive oxygen species formation. In addition, both DLP-1 (5 μg/mL) and DLP-2 (50 μg/mL) significantly suppressed toll-like receptor-4 (TLR-4), myeloid differentiation factor (MyD88) and tumour necrosis factor receptor-associated factor-6 (TRAF-6) mRNA and protein expression in LPS-stimulated THP-1 cells.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Lingang New City, Shanghai, 201306, China
| | - Junwen Wu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Lingang New City, Shanghai, 201306, China
| | - Juanjuan Han
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Lingang New City, Shanghai, 201306, China
| | - Hongmei Shu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Lingang New City, Shanghai, 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, 999 Hucheng Ring Road, Lingang New City, Shanghai, 201306, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
25
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
26
|
Bi D, Wang Y, Gao Y, Li X, Chu Q, Cui J, Xu T. Recognition of Lipopolysaccharide and Activation of NF-κB by Cytosolic Sensor NOD1 in Teleost Fish. Front Immunol 2018; 9:1413. [PMID: 30013548 PMCID: PMC6036275 DOI: 10.3389/fimmu.2018.01413] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/06/2018] [Indexed: 01/01/2023] Open
Abstract
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. This molecule can induce strong immune response and various biological effects. In mammals, TLR4 can recognize LPS and induce inflammatory response. However, the innate receptor in fish for recognizing LPS remains ambiguous. LPS can invade the cytoplasm via outer membrane vesicles produced by Gram-negative bacteria and could be detected by intracellular receptor caspase-11 in mammals, so, there may also exist the intracellular receptors that can recognize LPS in fish. NOD1 is a member of NOD-like receptors family and can recognize the iE-DAP in the cytoplasm in mammals. In fish, NOD1 can also respond to infection of Gram-negative bacteria and may play an important role in the identification of bacterial components. In this study, to study whether NOD1 is a recognition receptor for LPS, we detected the expression of NOD1 and several cytokines at transcript levels to determine whether LPS can induce inflammatory response in teleost fish and NOD1 can respond to LPS. Then, we perform the binding analysis between NOD1 and ultrapure LPS by using Streptavidin pulldown assay and enzyme-linked immunosorbent assay to prove that NOD1 can be combined with LPS, and using dual luciferase reporter gene assay to verify the signal pathways activated by NOD1. Next, through cell viability analysis, we proved that LPS-induced cytotoxicity can be mediated by NOD1 in fish. The results showed that NOD1 can identify LPS and activate the NF-κB signal pathway by recruiting RIPK2 and then promoting the expression of inflammatory cytokines to induce the resistance of organism against bacterial infection.
Collapse
Affiliation(s)
- Dekun Bi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Yue Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yunhang Gao
- College of Animal Science and Veterinary Medicine, Jilin Agriculture University, Changchun, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Qing Chu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Junxia Cui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China
| | - Tianjun Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Gonzalez OA, Kirakodu S, Novak MJ, Stromberg AJ, Orraca L, Gonzalez-Martinez J, Burgos A, Ebersole JL. Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology 2018; 223:279-287. [PMID: 29066255 PMCID: PMC5821569 DOI: 10.1016/j.imbio.2017.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Abstract
Host-bacterial interactions at mucosal surfaces require recognition of the bacteria by host cells enabling targeted responses to maintain tissue homeostasis. It is now well recognized that an array of host-derived pattern recognition receptors (PRRs), both cell-bound and soluble, are critical to innate immune engagement of microbes via microbial-associated molecular patterns (MAMP). This report describes the use of a nonhuman primate model to evaluate changes in the expression of these sensing molecules related to aging in healthy gingival tissues. Macaca mulatta aged 3-24 years were evaluated clinically and gingival tissues obtained, RNA isolated and microarray analysis conducted for gene expression of the sensing pattern recognition receptors (PRRs). The results demonstrated increased expression of various PRRs in healthy aging gingiva including extracellular (CD14, CD209, CLEC4E, TLR4), intracellular (NAIP, IFIH1, DAI) and soluble (PTX4, SAA1) PRRs. Selected PRRs were also correlated with both bleeding on probing (BOP) and pocket depth (PD) in the animals. These findings suggest that aged animals express altered levels of various PRRs that could affect the ability of the tissues to interact effectively with the juxtaposed microbial ecology, presumably contributing to an enhanced risk of periodontitis even in clinically healthy oral mucosal tissues with aging.
Collapse
Affiliation(s)
- O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - A J Stromberg
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, United States
| | - L Orraca
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - A Burgos
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, United States
| | - J L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
28
|
Hellwing C, Schoeniger A, Roessler C, Leimert A, Schumann J. Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition. PeerJ 2018; 6:e4212. [PMID: 29312832 PMCID: PMC5757419 DOI: 10.7717/peerj.4212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll like receptors (TLRs) are an important and evolutionary conserved class of pattern recognition receptors associated with innate immunity. The recognition of Gram-positive cell wall constituents strongly depends on TLR2. In order to be functional, TLR2 predominantly forms a heterodimer with TLR1 or TLR6 within specialized membrane microdomains, the lipid rafts. The membrane lipid composition and the physicochemical properties of lipid rafts are subject to modification by exogenous fatty acids. Previous investigations of our group provide evidence that macrophage enrichment with polyunsaturated fatty acids (PUFA) induces a reordering of lipid rafts and non-rafts based on the incorporation of supplemented PUFA as well as their elongation and desaturation products. METHODS In the present study we investigated potential constraining effects of membrane microdomain reorganization on the clustering of TLR2 with its co-receptors TLR1 and TLR6 within lipid rafts. To this end, RAW264.7 macrophages were supplemented with either docosahexaenoic acid (DHA) or arachidonic acid (AA) and analyzed for receptor expression and microdomain localization in context of TLR stimulation. RESULTS AND CONCLUSIONS Our analyses showed that receptor levels and microdomain localization were unchanged by PUFA supplementation. The TLR2 pathway, in contrast to the TLR4 signaling cascade, is not affected by exogenous PUFA at the membrane level.
Collapse
Affiliation(s)
- Christine Hellwing
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Axel Schoeniger
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Claudia Roessler
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Anja Leimert
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Julia Schumann
- Clinic for Anesthesiology and Surgical Intensive Care, University Hospital Halle (Saale), Halle (Saale), Germany
| |
Collapse
|
29
|
Wu J, Zhou X, Zhang M, Yao Y, Han J, Liu K. Cereus sinensis Polysaccharide and Its Immunomodulatory Properties in Human Monocytic Cells. Mar Drugs 2017; 15:md15050140. [PMID: 28524080 PMCID: PMC5450546 DOI: 10.3390/md15050140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022] Open
Abstract
In this study, the extraction conditions of the crude polysaccharide from Cereus sinensis were optimized by response surface methodology. The optimum extraction conditions were: a ratio of raw material to water volume of 1:80 (g/mL); an extraction temperature of 72 °C; and an extraction time of 3 h. Then, a purified polysaccharide named Cereus sinensis polysaccharide-1 (CSP-1) was obtained from the crude polysaccharide by the Diethylaminoethyl cellulose-52 (DEAE-52) cellulose chromatography column and Sephadex G-100 column. The molecular weight and monosaccharide composition of CSP-1 was determined through Gel Permeation Chromatography (GPC) and Gas Chromatography–Mass Spectrometer (GS–MS), respectively. The results showed that CSP-1 with an average molecular weight of 56,335 Da was composed of l-(−)-Fucose, d-(+)-Mannose, d-Glucose and mainly possessed 1→2, 1→2, 6, 1→4, and 1→4, 6 of glycosyl linkages. The immunomodulatory activities of CSP-1 were also evaluated using lipopolysaccharide (LPS)-induced human monocytic (THP-1) cells. The results demonstrated that CSP-1 dose-dependently protected against LPS-induced toxicity, and CSP-1 significantly inhibited the Toll-like receptor 4 (TLR-4) mRNA, myeloid differentiation factor 88 (MyD88) mRNA and tumour necrosis factor receptor-associated factor-6 (TRAF-6) mRNA expression of the LPS-induced THP-1 cells, as well as suppressing reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Junwen Wu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xuefei Zhou
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Yun Yao
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Juanjuan Han
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Abstract
The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.
Collapse
|
31
|
Song C, Li H, Zhang Y, Yu J. Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol 2017; 17:82. [PMID: 28376744 PMCID: PMC5381141 DOI: 10.1186/s12866-017-0999-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Our previous research on the diversity of microbiota in the endotracheal tubes (ETTs) of neonates in the neonatal intensive care unit found that Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus mitis (S. mitis) were the dominant bacteria on the ETT surface and the existence of S. mitis could promote biofilm formation and pathogenicity of P. aeruginosa. Toll-like receptor 4 (TLR4), which has been widely detected on the surface of airway epithelial cells, is the important component of the innate immune system. Therefore, we hypothesized that the co-existence of these two bacteria might impact the host immune system through TLR4 signaling. Results S. mitis rarely caused inflammation, whereas P. aeruginosa caused the most severe inflammation accompanied by increases in the number of inflammatory cells, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression, and total cell counts in BALF (p < 0.05). In the PAO1 + S. mitis group, moderate inflammation, reduced IL-6 and TNF-α protein levels, and decreased total cell counts were observed. Additionally, levels of these indicators were decreased lower in TLR4-deficient mice than in wild-type mice (p < 0.05). Conclusions Our results demonstrated that infection with S. mitis together with P. aeruginosa could alleviate lung inflammation in acute lung infection mouse models possibly via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Chao Song
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Hongdong Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yunhui Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
32
|
Liu Z, Hu Y, Yu P, Lin M, Huang G, Kawai T, Taubman M, Wang Z, Xiaozhe H. Toll-like receptor agonists Porphyromonas gingivalis LPS and CpG differentially regulate IL-10 competency and frequencies of mouse B10 cells. J Appl Oral Sci 2017; 25:90-100. [PMID: 28198981 PMCID: PMC5289405 DOI: 10.1590/1678-77572016-0277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/20/2016] [Indexed: 02/08/2023] Open
Abstract
IL-10 expressing regulatory B cells (B10) play a key role in immune system balance by limiting excessive inflammatory responses. Effects of toll-like receptor signaling and co-stimulatory molecules on B10 activity during innate and adaptive immune responses are not fully understood.
Collapse
Affiliation(s)
- Zhiqiang Liu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States.,Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Yang Hu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Pei Yu
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States.,Sichuan University, West China School of Stomatology, State Key Laboratory of Oral Diseases, Chengdu, Sichuan, China
| | - Mei Lin
- Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Grace Huang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Toshihisa Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Martin Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| | - Zuomin Wang
- Capital Medical University, Beijing ChaoYang Hospital, Department of Stomatology, Beijing, China
| | - Han Xiaozhe
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, Massachusetts, United States
| |
Collapse
|
33
|
Rapid detection of functional gene polymorphisms of TLRs and IL-17 using high resolution melting analysis. Sci Rep 2017; 7:41522. [PMID: 28148965 PMCID: PMC5288650 DOI: 10.1038/srep41522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Genetic variations in toll-like receptors (TLRs) and IL-17A have been widely connected to different diseases. Associations between susceptibility and resistance to different infections and single nucleotide polymorphisms (SNPs) in TLR1 to TLR4 and IL17A have been found. In this study, we aimed to develop a rapid and high throughput method to detect functional SNPs of above mentioned proteins. The following most studied and clinically important SNPs: TLR1 (rs5743618), TLR2 (rs5743708), TLR3 (rs3775291), TLR4 (rs4986790) and IL17 (rs2275913) were tested. High resolution melting analysis (HRMA) based on real-time PCR combined with melting analysis of a saturating double stranded-DNA binding dye was developed and used. The obtained results were compared to the "standard" sequencing method. A total of 113 DNA samples with known genotypes were included. The HRMA method correctly identified all genotypes of these five SNPs. Co-efficient values of variation of intra- and inter-run precision repeatability ranged from 0.04 to 0.23%. The determined limit of qualification for testing samples was from 0.5 to 8.0 ng/μl. The identical genotyping result was obtained from the same sample with these concentrations. Compared to "standard" sequencing methods HRMA is cost-effective, rapid and simple. All the five SNPs can be analyzed separately or in combination.
Collapse
|
34
|
Sharma S, Garg I, Ashraf MZ. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascul Pharmacol 2016; 87:30-37. [DOI: 10.1016/j.vph.2016.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022]
|
35
|
Badawi A. The Potential of Omics Technologies in Lyme Disease Biomarker Discovery and Early Detection. Infect Dis Ther 2016; 6:85-102. [PMID: 27900646 PMCID: PMC5336413 DOI: 10.1007/s40121-016-0138-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America and many countries of the temperate Northern Hemisphere. It is associated with local and systemic manifestations and has persistent post-treatment health complications in some individuals. Innate and acquired immunity-related inflammation is likely to play a critical role in both host defense against Borrelia burgdorferi and disease severity. Large-scale analytical approaches to quantify gene expression (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in LB have recently emerged with a potential to advance the development of disease biomarkers in early, disseminated and posttreatment disease stages. These technologies may permit defining the disease stage and facilitate its early detection to improve diagnosis. They will also likely allow elucidating the underlying molecular pathways to aid in identifying molecular targets for therapy. This article reviews the findings within the field of omics relevant to LB and its prospective utility in developing an array of biomarkers that can be employed in LB diagnosis and detection particularly at the early disease stages.
Collapse
Affiliation(s)
- Alaa Badawi
- Public Health Risk Sciences Division, Public Health Agency of Canada, 180 Queen Street West, Toronto, ON, Canada. .,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College Street, Toronto, ON, Canada.
| |
Collapse
|
36
|
Tu S, Zhong D, Xie W, Huang W, Jiang Y, Li Y. Role of Toll-Like Receptor Signaling in the Pathogenesis of Graft-versus-Host Diseases. Int J Mol Sci 2016; 17:E1288. [PMID: 27529218 PMCID: PMC5000685 DOI: 10.3390/ijms17081288] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) and infection are major complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the leading causes of morbidity and mortality in HSCT patients. Recent work has demonstrated that the two complications are interdependent. GVHD occurs when allo-reactive donor T lymphocytes are activated by major histocompatibility antigens or minor histocompatibility antigens on host antigen-presenting cells (APCs), with the eventual attack of recipient tissues or organs. Activation of APCs is important for the priming of GVHD and is mediated by innate immune signaling pathways. Current evidence indicates that intestinal microbes and innate pattern-recognition receptors (PRRs) on host APCs, including both Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), are involved in the pathogenesis of GVHD. Patients undergoing chemotherapy and/or total body irradiation before allo-HSCT are susceptible to aggravated gastrointestinal epithelial cell damage and the subsequent translocation of bacterial components, followed by the release of endogenous dangerous molecules, termed pathogen-associated molecular patterns (PAMPs), which then activate the PRRs on host APCs to trigger local or systemic inflammatory responses that modulate T cell allo-reactivity against host tissues, which is equivalent to GVHD. In other words, infection can, to some extent, accelerate the progression of GVHD. Therefore, the intestinal flora's PAMPs can interact with TLRs to activate and mature APCs, subsequently activate donor T cells with the release of pro-inflammatory cytokines, and eventually, induce GVHD. In the present article, we summarize the current perspectives on the understanding of different TLR signaling pathways and their involvement in the occurrence of GVHD.
Collapse
Affiliation(s)
- Sanfang Tu
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Danli Zhong
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Weixin Xie
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Wenfa Huang
- Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yangyang Jiang
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yuhua Li
- Department of Haematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
37
|
Altmann S, Korytář T, Kaczmarzyk D, Nipkow M, Kühn C, Goldammer T, Rebl A. Toll-like receptors in maraena whitefish: Evolutionary relationship among salmonid fishes and patterns of response to Aeromonas salmonicida. FISH & SHELLFISH IMMUNOLOGY 2016; 54:391-401. [PMID: 27131902 DOI: 10.1016/j.fsi.2016.04.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Toll-like receptors (TLRs) interact directly with particular pathogenic structures and are thus highly important to innate immunity. The present manuscript characterises a suite of 14 TLRs in maraena whitefish (Coregonus maraena), a salmonid species with increasing importance for aquaculture. Whitefish TLRs were structurally and evolutionary analysed. The results revealed a close relationship with TLRs from salmonid fish species rainbow trout and Atlantic salmon. Profiling the baseline expression of TLR genes in whitefish indicated that mainly members of the TLR11 family were highly expressed across all investigated tissues. A stimulation model with inactivated Aeromonas salmonicida was used to induce inflammation in the peritoneal cavity of whitefish. This bacterial challenge induced the expression of pro-inflammatory cytokine genes and evoked a strong influx of granulated cells of myeloid origin into the peritoneal cavity. As a likely consequence, the abundance of TLR-encoding transcripts increased moderately in peritoneal cells, with the highest levels of transcripts encoding non-mammalian TLR22a and a soluble TLR5 variant. In the course of inflammation, the proportion of granulated cells increased in peripheral blood accompanied by elevated TLR copy numbers in spleen and simultaneously reduced TLR copy numbers in head kidney at day 3 post-stimulation. Altogether, the present study provides in-vivo evidence for relatively modest TLR response patterns, but marked trafficking of myeloid cells as an immunophysiological consequence of A. salmonicida inflammation in whitefish. The present results contribute to improved understanding of the host-pathogen interaction in salmonid fish.
Collapse
Affiliation(s)
- Simone Altmann
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tomáš Korytář
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Immunology, Laboratory for Comparative Immunology, Südufer 10, 17493 Greifswald, Insel Riems, Germany; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Danuta Kaczmarzyk
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; School of Biotechnology, KTH-Royal Institute of Technology, Department of Proteomics, Roslagstullsbacken 21, 10450 Stockholm, Sweden
| | - Mareen Nipkow
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Carsten Kühn
- State Research Centre for Agriculture and Fishery (LFA M-V), Institute for Fishery, Fischerweg 408, Rostock, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
38
|
Rahman S, Shering M, Ogden NH, Lindsay R, Badawi A. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease. J Inflamm Res 2016; 9:91-102. [PMID: 27330321 PMCID: PMC4898433 DOI: 10.2147/jir.s104790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.
Collapse
Affiliation(s)
- Shusmita Rahman
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| | - Maria Shering
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Nicholas H Ogden
- National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada
| | - Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alaa Badawi
- National Microbiology Laboratory, Public Health Agency of Canada, Toronto, ON, Canada
| |
Collapse
|
39
|
Engin A, Arslan S, Özbilüm N, Bakir M. Is there any relationship between Toll-like receptor 3 c.1377C/T and -7C/A polymorphisms and susceptibility to Crimean Congo hemorrhagic fever? J Med Virol 2016; 88:1690-6. [PMID: 26959380 DOI: 10.1002/jmv.24519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/24/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an infectious disease that is caused by CCHF virus. A family of transmembrane receptors called as Toll-like receptors (TLRs) selectively acts in recognizing a wide range of microbial components and endogenous molecules released by damaged tissue and have been preserved throughout evolution. TLRs initiate some signaling cascades which activate the innate immune system. Mainly four TLRs act in protection against viral infections; TLR3 is one of them. TLR3 identifies dsRNA. By producing inflammatory cytokines and type I interferons, it generates an antiviral immune response. Proper response to TLR ligands may be impaired by single nucleotide polymorphisms (SNPs) within TLR genes in some indviduals, and this can cause varied susceptibility to infections. In the present work, polymerase chain reaction-based restriction fragment length polymorphism is used to analyze the frequencies of TLR3 (c.1377C/T and -7C/A) polymorphisms in 149 CCHF patients and 171 healthy adults as controls, in Cumhuriyet University, Sivas/Turkey. We also investigated the relation between these polymorphisms and severity or mortality of CCHF disease. This is the first study investigating the TLR3 SNPs in patients with CCHF. In the present study, the frequency of the TLR3 (c.1377C/T and -7A/C) genotypes in fatal and non-fatal cases were comparable, however, the homozygous mutant (TT) genotype frequency of TLR3 c.1377C/T in CCHF patients was significantly higher than that of the healthy controls. In conclusion, presence of TLR3 c.1377 TT genotype may have a role in the susceptibility to CCHF. J. Med. Virol. 88:1690-1696, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aynur Engin
- Departments of Infectious Diseases and Clinical Microbiology, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Serdal Arslan
- Department of Medical Biology, Cumhuriyet University, School of Medicine, Sivas, Turkey
| | - Nil Özbilüm
- Faculty of Science, Department of Molecular Biology and Genetic, Cumhuriyet University, Sivas, Turkey
| | - Mehmet Bakir
- Departments of Infectious Diseases and Clinical Microbiology, Cumhuriyet University, School of Medicine, Sivas, Turkey
| |
Collapse
|
40
|
Su C, Zhan G, Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 2016; 13:38. [PMID: 26952111 PMCID: PMC4782282 DOI: 10.1186/s12985-016-0495-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection triggers a rapid induction of host innate immune responses. The type I interferon (IFN) signal pathway is a central aspect of host defense which induces a wide range of antiviral proteins to control infection of incoming pathogens. In some cases, viral invasion also induces DNA damage response, autophagy, endoplasmic reticulum stress, cytoplasmic stress granules and other innate immune responses, which in turn affect viral infection. However, HSV-1 has evolved multiple strategies to evade host innate responses and facilitate its infection. In this review, we summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to counteract host antiviral innate immune responses with specific focus on the type I IFN signal pathway.
Collapse
Affiliation(s)
- Chenhe Su
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Guoqing Zhan
- Department of Infectious Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China. .,Department of Microbiology, Immunology and Infectious Deseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
41
|
Abstract
The innate immune system includes several classes of pattern recognition receptors (PRRs), including membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). These receptors detect pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the extracellular and intracellular space. Intracellular NLRs constitute inflammasomes, which activate and release caspase-1, IL-1β, and IL-18 thereby initiating an inflammatory response. Systemic and local low-grade inflammation and release of proinflammatory cytokines are implicated in the development and progression of diabetes mellitus and diabetic nephropathy. TLR2, TLR4, and the NLRP3 inflammasome can induce the production of various proinflammatory cytokines and are critically involved in inflammatory responses in pancreatic islets, and in adipose, liver and kidney tissues. This Review describes how innate immune system-driven inflammatory processes can lead to apoptosis, tissue fibrosis, and organ dysfunction resulting in insulin resistance, impaired insulin secretion, and renal failure. We propose that careful targeting of TLR2, TLR4, and NLRP3 signalling pathways could be beneficial for the treatment of diabetes mellitus and diabetic nephropathy.
Collapse
|
42
|
Ryu S, Johnson A, Park Y, Kim B, Norris D, Armstrong CA, Song PI. The Alpha-Melanocyte-Stimulating Hormone Suppresses TLR2-Mediated Functional Responses through IRAK-M in Normal Human Keratinocytes. PLoS One 2015; 10:e0136887. [PMID: 26309029 PMCID: PMC4550463 DOI: 10.1371/journal.pone.0136887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/09/2015] [Indexed: 11/19/2022] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is a highly conserved 13-aa neuropeptide derived from pro-opiomelanocortin by post-translational processing, which has been reported to exhibit potent anti-inflammatory activity and a wide range of immunosuppressive activities in the skin. However, the regulatory effect of α-MSH is not completely clear in cutaneous innate immunity. In this study, we investigate the functional regulation of α-MSH in TLR2-mediated inflammatory responses in normal human keratinocytes (HKs). α-MSH pretreatment down-regulated the Staphylococcus aureus LTA-induced expression of both TLR2 and IL-8 as well as NF-κB nuclear translocation in HK cells. The inhibitory effect of α-MSH was blocked by agouti signaling protein (ASP), an α-MSH receptor-1 antagonist. To investigate the mechanism of this response in more detail, siRNA of IRAK-M, a negative regulator of TLR signaling, was utilized in these studies. The α-MSH suppressive effect on IL-8 production and NF-κB transactivation was inhibited by IRAK-M siRNA transfection in HK cells. These results indicate that α-MSH is capable of suppressing keratinocyte TLR2-mediated inflammatory responses induced by S. aureus-LTA, thus demonstrating another novel immunomodulatory activity of α-MSH in normal human keratinocytes.
Collapse
Affiliation(s)
- Sunhyo Ryu
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Biotechnology, Chosun University School of Medicine, Gwangju, South Korea
| | - Andrew Johnson
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arizona, United States of America
| | - Yoonkyung Park
- Department of Biotechnology, Chosun University School of Medicine, Gwangju, South Korea
| | - Beomjoon Kim
- Department of Dermatology, Chung-Ang University School of Medicine, Seoul, South Korea
| | - David Norris
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Cheryl A. Armstrong
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
- Division of Dermatology, Denver Health Medical Center, Denver, Colorado, United States of America
- * E-mail: (PIS); (CAA)
| | - Peter I. Song
- Department of Dermatology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (PIS); (CAA)
| |
Collapse
|
43
|
Abstract
The spectrum of primary immunodeficiency disorders (PIDs) is expanding. It includes typical disorders that primarily present with defective immunity as well as disorders that predominantly involve other systems and show few features of impaired immunity. The rapidly growing list of new immunodeficiency disorders and treatment modalities makes it imperative for providers to stay abreast of the latest and best management strategies. This article presents a brief overview of recent clinical advances in PIDs.
Collapse
Affiliation(s)
- Nikita Raje
- Children's Mercy Hospital, University of Missouri-Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA.
| | - Chitra Dinakar
- Children's Mercy Hospital, University of Missouri-Kansas City, 2401 Gillham Road, Kansas City, MO 64108, USA
| |
Collapse
|
44
|
Inflammatory Markers Change with Age, but do not Fall Beyond Reported Normal Ranges. Arch Immunol Ther Exp (Warsz) 2015; 64:249-54. [PMID: 26283530 PMCID: PMC4863028 DOI: 10.1007/s00005-015-0357-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/25/2015] [Indexed: 01/31/2023]
Abstract
We examined the serum levels of IL-6, IL-8, TNF, IL-6R, TNF-R1, and CRP and the dynamics of changes in these levels according to age. The study included healthy individuals of 20–90 years of age. Participants were divided into subgroups based on their decade of life, and into subgroups of ≥65 or <65 years. Serum cytokine levels were assayed by ELISA, and CRP using an immunoturbidimetric method. Serum CRP levels were within the normal range for all subgroups. The 60- to 70-year age group showed higher CRP than the 20- to 30- (p = 0.003), 30- to 40- (p = 0.009), and 40- to 50- (p = 0.030) year age groups. Serum cytokine levels were low. It was greater in the 60- to 70-year age group than in the 20- to 30- (p = 0.008) and 30- to 40- (p = 0.040) year groups, and was greater in the 70- to 90-year group than the 20- to 30-year group (p = 0.043). Serum TNF-R1 level in the 70- to 90-year group was greater than in all other age groups (p = 0.000 for all comparisons). Other measured parameters did not differ between groups. Serum levels of IL-6, CRP, and TNF-R1 were greater in participants ≥65 than <65 years of age. Healthy older people showed low serum levels of CRP and pro-inflammatory cytokines, but higher than in younger population. Therefore, the adjustment of normal ranges in the elderly should be considered. Serum levels of pro-inflammatory cytokines elevated beyond normal ranges indicate particular diseases.
Collapse
|
45
|
Wang BG, Yi DH, Liu YF. TLR3 gene polymorphisms in cancer: a systematic review and meta-analysis. CHINESE JOURNAL OF CANCER 2015; 34:272-84. [PMID: 26063214 PMCID: PMC4593388 DOI: 10.1186/s40880-015-0020-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Recent studies examining the association of Toll-like receptor 3 (TLR3) gene polymorphisms with the risk of developing various types of cancer have reported conflicting results. Clarifying this association could advance our knowledge of the influence of TLR3 single nucleotide polymorphisms (SNPs) on cancer risk. METHODS We systematically reviewed studies that focused on a collection of 12 SNPs located in the TLR3 gene and the details by which these SNPs influenced cancer risk. Additionally, 14 case-control studies comprising a total of 7997 cases of cancer and 8699 controls were included in a meta-analysis of 4 highly studied SNPs (rs3775290, rs3775291, rs3775292, and rs5743312). RESULTS The variant TLR3 genotype rs5743312 (C9948T, intron 3, C>T) was significantly associated with an increased cancer risk as compared with the wild-type allele (odds ratio [OR]=1.11, 95% confidence interval [CI]=1.00-1.24, P=0.047). No such association was observed with other TLR3 SNPs. In the stratified analysis, the rs3775290 (C13766T, C>T) variant genotype was found to be significantly associated with an increased cancer risk in Asian populations. Additionally, the rs3775291 (G13909A, G>A) variant genotype was significantly associated with an increased cancer risk in Asians, subgroup with hospital-based controls, and subgroup with a small sample size. CONCLUSION After data integration, our findings suggest that the TLR3 rs5743312 polymorphism may contribute to an increased cancer risk.
Collapse
Affiliation(s)
- Ben-Gang Wang
- Department 1 of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, Peoples Republic of China.
| | - De-Hui Yi
- Department 1 of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, Peoples Republic of China.
| | - Yong-Feng Liu
- Department 1 of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, Peoples Republic of China.
| |
Collapse
|
46
|
Liu Y, Yin H, Zhao M, Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 2015; 47:136-47. [PMID: 24352680 DOI: 10.1007/s12016-013-8402-y] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are immune disorders characterized by T cell hyperactivity and B cell overstimulation leading to overproduction of autoantibodies. Although the pathogenesis of various autoimmune diseases remains to be elucidated, environmental factors have been thought to contribute to the initiation and maintenance of auto-respond inflammation. Toll-like receptors (TLRs) are pattern recognition receptors belonging to innate immunity that recognize and defend invading microorganisms. Besides these exogenous pathogen-associated molecular patterns, TLRs can also bind with damage-associated molecular patterns produced under strike or by tissue damage or cells apoptosis. It is believed that TLRs build a bridge between innate immunity and autoimmunity. There are five adaptors to TLRs including MyD88, TRIF, TIRAP/MAL, TRAM, and SARM. Upon activation, TLRs recruit specific adaptors to initiate the downstream signaling pathways leading to the production of inflammatory cytokines and chemokines. Under certain circumstances, ligation of TLRs drives to aberrant activation and unrestricted inflammatory responses, thereby contributing to the perpetuation of inflammation in autoimmune diseases. In the past, most studies focused on the intracellular TLRs, such as TLR3, TLR7, and TLR9, but recent studies reveal that cell surface TLRs, especially TLR2 and TLR4, also play an essential role in the development of autoimmune diseases and afford multiple therapeutic targets. In this review, we summarized the biological characteristics, signaling mechanisms of TLR2/4, the negative regulators of TLR2/4 pathway, and the pivotal function of TLR2/4 in the pathogenesis of autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, Sjogren's syndrome, psoriasis, multiple sclerosis, and autoimmune diabetes.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Rd, Changsha, Hunan, 410011, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Chen Z, Wang W, Liang J, Wang J, Feng S, Zhang G. Association between toll-like receptors 9 (TLR9) gene polymorphism and risk of pulmonary tuberculosis: meta-analysis. BMC Pulm Med 2015; 15:57. [PMID: 25948535 PMCID: PMC4460768 DOI: 10.1186/s12890-015-0049-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/22/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies indicated that the single nucleotide polymorphisms (SNPs) in TLR9 gene might be associated with Tuberculosis (TB) risk. However, the results are inconsistent and inconclusive. METHODS 1745 articles from four databases were involved in our study. A meta-analysis on the associations between the seven polymorphisms and TB risk was carried out by comparison using different genetic models. RESULTS In this systematic review 8 studies from seven English articles were analyzed. Our results showed that rs352139 is significantly associated with TB risk (AA vs. AG, OR 0.77, 95% CI 0.65-0.92, P = 0.004). In the ethnic subgroup analysis, Indonesians with AA genotype had a decreased susceptibility while Mexicans with GG allele had an increased risk. CONCLUSIONS The meta-analysis indicated that rs352139 polymorphism might be associated with decreased TB risk in Indonesians whereas increased risk in Mexicans. Whether the observed association was due to causal effect needs to be further studied.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| | - Wei Wang
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| | - Jianqin Liang
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| | - Jinhe Wang
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| | - Shisheng Feng
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| | - Guangyu Zhang
- Department of Tuberculosis, The 309th hospital of PLA, No. 17, Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
48
|
Barrera MJ, Aguilera S, Veerman E, Quest AFG, Díaz-Jiménez D, Urzúa U, Cortés J, González S, Castro I, Molina C, Bahamondes V, Leyton C, Hermoso MA, González MJ. Salivary mucins induce a Toll-like receptor 4-mediated pro-inflammatory response in human submandibular salivary cells: are mucins involved in Sjögren's syndrome? Rheumatology (Oxford) 2015; 54:1518-27. [PMID: 25802401 DOI: 10.1093/rheumatology/kev026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A hallmark characteristic of SS patients is the ectopic presence of the mucins MUC5B and MUC7 in the extracellular matrix of salivary glands that have lost apical-basolateral acinar-cell polarity. This study aims to determine whether exogenous salivary mucins induce gene expression of pro-inflammatory cytokines, as well as to evaluate whether the Toll-like receptor-4 (TLR4) pathway is involved in this response. METHODS Differentiated human submandibular gland (HSG) cells were stimulated with mucins or oligosaccharide residues at different concentrations and for different periods of time. The expression of pro-inflammatory cytokines and their receptors was determined by semi-quantitative real time PCR (sqPCR). TLR4-mediated responses induced by mucin were evaluated with the Toll-IL-1 receptor domain containing adaptor protein (TIRAP) inhibitory peptide or using anti-hTLR4 blocking antibody. TLR4-receptor expression was also determined in SS patients, controls and HSG cells. RESULTS Mucins induced a significant increase in CXCL8, TNF-α, IFN-α, IFN-β, IL-6 and IL-1β, but not B cell activating factor (BAFF). Cytokine induction was mediated by TLR4, as shown using TIRAP or using anti-hTLR4 antibody. Sugar residues present in MUC5B, such as sulpho-Lewis (SO3-3Galβ1-3GlcNAc), also induced cytokines. Unexpectedly, mucins induced MUC5B, but not MUC7 expression. CONCLUSION Salivary mucins were recognized by TLR4 in epithelial cells initiating a pro-inflammatory response that could attract inflammatory cells to amplify and perpetuate inflammation and thereby contribute to the development of a chronic state characteristic of SS. The ectopic localization of MUC5B and MUC7 in the salivary gland extracellular matrix from SS patients and the current results reveal the importance of salivary epithelial cells in innate immunity, as well as in SS pathogenesis.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Enno Veerman
- Academic Centre for Dentistry Amsterdam, Section Periodontology and Oral Biochemistry, Amsterdam, The Netherlands
| | - Andrew F G Quest
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Center for Molecular Studies of the Cell, Advanced Center for Chronic Diseases
| | - David Díaz-Jiménez
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Juan Cortés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Sergio González
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Isabel Castro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Claudio Molina
- Departamento de Patología Oral, Facultad de Odontología, Universidad Mayor, Santiago, Chile
| | - Verónica Bahamondes
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Cecilia Leyton
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Marcela A Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile and
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile,
| |
Collapse
|
49
|
Santos-Martins M, Sameiro-Faria M, Ribeiro S, Rocha-Pereira P, Nascimento H, Reis F, Miranda V, Quintanilha A, Belo L, Beirão I, Santos-Silva A, Bronze-Da-Rocha E, Costa E. TLR4 and TLR9 Polymorphisms Effect on Inflammatory Response in End-Stage Renal Disease Patients. EUR J INFLAMM 2014. [DOI: 10.1177/1721727x1401200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) play a key role in the response of innate and adaptive immune system to microbial and endogenous ligands. Inflammation is a common feature in end-stage renal disease (ESRD) patients; however, the mechanisms/factors triggering the inflammatory process are still poorly clarified. Our aim was to analyze the impact of the c.-1486T>C and c.896A>G polymorphisms in TLR9 and TLR4 genes, respectively, on the inflammatory response of ESRD patients. Clinical and laboratory evaluation was carried out on 184 ESRD patients. Polymerase chain reaction followed by restriction fragmens length polymorphisms (PCR-RFLP) was employed for genotyping of TLR-4 c.896A>G and TLR-9 c.-1486T>C polymorphisms. The prevalence of AA and AG of TLR4 c.896A>G polymorphism in ESRD patients was 97.8% and 2.2%, respectively. None of the individuals showed a homozygous TLR4 polymorphism. Concerning the TLR9 c.-1486T>C polymorphism, we found that ESRD patients showed a prevalence of TC and CC genotypes of 57.1% and 20.6%, respectively. We found that the heterozygous patients for the TLR4 c.896A>G polymorphism presented an increased level in lymphocyte count, a decrease in neutrophil/lymphocyte ratio and in serum levels of hepcidin. Regarding the TLR9 c.-1486T>C polymorphism, we found that it is associated with decreased white blood cell and neutrophil counts, ferritin and CRP serum levels, and with an increase in serum levels of creatinine. Our data suggest that the presence of the studied polymorphisms is associated with a decreased inflammatory response in ESRD patients under hemodialysis, and, thus its presence might have beneficial effects in ESRD patients. Moreover, our data provide new insights in the role of TLR polymorphisms in renal disease, which might have impact in the near future for the development of innovative therapies.
Collapse
Affiliation(s)
- M. Santos-Martins
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - M. Sameiro-Faria
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Nephrocare Portugal, SA-Nephrocare Maia, Maia, Portugal
| | - S. Ribeiro
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P. Rocha-Pereira
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - H. Nascimento
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - F. Reis
- IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - V. Miranda
- Nephrocare Portugal, SA-Nephrocare Maia, Maia, Portugal
| | - A. Quintanilha
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - L. Belo
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - I. Beirão
- Abel Solazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Nephrology Service, Hospital Centre of Porto, Porto, Portugal
- UMIB, Unit for Multidisciplinary Research in Biomedicine, ICBAS, University of Porto, Porto, Portugal
| | - A. Santos-Silva
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - E. Bronze-Da-Rocha
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - E. Costa
- UCIBIO@REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
50
|
Abstract
The human gastrointestinal tract hosts a large number of microbial cells which exceed their mammalian counterparts by approximately 3-fold. The genes expressed by these microorganisms constitute the gut microbiome and may participate in diverse functions that are essential to the host, including digestion, regulation of energy metabolism, and modulation of inflammation and immunity. The gut microbiome can be modulated by dietary changes, antibiotic use, or disease. Different ailments have distinct associated microbiomes in which certain species or genes are present in different relative quantities. Thus, identifying specific disease-associated signatures in the microbiome as well as the factors that alter microbial populations and gene expression will lead to the development of new products such as prebiotics, probiotics, antimicrobials, live biotherapeutic products, or more traditional drugs to treat these disorders. Gained knowledge on the microbiome may result in molecular lab tests that may serve as personalized tools to guide the use of the aforementioned products and monitor interventional progress.
Collapse
Affiliation(s)
| | | | | | | | - Satya Prakash
- Micropharma Limited; Montreal, QC Canada; Biomedical Technology and Cell Therapy Research Laboratory; Department of Biomedical Engineering; Faculty of Medicine; McGill University; Montreal, QC Canada
| |
Collapse
|