1
|
Choi T, Ryu S, Bae JS, Yoo SH, Mo JH. Epithelial-Mesenchymal Transition in Chronic Rhinosinusitis. JOURNAL OF RHINOLOGY 2024; 31:67-77. [PMID: 39664411 PMCID: PMC11566545 DOI: 10.18787/jr.2024.00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is characterized by prolonged inflammation of the nasal and paranasal sinus mucosa lasting over 12 weeks. CRS is divided into two main types based on the presence of nasal polyps: CRS without nasal polyps and CRS with nasal polyps. The condition is further classified into endotypes based on type 1, type 2, and type 3 inflammatory signatures, with differences in terms of disease severity, prognosis, and treatment response. Recent studies have emphasized the importance of the epithelial-mesenchymal transition (EMT) in CRS progression. In CRS, the EMT can be triggered by infections, allergens, hypoxia, and environmental pollutants. Specifically, EMT induction proceeds through the following mechanisms: viral and bacterial infections disrupt the epithelial barrier, house dust mites and other allergens activate the TGF-β and EGFR signaling pathways, hypoxia increases HIF-1α and other mesenchymal markers, and diesel exhaust particles and particulate matter cause oxidative stress. Maintaining the integrity of the epithelial barrier is essential for nasal mucosa homeostasis. In CRS, barrier damage activates repair processes that trigger the EMT, resulting in barrier dysfunction and tissue remodeling. Epithelial barrier dysfunction allows antigens and pathogens to penetrate, perpetuating inflammation and promoting the EMT. This disruption is a hallmark of CRS, emphasizing the importance of barrier integrity in the development of the disease. Key signaling pathways regulating the EMT in CRS include TGF-β, Wnt, HMGB1, AGE/ERK, TNF-α, and various miRNAs. These signaling pathways connect to various downstream pathways, such as the Smad2/3, GSK-3β/β-catenin, RAGE, and NF-κB pathways. This review focuses on the complex mechanisms of the EMT in CRS, emphasizing the role of epithelial barrier dysfunction and subsequent EMT processes in driving the disease's development and progression. A deeper understanding of these EMT-driven mechanisms will help identify the potential therapeutic targets aimed at restoring epithelial integrity and reversing the EMT.
Collapse
Affiliation(s)
- Taewoong Choi
- Department of Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea
- Dankook Institute of Medicine & Optics, Dankook University, Cheonan, Republic of Korea
| | - Simyoung Ryu
- Department of Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea
- Dankook Institute of Medicine & Optics, Dankook University, Cheonan, Republic of Korea
| | - Jun-Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea
- Dankook Institute of Medicine & Optics, Dankook University, Cheonan, Republic of Korea
| | - Shin Hyuk Yoo
- Department of Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea
- Dankook Institute of Medicine & Optics, Dankook University, Cheonan, Republic of Korea
| | - Ji-Hun Mo
- Department of Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea
- Dankook Institute of Medicine & Optics, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Robin H, Trudeau C, Robbins A, Chung E, Rahman E, Gangmark-Strickland O, Licari FW, Winden DR, Orr DL, Arroyo JA, Reynolds PR. A Potential Role for the Receptor for Advanced Glycation End-Products (RAGE) in the Development of Secondhand Smoke-Induced Chronic Sinusitis. Curr Issues Mol Biol 2024; 46:729-740. [PMID: 38248349 PMCID: PMC10814859 DOI: 10.3390/cimb46010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic sinusitis (CS) is characterized by sinonasal inflammation, mucus overproduction, and edematous mucosal tissue. CS impacts one in seven adults and estimates suggest up to 15% of the general U.S. population may be affected. This research sought to assess a potential role for receptors for advanced glycation end-products (RAGE), an inflammatory receptor expressed in tissues exposed to secondhand smoke (SHS). Human sinus tissue sections were stained for RAGE and S100s, common RAGE ligands. Wild-type mice and mice that over-express RAGE in sinonasal epithelium (RAGE TG) were maintained in room air (RA) or exposed to secondhand smoke (SHS) via a nose-only delivery system five days a week for 6 weeks. Mouse sections were stained for RAGE and tissue lysates were assayed for cleaved caspase 3, cytokines, or matrix metalloproteases. We discovered increased RAGE expression in sinus tissue following SHS exposure and in sinuses from RAGE TG mice in the absence of SHS. Cleaved caspase-3, cytokines (IL-1β, IL-3, and TNF-α), and MMPs (-9 and -13) were induced by SHS and in tissues from RAGE TG mice. These results expand the inflammatory role of RAGE signaling, a key axis in disease progression observed in smokers. In this relatively unexplored area, enhanced understanding of RAGE signaling during voluntary and involuntary smoking may help to elucidate potential therapeutic targets that may attenuate the progression of smoke-related CS.
Collapse
Affiliation(s)
- Hannah Robin
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Courtney Trudeau
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Adam Robbins
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Emily Chung
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Erum Rahman
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | | | - Frank W. Licari
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Duane R. Winden
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Dan L. Orr
- Oral & Maxillofacial Surgery, University Medical Center, Las Vegas, NV 89102, USA
| | - Juan A. Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Łuczak MW, Dżaman K, Zaręba Ł, Czerwaty K, Siewiera J, Głuszko A, Olszewska E, Brzost J, Kantor I, Szczepański MJ, Ludwig N. HMGB1 Carried by Small Extracellular Vesicles Potentially Plays a Role in Promoting Acquired Middle Ear Cholesteatoma. Diagnostics (Basel) 2023; 13:3469. [PMID: 37998605 PMCID: PMC10669961 DOI: 10.3390/diagnostics13223469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Cholesteatoma is a specific medical condition involving the abnormal, non-cancerous growth of skin-like tissue in the middle ear, potentially leading to a collection of debris and even infections. The receptor for advanced glycation (RAGE) and its ligand, high-mobility box 1 (HMGB1), are both known to be overexpressed in cholesteatoma and play a potential role in the pathogenesis of the disease. In this study, we investigated the role of small extracellular vesicles (sEVs) in carrying HMGB1 and inducing disease-promoting effects in cholesteatoma. No significant differences in the concentration of isolated sEVs in the plasma of cholesteatoma patients (n = 17) and controls (n = 22) were found (p > 0.05); however, cholesteatoma-derived sEVs carried significantly higher levels of HMGB1 (p < 0.05). In comparison to sEVs isolated from the plasma of controls, cholesteatoma-derived sEVs significantly enhanced keratinocyte proliferation and IL-6 production (p < 0.05), potentially by engaging multiple activation pathways including MAPKp44/p42, STAT3, and the NF-κB pathway. Thus, HMGB1(+) sEVs emerge as a novel factor potentially promoting cholesteatoma progression.
Collapse
Affiliation(s)
- Michał W. Łuczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA;
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine-National Research Institute, 00-902 Warsaw, Poland;
| | - Alicja Głuszko
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Jacek Brzost
- Department of Otolaryngology, The Children’s Memorial Health Institute, 00-328 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Yuan J, Wang M, Wang C, Zhang L. Epithelial cell dysfunction in chronic rhinosinusitis: the epithelial-mesenchymal transition. Expert Rev Clin Immunol 2023; 19:959-968. [PMID: 37386882 DOI: 10.1080/1744666x.2023.2232113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Epithelial-mesenchymal transition (EMT) is a type of epithelial cell dysfunction, which is widely present in the nasal mucosa of patients with chronic rhinosinusitis (CRS), especially CRS with nasal polyps, and contributes to pathogenesis of the disease. EMT is mediated via complex mechanisms associated with multiple signaling pathways. AREAS COVERED We have summarized the underlying mechanisms and signaling pathways promoting EMT in CRS. Strategies or drugs/agents targeting the genes and pathways related to the regulation of EMT are also discussed for their potential use in the treatment of CRS and asthma. A literature search of studies published in English from 2000 to 2023 was conducted using the PubMed database, employing CRS, EMT, signaling, mechanisms, targeting agents/drugs, as individual or combinations of search terms. EXPERT OPINION EMT in nasal epithelium not only leads to epithelial cell dysfunction but also plays an important role in nasal tissue remodeling in CRS. A comprehensive understanding of the mechanisms underlying EMT and the development of drugs/agents targeting these mechanisms may provide new treatment strategies for CRS.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ming Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Laboratory of Allergic Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
DeWulf B, Minsart L, Verdonk F, Kruys V, Piagnerelli M, Maze M, Saxena S. High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells 2023; 12:cells12071088. [PMID: 37048161 PMCID: PMC10093266 DOI: 10.3390/cells12071088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) remains a challenge for intensivists that is exacerbated by lack of an effective diagnostic tool and an unambiguous definition to properly identify SAE patients. Risk factors for SAE development include age, genetic factors as well as pre-existing neuropsychiatric conditions. Sepsis due to certain infection sites/origins might be more prone to encephalopathy development than other cases. Currently, ICU management of SAE is mainly based on non-pharmacological support. Pre-clinical studies have described the role of the alarmin high mobility group box 1 (HMGB1) in the complex pathogenesis of SAE. Although there are limited data available about the role of HMGB1 in neuroinflammation following sepsis, it has been implicated in other neurologic disorders, where its translocation from the nucleus to the extracellular space has been found to trigger neuroinflammatory reactions and disrupt the blood–brain barrier. Negating the inflammatory cascade, by targeting HMGB1, may be a strategy to complement non-pharmacologic interventions directed against encephalopathy. This review describes inflammatory cascades implicating HMGB1 and strategies for its use to mitigate sepsis-induced encephalopathy.
Collapse
Affiliation(s)
- Bram DeWulf
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
| | - Laurens Minsart
- Department of Anesthesia, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Franck Verdonk
- Department of Anesthesiology and Intensive Care, GRC 29, DMU DREAM, Hôpital Saint-Antoine and Sorbonne University, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, CHU-Charleroi, Université Libre de Bruxelles, 6042 Charleroi, Belgium
- Experimental Medicine Laboratory (ULB Unit 222), CHU-Charleroi, Université Libre de Bruxelles, 6110 Montigny-le-Tilleul, Belgium
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sarah Saxena
- Department of Anesthesia—Critical Care, AZ Sint-Jan Brugge Oostende AV, 8000 Bruges, Belgium
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Free University of Brussels (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
6
|
Allegra A, Murdaca G, Gammeri L, Ettari R, Gangemi S. Alarmins and MicroRNAs, a New Axis in the Genesis of Respiratory Diseases: Possible Therapeutic Implications. Int J Mol Sci 2023; 24:1783. [PMID: 36675299 PMCID: PMC9861898 DOI: 10.3390/ijms24021783] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/18/2023] Open
Abstract
It is well ascertained that airway inflammation has a key role in the genesis of numerous respiratory pathologies, including asthma, chronic obstructive pulmonary disease, and acute respiratory distress syndrome. Pulmonary tissue inflammation and anti-inflammatory responses implicate an intricate relationship between local and infiltrating immune cells and structural pulmonary cells. Alarmins are endogenic proteins discharged after cell injury in the extracellular microenvironment. The purpose of our review is to highlight the alterations in respiratory diseases involving some alarmins, such as high mobility group box 1 (HMGB1) and interleukin (IL)-33, and their inter-relationships and relationships with genetic non-coding material, such as microRNAs. The role played by these alarmins in some pathophysiological processes confirms the existence of an axis composed of HMGB1 and IL-33. These alarmins have been implicated in ferroptosis, the onset of type 2 inflammation and airway alterations. Moreover, both factors can act on non-coding genetic material capable of modifying respiratory function. Finally, we present an outline of alarmins and RNA-based therapeutics that have been proposed to treat respiratory pathologies.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, Unit and School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
7
|
Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological Aspects of Chronic Rhinosinusitis. Diagnostics (Basel) 2022; 12:diagnostics12102361. [PMID: 36292050 PMCID: PMC9600442 DOI: 10.3390/diagnostics12102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is related to persistent inflammation with a dysfunctional relationship between environmental agents and the host immune system. Disturbances in the functioning of the sinus mucosa lead to common clinical symptoms. The major processes involved in the pathogenesis of CRS include airway epithelial dysfunctions that are influenced by external and host-derived factors which activate multiple immunological mechanisms. The molecular bases for CRS remain unclear, although some factors commonly correspond to the disease: bacterial, fungal and viral infections, comorbidity diseases, genetic dysfunctions, and immunodeficiency. Additionally, air pollution leads increased severity of symptoms. CRS is a heterogeneous group of sinus diseases with different clinical courses and response to treatment. Immunological pathways vary depending on the endotype or genotype of the patient. The recent knowledge expansion into mechanisms underlying the pathogenesis of CRS is leading to a steadily increasing significance of precision medicine in the treatment of CRS. The purpose of this review is to summarize the current state of knowledge regarding the immunological aspects of CRS, which are essential for ensuring more effective treatment strategies.
Collapse
Affiliation(s)
- Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | | | - Jacek Brzost
- The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
8
|
Zhong N, Luo Q, Huang X, Yu J, Ye J, Zhang J. High Mobility Group Box-1 Protein and Interleukin 33 Expression in Allergic Rhinitis. ORL J Otorhinolaryngol Relat Spec 2022; 84:315-323. [PMID: 34979505 DOI: 10.1159/000519575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is characterized by an inflammatory reaction. High mobility group box 1 (HMGB1) protein and interleukin (IL)-33 are damage-associated molecular pattern molecules and have many characteristics similar to pro-inflammatory cytokines. However, the role of IL-33 and HMGB1 in AR remains unclear. The aim of this study is to explore the role of HMGB1 and IL-33 in AR. METHODS Twenty patients with AR (AR group) and 10 normal controls (normal group) were enrolled in this study. HMGB1 and IL-33 expression were analyzed by immunohistochemistry in epithelial cells of the inferior turbinate mucosa samples. Then, the human nasal mucosa epithelial cells (HNECs) were cultured in vitro, and the house dust mite allergen (Derp1) was used to stimulate the cells. Quantitative real-time PCR and ELISA assay were performed to detect HMGB1 and IL-33 expression in HNECs. RESULTS The expression of HMGB1 and IL-33 in the nasal mucosa was higher in the AR group than in the normal group, with a statistically significant difference (p < 0.05). In HNECs of AR, the expression of both HMGB1 and IL-33 in stimulated groups was higher than that in non-stimulated groups. The differences were statistically significant (p < 0.05). In addition, they increased gradually with the prolonging time and the concentration of the added Derp1. CONCLUSIONS The expression of HMGB1 and IL-33 were both increased in AR. HMGB1 and IL-33 may have a close relationship in AR.
Collapse
Affiliation(s)
- Nongping Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Qing Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jieqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Sehanobish E, Asad M, Barbi M, Porcelli SA, Jerschow E. Aspirin Actions in Treatment of NSAID-Exacerbated Respiratory Disease. Front Immunol 2021; 12:695815. [PMID: 34305932 PMCID: PMC8297972 DOI: 10.3389/fimmu.2021.695815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 12/21/2022] Open
Abstract
Non-steroidal Anti-inflammatory drugs (NSAID)-exacerbated respiratory disease (N-ERD) is characterized by nasal polyposis, chronic rhinosinusitis, adult-onset asthma and hypersensitive reactions to cyclooxygenase-1 (COX-1) inhibitors. Among the available treatments for this disease, a combination of endoscopic sinus surgery followed by aspirin desensitization and aspirin maintenance therapy has been an effective approach. Studies have shown that long-term aspirin maintenance therapy can reduce the rate of nasal polyp recurrence in patients with N-ERD. However, the exact mechanism by which aspirin can both trigger and suppress airway disease in N-ERD remains poorly understood. In this review, we summarize current knowledge of aspirin effects in N-ERD, cardiovascular disease, and cancer, and consider potential mechanistic pathways accounting for the effects of aspirin in N-ERD.
Collapse
Affiliation(s)
- Esha Sehanobish
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mali Barbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elina Jerschow
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
10
|
RAGE and HMGB1 Expression in Orbital Tissue Microenvironment in Graves' Ophthalmopathy. Mediators Inflamm 2021; 2021:8891324. [PMID: 33776579 PMCID: PMC7979288 DOI: 10.1155/2021/8891324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a chronic autoimmune inflammatory disorder involving orbital tissues. A receptor for advanced glycation end products (RAGE) and its ligand high mobility group box 1 (HMGB1) protein trigger inflammation and cell proliferation and are involved in the pathogenesis of various chronic inflammatory diseases. This study was aimed to evaluate RAGE and HMGB1 expression in GO to determine its potential clinical significance. To the best of our knowledge, this is the first study showing RAGE and HMGB1 expression in orbital tissue using immunohistochemistry. Sections of orbital adipose tissue obtained from patients diagnosed with GO (23 patients; 36 orbits) and normal controls (NC) (15 patients; 15 orbits) were analyzed by immunohistochemistry for RAGE and HMGB1 expression. Expression profiles were then correlated with clinical data of the study group. RAGE and HMGB1 expression were elevated in GO patients in comparison with NC (p = 0.001 and p = 0.02, respectively). We observed a correlation between RAGE expression and occurrence of dysthyroid optic neuropathy (DON) (p = 0.05) and levels of TSH Receptor Antibodies (TRAb) (p = 0.01). Overexpression of RAGE and HMGB1 might be associated with GO pathogenesis. In addition, RAGE and HMGB1 proteins may be considered as promising therapeutic targets, but this requires further research.
Collapse
|
11
|
Lee SH, Cho JH, Park JH, Cho JS, Lee HM. High Mobility Group Box Chromosomal Protein-1 Induces Myofibroblast Differentiation and Extracellular Matrix Production via RAGE, p38, JNK and AP-1 Signaling Pathways in Nasal Fibroblasts. Am J Rhinol Allergy 2021; 35:774-780. [PMID: 33626879 DOI: 10.1177/1945892421998142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Chronic rhinosinusitis is involved in myofibroblast differentiation and extracellular matrix (ECM) accumulation. High mobility group box chromosomal protein 1 (HMGB-1) is known to stimulate lung fibroblast to produce ECM in lung fibrosis. The aim of this study was to investigate whether HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblasts and to identify the signal pathway. METHODS Human nasal fibroblasts were cultured. After stimulation with HMGB-1, expressions of α-smooth muscle actin (α-SMA) and fibronectin were determined by real-time PCR and western blot. Total collagen was measured by Sircol assay. To investigate signal pathway, various signal inhibitors and RAGE siRNA were used. RESULTS HMGB-1 increased α-SMA and fibronectin in mRNA and protein levels. It also increased collagen production. RAGE siRNA inhibited HMGB-1-induced α-SMA and fibronectin, and production of collagen. Furthermore, the inhibitors of RAGE downstream molecules such as p38, JNK and AP-1 also blocked the HMGB-1-induced effects. CONCLUSIONS HMGB-1 induces myofibroblast differentiation and ECM production in nasal fibroblast, which is mediated by RAGE, p38, JNK and AP-1 signal pathway. These results suggest that HMGB-1 may play an important role in tissue remodeling during chronic rhinosinusitis progression.
Collapse
Affiliation(s)
- Soo-Hyung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, Konkuk University Hospital, College of Medicine, Konkuk University, Seoul, South Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung-Sun Cho
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Heung-Man Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
12
|
Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2020; 21:30-37. [PMID: 33284158 DOI: 10.1097/aci.0000000000000701] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Barrier dysfunction, tissue fibrosis, and remodeling are essential processes of the pathophysiology of chronic rhinosinusitis (CRS). The role of epithelial-to-mesenchymal transition (EMT) has been assessed in various studies in CRS. In this review, we summarized the pathophysiologic mechanisms of EMT related to CRS, particularly neutrophilic CRS. RECENT FINDINGS Loss of epithelial characteristics due to EMT makes leaky epithelium, and transformed mesenchymal cells cause fibrosis and remodeling. Hypoxia, allergens (house dust mites), infections, and air pollutants were related to the pathogenesis of neutrophilic CRS, and these factors are known to induce barrier dysfunction and EMT in sinonasal epithelia. Some molecular pathways related to EMT have been recognized in CRS, including interferon-γ/p38/extracellular signal-regulated kinase, high-mobility group box 1/receptor of advanced glycosylation end-products, TGF-β1/SMAD, and Wnt/β-catenin-signaling pathways. Apart from, several microRNAs (miR-21, miR-761, and miR-30a-5p) have been identified to regulate EMT in CRS. SUMMARY EMT is considered to be an important pathogenesis mechanism for CRS. The factors cause EMT in CRS, and the associated molecular mechanisms are related to neutrophilic inflammation. Further studies on CRS endotype and/or phenotype are needed to clarify the implication of EMT on CRS pathogenesis.
Collapse
|
13
|
Min HJ, Kim KS. Expression Pattern of HMGB1 Differs Between Eosinophilic Chronic Rhinosinusitis With Nasal Polyp and Non-Eosinophilic Chronic Rhinosinusitis With Nasal Polyp: A Preliminary Study. Am J Rhinol Allergy 2020; 35:474-481. [PMID: 34151617 DOI: 10.1177/1945892420964408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Eosinophilic chronic rhinosinusitis with nasal polyps (ECRSwNP) is histologically distinct from non-eosinophilic CRSwNP (NECRSwNP) and exhibits a high frequency of recurrence. The differences between the pathogenesis of ECRSwNP and NECRSwNP are not well-characterized. HMGB1 has been implicated in the pathogenesis of CRSwNPs; however, its precise contributions to ECRSwNP and NECRSwNP have not been established. OBJECTIVE We evaluated the role of HMGB1 in the pathogenesis of ECRSwNP. METHODS A total of 26 nasal polyps (NPs) from patients with ECRSwNP and NECRSwNP who underwent endoscopic sinus surgery were obtained. Western blotting and immunohistochemistry were performed to compare the HMGB1 levels between the NPs from ECRS and NECRS. A multiplex cytokine assay was performed to evaluate the levels of other cytokines and chemokines in exudates in the NPs. Nasal lavage fluids were used to evaluate extracellular HMGB1 levels using enzyme-linked immunosorbent assay. RESULTS HMGB1 expression in the NPs was higher in ECRSwNP than in NECRSwNP. The level of HMGB1 in the exudate within the NPs was significantly higher in ECRSwNP than in NECRSwNP. Furthermore, HMGB1 levels in nasal lavage fluids from ECRSwNP were higher than those from NECRSwNP. We found that HMGB1 levels in the exudate in NPs and in nasal lavage fluids effectively differentiate ECRSwNP from NECRSwNP. CONCLUSION Our results suggest that a high level of HMGB1 in NPs is an important factor for differentiating ECRSwNP from NECRSwNP. HMGB1 may play a role in the development of ECRSwNP and should be further evaluated.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Ciprandi G, Bellussi LM, Passali GC, Damiani V, Passali D. HMGB1 in nasal inflammatory diseases: a reappraisal 30 years after its discovery. Expert Rev Clin Immunol 2020; 16:457-463. [PMID: 32252560 DOI: 10.1080/1744666x.2020.1752668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/03/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION High mobility group protein box 1 (HMGB1) is a protein belonging to the alarmin family. HMGB1 has a relevant role in starting the inflammatory cascade by means of receptors, such as RAGE and TLR. HMGB1 supports transcription of many genes in interactions with many transcription factors, including NF-kB. The axis HMGB1-RAGE-NF-kB has, therefore, a pivotal role in the inflammatory cascade. HMGB1 controls the production of several pro-inflammatory cytokines and the proliferation and activation of many inflammatory cells. AREAS COVERED The present report concerns the role of HMGB1 in nasal inflammatory disorders, including allergic and non-allergic rhinitis, and chronic rhinosinusitis with nasal polyps. HMGB1 modulation has been the aim of several studies. The literature search included recent papers that covered this topic. EXPERT OPINION As HMGB1 has a pivotal role in inflammatory events, its modulation could be attractive for designing new therapeutic strategies. In this regard, glycyrrhetic acid (GA), the active component of Glycyrrhiza glabra, can efficiently block HMGB1. Promising reports seem to suggest that GA could exert favorable anti-inflammatory activity in patients with nasal inflammatory disorders.
Collapse
Affiliation(s)
| | | | | | - Valerio Damiani
- Medical Department, Drugs Minerals and Generics , Pomezia, Italy
| | | |
Collapse
|
15
|
Szafarowski T, Sierdziński J, Ludwig N, Głuszko A, Filipowska A, Szczepański MJ. Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1). Eur J Pharmacol 2019; 867:172837. [PMID: 31811857 DOI: 10.1016/j.ejphar.2019.172837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) play a key role in carcinogenesis and progression of head and neck squamous cell carcinomas (HNSCC). The most common markers indicating for CSCs are: CD44, CD24, CD133, ALDH1A1. Our objective was to evaluate the prognostic potential of CSC markers in HNSCC. The study included 49 patients treated for primary HNSCC, 11 patients with upper respiratory tract epithelial dysplasia and 12 subjects with the normal pharyngeal mucosa as a control group. The frequency and expression levels of the four CSC markers were assessed by immunohistochemistry. Univariate and multivariate analyses were used to correlate CSC expression levels with tumor stage, lymph node metastases or overall survival (OS). CD44, CD24, CD133, ALDH1A1 were widely expressed in tumors, whereas CD44 was found to be higher in cancer tissue (P = 0.001). ALDH1A1 expression levels were found to be significantly higher in T3-T4 tumors vs. T1-T2 tumors (P = 0.05). Lymph node metastases had significantly higher expression levels of CD24 (P = 0.01) and CD133 (P < 0.05) than primary tumors. Multifactorial analysis revealed that overall survival (OS) for patients with ALDH1A1 negative tumors was 5.25 times higher than for patients with ALDH1A1 positive (ALDH1A1+) tumors (P = 0.01). On univariate and multivariate analysis, only ALDH1A1 positivity had a significant effect on OS of HNSCC patients (HR = 2.47 for P = 0.02). Immunohistochemistry-based assessments of CSC marker expression in HNSCC has significant predictive implications for patients with HNSCC. The frequency of CSCs in the tumor, specifically of ALDH1A1+ cells correlated with five-year OS in these patients.
Collapse
Affiliation(s)
- Tomasz Szafarowski
- Department of Otolaryngology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Stępińska 19/25 Str., 00-739, Warsaw, Poland.
| | - Janusz Sierdziński
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Litewska 14/16 Str., 00-581, Warsaw, Poland.
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
| | - Alicja Głuszko
- Department of Biochemistry, First Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097, Warsaw, Poland.
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40 Str., 41-800, Zabrze, Poland.
| | - Mirosław J Szczepański
- Department of Biochemistry, First Faculty of Medicine, Medical University of Warsaw, Banacha 1 Str., 02-097, Warsaw, Poland.
| |
Collapse
|
16
|
Liu T, Barrett NA, Kanaoka Y, Buchheit K, Laidlaw TM, Garofalo D, Lai J, Katz HR, Feng C, Boyce JA. Cysteinyl leukotriene receptor 2 drives lung immunopathology through a platelet and high mobility box 1-dependent mechanism. Mucosal Immunol 2019; 12:679-690. [PMID: 30664709 PMCID: PMC6462243 DOI: 10.1038/s41385-019-0134-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/04/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) facilitate eosinophilic mucosal type 2 immunopathology, especially in aspirin-exacerbated respiratory disease (AERD), by incompletely understood mechanisms. We now demonstrate that platelets, activated through the type 2 cysLT receptor (CysLT2R), cause IL-33-dependent immunopathology through a rapidly inducible mechanism requiring the actions of high mobility box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE). Leukotriene C4 (LTC4) induces surface HMGB1 expression by mouse platelets in a CysLT2R-dependent manner. Blockade of RAGE and neutralization of HMGB1 prevent LTC4-induced platelet activation. Challenges of AERD-like Ptges-/- mice with inhaled lysine aspirin (Lys-ASA) elicit LTC4 synthesis and cause rapid intrapulmonary recruitment of platelets with adherent granulocytes, along with platelet- and CysLT2R-mediated increases in lung IL-33, IL-5, IL-13, and bronchoalveolar lavage fluid HMGB1. The intrapulmonary administration of exogenous LTC4 mimics these effects. Platelet depletion, HMGB1 neutralization, and pharmacologic blockade of RAGE eliminate all manifestations of Lys-ASA challenges, including increase in IL-33, mast cell activation, and changes in airway resistance. Thus, CysLT2R signaling on platelets prominently utilizes RAGE/HMGB1 as a link to downstream type 2 respiratory immunopathology and IL-33-dependent mast cell activation typical of AERD. Antagonists of HMGB1 or RAGE may be useful to treat AERD and other disorders associated with type 2 immunopathology.
Collapse
Affiliation(s)
- Tao Liu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Nora A. Barrett
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Kathleen Buchheit
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Denise Garofalo
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Juying Lai
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Howard R. Katz
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Chunli Feng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School; Boston, MA,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital; Boston, MA,Jeff and Penny Vinik Center for Allergic Disease Research, Boston, MA
| |
Collapse
|
17
|
Bellussi LM, Vindigni C, Cocca S, Butorano MAGM, Livi W, Corallo G, Passali D. High-mobility group box protein 1 expression in inflammatory diseases of the middle ear. Int J Immunopathol Pharmacol 2017; 30:168-173. [PMID: 28555513 PMCID: PMC5806793 DOI: 10.1177/0394632017698713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear non-histone protein, playing a critical role as a mediator between innate and acquired immunity; when released extracellularly, it coordinates the cellular stress response (under necrosis, bacterial lipopolysaccharide stimulation) and acts as an inflammatory marker and cytokine. The aim of the study was to demonstrate whether HMGB1 is over-expressed in chronic middle-ear pathologies and whether the entity of expression and the localization are correlated with the degree of the inflammatory reaction, thus suggesting that HMGB1 may play a crucial role in chronic inflammatory disorders of the middle ear, as already demonstrated in other airway diseases. We analyzed 30 samples of middle-ear mucosa in patients affected by chronic suppurative otitis media with ear drum perforation with/without cholesteatoma and otosclerosis as control. The distribution of HMGB1 was evaluated as nuclear, cytoplasmic, and/or extracellular staining. The inflammatory cells observed in the biopsies were mostly lymphocytes and plasmacells. A statistically significant difference in inflammation score between otosclerosis and chronic otitis samples ( P < 0.01; Anova test) and between otosclerosis and cholesteatoma samples ( P < 0.05; Anova test) was observed; the HMGB1 positivity was in accordance with the density of the inflammatory infiltrate. HMGB1 is over-expressed in chronic middle-ear pathologies and may play a role in the progression of the inflammatory process from recurrent acute otitis media to chronic suppurative otitis media.
Collapse
Affiliation(s)
- Luisa Maria Bellussi
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | | | - Serena Cocca
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | | | - Walter Livi
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | - Giulia Corallo
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| | - Desiderio Passali
- Medical Surgical and Neuroscience Department, ENT Clinic, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Shimizu S, Kouzaki H, Kato T, Tojima I, Shimizu T. HMGB1-TLR4 signaling contributes to the secretion of interleukin 6 and interleukin 8 by nasal epithelial cells. Am J Rhinol Allergy 2017; 30:167-72. [PMID: 27216346 DOI: 10.2500/ajra.2016.30.4300] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alarmins play important roles in the pathogenesis of inflammatory and autoimmune diseases. However, the role of the alarmin protein high-mobility group box 1 (HMGB1) in upper airway inflammation is unclear. OBJECTIVE To determine if HMGB1 is present in the nasal mucosa and, if so, to elucidate its role in upper airway inflammation. METHODS Nasal secretions were collected from a total of 32 patients with chronic rhinosinusitis with nasal polyp, allergic rhinitis, and control subjects. The concentration of HMGB1 in nasal secretions and its tissue and cellular localization were examined by enzyme immunoassays and immunofluorescent staining of nasal polyps and cultured nasal epithelial cells. We then examined whether nasal epithelial cells secrete HMGB1 after inflammatory stimulation by tumor necrosis factor (TNF) α. The effects of HMGB1 on the production and secretion of interleukin (IL) 6 and IL-8 were also examined in cultured nasal epithelial cells. RESULTS Significantly higher concentrations of HMGB1 were found in nasal secretions from patients with chronic rhinosinusitis with nasal polyp or allergic rhinitis compared with the control subjects. HMGB1 expression was localized in the nuclei of epithelial cells and other constitutive cells in nasal polyps and in the nuclei of cultured nasal epithelial cells. TNF-α stimulated the production and secretion of HMGB1 by cultured nasal epithelial cells. HMGB1 stimulated the production and secretion of IL-6 and IL-8 by cultured nasal epithelial cells, and anti-toll-like receptor 4 blocking antibody significantly inhibited HMGB1-induced secretion of IL-6 and IL-8. CONCLUSIONS Nasal secretions contain substantial amounts of HMGB1. TNF-α stimulates the production of HMGB1, which, in turn, upregulates the production and secretion of IL-6 and IL-8 by nasal epithelial cells via toll-like receptor 4, which indicated that HMGB1 plays an important role in the pathogenesis of upper airway inflammation.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | |
Collapse
|
19
|
Bellussi LM, Cocca S, Passali GC, Passali D. HMGB1 in the Pathogenesis of Nasal Inflammatory Diseases and its Inhibition as New Therapeutic Approach: A Review from the Literature. Int Arch Otorhinolaryngol 2017; 21:390-398. [PMID: 29018504 PMCID: PMC5629088 DOI: 10.1055/s-0036-1597665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/31/2016] [Indexed: 11/10/2022] Open
Abstract
Introduction
This study is a systematic review on recent developments about the importance of HMGB1 protein in the pathogenesis of rhino-sinusal inflammatory diseases. We also report data on the use of 18-β-glycyrrhetic acid (GA), which has been shown able to inhibit the pro-inflammatory activities of HMGB1, in young patients affected by allergic rhinitis and complaining of nasal obstruction as main symptom.
Objectives
The objective of this study was to review the literature to demonstrate the importance of HMGB1 in the pathogenesis of nasal inflammatory disorders and understand whether the inhibition of this protein may be an efficacious and innovative therapeutic strategy for patients with rhino-sinusal inflammation.
Data Synthesis
Authors searched for pertinent articles indexed in PubMed, Scopus, and other health journals between 2004 and 2015.
In total, the authors gathered 258 articles: 219 articles through Pubmed and 39 articles from other search engines. The search terms used were as follows: HMGB1 AND “respiratory epithelium,” “airway inflammation,” “rhinitis,” “allergic rhinitis,” “rhinosinusitis,” “nasal polyposis,” “glycyrrhetic acid,” “children.” Conclusions
Patients with severe symptoms have the highest serum levels and the highest extracellular expression of HMGB1. GA inhibits HMGB1 chemotactic and mitogenic function by a scavenger mechanism on extracellular HMGB1 accumulation stimulated by lipopolysaccharides in vitro. Treatment of allergic rhinitis with GA is not associated with local or systemic side effects in children and adults.
Collapse
Affiliation(s)
| | - Serena Cocca
- ENT Department, University of Siena, Siena, Italy
| | | | | |
Collapse
|
20
|
Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med 2016; 21:1046-1057. [PMID: 28039939 PMCID: PMC5431121 DOI: 10.1111/jcmm.13048] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
Abstract
Lung diseases remain a serious problem for public health. The immune status of the body is considered to be the main influencing factor for the progression of lung diseases. HMGB1 (high‐mobility group box 1) emerges as an important molecule of the body immune network. Accumulating data have demonstrated that HMGB1 is crucially implicated in lung diseases and acts as independent biomarker and therapeutic target for related lung diseases. This review provides an overview of updated understanding of HMGB1 structure, release styles, receptors and function. Furthermore, we discuss the potential role of HMGB1 in a variety of lung diseases. Further exploration of molecular mechanisms underlying the function of HMGB1 in lung diseases will provide novel preventive and therapeutic strategies for lung diseases.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Xuran Cui
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
21
|
López-Chacón M, Mullol J, Pujols L. Clinical and biological markers of difficult-to-treat severe chronic rhinosinusitis. Curr Allergy Asthma Rep 2015; 15:19. [PMID: 26134430 DOI: 10.1007/s11882-015-0520-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the upper airways of which two major phenotypes exist, CRS without nasal polyps (CRSsNP) and CRS with nasal polyps (CRSwNP). Some patients with CRS have suboptimal response to current guideline treatments. These patients remain severe and uncontrolled by treatment and have a poor quality of life. It is highly important to identify both clinical and biological markers, so-called biomarkers, in this subset of patients. The presence of nasal polyps and comorbidity with asthma and with aspirin-exacerbated respiratory disease (AERD) are the most common clinical traits that have been associated to difficult-to-treat severe CRS. In addition to clinical traits, numerous biological markers, with known etiopathogenic roles in CRS, have been associated to difficult-to-treat or recalcitrant CRS. This review summarizes the existing knowledge of the clinical and biological markers associated to difficult-to-treat or uncontrolled severe CRS.
Collapse
Affiliation(s)
- Mauricio López-Chacón
- Clinical and Experimental Respiratory Immunoallergy, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Centre de Recerca Biomèdica CELLEX, Casanova 143, 08036, Barcelona, Catalonia, Spain,
| | | | | |
Collapse
|
22
|
Cuppari C, Manti S, Chirico V, Caruso R, Salpietro V, Giacchi V, Laganà F, Arrigo T, Salpietro C, Leonardi S. Sputum high mobility group box-1 in asthmatic children: a noninvasive sensitive biomarker reflecting disease status. Ann Allergy Asthma Immunol 2015; 115:103-107. [PMID: 26250770 DOI: 10.1016/j.anai.2015.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The monitoring of asthma is based mainly on clinical history, physical examination, and lung function test evaluation. To improve knowledge of the disease, new biomarkers of airway inflammation, including high mobility group box-1 (HMGB1), are being developed. OBJECTIVE To evaluate sputum HMGB1 levels in children with stable, off-therapy, allergic asthma and to evaluate the relation between HMGB1 levels and lung function parameters. METHODS Fifty children with asthma (28 boys and 22 girls, median age 11.56 ± 1.41 years) and 44 healthy children (22 boys and 22 girls, median age 11.07 ± 2.12 years) were enrolled. Sputum HMGB1 was assessed in the cohort study. Lung function (predicted percentage of forced expiratory volume in 1 second [FEV1%] and forced expiratory flow between 25% and 75% [FEF25%-75%]), serum total IgE levels, and asthma severity by validated Global Initiative for Asthma criteria were recorded. RESULTS Sputum HMGB1 levels were higher in children with asthma than in healthy controls (100.68 ± 10.03 vs 9.60 ± 3.76 ng/mL, P < .0001). Sputum HMGB1 levels also were positively related to total IgE levels in children with asthma (r = 0.6567, P < .0001). An inverse and strict correlation between sputum HMGB1 levels and pulmonary function indices also were observed in children with mild (FEV1%, r = -0.86544, P < .0001; FEF25%-75%, r = -0.53948, P < .05), moderate (FEV1%, r = -0.99548, P < .0001; FEF25%-75%, r = -0.48668, P < .05), and severe (FEV1%, r = -0.90191, P < .0001; FEF25%-75%, r = -0.66777, P < .05) asthma. CONCLUSION The present study provides evidence that sputum HMGB1 is a sensitive biomarker of allergic asthma in children because it was increased and correlated directly with asthma severity and inversely with lung function indices.
Collapse
Affiliation(s)
- Caterina Cuppari
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Sara Manti
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Valeria Chirico
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Rosangela Caruso
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Valentina Giacchi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesca Laganà
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Teresa Arrigo
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Pediatrics, Unit of Pediatric Genetics and Immunology, University of Messina, Messina, Italy.
| | - Salvatore Leonardi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|