1
|
Li F, Wang Y, Chen S, Liu J, Wu X, Maimati Y, Ding F, Wang X, Shen Y, Chen Q, Li Y, Shen W, Zhang R, Dai Y, Lu L. Nuclear receptor Dax1 promotes atherosclerosis by lipid transport inhibition and autophagy suppression in macrophages. Eur Heart J 2025:ehaf241. [PMID: 40259807 DOI: 10.1093/eurheartj/ehaf241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/27/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND AND AIMS Nuclear receptors (NRs) are involved in cardiovascular physiology and pathology. Dosage-sensitive sex reversal, adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (Dax1) is a co-repressor of several protective NRs. However, whether Dax1 influences atherosclerosis remains unclear. This study aims to explore the role of Dax1 in atherogenesis and find a pharmacological approach targeting Dax1 to prevent atherosclerosis. METHODS Dax1 levels were examined in human atherosclerotic arteries. Atherosclerosis animal models were established in mice with macrophage-specific Dax1 knockdown following AAV8-PCSK9 administration and double knockout of macrophage Dax1 and ApoE to evaluate the role of Dax1. Transcriptomic and proteomic analyses were employed to decipher the underlying mechanisms. 2'-Deoxycytidine, an inhibitor of Dax1, was used to verify the effects of Dax1 in macrophages and in mice with atherosclerosis. RESULTS Dax1 mRNA level was up-regulated among NRs in atherosclerotic arteries compared to non-atherosclerotic arteries. The elevation of Dax1 was prominent in the macrophages of atherosclerotic arteries. Macrophage-specific Dax1 knockout mice had less atherosclerosis than controls. Mechanistically, Dax1 inhibited liver X receptor alpha (LXRα), and interacted directly with transcription factor EB (TFEB) to suppress autophagy, resulting in lipid accumulation and inflammation in macrophages. Additionally, 2'-deoxycytidine concentration dependently decreased Dax1 levels, enhanced autophagy, reduced lipid accumulation, and inhibited atherosclerosis in mice. CONCLUSIONS This study demonstrates that Dax1 levels are increased in atherosclerotic plaques. Dax1 promotes atherosclerosis by interacting with TFEB to suppress autophagy and inhibiting LXRα for lipid transport in macrophage, indicating that Dax1 is a potential target for atherosclerosis.
Collapse
Affiliation(s)
- Feifei Li
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Yixuan Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Shuai Chen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Xinrui Wu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Yipaerguli Maimati
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Xiaoqun Wang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Ying Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Yunqi Li
- National Research Center for Translational Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Weifeng Shen
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Yang Dai
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Lin Lu
- Department of Cardiovascular Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
- National Research Center for Translational Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Rd, Shanghai 200025, PR China
| |
Collapse
|
2
|
Moreira RJ, Oliveira PF, Spadella MA, Ferreira R, Alves MG. Do Lifestyle Interventions Mitigate the Oxidative Damage and Inflammation Induced by Obesity in the Testis? Antioxidants (Basel) 2025; 14:150. [PMID: 40002337 PMCID: PMC11851673 DOI: 10.3390/antiox14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity results from a disproportionate accumulation of fat and has become a global health concern. The increase in adipose tissue is responsible for several systemic and testicular changes including hormone levels (leptin, adiponectin, testosterone, estrogen), inflammatory cytokines (increase in TNF-α and IL-6 and decrease in IL-10), and redox state (increase in reactive oxygen species and reduction in antioxidant enzymes). This results in poor sperm quality and compromised fertility in men with obesity. Lifestyle modifications, particularly diet transition to caloric restriction and physical exercise, are reported to reverse these negative effects. Nevertheless, precise mechanisms mediating these benefits, including how they modulate testicular oxidative stress, inflammation, and metabolism, remain to be fully elucidated. The main pathway described by which these lifestyle interventions reverse obesity-induced oxidative damage is the Nrf2-SIRT1 axis, which modulates the overexpression of antioxidant defenses. Of note, some of the detrimental effects of obesity on the testis are inherited by the descendants of individuals with obesity, and while caloric restriction reverses some of these effects, no significant work has been carried out regarding physical exercise. This review discusses the consequences of obesity-induced testicular oxidative stress on adult and pediatric populations, emphasizing the therapeutic potential of lifestyle to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Ruben J. Moreira
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Pedro F. Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | | | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.F.O.); (R.F.)
| | - Marco G. Alves
- Institute of Biomedicine, Department of Medical Sciences (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
3
|
Yüksek T, Ataş H, Kartal SP, Aygar GT, Karakoyunlu AN. Impact of adalimumab on erectile dysfunction, sperm parameters and hormonal profile in male psoriasis patients: a six-month observational study. Arch Dermatol Res 2024; 317:21. [PMID: 39549069 DOI: 10.1007/s00403-024-03520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin disease, is associated with systemic complications that extend beyond cutaneous lesions, including cardiovascular risks and sexual dysfunction. Erectile dysfunction (ED) is notably more prevalent in male psoriasis patients, likely driven by both systemic inflammation and psychological stress. Adalimumab (ADA), a tumor necrosis factor-alpha (TNF-α) inhibitor, has been shown to effectively reduce psoriasis severity, but its effects on sexual and reproductive health remain underexplored. This study investigates the impact of ADA on erectile function, sperm parameters, and hormonal profiles in male psoriasis patients. This six-month prospective observational study included 33 biologic-naïve male patients aged 18-50 years with moderate-to-severe plaque psoriasis (Psoriasis Area and Severity Index [PASI] > 10). Patients received ADA according to standard clinical protocols. Erectile function was assessed using the International Index of Erectile Function (IIEF-5). Sperm parameters, including ejaculate volume, sperm concentration, total sperm count, motility, vitality, and morphology, were analyzed following World Health Organization (WHO) 2010 criteria. Hormonal profiles (testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol, and prolactin) were measured via standardized assays. Statistical analyses were performed using paired t-tests or Wilcoxon signed-rank tests, with p-values < 0.05 considered significant. ADA significantly improved erectile function, as the mean IIEF-5 score increased from 21.3 ± 2.2 to 22.2 ± 1.9 (p = 0.03). The percentage of patients with ED decreased from 51.5% at baseline to 36.4% post-treatment (p < 0.001). Progressive sperm motility and vitality showed statistically significant improvement post-treatment (p = 0.02 and p = 0.04, respectively), while other sperm parameters remained unchanged. Total testosterone levels significantly increased from 3.4 ± 0.4 ng/ml to 3.5 ± 0.4 ng/ml (p = 0.02), while LH, FSH, estradiol, and prolactin levels showed no significant changes. The anti-inflammatory properties of adalimumab, through the inhibition of TNF-α, not only reduce psoriasis severity but also appear to exert positive effects on male sexual and reproductive health. Our study demonstrated significant improvements in erectile function, sperm motility, vitality, and testosterone levels in male psoriasis patients after adalimumab therapy. These findings suggest that beyond its role in controlling psoriatic skin lesions, adalimumab may help mitigate the systemic inflammatory burden that contributes to sexual dysfunction and impaired spermatogenesis. Future long-term studies are essential to further explore the sustained impact of TNF-α inhibition on male fertility and reproductive outcomes.
Collapse
Affiliation(s)
- Tuğcan Yüksek
- Department of Dermatology, Kyrenia Dr. Akçiçek State Hospital, Kyrenia, Turkish Republic of Northern Cyprus.
| | - Hatice Ataş
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | - Selda Pelin Kartal
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | - Gamze Taş Aygar
- Department of Dermatology, Ankara Etlik City Hospital, Ankara, 06000, Turkey
| | | |
Collapse
|
4
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
5
|
Zhu H, Wang H, Cheng Y, Liu D, Zhang A, Wen Z, Gao J. Hadh deficiency induced oligoasthenoteratozoospermia through the TNF-α/Bcl-2 pathway in male mice. FASEB J 2022; 36:e22661. [PMID: 36398584 DOI: 10.1096/fj.202201144r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
The process of spermatogenesis is a complex and delicate process that is still not fully understood. In this study, we examined the role of fatty acid oxidase 3-hydroxy acyl CoA dehydrogenase (HADH) in maintaining normal spermatogenesis in mice. In male mice, ablation of the Hadh gene using CRISPR/Cas9 technology arrested spermatocyte meiosis, increased multinucleated giant germ cells and vacuoles in seminiferous tubules, and accompanied with acrosomal dysplasia. Hadh-/- male mice showed the typical features of oligoasthenoteratozoospermia (OAT), including decreased sperm concentration and motility and increased sperm abnormalities. Next, we explored the molecular events in the testes of the mutant mice. We found fatty acids accumulated in the testis of Hadh-/- mice. And also, inflammatory factors TNF-α, IL-1β, and IL-6 were significantly increased, apoptosis-related protein Bcl-2 was decreased, and Bax and cleaved-Caspase3 were increased in Hadh-/- male mice testis. After using etanercept, a specific inhibitor of TNF-α, testis injury caused by Hadh knockout was significantly alleviated, the sperm quality and motility were improved, and germ cell apoptosis was reduced. So our study demonstrated that Hadh deletion caused an increase in fatty acids. The accumulated fatty acids further induced testicular inflammation and germ cell apoptosis through the TNF-α/Bcl-2 signaling pathway, finally resulting in OAT in the Hadh-/- mice. Inhibiting TNF-α may be used as a new treatment approach for testicular inflammation and OAT.
Collapse
Affiliation(s)
- Haixia Zhu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Hongxiang Wang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Yin Cheng
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Dongyue Liu
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Zongzhuang Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Gu X, Li SY, Matsuyama S, DeFalco T. Immune Cells as Critical Regulators of Steroidogenesis in the Testis and Beyond. Front Endocrinol (Lausanne) 2022; 13:894437. [PMID: 35573990 PMCID: PMC9096076 DOI: 10.3389/fendo.2022.894437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/31/2022] [Indexed: 12/01/2022] Open
Abstract
Steroidogenesis is an essential biological process for embryonic development, reproduction, and adult health. While specific glandular cells, such as Leydig cells in the testis, are traditionally known to be the principal players in steroid hormone production, there are other cell types that contribute to the process of steroidogenesis. In particular, immune cells are often an important component of the cellular niche that is required for the production of steroid hormones. For several decades, studies have reported that testicular macrophages and Leydig cells are intimately associated and exhibit a dependency on the other cell type for their proper development; however, the mechanisms that underlie the functional relationship between macrophages and Leydig cells are unclear. Beyond the testis, in certain instances immune cells themselves, such as certain types of lymphocytes, are capable of steroid hormone production, thus highlighting the complexity and diversity that underlie steroidogenesis. In this review we will describe how immune cells are critical regulators of steroidogenesis in the testis and in extra-glandular locations, as well as discuss how this area of research offers opportunities to uncover new insights into steroid hormone production.
Collapse
Affiliation(s)
- Xiaowei Gu
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Shu-Yun Li
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Satoko Matsuyama
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
7
|
Antar SA, El-Gammal MA, Hazem RM, Moustafa YM. Etanercept Mitigates Cadmium Chloride-induced Testicular Damage in Rats "An Insight into Autophagy, Apoptosis, Oxidative Stress and Inflammation". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28194-28207. [PMID: 34993805 DOI: 10.1007/s11356-021-18401-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE Cadmium (Cd) is an environmental and occupational toxin that represents a serious health hazard to humans and other animals. One of the negative consequences of cadmium exposure is testicular injury. OBJECTIVE This study aimed to investigate the therapeutic effect of etanercept against cadmium chloride-induced testicular damage and the probable underlying mechanisms of its action. METHODS A total of sixty rats were divided into six groups: control, cadmium chloride (CdCl2) (7 mg/ kg i.p.), and CdCl2 treated with etanercept (5,10 and 15 mg/kg s.c.) and etanercept only (15 mg/kg s.c.). CdCl2 was administrated as a single dose, while etanercept was administered every 3 days for 3 weeks. RESULTS CdCl2 reduced serum testosterone, testicular glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). However, it elevated the levels of malondialdehyde (MDA) and microtubule-associated protein light chain 3B (LC3B) in the testes. Cadmium caused pathogenic alterations as well as increased levels of inflammatory biomarkers such as tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB). Besides, the gene expressions of caspase-3 and inducible nitric oxide synthase (i-NOS) and Beclin-1 protein increased with CdCl2 exposure. Interestingly, etanercept relieved the previous toxic effects induced by CdCl2 in a dose-dependent manner as evidenced by inhibition of oxidative stress, inflammatory markers, Beclin-1, LC3B, and caspase-3 accompanied by improvement in histopathological changes. CONCLUSION Etanercept provides a potential therapeutic approach to treat testicular tissue against the damaging effects of Cd by reducing oxidative stress, inflammation, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| | - Mohamad A El-Gammal
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Yasser M Moustafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University, Badr University Cairo, 11829, Egypt
| |
Collapse
|
8
|
Kannan A, Mariajoseph-Antony LF, Panneerselvam A, Loganathan C, Kiduva Jothiraman D, Anbarasu K, Prahalathan C. Aquaporin 9 regulates Leydig cell steroidogenesis in diabetes. Syst Biol Reprod Med 2022; 68:213-226. [DOI: 10.1080/19396368.2022.2033350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Diwakar Kiduva Jothiraman
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
9
|
Elish SEA, Sanad FA, Baky MH, Yasin NAE, Temraz A, El-Tantawy WH. Ficus natalensis extract alleviates Cadmium chloride-induced testicular disruptions in albino rats. J Trace Elem Med Biol 2022; 70:126924. [PMID: 35007915 DOI: 10.1016/j.jtemb.2022.126924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cadmium is a potential environmental pollutant with worldwide health problems. Many Ficus species are reported to have an extensive diversity of traditional uses, among them the treatment of reproductive toxicity. OBJECTIVES This study set out to evaluate the effect of Ficus natalensis extract on the testicular impairments induced by cadmium chloride (CdCl2) and investigated the potential mechanisms associated with its treatment. METHODS Thus, 40 male albino rats were categorized into 4 groups (n = 10); group I (control), group II (cadmium-treated group) orally received 5 mg/kg/day CdCl2 for one month, group III (cadmium + Ficus natalensis extract) orally received 5 mg/kg/day CdCl2 for one month plus 200 mg/kg/day Ficus natalensis extract for another month, and group IV (cadmium + reference drug (mesterolone) orally received 5 mg/kg/day CdCl2 for one month plus 4.16 mg/kg/day mesterolone for another month. RESULTS At the end of experiment, CdCl2 administration markedly induced histological and histo-morphometric changes with a substantial (p < 0.05) decrease in the sperm count, sperm motility, serum TAC, serum testosterone, downregulation in the mRNA expression levels of testicular 17β-HSD and StAR, in addition to a significant increase in serum TNF-α and testicular MDA level compared to the control group. Conversely, the treatment with Ficus natalensis methanolic extract as well as the reference drug significantly ameliorated the above-mentioned adverse effects induced by CdCl2. CONCLUSIONS Our results suggested that Ficus natalensis extract can attenuate the CdCl2-induced testicular impairments via inhibiting the oxidative cell damage and inflammation that contributed to CdCl2 toxicity.
Collapse
Affiliation(s)
- Shaimaa E A Elish
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Fatma A Sanad
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy-Egyptian Russian University, Badr City, New Cairo, Egypt.
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy(Girls), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Walid H El-Tantawy
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt.
| |
Collapse
|
10
|
Ma Y, Zhou Y, Zou SS, Sun Y, Chen XF. OUP accepted manuscript. Mol Hum Reprod 2022; 28:6516534. [PMID: 35088858 DOI: 10.1093/molehr/gaac002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/17/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yan Zhou
- Department of Central Lab, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
11
|
Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol 2021; 21:100559. [PMID: 34547545 PMCID: PMC8407955 DOI: 10.1016/j.repbio.2021.100559] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
COVID-19 is the ongoing health emergency affecting individuals of all ages around the globe. Initially, the infection was reported to affect pulmonary structures. However, recent studies have delineated the impacts of COVID-19 on the reproductive system of both men and women. Hence, the present review aims to shed light on the distribution of SARS-CoV-2 entry factors in various reproductive organs. In addition, impacts of COVID-19 mediators like disrupted renin angiotensin system, oxidative stress, cytokine storm, fever, and the mental stress on reproductive physiology have also been discussed. For the present study, various keywords were used to search literature on PubMed, ScienceDirect, and Google Scholar databases. Articles were screened for relevancy and were studied in detail for qualitative synthesis of the review. Through our literature review, we found a multitude of effects of COVID-19 mediators on reproductive systems. Studies reported expression of receptors like ACE-2, TMPRSS2, and CD147 in the testes, epididymis, prostrate, seminal vesicles, and ovarian follicles. These proteins are known to serve as major SARS-CoV-2 entry factors. The expression of lysosomal cathepsins (CTSB/CTSL) and/ neuropilin-1 (NRP-1) are also evident in the testes, epididymis, seminal vesicles, fallopian tube, cervix, and endometrium. The binding of viral spike protein with ACE-2 was found to alter the renin-angiotensin cascade, which could invite additional infertility problems. Furthermore, COVID-19 mediated cytokine storm, oxidative stress, and elevated body temperature could be detrimental to gametogenesis, steroidogenesis, and reproductive cycles in patients. Finally, social isolation, confinement, and job insecurities have fueled mental stress and frustration that might promote glucocorticoid-mediated subnormal sperm quality in men and higher risk of miscarriage in women. Hence, the influence of COVID-19 on the alteration of reproductive health and fertility is quite apparent.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
12
|
Di Emidio G, Falone S, Artini PG, Amicarelli F, D’Alessandro AM, Tatone C. Mitochondrial Sirtuins in Reproduction. Antioxidants (Basel) 2021; 10:antiox10071047. [PMID: 34209765 PMCID: PMC8300669 DOI: 10.3390/antiox10071047] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria act as hubs of numerous metabolic pathways. Mitochondrial dysfunctions contribute to altering the redox balance and predispose to aging and metabolic alterations. The sirtuin family is composed of seven members and three of them, SIRT3-5, are housed in mitochondria. They catalyze NAD+-dependent deacylation and the ADP-ribosylation of mitochondrial proteins, thereby modulating gene expression and activities of enzymes involved in oxidative metabolism and stress responses. In this context, mitochondrial sirtuins (mtSIRTs) act in synergistic or antagonistic manners to protect from aging and aging-related metabolic abnormalities. In this review, we focus on the role of mtSIRTs in the biological competence of reproductive cells, organs, and embryos. Most studies are focused on SIRT3 in female reproduction, providing evidence that SIRT3 improves the competence of oocytes in humans and animal models. Moreover, SIRT3 protects oocytes, early embryos, and ovaries against stress conditions. The relationship between derangement of SIRT3 signaling and the imbalance of ROS and antioxidant defenses in testes has also been demonstrated. Very little is known about SIRT4 and SIRT5 functions in the reproductive system. The final goal of this work is to understand whether sirtuin-based signaling may be taken into account as potential targets for therapeutic applications in female and male infertility.
Collapse
Affiliation(s)
- Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
- Correspondence: ; Tel.: +39-(0)-862-433-441
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Paolo Giovanni Artini
- Department of Obstetrics and Gynecology “P. Fioretti”, University of Pisa, 56126 Pisa, Italy;
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.F.); (F.A.); (A.M.D.); (C.T.)
| |
Collapse
|
13
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
14
|
Heydari H, Ghiasi R, Ghaderpour S, Keyhanmanesh R. The Mechanisms Involved in Obesity-Induced Male Infertility. Curr Diabetes Rev 2021; 17:259-267. [PMID: 32814535 DOI: 10.2174/1573399816666200819114032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Obesity resulted by imbalance between the intake of energy and energy consumption can lead to growth and metabolic disease development in people. Both in obese men and animal models, several studies indicate that obesity leads to male infertility. OBJECTIVE This review has discussed some mechanisms involved in obesity-induced male infertility. METHODS Online documents were searched through Science Direct, Pubmed, Scopus, and Google Scholar websites dating from 1959 to recognize studies on obesity, kisspeptin, leptin, and infertility. RESULTS Obesity induced elevated inflammatory cytokines and oxidative stress can affect male reproductive functions, including spermatogenesis disorders, reduced male fertility power and hormones involved in the hypothalamus-pituitary-gonadal axis. CONCLUSION There is significant evidence that obesity resulted in male infertility. Obesity has a negative effect on male reproductive function via several mechanisms such as inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hamed Heydari
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rafighe Ghiasi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghaderpour
- Department of Physiology, Tabriz Faculty of Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|
16
|
Habib R, Wahdan SA, Gad AM, Azab SS. Infliximab abrogates cadmium-induced testicular damage and spermiotoxicity via enhancement of steroidogenesis and suppression of inflammation and apoptosis mediators. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109398. [PMID: 31276887 DOI: 10.1016/j.ecoenv.2019.109398] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
Cadmium(Cd) is a serious environmental and occupational contaminant that represents a serious health hazard to humans and other animals. Reproductive health problems have been reported in men exposed to Cd. Testicular damage is one of the deleterious effects due to Cd exposure. Cd-induced testicular toxicity is mediated through oxidative stress, inflammation, testosterone inhibition and apoptosis. Thus, the present study was performed to assess the possible protective role of infliximab (IFX), anti-TNFα agent, against Cd-induced testicular damage and spermiotoxicity in rats. The rats were randomly allotted into six experimental groups: control, Cd sulphate treated, Cd sulphate treated with infliximab (5 mg/kg), Cd sulphate with infliximab (7 mg/kg), infliximab alone (5 mg/kg), and infliximab alone (7 mg/kg). The control group received saline. To induce testicular damage, Cd sulphate (1.5 mg/100 gm body weight/day) was dissolved in normal saline and orally administrated for 3 consecutive weeks. The rats in infliximab-treated groups were given a weekly dose of 5 mg/kg/week or 7 mg/kg/week of infliximab intraperitoneally. In the current study Cd exposure reduced sperm count, markers of testicular function, sperm motility as well as gene expression of testicular 3β-HSD and 17β-HSD and serum testosterone level. Additionally, it increased testicular oxidative stress, inflammatory and apoptotic markers. The histopathologic studies supported the biochemical findings. Treatment with infliximab significantly attenuated Cd-induced injury verified by the restoration of testicular architecture, enhancement of steroidogenesis, preservation of spermatogenesis, modulation of the inflammatory reaction along with suppression of oxidative stress and apoptosis. It was concluded that infliximab, through its antioxidant, anti-inflammatory and anti-apoptotic effects, represents a potential therapeutic option to protect the testicular tissue from the detrimental effects of Cd.
Collapse
Affiliation(s)
- Raghda Habib
- National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
17
|
Salmassi A, Fattahi A, Simon N, Latifi Z, Ghasemnejad T, Nouri M, Schmutzler AG. Messenger RNA and protein expression of tumor necrosis factor α and its receptors in human follicular granulosa cells. J Cell Physiol 2019; 234:20240-20248. [PMID: 30950053 DOI: 10.1002/jcp.28624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 11/06/2022]
Abstract
To evaluate the concentration of tumor necrosis factor α (TNF-α) and its soluble receptors (sTNFR I and II) in serum and follicular fluid (FF) at the time of oocyte retrieval and to detect expression of TNF-α and its receptors by luteinized granulosa cells (GCs). In a cross-sectional study and through an in vitro fertilization-intracytoplasmic sperm injection (IVF-ICSI) program, 81 women undergoing oocyte retrieval were recruited. Serum and FF were obtained from 81 women. GCs were pooled from 20 patients (from six different days of oocyte retrievals, 5-16 follicles per patient). TNF-α and its soluble receptors concentration were determined by enzyme-linked immunosorbent assay and also their expression by immune cytochemistry and reverse-transcription polymerase chain reaction analysis. The median TNF-α concentration in serum was 4.06 pg/ml (interquartile range [IQR], 3.71-6.14) and significantly higher than that in FF with 3.50 pg/ml (IQR, 3.05-5.01), p < 0.001. The sTNFR I and II levels in serum were lower and higher than FF, respectively. The TNF-α levels in serum and FF of good responders were higher than low responders (p = 0.017 and 0.021, respectively). TNF-α cut-off level for low responders versus good responders was 4.174 pg/ml in serum with a pregnancy rate of 25.8% and 40% for below and above of this level, respectively (p = 0.19). For FF, the cut-off value was 3.89 pg/ml. TNF-α and its receptors were expressed by GCs. The presence of TNF-α and its soluble receptors in serum and FF and their expression by GCs suggest an important role for this cytokine in ovarian function.
Collapse
Affiliation(s)
- Ali Salmassi
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nora Simon
- abts+partner Frauenärzte am Gänsemarkt, Neumünster, Germany
| | - Zeinab Latifi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Ghasemnejad
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andreas G Schmutzler
- Gyn-medicum, Center for Reproductive Medicine, Göttingen, Germany.,Department of Gynaecology and Obstetrics, University Hospitals Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
18
|
Orta Yilmaz B, Korkut A, Erkan M. Sodium fluoride disrupts testosterone biosynthesis by affecting the steroidogenic pathway in TM3 Leydig cells. CHEMOSPHERE 2018; 212:447-455. [PMID: 30165274 DOI: 10.1016/j.chemosphere.2018.08.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Fluorine is an essential trace element to which humans and animals are exposed through water, food, air and products used for dental health. Numerous studies have reported the detrimental effects of fluoride on testicular function and fertility; however, the underlying mechanisms of testosterone biosynthesis remain unclear. In this study, Leydig cells, the primary cells responsible for the production and regulation of steroid hormones in the testis, were used to elicit effects of sodium fluoride on the steroidogenic pathway. Leydig cells were treated with 0, 0.1, 1, 10 and 100 mg/L sodium fluoride for 24 h, respectively. The result of the study showed that sodium fluoride significantly decreased cell viability and cell proliferation, increased cell cytotoxicity and decreased the amounts of testosterone and 3',5'-cyclic adenosine monophosphate levels in a concentration-dependent manner. Also, these results indicated that NaF suppressed the expression of steroidogenic genes (steroidogenic acute regulatory protein, cholesterol side-chain cleavage enzyme, 3β-hydroxy dehydrogenase type I and 17β-hydroxy dehydrogenase type III) and proteins (luteinizing hormone receptor, cholesterol side-chain cleavage enzyme, 3β-hydroxy dehydrogenase), by changing the mRNA expression levels of the transcription factors (steroidogenic factor-1, GATA binding protein-4, nerve growth factor IB and nuclear receptor subfamily 0 group B member 1).
Collapse
Affiliation(s)
- Banu Orta Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Ahu Korkut
- Department of Obstetrics and Gynaecology, Isparta City Hospital, Isparta, Turkey
| | - Melike Erkan
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin-inhibin signaling? Andrology 2018; 6:262-271. [PMID: 29409132 DOI: 10.1111/andr.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Clinical findings and a variety of experimental models indicate that Leydig cell dysfunction accompanies damage to the seminiferous tubules with increasing severity. Most studies support the idea that intratesticular signaling from the seminiferous tubules to Leydig cells regulates steroidogenesis, which is disrupted when hypospermatogenesis occurs. Sertoli cells seem to play a pivotal role in this process. In this review, we summarize relevant clinical and experimental observations and present evidence to support the hypothesis that testicular activin signaling and its regulation by testicular inhibin may link seminiferous tubular dysfunction to reduced testosterone biosynthesis.
Collapse
Affiliation(s)
- S J Winters
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - J P Moore
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - B J Clark
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Abstract
The hypothalamic-pituitary-adrenal axis is a dynamic system regulating glucocorticoid hormone synthesis in the adrenal glands. Many key factors within the adrenal steroidogenic pathway have been identified and studied, but little is known about how these factors function collectively as a dynamic network of interacting components. To investigate this, we developed a mathematical model of the adrenal steroidogenic regulatory network that accounts for key regulatory processes occurring at different timescales. We used our model to predict the time evolution of steroidogenesis in response to physiological adrenocorticotropic hormone (ACTH) perturbations, ranging from basal pulses to larger stress-like stimulations (e.g., inflammatory stress). Testing these predictions experimentally in the rat, our results show that the steroidogenic regulatory network architecture is sufficient to respond to both small and large ACTH perturbations, but coupling this regulatory network with the immune pathway is necessary to explain the dissociated dynamics between ACTH and glucocorticoids observed under conditions of inflammatory stress.
Collapse
|
21
|
Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation. Sci Rep 2017; 7:5180. [PMID: 28701734 PMCID: PMC5507887 DOI: 10.1038/s41598-017-05443-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis can be affected by nutrition, which operates through normal physiological processes by changing the testicular mass and hormone levels profoundly. However, little is known regarding how testis development is regulated by long noncoding RNA (lncRNA). In this study, we investigated the effects of high-grain (HG) feeding on testis development during sexual maturation mediated by lncRNA. The HG diet group showed an increase in growth hormone (GH), insulin-like growth factor-1 (IGF-1) and testosterone (T) levels, and in the number of sperm in the seminiferous tubules compared with the hay-fed group (p
< 0.05). Moreover, we found 59 differentially expressed (DE) lncRNAs and 229 DE mRNAs in sheep testis between the two groups. qRT-PCR results of 20 randomly selected DE lncRNAs and mRNAs were also consistent with the RNA-seq data. Through functional enrichment analysis and lncRNA-mRNA interaction network analysis, we screened several lncRNAs that may be enriched for male reproduction such as spermatogenesis, sperm motility, steroid hormones, MAPK and ErbB signaling pathways. This study provides a first insight into the development of the testis with HG feeding in sheep and shows that these changes are associated with alterations in lncRNA expression.
Collapse
|
22
|
Ramatchandirin B, Sadasivam M, Kannan A, Prahalathan C. Sirtuin 4 Regulates Lipopolysaccharide Mediated Leydig Cell Dysfunction. J Cell Biochem 2015; 117:904-16. [PMID: 26365714 DOI: 10.1002/jcb.25374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is the most important contributing factor in pathogenesis of bacterial infection in male accessory glands; and it has shown to inhibit testicular steroidogenesis and induce apoptosis. The present study demonstrates that LPS causes mitochondrial dysfunction via suppression of sirtuin 4 (SIRT4); which in turn affects Leydig cell function by modulating steroidogenesis and apoptosis. LC-540 Leydig cells treated with LPS (10 µg/ml) showed impaired steroidogenesis and increased cellular apoptosis. The mRNA and protein expression of SIRT4 were decreased in LPS treated cells when compared to controls. The obtained data suggest that the c-Jun N-terminal kinase (JNK) activation suppresses SIRT4 expression in LPS treated Leydig cells. Furthermore, the overexpression of SIRT4 prevented LPS induced impaired steroidogenesis and cellular apoptosis by improving mitochondrial function. These findings provide valuable information that SIRT4 regulates LPS mediated Leydig cell dysfunction.
Collapse
Affiliation(s)
| | - Mohanraj Sadasivam
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, India
| | - Arun Kannan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|