1
|
Li M, Sun T, Chang M, Liu T, Feng L, Zhang D, Wu Y, Ma Y, Ma H, Meng G, Ji C, Ye J. Impact of single nucleotide polymorphisms of immunomodulatory factors on treatment response and prognosis in acute myeloid leukemia. Front Immunol 2025; 16:1571332. [PMID: 40230861 PMCID: PMC11994645 DOI: 10.3389/fimmu.2025.1571332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematologic malignancy characterized by poor overall survival (OS). The impaired function, altered phenotype, and abnormal distribution of T cells create an immunosuppressive microenvironment in AML, affecting the efficacy of chemotherapy. Studies have shown that differentiated monocyte-like AML cells can express various immunomodulatory factors, resulting in T cell phenotypic changes and the development of an immunosuppressive AML microenvironment. Methods Seven single nucleotide polymorphisms (SNPs) of four immunomodulatory factors-HMOX1, TXNIP, TNSF10/TRAIL, and TNFAIP2-were selected and analyzed in 255 non-M3 AML patients and 316 healthy controls. SNP genotyping was conducted using the MassARRAY platform. Furthermore, we analyzed the relationship between AML susceptibility, bone marrow (BM) blast percentage, clinical characteristics, treatment response, and prognosis with the selected SNPs. Results The study indicated that HMOX1 rs2071746 and TNFAIP2 rs1132339 are associated with BM blasts at the diagnosis of AML patients. TXNIP rs7211 is associated with sensitivity to cytarabine- and anthracycline-induced chemotherapy in AML, while TXNIP rs9245 is associated with AML relapse. Moreover, TRAIL/TNFSF10 rs12488654 is associated with the overall survival of AML patients, and the AA genotype of TRAIL/TNFSF10 rs12488654 may be an independent favorable factor for AML prognosis. Conclusions Our results on the association between AML and SNPs in HMOX1, TXNIP, TNSF10/TRAIL, and TNFAIP2 genes provide an important reference for predicting the treatment response and prognosis of AML patients.
Collapse
MESH Headings
- Humans
- Polymorphism, Single Nucleotide
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Middle Aged
- Male
- Female
- Prognosis
- Adult
- Aged
- Young Adult
- Carrier Proteins/genetics
- Treatment Outcome
- Adolescent
- Genetic Predisposition to Disease
- Genotype
Collapse
Affiliation(s)
- Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengyuan Chang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huixian Ma
- Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guangqiang Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Li M, Ye J, Chang M, Feng L, Liu T, Zhang D, Wu Y, Ma Y, Meng G, Ji C, Sun T. Polymorphisms in immunosuppression-related genes are associated with AML. Front Immunol 2025; 16:1530510. [PMID: 39975548 PMCID: PMC11835863 DOI: 10.3389/fimmu.2025.1530510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Background Acute myeloid leukemia (AML) is a hematologic malignancy with poor overall survival (OS). The immunosuppressive microenvironment significantly impacts AML development and chemoresistance. Despite new immunotherapeutic strategies entering standard clinical care for various tumors, progress in AML remains poor. Multi-omics analyses, such as single-cell transcriptomics, have revealed many potential new targets to improve AML prognosis from an immunological perspective. Methods DNA from 307 AML patients and 316 healthy individuals were extracted. We detected nine single nucleotide polymorphisms (SNPs) in five immunosuppression-related genes (CIITA, CD200, CD163, MRC1 and LILRB4) in these samples. SNP genotyping was performed on the MassARRAY platform. We then analyzed the relationship between these SNPs and AML susceptibility, treatment response, and prognosis. Results Our findings indicated that rs4883263 in the CD163 gene is a protective factor for AML susceptibility and chromosomal karyotype abnormalities. Additionally, rs4883263 in CD163 was related to low PLT count at diagnosis, while rs2272022 in CD200 was protective against low PLT count. rs4780335 in CIITA was associated with high WBC count at diagnosis and worse OS. Furthermore, rs1048801 in LILRB4 was linked to worse AML treatment response, lower OS, and may be an independent prognostic risk factor for AML. Lastly, expressions of CD163, CIITA, LILRB4, and CD200 were higher in AML patients than that in normal controls. Conclusions Our findings on SNP associations in AML immunosuppression-related genes provide important reference points for predicting treatment outcomes in AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/mortality
- Polymorphism, Single Nucleotide
- Female
- Male
- Middle Aged
- Adult
- Antigens, CD/genetics
- Genetic Predisposition to Disease
- Aged
- Receptors, Cell Surface/genetics
- CD163 Antigen
- Antigens, Differentiation, Myelomonocytic/genetics
- Receptors, Immunologic/genetics
- Immune Tolerance/genetics
- Prognosis
- Young Adult
- Case-Control Studies
- Genotype
- Adolescent
- Membrane Glycoproteins/genetics
Collapse
Affiliation(s)
- Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengyuan Chang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Feng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guangqiang Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Hematological Diseases and Immune Microenvironment, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Alves-Hanna FS, Silva FRP, Pereira DS, Leal ALAB, Magalhães-Gama F, Costa AG. Association between the IL1B-511 C>T polymorphism and the risk of hematologic malignancies: data from a meta-analysis. Cancer Biol Ther 2024; 25:2382503. [PMID: 39039694 PMCID: PMC11268255 DOI: 10.1080/15384047.2024.2382503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
The relationship between the IL1B-511C>T (rs16944) polymorphism and the risk of developing hematologic malignancies remains controversial. Thus, we performed a meta-analysis to evaluate the association between IL1B-511C>T polymorphism and the risk of developing hematologic malignancies. A comprehensive search was conducted to identify all eligible studies on IL1B-511C>T polymorphism and hematologic malignancies. Twelve case-control studies, with 2,896 cases and 3,716 controls, were selected for the analysis. The overall data failed to indicate a significant association between IL1B-511C>T polymorphism and the risk of hematologic malignancies (OR:1.06, 95% Confidence Interval [CI]: 0.93-1.22). Moreover, non-significant associations were observed in a stratified analysis according to neoplasm type (multiple myeloma, Hodgkin's lymphoma, and non-Hodgkin's lymphoma), ethnicity (European and Asian), and Hardy-Weinberg equilibrium. In summary, our results suggest that there is no association between the IL1B-511C>T polymorphism and the risk of hematologic malignancies. As such, further large-scale studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Fabíola Silva Alves-Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Felipe Rodolfo Pereira Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Faculdade de Medicina, Universidade Federal do Pará (UFPA), Altamira, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | | | - Fábio Magalhães-Gama
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou – Fundação, Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| |
Collapse
|
4
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
5
|
Wu Y, Li M, Meng G, Ma Y, Ye J, Sun T, Ji C. Immune checkpoint-related gene polymorphisms are associated with acute myeloid leukemia. Cancer Med 2023; 12:18588-18596. [PMID: 37602517 PMCID: PMC10557852 DOI: 10.1002/cam4.6468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Chemotherapy is still the standard regimen for treating acute myeloid leukemia (AML) and its disappointing efficacy requires the urgent need for new therapeutic targets. It is well known that immune response plays an increasingly significant role in the pathogenesis of AML. METHODS We detected nine single nucleotide polymorphisms (SNPs) in immune checkpoint-related genes, including PD1, LAG3, TIM3, and TIGIT in 285 AML inpatients and 324 healthy controls. SNP genotyping was performed on the MassARRAY platform. Furthermore, we analyzed the relationship between the susceptibility and prognosis of AML and the selected SNPs. RESULTS Our results showed that rs2227982 and rs10204525 in PD1 were significantly associated with susceptibility to AML after false discovery rate correction. PD1 rs10204525 also showed a significant correlation with the response to chemotherapy and risk stratification of AML. Importantly, the AA genotype of PD1 (rs2227982) under the recessive model showed a negative impact on AML prognosis independently. CONCLUSIONS Our results indicate that PD1 SNPs are important for susceptibility and prognosis in AML, which may provide a new therapeutic target for AML patients.
Collapse
Affiliation(s)
- Yuyan Wu
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Mingying Li
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Guangqiang Meng
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Yuechan Ma
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Jingjing Ye
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Tao Sun
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| | - Chunyan Ji
- Department of HematologyQilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong UniversityJinanShandong ProvincePeople's Republic of China
- Shandong Key Laboratory of ImmunohematologyQilu Hospital of Shandong UniversityJinanShandong ProvincePeople's Republic of China
| |
Collapse
|
6
|
Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A, Costa AG. Insights Regarding the Role of Inflammasomes in Leukemia: What Do We Know? J Immunol Res 2023; 2023:5584492. [PMID: 37577033 PMCID: PMC10421713 DOI: 10.1155/2023/5584492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Inflammation is a physiological mechanism of the immune response and has an important role in maintaining the hematopoietic cell niche in the bone marrow. During this process, the participation of molecules produced by innate immunity cells in response to a variety of pathogen-associated molecular patterns and damage-associated molecular patterns is observed. However, chronic inflammation is intrinsically associated with leukemogenesis, as it induces DNA damage in hematopoietic stem cells and contributes to the creation of the preleukemic clone. Several factors influence the malignant transformation within the hematopoietic microenvironment, with inflammasomes having a crucial role in this process, in addition to acting in the regulation of hematopoiesis and its homeostasis. Inflammasomes are intracellular multimeric complexes responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β and interleukin-18 and the cell death process via pyroptosis. Therefore, dysregulation of the activation of these complexes may be a factor in triggering several diseases, including leukemias, and this has been the subject of several studies in the area. In this review, we summarized the current knowledge on the relationship between inflammation and leukemogenesis, in particular, the role of inflammasomes in different types of leukemias, and we describe the potential therapeutic targets directed at inflammasomes in the leukemic context.
Collapse
Affiliation(s)
- Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Glenda Menezes Nogueira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Amanda Barros Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | | | - Joey Ramone Ferreira Fonseca
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
7
|
Meng G, Li P, Li M, Wu Y, Ma Y, Sun T, Ji C. KLK2 single-nucleotide polymorphism rs198977 is associated with increased susceptibility and hyperleukocytosis in AML. Front Genet 2023; 14:1218523. [PMID: 37593117 PMCID: PMC10427912 DOI: 10.3389/fgene.2023.1218523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction: Acute myeloid leukemia (AML) is a heterogeneous myeloid malignancy with abnormal molecular diversity. Tissue kallikrein 2 (KLK2) is a kind of serine protease, and has a close relationship with the occurrence and development of malignant tumors. Single nucleotide polymorphism (SNP) of various genes are associated with susceptibility, treatment and survival of AML. Methods: We investigated the association of KLK2 SNPs rs198977 and rs2664155 with AML. We recruited 284 AML patients and 280 healthy controls from the Han population and genotyping KLK2 SNPs rs198977 and rs2664155 by MassARRAY system. Results: Using clinical data from AML patients and controls, including AML susceptibility, blood count, risk stratification, response to induced chemotherapy and survival, our results showed an increased risk of AML susceptibility with KLK2 rs198977 TT genotype in the recessive model. Regarding white blood cell counts in AML patients, the results showed an increased risk of hyperleukocytosis with the TT genotype of KLK2 rs198977 in a codominant model. Moreover, in the recessive model, AML with KLK2 SNPs rs198977 TT genotype had an increased risk of hyperleukocytosis. No significant correlation was found between KLK2 rs2664155 and AML. Discussion: This study suggests that KLK2 rs198977 may be an important genetic factor in the occurrence of AML and hyperleukocytosis in AML, providing a new perspective for disease progression and new therapeutic targets.
Collapse
Affiliation(s)
- Guangqiang Meng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
8
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
de Freitas Dutra V, Leal VNC, Pontillo A. The inflammasomes: crosstalk between innate immunity and hematology. Inflamm Res 2022; 71:1403-1416. [PMID: 36266587 DOI: 10.1007/s00011-022-01646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multi-protein complex responsible for the proteolytic maturation of pro-inflammatory cytokines IL-1ß and IL-18 and of gasdermin-D, which mediates membrane pore formation and the cytokines release, or eventually a lytic cell death known as pyroptosis. Inflammation has long been accepted as a key component of hematologic conditions, either oncological or benign diseases. OBJECTIVES This study aims to review the current knowledge about the contribution of inflammasome in hematologic diseases. We attempted to depict the participation of specific inflammasome receptors, and the possible cell-specific consequence of complex activation, as well as the use of anti-inflammasome therapies. METHODS We performed a keyword-based search in public databases (Pubmed.gov, ClinicalTrials.gov.). CONCLUSION Different blood cells variably express inflammasome components. Considering the immunosuppression associated with both the disease and the treatment of some hematologic diseases, and a microenvironment that allows neoplastic cell proliferation, inflammasomes could be a link between innate immunity and disease progression, as well as an interesting therapeutic target.
Collapse
Affiliation(s)
- Valéria de Freitas Dutra
- Hematology and Blood Transfusion Division, Clinical and Experimental Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R. Dr. Diogo de Farias, 824, Vila Clementino, São Paulo, SP, 04037-002, Brazil.
| | - Vinicius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| |
Collapse
|
10
|
Wicherska-Pawłowska K, Bogunia-Kubik K, Kuszczak B, Łacina P, Dratwa M, Jaźwiec B, Wróbel T, Rybka J. Polymorphisms in the Genes Coding for TLRs, NLRs and RLRs Are Associated with Clinical Parameters of Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms23179593. [PMID: 36076988 PMCID: PMC9455872 DOI: 10.3390/ijms23179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) are major elements of the innate immune system that recognize pathogen-associated molecular patterns. Single-nucleotide polymorphisms (SNPs) in the TLR, NLR, and RLR genes may lead to an imbalance in the production of pro- and anti-inflammatory cytokines, changes in susceptibility to infections, the development of diseases, and carcinogenesis. Acute myeloid leukemia (AML) is a bone marrow malignancy characterized by uncontrolled proliferation of transformed myeloid precursors. We retrospectively analyzed 90 AML patients. We investigated the effect of fifteen SNPs located in the genes coding for RLR1 (rs9695310, rs10738889, rs10813831), NOD1 (rs2075820, rs6958571), NOD2 (rs2066845, rs2066847, rs2066844), TLR3 (rs5743305, rs3775296, 3775291), TLR4 (rs4986791, rs4986790), and TLR9 (rs187084, rs5743836). We observed that TLR4 rs4986791, TLR9 rs5743836, and NOD2 rs2066847 were associated with CRP levels, while RLR-1 rs10738889 was associated with LDH level. Furthermore, we found TLR3 rs5743305 AA to be more common in patients with infections. We also found TLR9 rs187084 C to be associated with more favorable risk, and RLR-1 rs9695310 GG with higher age at diagnosis. In conclusion, the current study showed that SNPs in the genes encoding TLRs, NLRs, and RLRs may be potential biomarkers in patients with AML.
Collapse
Affiliation(s)
- Katarzyna Wicherska-Pawłowska
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation of Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Bartłomiej Kuszczak
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation of Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Bożena Jaźwiec
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation of Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation of Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Justyna Rybka
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation of Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
11
|
Liu D, Zhong Z, Karin M. NF-κB: A Double-Edged Sword Controlling Inflammation. Biomedicines 2022; 10:1250. [PMID: 35740272 PMCID: PMC9219609 DOI: 10.3390/biomedicines10061250] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation, when properly mounted and precisely calibrated, is a beneficial process that enables the rapid removal of invading pathogens and/or cellular corpses and promotes tissue repair/regeneration to restore homeostasis after injury. Being a paradigm of a rapid response transcription factor, the nuclear factor-kappa B (NF-κB) transcription factor family plays a central role in amplifying inflammation by inducing the expression of inflammatory cytokines and chemokines. Additionally, NF-κB also induces the expression of pro-survival and -proliferative genes responsible for promoting tissue repair and regeneration. Paradoxically, recent studies have suggested that the NF-κB pathway can also exert inhibitory effects on pro-inflammatory cytokine production to temper inflammation. Here, we review our current understanding about the pro- and anti-inflammatory roles of NF-κB and discuss the implication of its dichotomous inflammation-modulating activity in the context of inflammasome activation and tumorigenesis.
Collapse
Affiliation(s)
- Danhui Liu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
The association between single polymorphic positions and the risk of acute lymphoblastic leukemia. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Liu ZH, Zhang L, Jing FJ, Xiao SX, Gao Y, Bian HY, Zhao X. Genetic Polymorphisms in NLRP3 Inflammasome-Associated Genes in Patients with B-Cell Non-Hodgkin's Lymphoma. J Inflamm Res 2021; 14:5687-5697. [PMID: 34754215 PMCID: PMC8570379 DOI: 10.2147/jir.s329090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose The role of NLRP3 inflammasome in the progression of many diseases has been increasingly recognized. However, the function of this molecular assembly in the development and progression of B-cell non-Hodgkin's lymphoma remains unclear. Patients and Methods In this study, we investigated the polymorphisms in the NLRP3 inflammasome associated genes in 281 patients with B-cell non-Hodgkin's lymphoma and 385 age- and gender-matched healthy controls. Results We found that IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) contributed to susceptibility to B-cell non-Hodgkin's lymphoma. Specifically, the allele "G" in IL-18 (rs1946518) and allele "ins" in NFκB-94 ins/del (rs28362491) were significantly associated with the risk of disease. The AA genotype of CARD8 (rs2043211) and the higher level of serum lactate dehydrogenase (LDH) led to statistically poorer B-cell non-Hodgkin's lymphoma survival. Less frequent genotype TT of CARD8 (rs2043211) was observed in patients with higher LDH level, clinical stages III-IV of disease, and IPI 3-5, although the relationship did not reach statistical significance. However, IPI is an independent prognostic factor for B-cell non-Hodgkin's lymphoma. Conclusion IL-18 (rs1946518) and NFκB-94 ins/del (rs28362491) gene polymorphisms appear to be the factors influencing the risk of B-cell non-Hodgkin's lymphoma. CARD8 (rs2043211) polymorphisms are important factors for the survival of patients with this disease.
Collapse
Affiliation(s)
- Zhi-He Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lin Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Fan-Jing Jing
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Shu-Xin Xiao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Hai-Yan Bian
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Xia Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| |
Collapse
|
14
|
Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 2021; 11:152. [PMID: 34521810 PMCID: PMC8440507 DOI: 10.1038/s41408-021-00547-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies, particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
Collapse
Affiliation(s)
- Samarpana Chakraborty
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren C Shapiro
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bianca Rivera-Pena
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
15
|
Zhong C, Wang R, Hua M, Zhang C, Han F, Xu M, Yang X, Li G, Hu X, Sun T, Ji C, Ma D. NLRP3 Inflammasome Promotes the Progression of Acute Myeloid Leukemia via IL-1β Pathway. Front Immunol 2021; 12:661939. [PMID: 34211462 PMCID: PMC8239362 DOI: 10.3389/fimmu.2021.661939] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
NLRP3 inflammasome has been reported to be associated with the pathogenesis of multiple solid tumors. However, the role of NLRP3 inflammasome in acute myeloid leukemia (AML) remains unclear. We showed that NLRP3 inflammasome is over-expressed and highly activated in AML bone marrow leukemia cells, which is correlated with poor prognosis. The activation of NLRP3 inflammasome in AML cells promotes leukemia cells proliferation, inhibits apoptosis and increases resistance to chemotherapy, while inactivation of NLRP3 by caspase-1 or NF-κB inhibitor shows leukemia-suppressing effects. Bayesian networks analysis and cell co-culture tests further suggest that NLRP3 inflammasome acts through IL-1β but not IL-18 in AML. Knocking down endogenous IL-1β or anti-IL-1β antibody inhibits leukemia cells whereas IL-1β cytokine enhances leukemia proliferation. In AML murine model, up-regulation of NLRP3 increases the leukemia burden in bone marrow, spleen and liver, and shortens the survival time; furthermore, knocking out NLRP3 inhibits leukemia progression. Collectively, all these evidences demonstrate that NLRP3 inflammasome promotes AML progression in an IL-1β dependent manner, and targeting NLRP3 inflammasome may provide a novel therapeutic option for AML.
Collapse
Affiliation(s)
- Chaoqing Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Hematology, Shandong Yantai Mountain Hospital, Yantai, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiang Hu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
16
|
Alves FS, Xabregas LA, Kerr MWA, Souza GL, Pereira DS, Magalhães-Gama F, Santiago MRR, Garcia NP, Tarragô AM, Ogusku MM, Sadahiro A, Malheiro A, Costa AG. Genetic polymorphisms of inflammasome genes associated with pediatric acute lymphoblastic leukemia and clinical prognosis in the Brazilian Amazon. Sci Rep 2021; 11:9869. [PMID: 33972620 PMCID: PMC8110953 DOI: 10.1038/s41598-021-89310-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
The immune system plays an important role in the control of cancer development. To investigate the possible association of inflammasome genes to childhood leukemia we performed a case-control study with 158 patients with acute lymphoblastic leukemia and 192 healthy individuals. The IL1B and IL18 genetic polymorphisms were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and NLRP1, NLRP3 and P2RX7 were genotyped using Real Time quantitative PCR (qPCR). The IL1B C/T rs19644 genotype was associated with the risk of developing ALL (C/C vs. C/T + T/T OR: 2.48 [95% CI: 1.26-4.88, p = 0.006]; C/C vs C/T OR: 2.74 [95% CI: 1.37-5.51, p = 0.003]) and the NLRP1 A/T rs12150220 (OR: 0.37 [95% CI: 0.16-0.87, p = 0.023]) was associated with protection against infectious comorbidities. It was not found association between NLRP3 and P2RX7 polymorphisms and acute lymphoblastic leukemia in our study. Our results suggest that the inflammasome single-variant polymorphisms (SNVs) may play a role in the development and prognostic of childhood leukemia. However, this finds requires further study within a larger population in order to prove it.
Collapse
Affiliation(s)
- Fabíola Silva Alves
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Lilyane Amorim Xabregas
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Marlon Wendell Athaydes Kerr
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Gláucia Lima Souza
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Fábio Magalhães-Gama
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Mirian Rodrigues Ribeiro Santiago
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Nadja Pinto Garcia
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
| | - Maurício Morishi Ogusku
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-001, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Rede Genômica de Vigilância em Saúde do Amazonas (REGESAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil.
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
17
|
Urwanisch L, Luciano M, Horejs-Hoeck J. The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:1271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
Affiliation(s)
- Laura Urwanisch
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
| | - Michela Luciano
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.U.); (M.L.)
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| |
Collapse
|
18
|
Zhou X, Zhan L, Huang K, Wang X. The functions and clinical significance of circRNAs in hematological malignancies. J Hematol Oncol 2020; 13:138. [PMID: 33069241 PMCID: PMC7568356 DOI: 10.1186/s13045-020-00976-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
With covalently closed circular structures, circular RNAs (circRNAs) were once misinterpreted as by-products of mRNA splicing. Being abundant, stable, highly conserved, and tissue-specific, circRNAs are recently identified as a type of regulatory RNAs. CircRNAs bind to certain miRNAs or proteins to participate in gene transcription and translation. Emerging evidence has indicated that the dysregulation of circRNAs is closely linked to the tumorigenesis and treatment response of hematological malignancies. CircRNAs play critical roles in various biological processes, including tumorigenesis, drug resistance, tumor metabolism, autophagy, pyroptosis, and ferroptosis. The N6-methyladenosine modification of circRNAs and discovery of fusion-circRNAs provide novel insights into the functions of circRNAs. Targeting circRNAs in hematological malignancies will be an attractive treatment strategy. In this review, we systematically summarize recent advances toward the novel functions and molecular mechanisms of circRNAs in hematological malignancies, and highlight the potential clinical applications of circRNAs as novel biomarkers and therapeutic targets for future exploration.
Collapse
Affiliation(s)
- Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| | - Linquan Zhan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Kai Huang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, People's Republic of China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, People's Republic of China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, People's Republic of China.
| |
Collapse
|
19
|
Zhou Y, Yan S, Liu N, He N, Zhang A, Meng S, Ji C, Ma D, Ye J. Genetic polymorphisms and expression of NLRP3 inflammasome-related genes are associated with Philadelphia chromosome-negative myeloproliferative neoplasms. Hum Immunol 2020; 81:606-613. [PMID: 32981742 DOI: 10.1016/j.humimm.2020.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/15/2023]
Abstract
Inflammation plays a crucial role in the initiation, progression and prognosis of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), which could be clinically subdivided into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasomes affect inflammatory diseases and carcinomas by excessive production of cytokines. To investigate a possible association of NLRP3 inflammasome signaling with MPN, we investigated the expression of selected inflammasome-related genes from bone marrow cells of 67 MPN patients as well as gene polymorphisms in NLRP3 (rs35829419), NF-κB1 (rs28362491), CARD8 (rs2043211), IL-1β (rs16944), and IL-18 (rs1946518). It showed that inflammasome-related genes (NLRP3, NF-κB1, CARD8, IL-1β, and IL-18) were highly expressed in BM cells from MPN patients and the increased expression was associated with JAK2V617F mutation, white blood cell counts and splenomegaly. Analysis of genetic polymorphisms in 269 MPN patients and 291 healthy controls demonstrated that NF-κB1 (rs28362491) was associated with MPN and increased expression of NF-κB1, NLRP3 and IL-1β. This research provided novel biomarkers and potential targets for MPN.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Shuxin Yan
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Na Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Na He
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Amin Zhang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Sibo Meng
- Department of Chemotherapy, Qilu Hospital (Qingdao District), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, PR China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 West Wenhua Road, Jinan, Shandong, PR China.
| |
Collapse
|
20
|
Liu Q, Hua M, Yan S, Zhang C, Wang R, Yang X, Han F, Hou M, Ma D. Immunorelated gene polymorphisms associated with acute myeloid leukemia. Clin Exp Immunol 2020; 201:266-278. [PMID: 32349161 PMCID: PMC7419888 DOI: 10.1111/cei.13446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although the pathogenesis of acute myeloid leukemia (AML) is still unknown, accumulating evidence has revealed that immune response plays a vital part in the pathogenesis. Here, we investigated the involvement of 21 single nucleotide polymorphisms (SNPs) of immunorelated genes, including cytokines [interleukin (IL)-2, IL-4, IL-9, IL-12A, IL-22, interferon (IFN-α) and transforming growth factor (TGF)-β1], transcriptional regulatory genes (TBX21, STAT1, STAT3, STAT5B, STAT6, GATA3, FOXP3 and IRF4) and others (IL2RA, IL6R, NFKBIA) in 269 AML in-patients and 200 healthy controls. Furthermore, we analyzed the relationship between the SNPs and clinical characteristics. Immunorelated SNP genotyping was performed on the Sequenom MassARRAY iPLEX platform. All the SNPs in healthy controls were consistent with Hardy-Weinberg equilibrium. All final P-values were adjusted by Bonferroni multiple testing. Our results showed that IL-22 (rs2227491) was significantly associated with the white blood cell (WBC) counts. Signal transducer and activator of transcription 5B (STAT-5B) (rs6503691) showed a close relationship with the recurrent genetic abnormalities in patients with AML. We verified the negatively independent effect of age and risk of cytogenetics on overall survival (OS). More importantly, the GG genotype of IL-12A (rs6887695) showed a negative impact on AML prognosis independently. Furthermore, the relative expression of IL-12 was decreased in GG genotype, no matter under a co-dominant or recessive model. However, no correlation was observed between the SNPs mentioned above and disease susceptibility, risk stratification and survival. Our findings suggest that immunorelated gene polymorphisms are associated with prognosis in AML, which may perform as novel inspection targets for AML patients.
Collapse
Affiliation(s)
- Q. Liu
- Department of HematologyQilu HospitalShandong UniversityJinanChina
- Department of HematologyQilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
- Department of HematologyTaian Central HospitalTaianShandongChina
| | - M. Hua
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - S. Yan
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - C. Zhang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - R. Wang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - X. Yang
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - F. Han
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - M. Hou
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| | - D. Ma
- Department of HematologyQilu HospitalShandong UniversityJinanChina
| |
Collapse
|
21
|
Hamarsheh S, Zeiser R. NLRP3 Inflammasome Activation in Cancer: A Double-Edged Sword. Front Immunol 2020; 11:1444. [PMID: 32733479 PMCID: PMC7360837 DOI: 10.3389/fimmu.2020.01444] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is involved in tumor development and progression as well as antitumor response to therapy. In the past decade, the crosstalk between inflammation, immunity, and cancer has been investigated extensively, which led to the identification of several underlying mechanisms and cells involved. The formation of inflammasome complexes leads to the activation of caspase-1, production of interleukin (IL)-1β, and IL-18 and pyroptosis. Multiple studies have shown the involvement of NLRP3 inflammasome in tumorigenesis. Conversely, other reports have indicated a protective role in certain cancers. In this review, we summarize these contradictory roles of NLRP3 inflammasome in cancer, shed the light on oncogenic signaling leading to NLRP3 activation and IL-1β production and outline the current knowledge on therapeutic approaches.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS) and Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Rébé C, Ghiringhelli F. Interleukin-1β and Cancer. Cancers (Basel) 2020; 12:E1791. [PMID: 32635472 PMCID: PMC7408158 DOI: 10.3390/cancers12071791] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Within a tumor, IL-1β is produced and secreted by various cell types, such as immune cells, fibroblasts, or cancer cells. The IL1B gene is induced after "priming" of the cells and a second signal is required to allow IL-1β maturation by inflammasome-activated caspase-1. IL-1β is then released and leads to transcription of target genes through its ligation with IL-1R1 on target cells. IL-1β expression and maturation are guided by gene polymorphisms and by the cellular context. In cancer, IL-1β has pleiotropic effects on immune cells, angiogenesis, cancer cell proliferation, migration, and metastasis. Moreover, anti-cancer treatments are able to promote IL-1β production by cancer or immune cells, with opposite effects on cancer progression. This raises the question of whether or not to use IL-1β inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231, University of Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
23
|
Wang M, Jiang S, Zhang Y, Li P, Wang K. The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers (Basel) 2019; 11:1313. [PMID: 31492049 PMCID: PMC6770479 DOI: 10.3390/cancers11091313] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a category of diseases involving abnormal cell growth with the potential to invade other parts of the body. Chemotherapy is the most widely used first-line treatment for multiple forms of cancer. Chemotherapeutic agents act via targeting the cellular apoptotic pathway. However, cancer cells usually acquire chemoresistance, leading to poor outcomes in cancer patients. For that reason, it is imperative to discover other cell death pathways for improved cancer intervention. Pyroptosis is a new form of programmed cell death that commonly occurs upon pathogen invasion. Pyroptosis is marked by cell swelling and plasma membrane rupture, which results in the release of cytosolic contents into the extracellular space. Currently, pyroptosis is proposed to be an alternative mode of cell death in cancer treatment. Accumulating evidence shows that the key components of pyroptotic cell death pathways, including inflammasomes, gasdermins and pro-inflammatory cytokines, are involved in the initiation and progression of cancer. Interfering with pyroptotic cell death pathways may represent a promising therapeutic option for cancer management. In this review, we describe the current knowledge regarding the biological significance of pyroptotic cell death pathways in cancer pathogenesis and also discuss their potential therapeutic utility.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, 266021 Qingdao, China.
| |
Collapse
|
24
|
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer 2018; 17:158. [PMID: 30447690 PMCID: PMC6240225 DOI: 10.1186/s12943-018-0900-3] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are large intracellular multi-protein signalling complexes that are formed in the cytosolic compartment as an inflammatory immune response to endogenous danger signals. The formation of the inflammasome enables activation of an inflammatory protease caspase-1, pyroptosis initiation with the subsequent cleaving of the pro-inflammatory cytokines interleukin (IL)-1β and proIL-18 to produce active forms. The inflammasome complex consists of a Nod-like receptor (NLR), the adapter apoptosis-associated speck-like (ASC) protein, and Caspase-1. Dysregulation of NLRP3 inflammasome activation is involved tumor pathogenesis, although its role in cancer development and progression remains controversial due to the inconsistent findings described. In this review, we summarize the current knowledge on the contribution of the NLRP3 inflammasome on potential cancer promotion and therapy.
Collapse
Affiliation(s)
- Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Stephen L Atkin
- Weill Cornell Medicine Qatar, Education City, PO Box 24144, Doha, Qatar.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level. Inflammation 2018; 41:555-561. [PMID: 29218606 DOI: 10.1007/s10753-017-0711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are adhesion molecules which induce similar physiological events. Our previous paper showed that phosphatidylinositol 3-kinase (PI3K) played a crucial role in L-selectin- and PSGL-1-mediated F-actin redistribution and assembly during neutrophil rolling on E-selectin. However, it is not clear whether L-selectin and PSGL-1 induce other similar physiology events by PI3K. Here, we investigated the possibility of PI3K linking the signaling pathways of L-selectin and PSGL-1 to IL-18 transcription. We first demonstrated that L-selectin and PSGL-1 stimulation upregulated IL-18 transcription level in Jurkat cells. Then we found that PI3K inhibitor LY294002 reduced L-selectin- and PSGL-1-induced mRNA upregulation of IL-18 in Jurkat cells. Transfection of phosphatase and tensin homolog expressing plasmid inhibited the transcription level of IL-18. Therefore, PI3K is a signal linker between L-selectin and PSGL-1 in IL-18 transcriptional activation at the promoter level. To our knowledge, this is the first time to directly link PI3K to L-selectin- and PSGL-1-mediated IL-18 transcription, providing a foundation for intervention of PI3K-related inflammation.
Collapse
|
26
|
Lv X, Cui Z, Li H, Li J, Yang Z, Bi Y, Gao M, Zhou B, Yin Z. Polymorphism in lncRNA AC008392.1 and its interaction with smoking on the risk of lung cancer in a Chinese population. Cancer Manag Res 2018; 10:1377-1387. [PMID: 29881308 PMCID: PMC5985799 DOI: 10.2147/cmar.s160818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose To evaluate the association between rs7248320 in lncRNA AC008392.1 and the risk of lung cancer, this case–control study was carried out in a Chinese population. This study also evaluated the gene–environment interaction between rs7248320 and exposure to smoking status on the risk of lung cancer. Patients and methods We conducted a hospital-based case–control study including 512 lung cancer cases and 588 healthy controls. The association between rs7248320 and the risk of lung cancer was analyzed, and the gene–environment interaction was estimated on an additive scale. Results The variant genotype of rs7248320 was significantly related to the risk of non-small-cell lung cancer (NSCLC). Individuals carrying homozygous GG genotype had decreased risk of NSCLC, compared with individuals carrying the homozygous wild AA genotype/heterozygote GA genotype (adjusted odds ratio [OR] =0.653, 95% confidence interval [CI] =0.442–0.966, P=0.033). Moreover, in the subgroup of ages, there were statistically significant associations between rs7248320 and the risk of lung cancer and NSCLC in the population over 60 years of age. Compared with individuals carrying genotypes AA/GA, individuals with genotype GG had the lower risk of lung cancer and NSCLC (adjusted ORs were 0.579 and 0.433, 95% CIs were 0.338–0.994 and 0.231–0.811, P-values were 0.048 and 0.009, respectively). Compared with homozygote AA, the homozygote GG was associated with a decreased risk in NSCLC (OR =0.456, 95% CI =0.235–0.887, P=0.021). There were no statistically significant results in gene–environment interactions on an additive scale. Conclusion These findings suggest that lncRNA AC008392.1 rs7248320 may be involved in genetic susceptibility to NSCLC in a Chinese population.
Collapse
Affiliation(s)
- Xiaoting Lv
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zhigang Cui
- School of Nursing, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Juan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zitai Yang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Yanhong Bi
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Min Gao
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, 110122, People's Republic of China
| |
Collapse
|
27
|
Rashid N, Nigam A, Saxena P, Jain SK, Wajid S. Association of IL-1β, IL-1Ra and FABP1 gene polymorphisms with the metabolic features of polycystic ovary syndrome. Inflamm Res 2017; 66:621-636. [PMID: 28405733 DOI: 10.1007/s00011-017-1045-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a highly prevalent endocrinopathy is currently being designated as chronic low grade inflammatory state. IL-1β, IL-1Ra and FABP1 are critical mediators of inflammatory processes and are speculated to play a role in the pathogenesis of PCOS. The aim of this study was to study the association of IL-β, IL-1Ra and FABP1 gene polymorphisms with PCOS and related metabolic features. SUBJECTS 95 PCOS and 45 age matched healthy control subjects were enrolled in this study. METHODS Polymorphism in genes IL-1β, IL-1Ra and FABP1 was studied by PCR, PCR-RFLP and sequencing methods, respectively. Hormonal and lipid profiles were evaluated for all the subjects. RESULTS Hormonal and lipid profiles showed significant differences between PCOS and control subjects. Allele and genotype frequencies of IL-1β, IL-1Ra and FABP1 gene polymorphisms did not vary between the control and PCOS group. However, T allele of C[-511]T variant of IL-1β, allele II in intron 2 of IL-1Ra and A allele of A/G variant of FABP1 (rs2197076) showed significant association with many metabolic features associated with PCOS. CONCLUSIONS Polymorphism in genes encoding cytokines and proteins involved in lipid metabolism can provide insights into the genetics of the disease and may contribute to assess the associated risk of cardiovascular diseases (CVD), dyslipidemia and metabolic syndrome (MetS) associated with PCOS.
Collapse
Affiliation(s)
- Nadia Rashid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Aruna Nigam
- Department of Gynaecology and Obstetrics, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Pikee Saxena
- Department of Obstetrics and Gynaecology, Lady Hardinge Medical College and SSK Hospital, New Delhi, 110001, India
| | - S K Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| |
Collapse
|