1
|
Li K, Liu L, Zhang G, Wang X, Gu T, Luo Q, Sha S, Du Y, Wu C, Chen L. Activation of transient receptor potential vanilloid 4 impairs long-term depression in nucleus accumbens and induces depressive-like behavior. Neuropharmacology 2025; 273:110429. [PMID: 40154945 DOI: 10.1016/j.neuropharm.2025.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Long-term depression (LTD), a form of synaptic plasticity, is impaired in the nucleus accumbens (NAc) in depression. While TRPV4 activation regulates synaptic transmission in the hippocampus, its effects in the NAc remain unclear. Here, we examined the effects of TRPV4 activation on LTD induction in the NAc and depressive-like behavior. Mice that were administered the TRPV4 agonist GSK1016790A into the NAc (GSK-mice) showed depressive-like behavior and impaired LTD induction in NAc slices. Additionally, the mRNA and protein levels of dopamine D2 receptor (D2R) and A-type gamma-aminobutyric acid receptor (GABAAR) were markedly decreased in the NAc of GSK-mice. Meanwhile, administering a D2R (quinpirole) or GABAAR (muscimol) agonist reversed LTD impairment in the NAc. The protein levels of phosphorylated protein kinase C (p-PKC) increased markedly and that of phosphorylated protein kinase B (p-Akt) decreased in the NAc of GSK mice. Administration of a PKC antagonist (GF109203X) or phosphatidylinositol 3-kinase (PI3K) agonist (740 Y-P) significantly increased GABAAR protein levels and restored LTD induction in the NAc of GSK-mice. Administration of quinpirole increased p-Akt and GABAAR protein levels in the NAc of GSK-mice. Finally, administration of quinpirole, muscimol, GF109203X or 740 Y-P improved the depressive-like behavior in GSK-mice. This study suggests that activation of TRPV4 impairs LTD induction in the NAc and induces depressive-like behavior, which is likely mediated by down-regulating D2R to inhibit PI3K-Akt pathway, and activating PKC to decrease the expression of GABAAR.
Collapse
Affiliation(s)
- Kunpeng Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Lihan Liu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Guowen Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Xiaolin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Tianchen Gu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Qi Luo
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, PR China
| | - Chunfeng Wu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China.
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, PR China.
| |
Collapse
|
2
|
Suganthan H, Le H, Elbassiouny A, Rajkumar A, Raveendran VA, Pressey JC, Woodin MA, Chang BSW, Buck LT. Increased GABA A receptor open probability: Adaptive mechanisms to cope with anoxia in the painted turtle. Neuroscience 2025; 579:10-23. [PMID: 40412545 DOI: 10.1016/j.neuroscience.2025.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/01/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
The western painted turtle is the most anoxia-tolerant tetrapod known, surviving ∼ 4 months at 3 °C without oxygen. In the mammalian brain, absence of oxygen leads to hyper-excitability and cell death within minutes. A major mechanism by which painted turtles survive anoxia is a large increase of γ-aminobutyric acid (GABA) in the brain leading to a dominating Cl- conductance that clamps membrane potential near the reversal potential of the GABAA receptor. Whole-cell GABAA receptor currents are known to increase with the onset of anoxia because of increased presynaptic GABA release, we hypothesized that GABAA receptor currents may also exhibit a large increase due to increased channel open time. To investigate this, we used cell-attached single-channel patch-clamp electrophysiological techniques to measure GABAA receptor open times (Popen) during a normoxic to anoxic transition in pyramidal neurons in turtle brain cortical sheets. GABAA receptor Popen significantly increased 13-fold with the onset of anoxia and was blocked by the inclusion of the protein kinase C (PKC) activator PMA phorbol-12-myristate-13-acetate. Indicating the receptor was regulated by covalent modification. To investigate the molecular evolutionary mechanisms underlying these adaptations, we used codon-based likelihood models to detect changes in selective pressure amongst the GABAA receptor subunit genes. We found positive selection in GABRB2 and GABRB3 at sites near their ligand binding interface, likely impacting channel kinetics associated with hypoxia-tolerance. The elucidation of the adaptations associated with increased hypoxia tolerance furthers our understanding of physiological adaptations to extreme low-oxygen environments.
Collapse
Affiliation(s)
- Haushe Suganthan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| | - Han Le
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ahmed Elbassiouny
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Anthony Rajkumar
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Leslie T Buck
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
3
|
Sacchettino L, Gatta C, Maruccio L, Boncompagni C, Napolitano F, Avallone L, d'Angelo D. Combining cannabis and melatonin treatment with a rehabilitation program improved symptoms in a dog with compulsive disorder: A case report. Res Vet Sci 2023; 160:26-29. [PMID: 37245289 DOI: 10.1016/j.rvsc.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Compulsive disorder in dogs (CD) is characterized by constant and time-consuming repetition of behaviors, emancipated from the environment, that definitely compromise their everyday life activities. Here, we documented the efficacy of a novel approach to counteract the negative symptoms of CD in a 5-year-old mongrel dog, previously found to be resistant to the conventional antidepressant. The patient underwent an integrated and interdisciplinary approach, based on the cannabis and melatonin co-administration, together with a tailored 5-month-lasting behavioral program. Observational findings showed a lower rate of compulsive episodes and better management of the dog as well, when compared to the previous paroxetine treatment. We followed him for an additional four months of therapy, and the owners reported easier management of the dog, as reduction of abnormal behaviors to a level acceptable to the owners. Overall, our data so far collected in the CD dog may allow us to test more deeply the feasibility and safety of such an off-label approach, at both preclinical and clinical levels.
Collapse
Affiliation(s)
- Luigi Sacchettino
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy
| | - Claudia Gatta
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy
| | | | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy
| | - Danila d'Angelo
- Department of Veterinary Medicine and Animal Production, University of Federico II, Naples, Italy
| |
Collapse
|
4
|
The Transcriptomic Analysis of NSC-34 Motor Neuron-Like Cells Reveals That Cannabigerol Influences Synaptic Pathways: A Comparative Study with Cannabidiol. Life (Basel) 2020; 10:life10100227. [PMID: 33019509 PMCID: PMC7600552 DOI: 10.3390/life10100227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/28/2023] Open
Abstract
More than 120 cannabinoids were isolated from Cannabis sativa. In particular, Cannabidiol (CBD) and Cannabigerol (CBG) represent the two most studied non-psychoactive cannabinoids. However, CBG is less studied and less data are available on its biological properties and influence on synaptic transmission. On the contrary, CBD is already known to modulate brain excitatory glutamate, inhibitory γ-aminobutyric acid (GABA) and dopamine neurotransmission. In this study, using Next-Generation Sequencing (NGS) technology, we evaluated how CBG (1 or 5 µM) and CBD (1 or 5 µM) influence the transcriptome of the main neurotransmission pathways in NSC-34 motor neuron-like cells. At first, we evaluated that CBG and CBD were not cytotoxic and decreased the expression of pro-apoptotic genes. CBG and CBD are able to influence the expression of the genes involved in glutamate, GABA and dopamine signaling. Interestingly, the transcriptional changes induced by CBG were similar compared to CBD.
Collapse
|
5
|
Marottoli FM, Priego M, Flores-Barrera E, Pisharody R, Zaldua S, Fan KD, Ekkurthi GK, Brady ST, Morfini GA, Tseng KY, Tai LM. EGF Treatment Improves Motor Behavior and Cortical GABAergic Function in the R6/2 Mouse Model of Huntington's Disease. Mol Neurobiol 2019; 56:7708-7718. [PMID: 31104296 DOI: 10.1007/s12035-019-1634-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/24/2019] [Indexed: 01/13/2023]
Abstract
Recent evidence indicates that disruption of epidermal growth factor (EGF) signaling by mutant huntingtin (polyQ-htt) may contribute to the onset of behavioral deficits observed in Huntington's disease (HD) through a variety of mechanisms, including cerebrovascular dysfunction. Yet, whether EGF signaling modulates the development of HD pathology and the associated behavioral impairments remain unclear. To gain insight on this issue, we used the R6/2 mouse model of HD to assess the impact of chronic EGF treatment on behavior, and cerebrovascular and cortical neuronal functions. We found that bi-weekly treatment with a low dose of EGF (300 µg/kg, i.p.) for 6 weeks was sufficient to effectively improve motor behavior in R6/2 mice and diminish mortality, compared to vehicle-treated littermates. These beneficial effects of EGF treatment were dissociated from changes in cerebrovascular leakiness, a result that was surprising given that EGF ameliorates this deficit in other neurodegenerative diseases. Rather, the beneficial effect of EGF on R6/2 mice behavior was concomitant with a marked amelioration of cortical GABAergic function. As GABAergic transmission in cortical circuits is disrupted in HD, these novel data suggest a potential mechanistic link between deficits in EGF signaling and GABAergic dysfunction in the progression of HD.
Collapse
Affiliation(s)
- Felecia M Marottoli
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mercedes Priego
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eden Flores-Barrera
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rohan Pisharody
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Steve Zaldua
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kelly D Fan
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Giri K Ekkurthi
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Shen ZC, Wu PF, Wang F, Xia ZX, Deng Q, Nie TL, Zhang SQ, Zheng HL, Liu WH, Lu JJ, Gao SQ, Yao XP, Long LH, Hu ZL, Chen JG. Gephyrin Palmitoylation in Basolateral Amygdala Mediates the Anxiolytic Action of Benzodiazepine. Biol Psychiatry 2019; 85:202-213. [PMID: 30454851 DOI: 10.1016/j.biopsych.2018.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Benzodiazepines (BZDs) have been used to treat anxiety disorders for more than five decades as the allosteric modulator of the gamma-aminobutyric acid A receptor (GABAAR). Little is known about other mechanisms of BZDs. Here, we describe how the rapid stabilization of postsynaptic GABAAR is essential and sufficient for the anxiolytic effect of BZDs via a palmitoylation-dependent mechanism. METHODS Palmitoylated proteins in the basolateral amygdala (BLA) of rats with different anxious states were assessed by a biotin exchange protocol. Both pharmacological and genetic approaches were used to investigate the role of palmitoylation in anxiety behavior. Electrophysiological recording, reverse transcription polymerase chain reaction, Western blotting, and coimmunoprecipitation were used to investigate the mechanisms. RESULTS Highly anxious rats were accompanied by the deficiency of gephyrin palmitoylation and decreased the synaptic function of GABAAR in the BLA. We then identified that the dysfunction of DHHC12, a palmitoyl acyltransferase that specifically palmitoylates gephyrin, contributed to the high-anxious state. Furthermore, diazepam, as an anxiolytic drug targeting GABAARs, was found to increase gephyrin palmitoylation in the BLA via a GABAAR-dependent manner to activate DHHC12. The anxiolytic effect of diazepam was nearly abolished by the DHHC12 knockdown. Specifically, similar to the effect of BZD, the overexpression of DHHC12 in the BLA exerted a significant anxiolytic action, which was prevented by flumazenil. CONCLUSIONS Our results support the view that the strength of inhibitory synapse was controlled by gephyrin palmitoylation in vivo and proposes a previously unknown palmitoylation-centered mode of BZD's action.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Collaborative-Innovation Center for Brain Science, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Lei Nie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Ling Zheng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Jing Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Laboratory of Neuropsychiatric Diseases, Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; Collaborative-Innovation Center for Brain Science, Wuhan, China; Key Laboratory of Neurological Diseases, Ministry of Education of China, Wuhan, China.
| |
Collapse
|
7
|
O'Neill N, Sylantyev S. Feature Article: Selective modulation of tonically active GABA A receptor functional subgroups by G-proteins and protein kinase C. Exp Biol Med (Maywood) 2018; 243:1046-1055. [PMID: 30205722 DOI: 10.1177/1535370218800980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Here we study intracellular mechanisms which regulate inhibitory signaling delivered through continuously (tonically) open ionotropic receptors of γ-aminobutyric acid (GABA) of dentate gyrus granule cells (DGCs). We found that, apart of classical GABA-A receptors (GABAARs) which can be activated by GABA binding, a significant part of tonic inhibitory current is delivered by newly discovered spontaneously opening GABAARs (s-GABAARs), which enter active state without binding of GABA. We have also found that conventional GABAARs and s-GABAARs are regulated by different intracellular mechanisms, which may overlap and thus induce various signaling repercussions. Our results demonstrate that s-GABAARs play a key role in the mechanism that implements DGCs functional role in the brain. On top of that, since regulatory mechanisms under study are affected in a number of pathological states, our results may have broad implications for treatment of neurological disorders.
Collapse
|
8
|
Shen W, Nan C, Nelson PT, Ripps H, Slaughter MM. GABA B receptor attenuation of GABA A currents in neurons of the mammalian central nervous system. Physiol Rep 2017; 5:5/6/e13129. [PMID: 28348006 PMCID: PMC5371550 DOI: 10.14814/phy2.13129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/18/2016] [Indexed: 11/24/2022] Open
Abstract
Ionotropic receptors are tightly regulated by second messenger systems and are often present along with their metabotropic counterparts on a neuron's plasma membrane. This leads to the hypothesis that the two receptor subtypes can interact, and indeed this has been observed in excitatory glutamate and inhibitory GABA receptors. In both systems the metabotropic pathway augments the ionotropic receptor response. However, we have found that the metabotropic GABAB receptor can suppress the ionotropic GABAA receptor current, in both the in vitro mouse retina and in human amygdala membrane fractions. Expression of amygdala membrane microdomains in Xenopus oocytes by microtransplantation produced functional ionotropic and metabotropic GABA receptors. Most GABAA receptors had properties of α‐subunit containing receptors, with ~5% having ρ‐subunit properties. Only GABAA receptors with α‐subunit‐like properties were regulated by GABAB receptors. In mouse retinal ganglion cells, where only α‐subunit‐containing GABAA receptors are expressed, GABAB receptors suppressed GABAA receptor currents. This suppression was blocked by GABAB receptor antagonists, G‐protein inhibitors, and GABAB receptor antibodies. Based on the kinetic differences between metabotropic and ionotropic receptors, their interaction would suppress repeated, rapid GABAergic inhibition.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Changlong Nan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, Florida
| | - Peter T Nelson
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, Kentucky.,Sanders-Brown Centre on Aging, University of Kentucky, Lexington, Kentucky
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, Illinois.,Whitman Investigator, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Malcolm M Slaughter
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
9
|
Hong Z, Tian Y, Qi M, Li Y, Du Y, Chen L, Liu W, Chen L. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons. Front Mol Neurosci 2016; 9:77. [PMID: 27616980 PMCID: PMC4999446 DOI: 10.3389/fnmol.2016.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022] Open
Abstract
The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation.
Collapse
Affiliation(s)
- Zhiwen Hong
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yujing Tian
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Mengwen Qi
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| | - Wentao Liu
- Department of Pharmacology, Nanjing Medical University Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University Nanjing, China
| |
Collapse
|
10
|
Li Y, Wu Y, Li R, Wang C, Jia N, Zhao C, Wen A, Xiong L. Propofol Regulates the Surface Expression of GABAA Receptors: Implications in Synaptic Inhibition. Anesth Analg 2016; 121:1176-83. [PMID: 26241086 DOI: 10.1213/ane.0000000000000884] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The anesthetic propofol is thought to induce rapid hypnotic sedation by potentiating γ-aminobutyric acid receptor (GABAAR) activity. Little is known about the molecular mechanisms of propofol in modulating inhibitory synaptic transmission. We aimed to investigate the role of propofol in modulating surface expression of GABAARs. METHODS C57BL/6 mice received an intraperitoneal injection of propofol. Hippocampal pyramidal neurons were prepared from embryonic day-18 mice and were treated with propofol. Proteins on the plasma membrane were analyzed using cell surface biotinylation, immunoblotting and enzyme-linked immunosorbent assay. Electrophysiological activities were recorded from hippocampal cells in acute brain slices of mice. The interaction between GABAARs and clathrin adaptor protein 2 was assessed by immunoprecipitation. Phosphorylation of GABAARs was shown by in vitro kinase assay. RESULTS Propofol facilitated membrane accumulation of GABAARβ3 subunits. Propofol mediated phosphorylation of GABAARβ3 by protein kinase Cε which blocked the interaction between GABAARβ3 and the β-adaptin subunit of adaptor protein 2, resulting in an inhibition of the receptor endocytosis in hippocampal pyramidal neurons. Coincident with increased GABAARs surface level, propofol enhanced evoked and miniature synaptic GABA receptor currents. CONCLUSIONS This study offers new insight on the regulatory mechanism of propofol in inhibiting neuronal excitability.
Collapse
Affiliation(s)
- Yuwen Li
- From the Departments of *Pharmacy and †Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bohnsack JP, Carlson SL, Morrow AL. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons. Neuropharmacology 2016; 105:124-132. [PMID: 26767953 DOI: 10.1016/j.neuropharm.2016.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022]
Abstract
The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA
| | - Stephen L Carlson
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA
| | - A Leslie Morrow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7365, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill NC, 27599-7178, USA.
| |
Collapse
|
12
|
Tolerance to the sedative and anxiolytic effects of diazepam is associated with different alterations of GABAA receptors in rat cerebral cortex. Neuroscience 2015; 310:152-62. [DOI: 10.1016/j.neuroscience.2015.09.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 11/18/2022]
|
13
|
Yang G, Ren Z, Mei YA. Exposure to 50 Hz magnetic field modulates GABAA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway. J Cell Mol Med 2015; 19:2413-22. [PMID: 26176998 PMCID: PMC4594682 DOI: 10.1111/jcmm.12626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABA(A) Rs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABA(A) Rs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABA(A) R currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABA(A) R currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABA(A) R currents. Together, these data obviously demonstrated for the first time that neuronal GABA(A) currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects.
Collapse
Affiliation(s)
- Guang Yang
- School of Life Sciences, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Zhen Ren
- School of Life Sciences, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Yan-Ai Mei
- School of Life Sciences, Institute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| |
Collapse
|
14
|
Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, Shepherd GMG, Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci 2015; 18:1265-71. [PMID: 26280760 PMCID: PMC4880671 DOI: 10.1038/nn.4084] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 02/06/2023]
Abstract
Fear-inducing memories can be state dependent, meaning that they can best be retrieved if the brain states at encoding and retrieval are similar. Restricted access to such memories can present a risk for psychiatric disorders and hamper their treatment. To better understand the mechanisms underlying state-dependent fear, we used a mouse model of contextual fear conditioning. We found that heightened activity of hippocampal extrasynaptic GABAA receptors, believed to impair fear and memory, actually enabled their state-dependent encoding and retrieval. This effect required protein kinase C-βII and was influenced by miR-33, a microRNA that regulates several GABA-related proteins. In the extended hippocampal circuit, extrasynaptic GABAA receptors promoted subcortical, but impaired cortical, activation during memory encoding of context fear. Moreover, suppression of retrosplenial cortical activity, which normally impairs retrieval, had an enhancing effect on the retrieval of state-dependent fear. These mechanisms can serve as treatment targets for managing access to state-dependent memories of stressful experiences.
Collapse
Affiliation(s)
- Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Naoki Yamawaki
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen J Chen
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gordon M G Shepherd
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center of Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Novier A, Diaz-Granados JL, Matthews DB. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol Biochem Behav 2015; 133:65-82. [PMID: 25842258 DOI: 10.1016/j.pbb.2015.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Adolescence and old age are unique periods of the lifespan characterized by differential sensitivity to the effects of alcohol. Adolescents and the elderly appear to be more vulnerable to many of alcohol's physiological and behavioral effects compared to adults. The current review explores the differential effects of acute alcohol, predominantly in terms of motor function and cognition, in adolescent and aged humans and rodents. Adolescents are less sensitive to the sedative-hypnotic, anxiolytic, and motor-impairing effects of acute alcohol, but research results are less consistent as it relates to alcohol's effects on cognition. Specifically, previous research has shown adolescents to be more, less, and similarly sensitive to alcohol-induced cognitive deficits compared to adults. These equivocal findings suggest that learning acquisition may be differentially affected by ethanol compared to memory, or that ethanol-induced cognitive deficits are task-dependent. Older rodents appear to be particularly vulnerable to the motor- and cognitive-impairing effects of acute alcohol relative to younger adults. Given that alcohol consumption and abuse is prevalent throughout the lifespan, it is important to recognize age-related differences in response to acute and long-term alcohol. Unfortunately, diagnostic measures and treatment options for alcohol dependence are rarely dedicated to adolescent and aging populations. As discussed, although much scientific advancement has been made regarding the differential effects of alcohol between adolescents and adults, research with the aged is underrepresented. Future researchers should be aware that adolescents and the aged are uniquely affected by alcohol and should continue to investigate alcohol's effects at different stages of maturation.
Collapse
Affiliation(s)
- Adelle Novier
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Jaime L Diaz-Granados
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Douglas B Matthews
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States; University of Wisconsin - Eau Claire, Department of Psychology, HHH 273, Eau Claire, WI 54702, United States.
| |
Collapse
|
16
|
Protein kinase C-dependent growth-associated protein 43 phosphorylation regulates gephyrin aggregation at developing GABAergic synapses. Mol Cell Biol 2015; 35:1712-26. [PMID: 25755278 DOI: 10.1128/mcb.01332-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Growth-associated protein 43 (GAP43) is known to regulate axon growth, but whether it also plays a role in synaptogenesis remains unclear. Here, we found that GAP43 regulates the aggregation of gephyrin, a pivotal protein for clustering postsynaptic GABA(A) receptors (GABA(A)Rs), in developing cortical neurons. Pharmacological blockade of either protein kinase C (PKC) or neuronal activity increased both GAP43-gephyrin association and gephyrin misfolding-induced aggregation, suggesting the importance of PKC-dependent regulation of GABAergic synapses. Furthermore, we found that PKC phosphorylation-resistant GAP43(S41A), but not PKC phosphorylation-mimicking GAP43(S41D), interacted with cytosolic gephyrin to trigger gephyrin misfolding and its sequestration into aggresomes. In contrast, GAP43(S41D), but not GAP43(S41A), inhibited the physiological aggregation/clustering of gephyrin, reduced surface GABA(A)Rs under physiological conditions, and attenuated gephyrin misfolding under transient oxygen-glucose deprivation (tOGD) that mimics pathological neonatal hypoxia. Calcineurin-mediated GAP43 dephosphorylation that accompanied tOGD also led to GAP43-gephyrin association and gephyrin misfolding. Thus, PKC-dependent phosphorylation of GAP43 plays a critical role in regulating postsynaptic gephyrin aggregation in developing GABAergic synapses.
Collapse
|
17
|
Nakamura Y, Darnieder LM, Deeb TZ, Moss SJ. Regulation of GABAARs by phosphorylation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 72:97-146. [PMID: 25600368 PMCID: PMC5337123 DOI: 10.1016/bs.apha.2014.11.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the principal mediators of fast synaptic inhibition in the brain as well as the low persistent extrasynaptic inhibition, both of which are fundamental to proper brain function. Thus unsurprisingly, deficits in GABAARs are implicated in a number of neurological disorders and diseases. The complexity of GABAAR regulation is determined not only by the heterogeneity of these receptors but also by its posttranslational modifications, the foremost, and best characterized of which is phosphorylation. This review will explore the details of this dynamic process, our understanding of which has barely scratched the surface. GABAARs are regulated by a number of kinases and phosphatases, and its phosphorylation plays an important role in governing its trafficking, expression, and interaction partners. Here, we summarize the progress in understanding the role phosphorylation plays in the regulation of GABAARs. This includes how phosphorylation can affect the allosteric modulation of GABAARs, as well as signaling pathways that affect GABAAR phosphorylation. Finally, we discuss the dysregulation of GABAAR phosphorylation and its implication in disease processes.
Collapse
|
18
|
Phosphorylation mediated structural and functional changes in pentameric ligand-gated ion channels: Implications for drug discovery. Int J Biochem Cell Biol 2014; 53:218-23. [DOI: 10.1016/j.biocel.2014.05.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/14/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
|
19
|
Gutiérrez ML, Ferreri MC, Farb DH, Gravielle MC. GABA-induced uncoupling of GABA/benzodiazepine site interactions is associated with increased phosphorylation of the GABAA receptor. J Neurosci Res 2014; 92:1054-61. [PMID: 24723313 DOI: 10.1002/jnr.23387] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 11/08/2022]
Abstract
The use-dependent regulation of the GABAA receptor occurs under physiological, pathological, and pharmacological conditions. Tolerance induced by prolonged administration of benzodiazepines is associated with changes in GABAA receptor function. Chronic exposure of neurons to GABA for 48 hr induces a downregulation of the GABAA receptor number and an uncoupling of the GABA/benzodiazepine site interactions. A single brief exposure ((t1/2) = 3 min) of rat neocortical neurons to the neurotransmitter initiates a process that results in uncoupling hours later (t(1/2) = 12 hr) without alterations in the number of GABAA receptors and provides a paradigm to study the uncoupling mechanism selectively. Here we report that uncoupling induced by a brief GABAA receptor activation is blocked by the coincubation with inhibitors of protein kinases A and C, indicating that the uncoupling is mediated by the activation of a phosphorylation cascade. GABA-induced uncoupling is accompanied by subunit-selective changes in the GABAA receptor mRNA levels. However, the GABA-induced downregulation of the α3 subunit mRNA level is not altered by the kinase inhibitors, suggesting that the uncoupling is the result of a posttranscriptional regulatory process. GABA exposure also produces an increase in the serine phosphorylation on the GABAA receptor γ2 subunit. Taken together, our results suggest that the GABA-induced uncoupling is mediated by a posttranscriptional mechanism involving an increase in the phosphorylation of GABAA receptors. The uncoupling of the GABAA receptor may represent a compensatory mechanism to control GABAergic neurotransmission under conditions in which receptors are persistently activated.
Collapse
Affiliation(s)
- María L Gutiérrez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Shipman M, Lubick K, Fouchard D, Gurram R, Grieco P, Jutila M, Dratz EA. Proteomic and systems biology analysis of the monocyte response to Coxiella burnetii infection. PLoS One 2013; 8:e69558. [PMID: 23990884 PMCID: PMC3749201 DOI: 10.1371/journal.pone.0069558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/09/2013] [Indexed: 01/02/2023] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.
Collapse
Affiliation(s)
- Matt Shipman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| | - Kirk Lubick
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - David Fouchard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rajani Gurram
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Paul Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Mark Jutila
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
21
|
Caceres LG, Cid MP, Uran SL, Zorrilla Zubilete MA, Salvatierra NA, Guelman LR. Pharmacological alterations that could underlie radiation-induced changes in associative memory and anxiety. Pharmacol Biochem Behav 2013; 111:37-43. [PMID: 23958578 DOI: 10.1016/j.pbb.2013.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022]
Abstract
It is widely known that ionizing radiation is a physical agent broadly used to kill tumor cells during human cancer therapy. Unfortunately, adjacent normal tissues can concurrently undergo undesirable cell injury. Previous data of our laboratory demonstrated that exposure of developing rats to ionizing radiations induced a variety of behavioral differences respect to controls, including changes in associative memory and in anxiety state. However, there is a lack of data concerning modifications in different related pharmacological intermediaries. Therefore, the aim of the present study was to investigate whether the behavioral differences observed in young animals irradiated at birth might be underlain by early changes in PKCß1 levels which, in turn, could lead to changes in hippocampal GABAergic neurotransmission. Male Wistar rats were irradiated with 5Gy of X rays between 24 and 48 h after birth. Different pharmacological markers related to the affected behavioral tasks were assessed in control and irradiated hippocampus at 15 and 30 days, namely GABAA receptor, GAD65-67, ROS and PKCß1. Results showed that all measured parameters were increased in the hippocampus of 30-days-old irradiated animals. In contrast, in the hippocampus of 15-days-old irradiated animals only the levels of PKCß1 were decreased. These data suggest that PKCß1 might constitute a primary target for neonatal radiation damage on the hippocampus. Therefore, it could be hypothesized that an initial decrease in the levels of this protein can trigger a subsequent compensatory increase that, in turn, could be responsible for the plethora of biochemical changes that might underlie the previously observed behavioral alterations.
Collapse
Affiliation(s)
- L G Caceres
- 1ª Cátedra de Farmacología, Facultad de Medicina, UBA-CEFyBO-CONICET, Paraguay 2155, piso 15, (1121) Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
22
|
Kou ZZ, Qu J, Zhang DL, Li H, Li YQ. Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex. Front Neuroanat 2013; 7:25. [PMID: 23908607 PMCID: PMC3726868 DOI: 10.3389/fnana.2013.00025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023] Open
Abstract
Noise overexposure may induce permanent noise-induced hearing loss (NIHL). The cochlear nucleus complex (CNC) is the entry point for sensory information in the central auditory system. Impairments in gamma-aminobutyric acid (GABA)—mediated synaptic transmission in the CNC have been implicated in the pathogenesis of auditory disorders. However, the role of protein kinase C (PKC) signaling pathway in GABAergic inhibition in the CNC in NIHL remains elusive. Thus, we investigated the alterations of glutamic acid decarboxylase 67 (GAD67, the chemical marker for GABA-containing neurons), PKC γ subunit (PKCγ) and GABAB receptor (GABABR) expression in the CNC using transgenic GAD67-green fluorescent protein (GFP) knock-in mice, BALB/c mice and C57 mice. Immunohistochemical results indicate that the GFP-labeled GABAergic neurons were distributed in the molecular layer (ML) and fusiform cell layer (FCL) of the dorsal cochlear nucleus (DCN). We found that 69.91% of the GFP-positive neurons in the DCN were immunopositive for both PKCγ and GABABR1. The GAD67-positive terminals made contacts with PKCγ/GABABR1 colocalized neurons. Then we measured the changes of auditory thresholds in mice after noise exposure for 2 weeks, and detected the GAD67, PKCγ, and GABABR expression at mRNA and protein levels in the CNC. With noise over-exposure, there was a reduction in GABABR accompanied by an increase in PKCγ expression, but no significant change in GAD67 expression. In summary, our results demonstrate that alterations in the expression of PKCγ and GABABRs may be involved in impairments in GABAergic inhibition within the CNC and the development of NIHL.
Collapse
Affiliation(s)
- Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology, K. K. Leung Brain Research Centre, The Fourth Military Medical University Xi'an, China
| | | | | | | | | |
Collapse
|
23
|
Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop A, D’Angelo E, van den Maagdenberg A, Hoebeek F, De Zeeuw C. Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation. Cell Rep 2013; 3:1239-51. [DOI: 10.1016/j.celrep.2013.03.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022] Open
|
24
|
Novier A, Van Skike CE, Diaz-Granados JL, Mittleman G, Matthews DB. Acute alcohol produces ataxia and cognitive impairments in aged animals: a comparison between young adult and aged rats. Alcohol Clin Exp Res 2013; 37:1317-24. [PMID: 23550918 DOI: 10.1111/acer.12110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/11/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Aging in both humans and rodents appears to be accompanied by physiological changes that increase biologic sensitivity to ethanol (EtOH) intoxication. However, animal models designed to investigate this increased alcohol sensitivity have yet to be established. For this reason, we sought to determine whether acute EtOH administration produces differential effects on motor coordination and spatial cognition in young adult and aged rats. METHODS Male young adult (postnatal day 70 to 72) and aged (~18 months) Sprague-Dawley rats were assessed on 2 motor tasks (the accelerating rotarod [RR] and the aerial righting reflex [ARR]) and a single cognitive performance task (the Morris water maze [MWM]). Following acute EtOH exposure via intraperitoneal injection, animals' performance was reassessed. RESULTS Aged rats showed a dramatic increase in EtOH-induced ataxia on the RR and the ARR relative to young adult animals. Similarly, results from the MWM revealed that aged animals had slightly greater EtOH-induced impairments compared with young adult animals. Importantly, the increased impairments produced by EtOH were not due to differential blood EtOH levels. CONCLUSIONS We demonstrate for the first time that aged rats show greater EtOH-induced deficits compared with young adults in tasks of motor and cognitive performance. The possible role of protein kinase C as a mechanism for increased sensitivity to the motor-impairing effects of EtOH is discussed. Given the high prevalence of alcohol use among the elderly, increased vulnerability to alcohol-induced deficits may have a profound effect on injury in this population.
Collapse
Affiliation(s)
- Adelle Novier
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | | | | | | | | |
Collapse
|
25
|
Estrous cycle variations in GABA(A) receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area. Neuroscience 2012; 226:397-410. [PMID: 22989919 DOI: 10.1016/j.neuroscience.2012.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABA(A) receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABA(A) receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABA(A) receptor complex immunoprecipitated by β(2)/β(3) subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-methyltestosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β(3) subunit of the GABA(A) receptor. Although phosphorylation of these β(3) serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through a PKC-dependent mechanism that involves the β(3) subunit and other sites within the GABA(A) receptor complex.
Collapse
|
26
|
Inhibition of protein kinase C decreases sensitivity of GABA receptor subtype to fipronil insecticide in insect neurosecretory cells. Neurotoxicology 2011; 32:828-35. [DOI: 10.1016/j.neuro.2011.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 01/03/2023]
|
27
|
Mutant PKCγ in spinocerebellar ataxia type 14 disrupts synapse elimination and long-term depression in Purkinje cells in vivo. J Neurosci 2011; 31:14324-34. [PMID: 21976518 DOI: 10.1523/jneurosci.5530-10.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) express a large amount of the γ isoform of protein kinase C (PKCγ) and a modest level of PKCα. The PKCγ is involved in the pruning of climbing fiber (CF) synapses from developing PCs, and PKCα plays a critical role in long-term depression (LTD) at parallel fiber (PF)-PC synapses. Moreover, the PKC signaling in PCs negatively modulates the nonselective transient receptor potential cation channel type 3 (TRPC3), the opening of which elicits slow EPSCs at PF-PC synapses. Autosomal dominant spinocerebellar ataxia type 14 (SCA14) is caused by mutations in PKCγ. To clarify the pathology of this disorder, mutant (S119P) PKCγ tagged with GFP was lentivirally expressed in developing and mature mouse PCs in vivo, and the effects were assessed 3 weeks after the injection. Mutant PKCγ-GFP aggregated in PCs without signs of degeneration. Electrophysiology results showed impaired pruning of CF synapses from developing PCs, failure of LTD expression, and increases in slow EPSC amplitude. We also found that mutant PKCγ colocalized with wild-type PKCγ, which suggests that mutant PKCγ acts in a dominant-negative manner on wild-type PKCγ. In contrast, PKCα did not colocalize with mutant PKCγ. The membrane residence time of PKCα after depolarization-induced translocation, however, was significantly decreased when it was present with the mutant PKCγ construct. These results suggest that mutant PKCγ in PCs of SCA14 patients could differentially impair the membrane translocation kinetics of wild-type γ and α PKCs, which would disrupt synapse pruning, synaptic plasticity, and synaptic transmission.
Collapse
|
28
|
Qian Z, Micorescu M, Yakhnitsa V, Barmack NH. Climbing fiber activity reduces 14-3-3-θ regulated GABA(A) receptor phosphorylation in cerebellar Purkinje cells. Neuroscience 2011; 201:34-45. [PMID: 22119642 DOI: 10.1016/j.neuroscience.2011.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 11/24/2022]
Abstract
Cerebellar adaptive plasticity regulates posture and movement in response to changing conditions of sensory stimulation. Study of adaptive plasticity of cerebellar circuitry in vitro confines experimental interest to mechanisms with a time scale of minutes. However, cerebellar plasticity, measured behaviorally or electrophysiologically in vivo, occurs over a time scale of tens of minutes and hours. Here we investigate how optokinetically-evoked increases in climbing fiber activity influence expression of key subcellular signaling proteins that regulate the accumulation of GABA(A) receptors (GABA(A)Rs) in the cytoplasm of Purkinje cells and their insertion into the plasma membrane. We used long-term horizontal optokinetic stimulation (HOKS) to activate climbing fibers that project to the flocculus of mice. Although long-term increases in climbing fiber activity in vivo do not alter the expression of any of the subunits of GABA(A)Rs expressed by Purkinje cells, they do influence other subcellular events such as transcription and interaction of signaling proteins. Specifically, increased climbing fiber activity evoked decreased expression of 14-3-3-θ, reduced serine phosphorylation of GABA(A)g(2), and reduced the interaction of 14-3-3-θ with protein kinase C-γ (PKC-γ). Knockdown of 14-3-3-θ in vivo reduced the serine phosphorylation of GABA(A)γ(2). Conversely, treatment of cerebellar lysates with phorbol 12-myristate-13-acetate (PMA), a PKC activator, increased serine phosphorylation of GABA(A)γ(2). Knockdown of 14-3-3-θ or PKC-γ in N2a cells in vitro reduced serine phosphorylation of GABA(A)γ(2) and reduced its cell-surface expression. We interpret these data to mean that a prolonged increase in climbing fiber activity decreases the cell-surface expression of GABA(A)Rs in Purkinje cells and thereby reduces their sensitivity to GABAergic inhibition. This provides a homeostatic mechanism by which Purkinje cells become less sensitive to stellate cell inhibition also evoked by climbing fiber activity.
Collapse
Affiliation(s)
- Z Qian
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
29
|
Jang HJ, Cho KH, Park SW, Kim MJ, Yoon SH, Rhie DJ. Layer-specific serotonergic facilitation of IPSC in layer 2/3 pyramidal neurons of the visual cortex. J Neurophysiol 2011; 107:407-16. [PMID: 22013240 DOI: 10.1152/jn.00535.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of long-term synaptic plasticity in layer 2/3 of the visual cortex at the end of its critical period in rats. However, the cellular and molecular mechanisms remain unclear. Since inhibitory influence is crucial in the induction of synaptic plasticity, the effect of 5-HT on inhibitory transmission was investigated in layer 2/3 pyramidal neurons of the primary visual cortex. The amplitude of inhibitory postsynaptic current (IPSC), but not excitatory postsynaptic current, evoked by stimulation of the underlying layer 4, was increased by ∼20% with a bath application of 5-HT. The amplitude of miniature IPSC was also increased by the application of 5-HT, while the paired-pulse ratio was not changed. The facilitating effect of 5-HT on IPSC was mediated by the activation of 5-HT(2) receptors. An increase in intracellular Ca(2+) via release from inositol 1,4,5-trisphosphate (IP(3))-sensitive stores, which was confirmed by confocal Ca(2+) imaging, and activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII) were involved in the facilitation of IPSC by 5-HT. However, 5-HT failed to facilitate IPSC evoked by the stimulation of layer 1. These results suggest that activation of 5-HT(2) receptors releases intracellular Ca(2+) via IP(3)-sensitive stores, which facilitates GABA(A)ergic transmission via the activation of CaMKII in layer 2/3 pyramidal neurons of the visual cortex in a layer-specific manner. Thus facilitation of inhibitory transmission by 5-HT might be involved in regulating the information flow and the induction of long-term synaptic plasticity, in a pathway-specific manner.
Collapse
Affiliation(s)
- Hyun-Jong Jang
- Dept. of Physiology, College of Medicine, Catholic Univ. of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Salgado H, Garcia-Oscos F, Martinolich L, Hall S, Restom R, Tseng KY, Atzori M. Pre- and postsynaptic effects of norepinephrine on γ-aminobutyric acid-mediated synaptic transmission in layer 2/3 of the rat auditory cortex. Synapse 2011; 66:20-8. [DOI: 10.1002/syn.20979] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/26/2011] [Accepted: 08/25/2011] [Indexed: 11/08/2022]
|
31
|
Vithlani M, Terunuma M, Moss SJ. The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol Rev 2011; 91:1009-22. [PMID: 21742794 DOI: 10.1152/physrev.00015.2010] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition in the adult mammalian central nervous system (CNS) is mediated by γ-aminobutyric acid (GABA). The fast inhibitory actions of GABA are mediated by GABA type A receptors (GABA(A)Rs); they mediate both phasic and tonic inhibition in the brain and are the principle sites of action for anticonvulsant, anxiolytic, and sedative-hypnotic agents that include benzodiazepines, barbiturates, neurosteroids, and some general anesthetics. GABA(A)Rs are heteropentameric ligand-gated ion channels that are found concentrated at inhibitory postsynaptic sites where they mediate phasic inhibition and at extrasynaptic sites where they mediate tonic inhibition. The efficacy of inhibition and thus neuronal excitability is critically dependent on the accumulation of specific GABA(A)R subtypes at inhibitory synapses. Here we evaluate how neurons control the number of GABA(A)Rs on the neuronal plasma membrane together with their selective stabilization at synaptic sites. We then go on to examine the impact that these processes have on the strength of synaptic inhibition and behavior.
Collapse
Affiliation(s)
- Mansi Vithlani
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Saba LM, Bennett B, Hoffman PL, Barcomb K, Ishii T, Kechris K, Tabakoff B. A systems genetic analysis of alcohol drinking by mice, rats and men: influence of brain GABAergic transmission. Neuropharmacology 2011; 60:1269-80. [PMID: 21185315 PMCID: PMC3079014 DOI: 10.1016/j.neuropharm.2010.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 11/19/2022]
Abstract
Genetic influences on the predisposition to complex behavioral or physiological traits can reflect genetic polymorphisms that lead to altered gene product function, and/or variations in gene expression levels. We have explored quantitative variations in an animal's alcohol consumption, using a genetical genomic/phenomic approach. In our studies, gene expression is correlated with amount of alcohol consumed, and genomic regions that regulate the alcohol consumption behavior and the quantitative levels of gene expression (behavioral and expression quantitative trait loci [QTL]) are determined and used as a filter to identify candidate genes predisposing the behavior. We determined QTLs for alcohol consumption using the LXS panel of recombinant inbred mice. We then identified genes that were: 1) differentially expressed between five high and five low alcohol-consuming lines or strains of mice; and 2) were physically located in, or had an expression QTL (eQTL) within the alcohol consumption QTLs. Comparison of mRNA and protein levels in brains of high and low alcohol consuming mice led us to a bioinformatic examination of potential regulation by microRNAs of an identified candidate transcript, Gnb1 (G protein beta subunit 1). We combined our current analysis with our earlier work identifying candidate genes for the alcohol consumption trait in mice, rats and humans. Our overall analysis leads us to postulate that the activity of the GABAergic system, and in particular GABA release and GABA receptor trafficking and signaling, which involves G protein function, contributes significantly to genetic variation in the predisposition to varying levels of alcohol consumption. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Laura M. Saba
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Beth Bennett
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Paula L. Hoffman
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Kelsey Barcomb
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Takao Ishii
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| | - Katerina Kechris
- Colorado School of Public Health, Campus Box B119, Aurora, CO 80045 USA,
| | - Boris Tabakoff
- University of Colorado Denver School of Medicine, PO Box 6511, MS 8303, Aurora, CO 80045 USA; , , , , ,
| |
Collapse
|
33
|
SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients. Int J Neuropsychopharmacol 2011; 14:573-84. [PMID: 21208484 DOI: 10.1017/s1461145710001471] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clinical studies have shown that negative symptoms of schizophrenia unresponsive to antipsychotic given alone can improve after augmentation with SSRI antidepressant. Laboratory investigations into the mechanism of this synergism showed that co-administration of SSRI and antipsychotic produces changes in GABA(A) receptor and related systems, which differ from the effects of each drug alone. To examine the clinical relevance of these findings, the current study examined the effects of SSRI augmentation treatment on GABA(A) receptor and related systems in schizophrenia patients. Schizophrenia patients with high levels of negative symptoms unresponsive to antipsychotic treatment received add-on fluvoxamine (100 mg/d). Blood was taken before and 1, 3 and 6 wk after adding fluvoxamine and peripheral mononuclear cells (PMC) isolated. RNA encoding for GABA(A)β3, 5-HT2A, and 5-HT7 receptors, PKCβ2, and brain-derived neurotrophic factor (BDNF) was assayed with real-time RT-PCR. Plasma BDNF protein was assayed using ELISA. Clinical symptoms were assessed with validated rating scales. We found significant increase in mRNA encoding for GABA(A)β3 and 5-HT2A, 5-HT7 receptors and BDNF and a reduction in PKCβ2 mRNA. Plasma BDNF protein concentrations were increased. There were significant correlations among the genes. Clinical symptoms improved significantly. mRNA expression of PKCβ2, 5-HT2A and 5-HT7 showed significant associations with clinical symptoms. Combined SSRI+antipsychotic treatment is associated with changes in GABA(A) receptor and in related signalling systems in patients. These changes may be part of the mechanism of clinically effective drug action and may prove to be biomarkers of pharmacological response.
Collapse
|
34
|
Schonewille M, Gao Z, Boele HJ, Veloz MFV, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI. Reevaluating the role of LTD in cerebellar motor learning. Neuron 2011; 70:43-50. [PMID: 21482355 PMCID: PMC3104468 DOI: 10.1016/j.neuron.2011.02.044] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Abstract
Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that target the expression of PF-PC LTD by blocking internalization of AMPA receptors. Using three different cerebellar coordination tasks (adaptation of the vestibulo-ocular reflex, eyeblink conditioning, and locomotion learning on the Erasmus Ladder), we show that there is no motor learning impairment in these mutant mice that lack PF-PC LTD. These findings demonstrate that PF-PC LTD is not essential for cerebellar motor learning.
Collapse
Affiliation(s)
- Martijn Schonewille
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Henk-Jan Boele
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Maria F. Vinueza Veloz
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Wardell E. Amerika
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Antonia A.M. Simek
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Marcel T. De Jeu
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - Jordan P. Steinberg
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kogo Takamiya
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Freek E. Hoebeek
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
| | - David J. Linden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chris I. De Zeeuw
- Department of Neuroscience, Dr Molewaterplein 50, Erasmus MC, 3015 GE Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Meibergdreef 47, Royal Academy of Arts & Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
35
|
Qian Z, Yakhnitsa V, Barmack NH. Climbing fiber-evoked Purkinje cell discharge reduces expression of GABA(A) receptor-associated protein and decreases its interaction with GABA(A) receptors. J Neurochem 2011; 117:197-208. [PMID: 21105873 DOI: 10.1111/j.1471-4159.2010.07119.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sustained neuronal activity induces synaptic remodeling, in part, by altering gene expression. We have used a major climbing fiber pathway onto cerebellar Purkinje cells to investigate the effects of sustained climbing fiber-evoked glutamatergic synaptic transmission on transcription, expression and phosphorylation of proteins related to the regulation of inhibitory GABA(A) receptor function. Binocular horizontal optokinetic stimulation was used to modulate climbing fiber signals to Purkinje cells in the flocculus and nodulus of rabbits and mice. Purkinje cells in the flocculus and nodulus ipsilateral to the eye stimulated in the Posterior→Anterior direction received increased climbing fiber activity. Purkinje cells in flocculus and nodulus ipsilateral to the eye stimulated in the Anterior→Posterior direction received decreased climbing fiber activity. We identified changes in levels of gene transcripts in floccular and nodular Purkinje cells with the technique of differential display RT-PCR. Increased climbing fiber input reduced transcript levels and expression of GABA receptor-associated protein (GABARAP). Using a protein 'pull down' technique, we showed that GABARAP interacts with serine phosphorylated GABA(A)γ2, gephyrin and β-tubulin. Serine de-phosphorylation of GABA(A)γ2 reduced association of GABARAP with GABA(A)γ2. Climbing fiber activity did not influence the expression of GABA(A)γ2. Rather, it decreased its serine phosphorylation. Climbing fiber discharge decreased both expression of GABARAP and serine phosphorylation of GABA(A)γ2. Consequently, climbing fiber activity may reduce the surface expression of GABA(A) receptors in Purkinje cells rendering Purkinje cells less susceptible to interneuronal GABAergic inhibition.
Collapse
Affiliation(s)
- Zuyuan Qian
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
36
|
Protein kinase C isozymes as regulators of sensitivity to and self-administration of drugs of abuse-studies with genetically modified mice. Behav Pharmacol 2010; 21:493-9. [PMID: 20671547 DOI: 10.1097/fbp.0b013e32833d8bb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies using targeted gene deletion in mice have revealed distinct roles for individual isozymes of the protein kinase C (PKC) family of enzymes in regulating sensitivity to various drugs of abuse. These changes in drug sensitivity are associated with altered patterns of drug self-administration. The purpose of this review is to summarize behavioral studies conducted on mice carrying targeted deletions of genes encoding specific PKC isozymes (namely the beta, gamma, delta, and epsilon isozymes), and to critically evaluate the possibility of using pharmacological inhibitors of specific PKC isozymes as modulators of the sensitivity to various drugs of abuse, as well as potential aids in the treatment of substance use disorders.
Collapse
|
37
|
GABAA receptor trafficking is regulated by protein kinase C(epsilon) and the N-ethylmaleimide-sensitive factor. J Neurosci 2010; 30:13955-65. [PMID: 20962217 DOI: 10.1523/jneurosci.0270-10.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Disturbances in GABA(A) receptor trafficking contribute to several neurological and psychiatric disorders by altering inhibitory neurotransmission. Identifying mechanisms that regulate GABA(A) receptor trafficking could lead to better understanding of disease pathogenesis and treatment. Here, we show that protein kinase Cε (PKCε) regulates the N-ethylmaleimide-sensitive factor (NSF), an ATPase critical for membrane fusion events, and thereby promotes the trafficking of GABA(A) receptors. Activation of PKCε decreased cell surface expression of GABA(A) receptors and attenuated GABA(A) currents. Activated PKCε associated with NSF, phosphorylated NSF at serine 460 and threonine 461, and increased NSF ATPase activity, which was required for GABA(A) receptor downregulation. These findings identify new roles for NSF and PKCε in regulating synaptic inhibition through downregulation of GABA(A) receptors. Reducing NSF activity by inhibiting PKCε could help restore synaptic inhibition in disease states in which it is impaired.
Collapse
|
38
|
Abstract
Learning a new goal-directed behavioral task often requires the improvement of at least two processes, including an enhanced stimulus-response association and an optimization of the execution of the motor response. The cerebellum has recently been shown to play a role in acquiring goal-directed behavior, but it is unclear to what extent it contributes to a change in the stimulus-response association and/or the optimization of the execution of the motor response. We therefore designed the stimulus-dependent water Y-maze conditioning task, which allows discrimination between both processes, and we subsequently subjected Purkinje cell-specific mutant mice to this new task. The mouse mutants L7-PKCi, which suffer from impaired PKC-dependent processes such as parallel fiber to Purkinje cell long-term depression (PF-PC LTD), were able to acquire the stimulus-response association, but exhibited a reduced optimization of their motor performance. These data show that PF-PC LTD is not required for learning a stimulus-response association, but they do suggest that a PKC-dependent process in cerebellar Purkinje cells is required for optimization of motor responses.
Collapse
|
39
|
Van Skike CE, Botta P, Chin VS, Tokunaga S, McDaniel JM, Venard J, Diaz-Granados JL, Valenzuela CF, Matthews DB. Behavioral effects of ethanol in cerebellum are age dependent: potential system and molecular mechanisms. Alcohol Clin Exp Res 2010; 34:2070-80. [PMID: 20860615 DOI: 10.1111/j.1530-0277.2010.01303.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adolescent rats are less sensitive to the motor-impairing effects of ethanol than adults. However, the cellular and molecular mechanisms underlying this age-dependent effect of ethanol have yet to be fully elucidated. METHOD Male rats of various ages were used to investigate ethanol-induced ataxia and its underlying cellular correlates. In addition, Purkinje neurons from adolescent and adult rats were recorded both in vivo and in vitro. Finally, protein kinase C (PKCγ) expression was determined in 3 brain regions in both adolescent and adult rats. RESULTS The present multi-methodological investigation confirms that adolescents are less sensitive to the motor-impairing effects of ethanol, and this differential effect is not because of differential blood ethanol levels. In addition, we identify a particular cellular correlate that may underlie the reduced motor impairment. Specifically, the in vivo firing rate of cerebellar Purkinje neurons recorded from adolescent rats was insensitive to an acute ethanol challenge, while the firing rate of adult cerebellar Purkinje neurons was significantly depressed. Finally, it is demonstrated that PKCγ expression in the cortex and cerebellum mirrors the age-dependent effect of ethanol: adolescents have significantly less PKCγ expression compared to adults. CONCLUSIONS Adolescents are less sensitive than adults to the motor-impairing effects of ethanol, and a similar effect is seen with in vivo electrophysiological recordings of cerebellar Purkinje neurons. While still under investigation, PKCγ expression mirrors the age effect of ethanol and may contribute to the age-dependent differences in the ataxic effects of ethanol.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Psychology and Neuroscience, Baylor University Addictions Research Consortium, Waco, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Heistek TS, Jaap Timmerman A, Spijker S, Brussaard AB, Mansvelder HD. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice. Front Cell Neurosci 2010; 4:18. [PMID: 21082021 PMCID: PMC2901093 DOI: 10.3389/fncel.2010.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/06/2010] [Indexed: 11/13/2022] Open
Abstract
Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs) received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABA(A)-receptor subunit composition exist between these strains. Indeed, gene expression of GABA(A)-receptor β2 (Gabrb2) and β3 (Gabrb2) subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABA(A)-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.
Collapse
Affiliation(s)
- Tim S Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
41
|
Kambe D, Kotani M, Yoshimoto M, Kaku S, Chaki S, Honda K. Effects of quercetin on the sleep–wake cycle in rats: Involvement of gamma-aminobutyric acid receptor type A in regulation of rapid eye movement sleep. Brain Res 2010; 1330:83-8. [DOI: 10.1016/j.brainres.2010.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/12/2010] [Accepted: 03/10/2010] [Indexed: 11/27/2022]
|
42
|
Blockage of A2A and A3 adenosine receptors decreases the desensitization of human GABA(A) receptors microtransplanted to Xenopus oocytes. Proc Natl Acad Sci U S A 2009; 106:15927-31. [PMID: 19721003 DOI: 10.1073/pnas.0907324106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously found that the endogenous anticonvulsant adenosine, acting through A(2A) and A(3) adenosine receptors (ARs), alters the stability of currents (I(GABA)) generated by GABA(A) receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of I(GABA) expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABA(A) receptors revealed instability, manifested by a large I(GABA) rundown, which in most of the oocytes (approximately 70%) was obviously impaired by the new A(2A) antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A(3) receptor antagonist (ANR235) significantly improved I(GABA) stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered I(GABA) rundown on ANR94 treatment. Our findings indicate that antagonizing A(2A) and A(3) receptors increases the I(GABA) stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy.
Collapse
|
43
|
Roseti C, Martinello K, Fucile S, Piccari V, Mascia A, Di Gennaro G, Quarato PP, Manfredi M, Esposito V, Cantore G, Arcella A, Simonato M, Fredholm BB, Limatola C, Miledi R, Eusebi F. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors. Proc Natl Acad Sci U S A 2008; 105:15118-23. [PMID: 18809912 PMCID: PMC2567502 DOI: 10.1073/pnas.0807277105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Indexed: 12/26/2022] Open
Abstract
We examined how the endogenous anticonvulsant adenosine might influence gamma-aminobutyric acid type A (GABA(A)) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 microM), GABA(A) receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABA(A)-current (I(GABA)) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced I(GABA) run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated I(GABA) run-down in approximately 40% and approximately 20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 microM) potentiated I(GABA) run-down but only in approximately 20% of tested oocytes. CGS15943 administration again decreased I(GABA) run-down in patch-clamped neurons from either human or rat neocortex slices. I(GABA) run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABA(A)-receptor stability is tonically influenced by A2A but not by A1 receptors. I(GABA) run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2-A3 receptors alter the stability of GABA(A) receptors, which could offer therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Roseti
- *Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma “La Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy
| | | | - Sergio Fucile
- *Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma “La Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy
- Neuromed I.R.C.C.S., Via Atinese 18, I-86077 Isernia, Italy
| | - Vanessa Piccari
- *Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma “La Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy
- Neuromed I.R.C.C.S., Via Atinese 18, I-86077 Isernia, Italy
| | | | | | | | - Mario Manfredi
- Neuromed I.R.C.C.S., Via Atinese 18, I-86077 Isernia, Italy
| | | | | | | | - Michele Simonato
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Neuroscience Center, University of Ferrara and National Institute of Neuroscience, I-44100 Ferrara, Italy
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Cristina Limatola
- *Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma “La Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy
- Neuromed I.R.C.C.S., Via Atinese 18, I-86077 Isernia, Italy
| | - Ricardo Miledi
- **Instituto de Neurobiología, Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México, AP1-1141 Querétaro, Mexico; and
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550
| | - Fabrizio Eusebi
- *Istituto Pasteur–Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Centro di Eccellenza di Biologia e Medicina Molecolare, Università di Roma “La Sapienza”, Piazzale A. Moro 5, I-00185 Rome, Italy
- Neuromed I.R.C.C.S., Via Atinese 18, I-86077 Isernia, Italy
| |
Collapse
|
44
|
Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG, Zou Y, Miller RJ. The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 2008; 28:6720-30. [PMID: 18579746 PMCID: PMC2720755 DOI: 10.1523/jneurosci.1677-08.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 12/28/2022] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) are important regulators of the development of the dentate gyrus (DG). Both SDF-1 and CXCR4 are also highly expressed in the adult DG. We observed that CXCR4 receptors were expressed by dividing neural progenitor cells located in the subgranular zone (SGZ) as well as their derivatives including doublecortin-expressing neuroblasts and immature granule cells. SDF-1 was located in DG neurons and in endothelial cells associated with DG blood vessels. SDF-1-expressing neurons included parvalbumin-containing GABAergic interneurons known as basket cells. Using transgenic mice expressing an SDF-1-mRFP1 (monomeric red fluorescence protein 1) fusion protein we observed that SDF-1 was localized in synaptic vesicles in the terminals of basket cells together with GABA-containing vesicles. These terminals were often observed to be in close proximity to dividing nestin-expressing neural progenitors in the SGZ. Electrophysiological recordings from slices of the DG demonstrated that neural progenitors received both tonic and phasic GABAergic inputs and that SDF-1 enhanced GABAergic transmission, probably by a postsynaptic mechanism. We also demonstrated that, like GABA, SDF-1 was tonically released in the DG and that GABAergic transmission was partially dependent on coreleased SDF-1. These data demonstrate that SDF-1 plays a novel role as a neurotransmitter in the DG and regulates the strength of GABAergic inputs to the pool of dividing neural progenitors. Hence, SDF-1/CXCR4 signaling is likely to be an important regulator of adult neurogenesis in the DG.
Collapse
Affiliation(s)
- Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Hosung Jung
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| | - Darran G. Cronshaw
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Yongrui Zou
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, and
| |
Collapse
|
45
|
Enoch MA. The role of GABA(A) receptors in the development of alcoholism. Pharmacol Biochem Behav 2008; 90:95-104. [PMID: 18440057 DOI: 10.1016/j.pbb.2008.03.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 02/29/2008] [Accepted: 03/05/2008] [Indexed: 11/18/2022]
Abstract
Alcoholism is a common, heritable, chronic relapsing disorder. GABA(A) receptors undergo allosteric modulation by ethanol, anesthetics, benzodiazepines and neurosteroids and have been implicated in the acute as well as the chronic effects of ethanol including tolerance, dependence and withdrawal. Medications targeting GABA(A) receptors ameliorate the symptoms of acute withdrawal. Ethanol induces plasticity in GABA(A) receptors: tolerance is associated with generally decreased GABA(A) receptor activation and differentially altered subunit expression. The dopamine (DA) mesolimbic reward pathway originating in the ventral tegmental area (VTA), and interacting stress circuitry play an important role in the development of addiction. VTA GABAergic interneurons are the primary inhibitory regulators of DA neurons and a subset of VTA GABA(A) receptors may be implicated in the switch from heavy drinking to dependence. GABA(A) receptors modulate anxiety and response to stress; important elements of sustained drinking and relapse. The GABA(A) receptor subunit genes clustered on chromosome 4 are highly expressed in the reward pathway. Several recent studies have provided strong evidence that one of these genes, GABRA2, is implicated in alcoholism in humans. The influence of the interaction between ethanol and GABA(A) receptors in the reward pathway on the development of alcoholism together with genetic and epigenetic vulnerabilities will be explored in this review.
Collapse
MESH Headings
- Alcohol Drinking/genetics
- Alcohol Drinking/psychology
- Alcoholism/drug therapy
- Alcoholism/genetics
- Alcoholism/physiopathology
- Animals
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/physiology
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/physiology
- Dopamine/physiology
- Gene Expression Regulation/physiology
- Humans
- Neuronal Plasticity/physiology
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/genetics
- Receptors, GABA-A/physiology
- Receptors, Presynaptic/drug effects
- Reward
- Steroids/physiology
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
46
|
Solodukhin AS, Kretsinger RH, Sando JJ. Initial three-dimensional reconstructions of protein kinase C δ from two-dimensional crystals on lipid monolayers. Cell Signal 2007; 19:2035-45. [PMID: 17604605 DOI: 10.1016/j.cellsig.2007.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/22/2007] [Accepted: 05/25/2007] [Indexed: 01/06/2023]
Abstract
Two-dimensional crystals of protein kinase C delta (PKCdelta) and of its regulatory domain (RDdelta) were grown on lipid monolayers and analyzed by electron microscopy at tilt angles varying from -50 degrees to +55 degrees. Although the crystals exhibit pseudo-3-fold symmetry, analysis of difference phase residuals indicates that there is only one way to align the crystals for merging so the data were processed in plane group P1. Three-dimensional reconstructions generated for several two-dimensional crystals each of PKCdelta and RDdelta show good agreement and are consistent with membrane attachment via a single C1 subdomain, a small surface contact by one or two loops from the C2 domain, and, in intact PKCdelta, a small appendage from the catalytic domain, probably V5. Two-dimensional crystallography with three-dimensional reconstruction should be suitable for examination of additional PKC isozymes and for analysis of the enzymes bound to substrates and other proteins.
Collapse
|
47
|
Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO. Protein kinase C epsilon regulates gamma-aminobutyrate type A receptor sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 2007; 282:33052-63. [PMID: 17875639 DOI: 10.1074/jbc.m707233200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.
Collapse
Affiliation(s)
- Zhan-Heng Qi
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California-San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim U, Chung LY. Dual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat epithalamus. J Neurophysiol 2007; 98:1323-32. [PMID: 17615126 DOI: 10.1152/jn.00575.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report here a novel action of GABAergic synapses in regulating tonic firing in the mammalian brain. By using gramicidin-perforated patch recording in rat brain slices, we show that cells of the medial habenula of the epithalamus generate tonic firing in basal conditions. The GABAergic input onto these cells at postnatal days 18-25 generates a combinatorial activation of fast excitation and slow inhibition. The fast excitation, mediated by gamma-aminobutyric acid type A receptors (GABA A Rs), is alone capable of triggering robust action potentials to increase cell firing. This excitatory influence of GABAergic input results from the Cl(-) homeostasis that maintains intracellular Cl(-) at high levels. The GABA A excitation is often followed by a slow inhibition mediated by GABA B Rs that suppresses tonic firing. Interestingly, in a subpopulation of the cells, the GABA B inhibition exhibits a remarkably low threshold for synaptic activation in that low-strength GABAergic input often activates selectively the GABA B slow inhibition, whereas the GABA A excitation requires further increases in stimulus strength. Our study demonstrates that the dual activation of GABAergic excitation and inhibition through GABA A Rs and GABA B Rs generates distinct temporal patterns of cell firing that alter the cellular output in an activity-dependent manner.
Collapse
Affiliation(s)
- Uhnoh Kim
- Department of Neurosurgery and Interdisciplinary Neuroscience Program, College of Medicine, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
49
|
Abstract
Neuronal inhibition is of paramount importance in maintaining the delicate and dynamic balance between excitatory and inhibitory influences in the central nervous system. GABA (gamma-aminobutyric acid), the primary inhibitory neurotransmitter in brain, exerts its fast inhibitory effects through ubiquitously expressed GABA(A) receptors. Activation of these heteropentameric receptors by GABA results in the gating of an integral chloride channel leading to membrane hyperpolarization and neuronal inhibition. To participate in neurotransmission, the receptor must reside on the cell surface. The trafficking of nascent receptors to the cell surface involves posttranslational modification and the interaction of the receptor with proteins that reside within the secretory pathway. The subsequent insertion of the receptor into specialized regions of the plasma membrane is dictated by receptor composition and other factors that guide insertion at synaptic or perisynaptic/extrasynaptic sites, where phasic and tonic inhibition are mediated, respectively. Once at the cell surface, the receptor is laterally mobile and subject to both constitutive and regulated endocytosis. Following endocytosis the receptor undergoes either recycling to the plasma membrane or degradation. These dynamic processes profoundly affect the strength of GABAergic signaling, neuronal inhibition, and presumably synaptic plasticity. Heritable channelopathies that affect receptor trafficking have been recently recognized and compelling evidence exists that mechanisms underlying acquired epilepsy involve GABA(A) receptor internalization. Additionally, GABA(A) receptor endocytosis has been identified as an early event in the ischemic response that leads to excitotoxicity and cell death. This chapter summarizes what is known regarding the regulation of receptor trafficking and cell surface expression and its impact on nervous system function from both cell biology and disease perspectives.
Collapse
Affiliation(s)
- Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
50
|
Henderson LP. Steroid modulation of GABAA receptor-mediated transmission in the hypothalamus: effects on reproductive function. Neuropharmacology 2007; 52:1439-53. [PMID: 17433821 PMCID: PMC1985867 DOI: 10.1016/j.neuropharm.2007.01.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamus, the seat of neuroendocrine control, is exquisitely sensitive to gonadal steroids. For decades it has been known that androgens, estrogens and progestins, acting through nuclear hormone receptors, elicit both organizational and activational effects in the hypothalamus and basal forebrain that are essential for reproductive function. While changes in gene expression mediated by these classical hormone pathways are paramount in governing both sexual differentiation and the neural control of reproduction, it is also clear that steroids impart critical control of neuroendocrine functions through non-genomic mechanisms. Specifically, endogenous neurosteroid derivatives of deoxycorticosterone, progesterone and testosterone, as well and synthetic anabolic androgenic steroids that are self-administered as drugs of abuse, elicit acute effects via allosteric modulation of gamma-aminobutyric acid type A receptors. GABAergic transmission within the hypothalamus and basal forebrain is a key regulator of pubertal onset, the expression of sexual behaviors, pregnancy and parturition. Summarized here are the known actions of steroid modulators on GABAergic transmission within the hypothalamus/basal forebrain, with a focus on the medial preoptic area and the supraoptic/paraventricular nuclei that are known to be central players in the control of reproduction.
Collapse
Affiliation(s)
- Leslie P Henderson
- Department of Physiology, Dartmouth Medical School, Hanover, NH 03755, USA. <>
| |
Collapse
|