1
|
Zhai W, Kuang X, Wu J, Li L, Li B, Geng R, Zheng T, Zheng Q. Clonidine mitigates noise-induced hearing loss by regulating TRPC6-mediated calcium influx in cochlear hair cells. Hear Res 2025; 462:109284. [PMID: 40273584 DOI: 10.1016/j.heares.2025.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/15/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
Noise-induced hearing loss (NIHL) is a common auditory disorder driven by calcium overload, oxidative stress, and apoptosis in cochlear sensory hair cells. The transient receptor potential canonical 6 (TRPC6), a nonselective cation channel that can be activated by norepinephrine, is implicated in calcium influx and associated cellular damage. This study explores the protective effects of clonidine, an FDA-approved α2-adrenergic receptor agonist that reduces sympathetic nervous system activity and norepinephrine release, on NIHL in mice. Clonidine treatment significantly preserved hearing thresholds, reduced damage to outer hair cells and ribbon synapses, and suppressed TRPC6 channel activation induced by noise exposure. Mechanistically, clonidine alleviated calcium influx, inhibited the calcium-dependent MLCK-MRLC signaling pathway, and attenuated oxidative stress and apoptosis in cochlear hair cells. Molecular docking analyses demonstrated strong binding between norepinephrine and TRPC6, elucidating the regulatory role of clonidine in calcium signaling. These findings highlight clonidine's potential to prevent NIHL by maintaining intracellular calcium homeostasis and reducing cochlear damage via the modulation of norepinephrine and TRPC6 activity. TRPC6 emerges as a promising therapeutic target for preventing and managing noise-induced auditory dysfunction.
Collapse
MESH Headings
- Animals
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/physiopathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Clonidine/pharmacology
- TRPC6 Cation Channel/metabolism
- Calcium Signaling/drug effects
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Disease Models, Animal
- Oxidative Stress/drug effects
- Apoptosis/drug effects
- Norepinephrine/metabolism
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/pathology
- Male
- Hearing/drug effects
- Auditory Threshold/drug effects
- Mice
- Mice, Inbred C57BL
- Calcium/metabolism
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Wenji Zhai
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Xiaojing Kuang
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Jie Wu
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Liheng Li
- Department of Otolaryngology, Huzhou Central Hospital, Fifth Affiliated Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China.
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China.
| |
Collapse
|
2
|
Uenoyama S, Nitta H, Ohtsuka S, Magari M, Suizu F, Tokumitsu H. Characterization of molecular mechanisms of CaMKKα/1 oligomerization. FEBS Lett 2025. [PMID: 40413628 DOI: 10.1002/1873-3468.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/27/2025]
Abstract
Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is an activating kinase for calcium/calmodulin-dependent protein kinase type 1 (CaMKI), calcium/calmodulin-dependent protein kinase type IV (CaMKIV), RAC-alpha serine/threonine-protein kinase (PKB), and AMP-activated protein kinase (AMPK) that has been reported to form an active oligomer in cells. Glutathione S-transferase (GST) pulldown assay from the extracts of COS-7 cells expressing GST- and His6-CaMKKα/1 mutants showed that the C-terminal region containing the autoinhibitory and calmodulin (CaM)-binding sequence (residues 438-463) is required for CaMKKα/1 homo-oligomerization. This was confirmed by the fact that the GST-CaMKKα/1 C-terminal domain (residues 435-505) directly interacted with EGFP-CaMKKα/1 residues 435-505 as well as with wild-type CaMKKα/1. Notably, once oligomerized in cells, CaMKKα/1 is neither exchangeable between the oligomeric complexes nor dissociated by Ca2+/CaM binding. These results support stable oligomerization of CaMKK in the cells by intermolecular self-association of its C-terminal region containing a regulatory domain.
Collapse
Affiliation(s)
- Shun Uenoyama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hayato Nitta
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Futoshi Suizu
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
3
|
Abou-El-Naga IF. Calcium/calmodulin-dependent protein kinase II in Schistosoma: Relation to praziquantel action and resistance. Mol Biochem Parasitol 2025; 263:111686. [PMID: 40414509 DOI: 10.1016/j.molbiopara.2025.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/07/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) performs diverse essential functions through integrating a range of calcium signals. In Schistosoma, two Calmodulin (CaM) genes are characterized. CaMKII exhibits distinct expression patterns across the developmental stages of the parasite. Its significance lies in sustaining Schistosoma survival and maintaining calcium homeostasis. As it is a calcium sensing protein, its function is closely related to the efficacy of praziquantel, the mainstay drug against schistosomiasis. The relationship between CaMKII and praziquantel involves several potential factors. Praziquantel induces an increased calcium influx into Schistosoma that binds CaM and activates CaMKII, which in turn mitigates the effect of the drug and potentially contributes to praziquantel resistance in several ways. By maintaining calcium homeostasis, CaMKII opposes the surge in calcium influx induced by praziquantel. It modulates voltage-gated calcium channels and reduces calcium influx. It also inhibits ryanodine receptors and inositol triphosphate receptors, thus preventing the release of calcium from the sarcoplasmic/endoplasmic reticulum. CaMKII activates nuclear factor-κB and subsequently activates sarco/endoplasmic reticulum calcium-ATPase (SERCA), which increases calcium uptake into the sarcoplasmic/endoplasmic reticulum and decreases cytosolic calcium. Nuclear factor-κB, activated by CaMKII may lead to up-regulation of P-glycoprotein, which facilitates praziquantel efflux. CaMKII also activates calcineurin that inhibits SERCA. Given its pivotal role in Schistosoma homeostasis and survival, CaMKII emerges as a promising target for novel anthelmintic therapies, and its modulation might enhance the efficacy of praziquantel.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
4
|
Navarro AM, Alonso M, Martínez-Pérez E, Lazar T, Gibson TJ, Iserte JA, Tompa P, Marino-Buslje C. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Proteins 2025; 93:575-587. [PMID: 39366918 DOI: 10.1002/prot.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro M Navarro
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Macarena Alonso
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier A Iserte
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
- Research Centre for Natural Sciences, Hungarian Research Network, Institute of Enzymology, Budapest, Hungary
| | | |
Collapse
|
5
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2025; 36:189-208. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
6
|
Xu Y, Wang Z, Jia T, Liang S. Exploring potential drug targets for SLE through Mendelian randomization and network pharmacology. PLoS One 2025; 20:e0316481. [PMID: 39823480 PMCID: PMC11741580 DOI: 10.1371/journal.pone.0316481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a complex and incurable autoimmune disease, so several drug remission for SLE symptoms have been developed and used at present. However, treatment varies by patient and disease activity, and existing medications for SLE were far from satisfactory. Novel drug targets to be found for SLE therapy are still needed. METHODS Mendelian randomization (MR), an observational study way, was performed to explore potential drug targets for SLE using protein quantitative trait loci (pQTL) from recently published genome-wide association studies (GWAS) of cerebrospinal fluid (CSF) and plasma proteins, which obtained genetic instruments for 154 CSF proteins of 971 participants, and 734 plasma proteins of 23591 participants. Bidirectional Mendelian randomization analysis, colocalization analysis, and phenotype scanning were performed to find key proteins for SLE. In addition, external data verification was implemented to further consolidate the Mendelian randomization findings. Candidate proteins as targets to find drugs and discuss the druggability. Finally, Network pharmacology and molecular docking methods were used to verify the effects of Voclosporin and Cyclosporine on SLE targets. Protein-protein interaction (PPI) and core target analysis of candidate drugs and SLE overlapping targets were performed to identify potential hub targets and interactions. The affinity between drug targets and SLE targets was confirmed by molecular docking. RESULTS In the preliminary analysis, we identified four key proteins as possible drug targets in CSF and plasma proteins, included ICAM-1(P = 4.62E-05, OR = 0.90(0.86, 0.95)), sICAM-1(P = 4.62E-05, OR = 0.49(0.35, 0.69)), FCG2B (P = 7.63E-11, OR = 0.57(0.48, 0.67)), PPP3CA; PPP3R1 (P = 5.47E-07, OR = 0.66(0.57, 0.78)). Among them, ICAM1 was detected in both CSF and plasma proteins. By excluding reverse causality, confounding factors, and linkage disequilibrium (LD), we identified PPP3CA; PPP3R1 as novel drug targets for SLE, including Voclosporin and Cyclosporine. Finally, the Drugbank database shows that novel drugs contain 33 targets for treating SLE. PPI suggested that SIRT1, ACE, PTGS2, and BACE1 were pivotal targets for SLE treatment. In addition, the molecular docking showed that the bioactive molecules of Voclosporin and Cyclosporine had a good affinity with the target of SLE. CONCLUSIONS Our integrative analysis suggested that levels of circulating PPP3CA; PPP3R1 had causal effects on SLE risk and served as potential treatment targets. Moreover, this study provides new evidence for Voclosporin as an SLE treatment through Mendelian randomization and Network pharmacology, and warrants further clinical investigation.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zelin Wang
- Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Tiewen Jia
- Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Shufen Liang
- Department of Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
7
|
Youhanna S, Kemas AM, Wright SC, Zhong Y, Klumpp B, Klein K, Motso A, Michel M, Ziegler N, Shang M, Sabatier P, Kannt A, Sheng H, Oliva‐Vilarnau N, Büttner FA, Seashore‐Ludlow B, Schreiner J, Windbergs M, Cornillet M, Björkström NK, Hülsmeier AJ, Hornemann T, Olsen JV, Wang Y, Gramignoli R, Sundström M, Lauschke VM. Chemogenomic Screening in a Patient-Derived 3D Fatty Liver Disease Model Reveals the CHRM1-TRPM8 Axis as a Novel Module for Targeted Intervention. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407572. [PMID: 39605182 PMCID: PMC11744578 DOI: 10.1002/advs.202407572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading cause of chronic liver disease with few therapeutic options. To narrow the translational gap in the development of pharmacological MASH treatments, a 3D liver model from primary human hepatocytes and non-parenchymal cells derived from patients with histologically confirmed MASH was established. The model closely mirrors disease-relevant endpoints, such as steatosis, inflammation and fibrosis, and multi-omics analyses show excellent alignment with biopsy data from 306 MASH patients and 77 controls. By combining high-content imaging with scalable biochemical assays and chemogenomic screening, multiple novel targets with anti-steatotic, anti-inflammatory, and anti-fibrotic effects are identified. Among these, activation of the muscarinic M1 receptor (CHRM1) and inhibition of the TRPM8 cation channel result in strong anti-fibrotic effects, which are confirmed using orthogonal genetic assays. Strikingly, using biosensors based on bioluminescence resonance energy transfer, a functional interaction along a novel MASH signaling axis in which CHRM1 inhibits TRPM8 via Gq/11 and phospholipase C-mediated depletion of phosphatidylinositol 4,5-bisphosphate can be demonstrated. Combined, this study presents the first patient-derived 3D MASH model, identifies a novel signaling module with anti-fibrotic effects, and highlights the potential of organotypic culture systems for phenotype-based chemogenomic drug target identification at scale.
Collapse
|
8
|
Ju HY, Song SE, Shin SK, Jeong GS, Cho HC, Im SS, Song DK. Fulvic acid inhibits the differentiation of 3T3-L1 adipocytes by activating the Ca 2+/CaMKⅡ/AMPK pathway. Biochem Biophys Res Commun 2025; 743:151173. [PMID: 39673972 DOI: 10.1016/j.bbrc.2024.151173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Type 2 diabetes increases the risk of developing obesity. Although fulvic acid alleviates back fat thickness in pigs, the mechanism underlying its anti-obesity effect remains unclear. Therefore, we investigated the anti-obesity mechanism of fulvic acid using 3T3-L1 adipocytes. We examined the effects of fulvic acid on adipocyte differentiation, cell viability, and lipid accumulation using molecular techniques. Fulvic acid treatment significantly decreased intracellular lipid accumulation in 3T3-L1 cells during the differentiation compared with that in the control group. Western blotting revealed fulvic acid-induced downregulated expression of the adipocyte differentiation-related markers peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein alpha, and sterol regulatory element-binding protein 1. The fulvic acid treatment decreased the expression of the lipid uptake-related markers fatty acid-binding protein 4 and the cluster of differentiation 36 in 3T3-L1 cells. Moreover, fulvic acid significantly increased cytosolic Ca2+ concentration via Ca2+ sequestration from the endoplasmic reticulum, enhanced Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, and upregulated AMP-activated protein kinase (AMPK), thereby reducing adipocyte differentiation. Conclusively, fulvic acid attenuates adipocyte differentiation by activating the Ca2+/CaMKⅡ/AMPK pathway, suggesting its anti-obesity potential.
Collapse
Affiliation(s)
- Hyeon Yeong Ju
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seung-Eun Song
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Su-Kyung Shin
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehak-ro, Pook-gu, Daegu, 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ho-Chan Cho
- Department of Endocrinology, Internal Medicine, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Seung-Soon Im
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Obesity-mediated Disease Research Center, Keimyung University School of Medicine, 1095 Dalgubeoldae-ro, Dalseo-gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
9
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
11
|
Moon CE, Lee JK, Kim H, Kwon JM, Kang Y, Han J, Ji YW, Seo Y. Proteomic analysis of CD29+ Müller cells reveals metabolic reprogramming in rabbit myopia model. Sci Rep 2024; 14:24072. [PMID: 39402218 PMCID: PMC11473955 DOI: 10.1038/s41598-024-75637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of myopia is rapidly increasing, significantly impacting the quality of life of affected individuals. Prior research by our group revealed reactive gliosis in Müller cells within myopic retina, prompting further investigation of their role in myopia, which remains unclear. In this study, we analyzed protein expression changes in CD29+ Müller cells isolated from a form deprivation-induced rabbit model of myopia using magnetic activated cell sorting to investigate the role of these cells in myopia. As the principal glial cells in the retina, Müller cells exhibited significant alterations in the components of metabolic pathways, particularly glycolysis and angiogenesis, including the upregulation of glycolytic enzymes, such as lactate dehydrogenase A and pyruvate kinase, implicated in the adaptation to increased metabolic demands under myopic stress. Additionally, a decrease in the expression of proteins associated with oxygen transport suggested enhanced vulnerability to oxidative stress. These findings highlight the proactive role of CD29+ Müller cells in modifying the retinal environment in response to myopic stress and provide valuable insights into mechanisms that could help mitigate myopia progression.
Collapse
Affiliation(s)
- Chae-Eun Moon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Jun-Ki Lee
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Hyunjin Kim
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Ji-Min Kwon
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, 50 Yonsei‑ro, Seodaemun‑gu, Seoul, 03722, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinu Han
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eounju-ro, Gangnam-gu, Seoul, 03722, Republic of Korea
| | - Yong Woo Ji
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| | - Yuri Seo
- Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, 16995, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Chang EES, Liu H, Choi ZYK, Malki Y, Zhang SXY, Pang SYY, Kung MHW, Ramsden DB, Ho SL, Ho PWL. Loss of mitochondrial Ca 2+ response and CaMKII/ERK activation by LRRK2 R1441G mutation correlate with impaired depolarization-induced mitophagy. Cell Commun Signal 2024; 22:485. [PMID: 39390438 PMCID: PMC11465656 DOI: 10.1186/s12964-024-01844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Stress-induced activation of ERK/Drp1 serves as a checkpoint in the segregation of damaged mitochondria for autophagic clearance (mitophagy). Elevated cytosolic calcium (Ca2+) activates ERK, which is pivotal to mitophagy initiation. This process is altered in Parkinson's disease (PD) with mutations in leucine-rich repeat kinase 2 (LRRK2), potentially contributing to mitochondrial dysfunction. Pathogenic LRRK2 mutation is linked to dysregulated cellular Ca2+ signaling but the mechanism involved remains unclear. METHODS Mitochondrial damages lead to membrane depolarization. To investigate how LRRK2 mutation impairs cellular response to mitochondrial damages, mitochondrial depolarization was induced by artificial uncoupler (FCCP) in wild-type (WT) and LRRK2R1441G mutant knockin (KI) mouse embryonic fibroblasts (MEFs). The resultant cytosolic Ca2+ flux was assessed using live-cell Ca2+ imaging. The role of mitochondria in FCCP-induced cytosolic Ca2+ surge was confirmed by co-treatment with the mitochondrial sodium-calcium exchanger (NCLX) inhibitor. Cellular mitochondrial quality and function were evaluated by Seahorse™ real-time cell metabolic analysis, flow cytometry, and confocal imaging. Mitochondrial morphology was visualized using transmission electron microscopy (TEM). Activation (phosphorylation) of stress response pathways were assessed by immunoblotting. RESULTS Acute mitochondrial depolarization induced by FCCP resulted in an immediate cytosolic Ca2+ surge in WT MEFs, mediated predominantly via mitochondrial NCLX. However, such cytosolic Ca2+ response was abolished in LRRK2 KI MEFs. This loss of response in KI was associated with impaired activation of Ca2+/calmodulin-dependent kinase II (CaMKII) and MEK, the two upstream kinases of ERK. Treatment of LRRK2 inhibitor did not rescue this phenotype indicating that it was not caused by mutant LRRK2 kinase hyperactivity. KI MEFs exhibited swollen mitochondria with distorted cristae, depolarized mitochondrial membrane potential, and reduced mitochondrial Ca2+ store and mitochondrial calcium uniporter (MCU) expression. These mutant cells also exhibited lower cellular ATP: ADP ratio albeit higher basal respiration than WT, indicating compensation for mitochondrial dysfunction. These defects may hinder cellular stress response and signals to Drp1-mediated mitophagy, as evident by impaired mitochondrial clearance in the mutant. CONCLUSIONS Pathogenic LRRK2R1441G mutation abolished mitochondrial depolarization-induced Ca2+ response and impaired the basal mitochondrial clearance. Inherent defects from LRRK2 mutation have weakened the cellular ability to scavenge damaged mitochondria, which may further aggravate mitochondrial dysfunction and neurodegeneration in PD.
Collapse
Affiliation(s)
- Eunice Eun-Seo Chang
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huifang Liu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zoe Yuen-Kiu Choi
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yasine Malki
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Steffi Xi-Yue Zhang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shirley Yin-Yu Pang
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Hiu-Wai Kung
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David B Ramsden
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Shu-Leong Ho
- Division of Neurology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Philip Wing-Lok Ho
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Mental Health Research Centre, PolyU Academy for Interdisciplinary Research, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
13
|
Han Z, Benlagha K, Lee P, Park CS, Filatov A, Byazrova MG, Miller H, Yang L, Liu C. The function of serine/threonine-specific protein kinases in B cells. Front Immunol 2024; 15:1459527. [PMID: 39445011 PMCID: PMC11496051 DOI: 10.3389/fimmu.2024.1459527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
The serine/threonine-specific protein kinases (STKs) are important for cell survival, proliferation, differentiation, and apoptosis. In B cells, these kinases play indispensable roles in regulating important cellular functions. Multiple studies on human and other animal cells have shown that multiple STKs are involved in different stages of B cell development and antibody production. However, how STKs affect B cell development and function is still not completely understood. Considering that B cells are clinically important in immunity and diseases, our understanding of STKs' roles in B cells is in great need of investigation with current technologies. Investigating serine/threonine kinases will not only deepen our insight into B cell-related disorders but also facilitate the identification of more effective drug targets for conditions like lymphoma and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Zhennan Han
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kamel Benlagha
- Université de Paris, Institut de Recherche Saint-Louis, EMiLy, Paris, France
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
15
|
Shrestha P, Kandel J, Tayara H, Chong KT. Post-translational modification prediction via prompt-based fine-tuning of a GPT-2 model. Nat Commun 2024; 15:6699. [PMID: 39107330 PMCID: PMC11303401 DOI: 10.1038/s41467-024-51071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Post-translational modifications (PTMs) are pivotal in modulating protein functions and influencing cellular processes like signaling, localization, and degradation. The complexity of these biological interactions necessitates efficient predictive methodologies. In this work, we introduce PTMGPT2, an interpretable protein language model that utilizes prompt-based fine-tuning to improve its accuracy in precisely predicting PTMs. Drawing inspiration from recent advancements in GPT-based architectures, PTMGPT2 adopts unsupervised learning to identify PTMs. It utilizes a custom prompt to guide the model through the subtle linguistic patterns encoded in amino acid sequences, generating tokens indicative of PTM sites. To provide interpretability, we visualize attention profiles from the model's final decoder layer to elucidate sequence motifs essential for molecular recognition and analyze the effects of mutations at or near PTM sites to offer deeper insights into protein functionality. Comparative assessments reveal that PTMGPT2 outperforms existing methods across 19 PTM types, underscoring its potential in identifying disease associations and drug targets.
Collapse
Affiliation(s)
- Palistha Shrestha
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Jeevan Kandel
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
16
|
Liu H, Zhou L, Wang X, Lin Y, Yi P, Xiong Y, Zhan F, Zhou L, Dong Y, Ying J, Wu L, Xu G, Hua F. PIEZO1 as a new target for hyperglycemic stress-induced neuropathic injury: The potential therapeutic role of bezafibrate. Biomed Pharmacother 2024; 176:116837. [PMID: 38815290 DOI: 10.1016/j.biopha.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/01/2024] Open
Abstract
Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xifeng Wang
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
17
|
Nguyen HTM, van der Westhuizen ET, Langmead CJ, Tobin AB, Sexton PM, Christopoulos A, Valant C. Opportunities and challenges for the development of M 1 muscarinic receptor positive allosteric modulators in the treatment for neurocognitive deficits. Br J Pharmacol 2024; 181:2114-2142. [PMID: 36355830 DOI: 10.1111/bph.15982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Huong T M Nguyen
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Department of Biochemistry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Christopher J Langmead
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Andrew B Tobin
- Centre for Translational Pharmacology, University of Glasgow, Glasgow, UK
| | - Patrick M Sexton
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, Melbourne, VIC, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash University, Parkville, Melbourne, VIC, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. How calcineurin inhibitors affect cognition. Acta Physiol (Oxf) 2024; 240:e14161. [PMID: 38747643 DOI: 10.1111/apha.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
AIMS With a focus on the discrepancy between preclinical and clinical findings, this review will gather comprehensive information about the effects of calcineurin inhibitors (CNI) on cognitive function and related brain pathology from in vitro, in vivo, and clinical studies. We also summarize the potential mechanisms that underlie the pathways related to CNI-induced cognitive impairment. METHODS We systematically searched articles in PubMed using keywords 'calcineurin inhibitor*' and 'cognition' to identify related articles, which the final list pertaining to underlying mechanisms of CNI on cognition. RESULTS Several studies have reported an association between calcineurin and the neuropathology of Alzheimer's disease (AD). AD is the most common neurocognitive disorder associated with amyloid plaques and neurofibrillary tangles in the brain, leading to cognitive impairment. CNI, including tacrolimus and cyclosporin A, are commonly prescribed for patients with transplantation of solid organs such as kidney, liver, or heart, those drugs are currently being used as long-term immunosuppressive therapy. Although preclinical models emphasize the favorable effects of CNI on the restoration of brain pathology due to the impacts of calcineurin on the alleviation of amyloid-beta deposition and tau hyperphosphorylation, or rescuing synaptic and mitochondrial functions, treatment-related neurotoxicity, resulting in cognitive dysfunctions has been observed in clinical settings of patients who received CNI. CONCLUSION Inconsistent results of CNI on cognition from clinical studies have been observed due to impairment of the blood-brain barrier, neuroinflammation mediated by reactive oxygen species, and alteration in mitochondrial fission, and extended research is required to confirm its promising use in cognitive impairment.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripron C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Xu H, Yong L, Gao X, Chen Y, Wang Y, Wang F, Hou X. CaMK4: Structure, physiological functions, and therapeutic potential. Biochem Pharmacol 2024; 224:116204. [PMID: 38615920 DOI: 10.1016/j.bcp.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) is a versatile serine/threonine kinase involved in various cellular functions. It regulates T-cell differentiation, podocyte function, tumor cell proliferation/apoptosis, β cell mass, and insulin sensitivity. However, the underlying molecular mechanisms are complex and remain incompletely understood. The aims of this review are to highlight the latest advances in the regulatory mechanisms of CaMK4 underlying T-cell imbalance and parenchymal cell mass in multiple diseases. The structural motifs and activation of CaMK4, as well as the potential role of CaMK4 as a novel therapeutic target are also discussed.
Collapse
Affiliation(s)
- Hao Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Liang Yong
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, PR China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yandong Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Fuyan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China; Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong 266033, PR China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
20
|
Fedorin DN, Eprintsev AT, Chuykova VO, Igamberdiev AU. Participation of miR165a in the Phytochrome Signal Transduction in Maize ( Zea mays L.) Leaves under Changing Light Conditions. Int J Mol Sci 2024; 25:5733. [PMID: 38891921 PMCID: PMC11171563 DOI: 10.3390/ijms25115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The involvement of the microRNA miR165a in the light-dependent mechanisms of regulation of target genes in maize (Zea mays) has been studied. The light-induced change in the content of free miR165a was associated with its binding by the AGO10 protein and not with a change in the rate of its synthesis from the precursor. The use of knockout Arabidopsis plants for the phytochrome A and B genes demonstrated that the presence of an active form of phytochrome B causes an increase in the level of the RNA-induced silencing miR165a complex, which triggers the degradation of target mRNAs. The two fractions of vesicles from maize leaves, P40 and P100 that bind miR165a, were isolated by ultracentrifugation. The P40 fraction consisted of larger vesicles of the size >0.170 µm, while the P100 fraction vesicles were <0.147 µm. Based on the quantitative PCR data, the predominant location of miR165a on the surface of extracellular vesicles of both fractions was established. The formation of the active form of phytochrome upon the irradiation of maize plants with red light led to a redistribution of miR165a, resulting in an increase in its proportion inside P40 vesicles and a decrease in P100 vesicles.
Collapse
Affiliation(s)
- Dmitry N. Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Alexander T. Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Victoria O. Chuykova
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia; (D.N.F.); (A.T.E.); (V.O.C.)
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
21
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Qu Y, Wang S, Jiang H, Wang Q, Liao Y, Qiu X, Tan L, Song C, Ding C, Sun Y, Yang Z. The Ca 2+-dependent phosphatase calcineurin dephosphorylates TBK1 to suppress antiviral innate immunity. J Virol 2024; 98:e0001624. [PMID: 38563732 PMCID: PMC11092360 DOI: 10.1128/jvi.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Yang Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Siyuan Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Qingyi Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
23
|
Koga T. Understanding the pathogenic significance of altered calcium-calmodulin signaling in T cells in autoimmune diseases. Clin Immunol 2024; 262:110177. [PMID: 38460894 DOI: 10.1016/j.clim.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMK4) serves as a pivotal mediator in the regulation of gene expression, influencing the activity of transcription factors within a variety of immune cells, including T cells. Altered CaMK4 signaling is implicated in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, which are characterized by dysregulated immune responses and clinical complexity. These conditions share common disturbances in immune cell functionality, cytokine production, and autoantibody generation, all of which are associated with disrupted calcium-calmodulin signaling. This review underscores the consequences of dysregulated CaMK4 signaling across these diseases, with an emphasis on its impact on Th17 differentiation and T cell metabolism-processes central to maintaining immune homeostasis. A comprehensive understanding of roles of CaMK4 in gene regulation across various autoimmune disorders holds promise for the development of targeted therapies, particularly for diseases driven by Th17 cell dysregulation.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
24
|
Sartorius AM, Rokicki J, Birkeland S, Bettella F, Barth C, de Lange AMG, Haram M, Shadrin A, Winterton A, Steen NE, Schwarz E, Stein DJ, Andreassen OA, van der Meer D, Westlye LT, Theofanopoulou C, Quintana DS. An evolutionary timeline of the oxytocin signaling pathway. Commun Biol 2024; 7:471. [PMID: 38632466 PMCID: PMC11024182 DOI: 10.1038/s42003-024-06094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Oxytocin is a neuropeptide associated with both psychological and somatic processes like parturition and social bonding. Although oxytocin homologs have been identified in many species, the evolutionary timeline of the entire oxytocin signaling gene pathway has yet to be described. Using protein sequence similarity searches, microsynteny, and phylostratigraphy, we assigned the genes supporting the oxytocin pathway to different phylostrata based on when we found they likely arose in evolution. We show that the majority (64%) of genes in the pathway are 'modern'. Most of the modern genes evolved around the emergence of vertebrates or jawed vertebrates (540 - 530 million years ago, 'mya'), including OXTR, OXT and CD38. Of those, 45% were under positive selection at some point during vertebrate evolution. We also found that 18% of the genes in the oxytocin pathway are 'ancient', meaning their emergence dates back to cellular organisms and opisthokonta (3500-1100 mya). The remaining genes (18%) that evolved after ancient and before modern genes were classified as 'medium-aged'. Functional analyses revealed that, in humans, medium-aged oxytocin pathway genes are highly expressed in contractile organs, while modern genes in the oxytocin pathway are primarily expressed in the brain and muscle tissue.
Collapse
Affiliation(s)
- Alina M Sartorius
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Siri Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Marit Haram
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Mental Health and Suicide, Norwegian Institute of Public Health, Oslo, Norway
| | - Alexey Shadrin
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Adriano Winterton
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Emanuel Schwarz
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Daniel S Quintana
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine and Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway.
- Department of Psychology, University of Oslo, Oslo, Norway.
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
- NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
25
|
Park H, Kaang BK. Memory allocation at the neuronal and synaptic levels. BMB Rep 2024; 57:176-181. [PMID: 37964638 PMCID: PMC11058361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memoryencoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships. [BMB Reports 2024; 57(4): 176-181].
Collapse
Affiliation(s)
- HyoJin Park
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biological Science, Seoul National University, Seoul 08826, Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
26
|
Yang X, Zhu M, Lu X, Wang Y, Xiao J. Architecture and activation of human muscle phosphorylase kinase. Nat Commun 2024; 15:2719. [PMID: 38548794 PMCID: PMC10978961 DOI: 10.1038/s41467-024-47049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
The study of phosphorylase kinase (PhK)-regulated glycogen metabolism has contributed to the fundamental understanding of protein phosphorylation; however, the molecular mechanism of PhK remains poorly understood. Here we present the high-resolution cryo-electron microscopy structures of human muscle PhK. The 1.3-megadalton PhK α4β4γ4δ4 hexadecamer consists of a tetramer of tetramer, wherein four αβγδ modules are connected by the central β4 scaffold. The α- and β-subunits possess glucoamylase-like domains, but exhibit no detectable enzyme activities. The α-subunit serves as a bridge between the β-subunit and the γδ subcomplex, and facilitates the γ-subunit to adopt an autoinhibited state. Ca2+-free calmodulin (δ-subunit) binds to the γ-subunit in a compact conformation. Upon binding of Ca2+, a conformational change occurs, allowing for the de-inhibition of the γ-subunit through a spring-loaded mechanism. We also reveal an ADP-binding pocket in the β-subunit, which plays a role in allosterically enhancing PhK activity. These results provide molecular insights of this important kinase complex.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Mingqi Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Xue Lu
- Changping Laboratory, Beijing, P.R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Yuxin Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, P.R. China.
| |
Collapse
|
27
|
Zhang W, Chen S, Ma B, Ding Y, Liu X, He C, Wang B, Yuan M. Trifluoperazine regulates blood-brain barrier permeability via the MLCK/p-MLC pathway to promote ischemic stroke recovery. iScience 2024; 27:109156. [PMID: 38439960 PMCID: PMC10910233 DOI: 10.1016/j.isci.2024.109156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) can induce significant aftereffects. Elevated calmodulin (CaM) expression following stroke causes calcium overload-a key contributor to BBB collapse. Trifluoperazine (TFP), a CaM inhibitor, reduces CaM overexpression following IS. However, it remains unclear whether TFP participates in BBB repair after IS. We administered TFP to mice subjected to middle cerebral artery occlusion (MCAO) and bEnd.3 cells subjected to oxygen-glucose deprivation (OGD). TFP treatment in MCAO mice reduced cerebral CaM expression and infarct size and decreased BBB permeability. OGD-treated bEnd.3 cells showed significantly increased CaM protein levels and reduced tight junction (TJ) protein levels; these changes were reversed by TFP treatment. Our results found that TFP administration in mice inhibited actin contraction following cerebral ischemia-reperfusion by suppressing the MLCK/p-MLC pathway, thereby attenuating cell retraction, improving TJ protein integrity, and reducing BBB permeability. Consequently, this treatment may promote neurological function recovery after IS.
Collapse
Affiliation(s)
- Wentao Zhang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sisi Chen
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bin Ma
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yingmei Ding
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofen Liu
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Caijun He
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Biao Wang
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
28
|
De Geyter I, Kowalewski MP, Tavares Pereira M. Applying a novel kinomics approach to study decidualization and the effects of antigestagens using a canine model†. Biol Reprod 2024; 110:583-598. [PMID: 38079525 PMCID: PMC10941090 DOI: 10.1093/biolre/ioad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 03/16/2024] Open
Abstract
Maternal decidual cells are crucial for the maintenance of canine pregnancy as they are the only cells expressing the nuclear progesterone (P4) receptor (PGR) in the placenta. Interfering with P4/PGR signaling adversely affects decidual cells and terminates pregnancy. Although immortalized dog uterine stromal (DUS) cells can be decidualized in vitro using cAMP, the involvement of cAMP-dependent kinases in canine decidualization had not been investigated. Therefore, the present project investigated changes in the kinome of DUS cells following in vitro decidualization, using the serine/threonine kinase (STK) PamChip assay (PamGene). Decidualization led to a predicted activation of 85 STKs in DUS cells, including protein kinase (PK) A, PKC, extracellular signal-regulated kinase (ERK)1/2 and other mitogen-activated protein kinases (MAPKs), calcium/calmodulin-dependent protein kinases (CAMKs), and Akt1/2. In addition, blocking PGR with type 2 antigestagens (aglepristone or mifepristone) decreased the activity of virtually all kinases modulated by decidualization. The underlying transcriptional effects were inferred from comparison with available transcriptomic data on antigestagen-mediated effects in DUS cells. In targeted studies, interfering with PKA or MAPK kinase (MEK)1/2 resulted in downregulation of important decidualization markers (e.g., insulin-like growth factor 1 (IGF1), prostaglandin E2 synthase (PTGES), prolactin receptor (PRLR), PGR, and prostaglandin-endoperoxide synthase 2 (PTGS2/COX2)). Conversely, blocking of PKC decreased the mRNA availability of IGF1, PGR, and PTGS2, but not of PTGES and PRLR. Moreover, suppressing PKA decreased the phosphorylation of the transcription factors cJUN and CREB, whereas blocking of PKC affected only cJUN. This first kinomics analysis to target decidualization showed an increased activity of a wide range of STKs, which could be hindered by disrupting P4/PGR signaling. Decidualization appears to be regulated in a kinase-dependent manner, with PKA and PKC evoking different effects.
Collapse
Affiliation(s)
- Isabelle De Geyter
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Li J, Jethva PN, Rohrs HW, Chemuru S, Miller K, Gross ML, Beckingham KM. Hydrogen/Deuterium Exchange Mass Spectrometry Provides Insights into the Role of Drosophila Testis-Specific Myosin VI Light Chain AndroCaM. Biochemistry 2024; 63:610-624. [PMID: 38357882 PMCID: PMC10932932 DOI: 10.1021/acs.biochem.3c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In Drosophila testis, myosin VI plays a special role, distinct from its motor function, by anchoring components to the unusual actin-based structures (cones) that are required for spermatid individualization. For this, the two calmodulin (CaM) light-chain molecules of myosin VI are replaced by androcam (ACaM), a related protein with 67% identity to CaM. Although ACaM has a similar bi-lobed structure to CaM, with two EF hand-type Ca2+ binding sites per lobe, only one functional Ca2+ binding site operates in the amino-terminus. To understand this light chain substitution, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to examine dynamic changes in ACaM and CaM upon Ca2+ binding and interaction with the two CaM binding motifs of myosin VI (insert2 and IQ motif). HDX-MS reveals that binding of Ca2+ to ACaM destabilizes its N-lobe but stabilizes the entire C-lobe, whereas for CaM, Ca2+ binding induces a pattern of alternating stabilization/destabilization throughout. The conformation of this stable holo-C-lobe of ACaM seems to be a "prefigured" version of the conformation adopted by the holo-C-lobe of CaM for binding to insert2 and the IQ motif of myosin VI. Strikingly, the interaction of holo-ACaM with either peptide converts the holo-N-lobe to its Ca2+-free, more stable, form. Thus, ACaM in vivo should bind the myosin VI light chain sites in an apo-N-lobe/holo-C-lobe state that cannot fulfill the Ca2+-related functions of holo-CaM required for myosin VI motor assembly and activity. These findings indicate that inhibition of myosin VI motor activity is a precondition for transition to an anchoring function.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Henry W. Rohrs
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Saketh Chemuru
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Kathryn Miller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | | |
Collapse
|
30
|
Veth TS, Kannegieter NM, de Graaf EL, Ruijtenbeek R, Joore J, Ressa A, Altelaar M. Innovative strategies for measuring kinase activity to accelerate the next wave of novel kinase inhibitors. Drug Discov Today 2024; 29:103907. [PMID: 38301799 DOI: 10.1016/j.drudis.2024.103907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The development of protein kinase inhibitors (PKIs) has gained significance owing to their therapeutic potential for diseases like cancer. In addition, there has been a rise in refining kinase activity assays, each possessing unique biological and analytical characteristics crucial for PKI development. However, the PKI development pipeline experiences high attrition rates and approved PKIs exhibit unexploited potential because of variable patient responses. Enhancing PKI development efficiency involves addressing challenges related to understanding the PKI mechanism of action and employing biomarkers for precision medicine. Selecting appropriate kinase activity assays for these challenges can overcome these attrition rate issues. This review delves into the current obstacles in kinase inhibitor development and elucidates kinase activity assays that can provide solutions.
Collapse
Affiliation(s)
- Tim S Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | | | - Erik L de Graaf
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | | | - Jos Joore
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Anna Ressa
- Pepscope, Nieuwe Kanaal 7, 6709 PA Wageningen, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
31
|
Piserchio A, Dalby KN, Ghose R. Revealing eEF-2 kinase: recent structural insights into function. Trends Biochem Sci 2024; 49:169-182. [PMID: 38103971 PMCID: PMC10950556 DOI: 10.1016/j.tibs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas, Austin, TX 78712, USA.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA; The Graduate Center of The City University of New York (CUNY), New York, NY 10016, USA.
| |
Collapse
|
32
|
Brignone MS, Lanciotti A, Molinari P, Mallozzi C, De Nuccio C, Caprini ES, Petrucci TC, Visentin S, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1: A new calcium-sensitive protein functionally activated by endoplasmic reticulum calcium release and calmodulin binding in astrocytes. Neurobiol Dis 2024; 190:106388. [PMID: 38141856 DOI: 10.1016/j.nbd.2023.106388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Collapse
Affiliation(s)
- M S Brignone
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Lanciotti
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - P Molinari
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - C Mallozzi
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Istituto Superiore di Sanità, Research Coordination and Support Service, Viale Regina Elena 299, 00161 Rome, Italy
| | - E S Caprini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - T C Petrucci
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - E Ambrosini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
33
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
34
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Glennon EK, Wei L, Roobsoong W, Primavera VI, Tongogara T, Yee CB, Sattabongkot J, Kaushansky A. Host kinase regulation of Plasmodium vivax dormant and replicating liver stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566868. [PMID: 38014051 PMCID: PMC10680662 DOI: 10.1101/2023.11.13.566868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Upon transmission to the liver, Plasmodium vivax parasites form replicating schizonts, which continue to initiate blood-stage infection, or dormant hypnozoites that reactivate weeks to months after initial infection. P. vivax phenotypes in the field vary significantly, including the ratio of schizonts to hypnozoites formed and the frequency and timing of relapse. Evidence suggests that both parasite genetics and environmental factors underly this heterogeneity. We previously demonstrated that data on the effect of a panel of kinase inhibitors with overlapping targets on Plasmodium liver stage infection, in combination with a computational approach called kinase regression (KiR), can be used to uncover novel host regulators of infection. Here, we applied KiR to evaluate the extent to which P. vivax liver-stage parasites are susceptible to changes in host kinase activity. We identified a role for a subset of host kinases in regulating schizont and hypnozoite infection and schizont size and characterized overlap as well as variability in host phosphosignaling dependencies between parasite forms and across multiple patient isolates. Striking, our data point to variability in host dependencies across P. vivax isolates, suggesting one possible origin of the heterogeneity observed across P. vivax in the field.
Collapse
|
36
|
Manolaras I, Del Bondio A, Griso O, Reutenauer L, Eisenmann A, Habermann BH, Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain 2023; 146:3836-3850. [PMID: 36960552 DOI: 10.1093/brain/awad099] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
COQ8A-ataxia is a rare form of neurodegenerative disorder due to mutations in the COQ8A gene. The encoded mitochondrial protein is involved in the regulation of coenzyme Q10 biosynthesis. Previous studies on the constitutive Coq8a-/- mice indicated specific alterations of cerebellar Purkinje neurons involving altered electrophysiological function and dark cell degeneration. In the present manuscript, we extend our understanding of the contribution of Purkinje neuron dysfunction to the pathology. By generating a Purkinje-specific conditional COQ8A knockout, we demonstrate that loss of COQ8A in Purkinje neurons is the main cause of cerebellar ataxia. Furthermore, through in vivo and in vitro approaches, we show that COQ8A-depleted Purkinje neurons have abnormal dendritic arborizations, altered mitochondria function and intracellular calcium dysregulation. Furthermore, we demonstrate that oxidative phosphorylation, in particular Complex IV, is primarily altered at presymptomatic stages of the disease. Finally, the morphology of primary Purkinje neurons as well as the mitochondrial dysfunction and calcium dysregulation could be rescued by CoQ10 treatment, suggesting that CoQ10 could be a beneficial treatment for COQ8A-ataxia.
Collapse
Affiliation(s)
- Ioannis Manolaras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Andrea Del Bondio
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Olivier Griso
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Laurence Reutenauer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Bianca H Habermann
- CNRS, Institut de Biologie du Développement de Marseille (IBDM), UMR7288, Aix-Marseille University, 13009 Marseille, France
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of translational medecine and neurogenetics, 67404 Illkirch, France
- Inserm, U1258, 67404 Illkirch, France
- CNRS, UMR7104, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Neuromyogène, Pathophysiology and genetics of the neuron and muscle, Inserm U1315, 69008 Lyon, France
- CNRS, Université Claude Bernard Lyon I, UMR 5261, 69008 Lyon, France
| |
Collapse
|
37
|
Marak CNK, Tamuli R. Calmodulin, Calcium/Calmodulin-Dependent Kinases-1 and 2 Regulate Expression of the Heat Shock Proteins for Heat Shock Tolerance and Pheromone Signaling Genes for Sexual Development in Neurospora crassa. Indian J Microbiol 2023; 63:317-323. [PMID: 37781015 PMCID: PMC10533439 DOI: 10.1007/s12088-023-01091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023] Open
Abstract
Calmodulin (CaM) is a primary Ca2+ sensor that binds and activates numerous target proteins and regulates several cellular processes in eukaryotes. CaM is essential in Neurospora crassa; therefore, we generated a CaM mutant using repeat-induced point (RIP) mutation and investigated the cmdRIP mutant phenotypes. We also studied knockout mutants of four Ca2+/CaM kinases (camk-1, 2, 3, and 4) for their role during stress conditions and sexual development. The cmdRIP, ∆camk-1, and ∆camk-2 mutants showed reduced survival and growth rates under heat stress, oxidative stress, pH, and ER stress conditions. In addition, under the heat stress conditions, expression of the heat shock protein genes hsp70 and hsp80 was reduced in the cmdRIP, ∆camk-1, and ∆camk-2 mutants. The cmdRIP mutant was also defective in cell fusion, its vegetative hyphae could not support the fertilized wild type perithecia graft, and female sterile. Furthermore, the expression of pheromone signaling genes pre-1, pre-2, ccg-4, mfa-1, and fmf-1 was reduced in the cmdRIP, ∆camk-1, and ∆camk-2 mutants. Therefore, CaM, Ca2+/CaMK-1 and 2 are involved in the tolerance to heat stress conditions and sexual development by regulating the heat shock and pheromone response pathways, respectively, in N. crassa. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01091-8.
Collapse
Affiliation(s)
- Christy Noche K. Marak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| |
Collapse
|
38
|
Sohaei D, Thebault S, Avery LM, Batruch I, Lam B, Xu W, Saadeh RS, Scarisbrick IA, Diamandis EP, Prassas I, Freedman MS. Cerebrospinal fluid camk2a levels at baseline predict long-term progression in multiple sclerosis. Clin Proteomics 2023; 20:33. [PMID: 37644477 PMCID: PMC10466840 DOI: 10.1186/s12014-023-09418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) remains a highly unpredictable disease. Many hope that fluid biomarkers may contribute to better stratification of disease, aiding the personalisation of treatment decisions, ultimately improving patient outcomes. OBJECTIVE The objective of this study was to evaluate the predictive value of CSF brain-specific proteins from early in the disease course of MS on long term clinical outcomes. METHODS In this study, 34 MS patients had their CSF collected and stored within 5 years of disease onset and were then followed clinically for at least 15 years. CSF concentrations of 64 brain-specific proteins were analyzed in the 34 patient CSF, as well as 19 age and sex-matched controls, using a targeted liquid-chromatography tandem mass spectrometry approach. RESULTS We identified six CSF brain-specific proteins that significantly differentiated MS from controls (p < 0.05) and nine proteins that could predict disease course over the next decade. CAMK2A emerged as a biomarker candidate that could discriminate between MS and controls and could predict long-term disease progression. CONCLUSION Targeted approaches to identify and quantify biomarkers associated with MS in the CSF may inform on long term MS outcomes. CAMK2A may be one of several candidates, warranting further exploration.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Simon Thebault
- Department of Medicine, The Ottawa Hospital, 01 Smyth Road, Box 601, Ottawa, ON, K1H 8L6, Canada
- The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lisa M Avery
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Brian Lam
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Biostatistics, The Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Rubah S Saadeh
- Department of Physical Medicine and Rehabilitation, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Ioannis Prassas
- Mount Sinai Hospital, Joseph & Wolf Lebovic Ctr, 60 Murray St [Box 32]; Flr 6 - Rm L6-201, Toronto, ON, M5T 3L9, Canada.
- Laboratory Medicine Program, University Health Network, Toronto, Canada.
| | - Mark S Freedman
- Department of Medicine, The Ottawa Hospital, 01 Smyth Road, Box 601, Ottawa, ON, K1H 8L6, Canada.
- The Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
39
|
She W, Wang H, Linardi D, Chik SY, Lan Y, Chen F, Cheng A, Qian PY. Mode of action of antifouling compound albofungin in inhibiting barnacle larval settlement. iScience 2023; 26:106981. [PMID: 37534162 PMCID: PMC10391604 DOI: 10.1016/j.isci.2023.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023] Open
Abstract
Marine biofouling causes huge economic losses to the marine industry every year. Albofungin is a potential antifoulant showing strong anti-macrofouling activities against larval settlement of major fouling organisms. In the present study, directed RNA-seq and proteomic analyses were used to investigate changes in the transcriptome and proteome of a major fouling barnacle Amphibalanus amphitrite cyprids in response to albofungin treatment. Results showed that albofungin treatment remarkably upregulated the metabolism of xenobiotics by the cytochrome P450 pathway to discharge the compound and downregulated energy metabolic processes. Intriguingly, immunostaining and whole-mount in situ hybridization (WISH) revealed the spatial expression patterns of selected differentially expressed genes (glutathione S-transferase [GST], nitric oxide synthase [NOS], and calmodulin [CaM]) distributed in the thorax and antennule of A. amphitrite. Our study provides new insights into the mechanism of albofungin in interrupting the larval settlement of A. amphitrite and suggests its potential application as an antifouling agent in marine environments.
Collapse
Affiliation(s)
- Weiyi She
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Hao Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Darwin Linardi
- Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Sin Yu Chik
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangdong, China
- Department of Ocean Science and Hong Kong Brach of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
40
|
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
41
|
Dybus A, Kulig H, Grzesiak W, Domke J, Yu YH, Cheng YH. Calcium/Calmodulin-Dependent Serine Protein Kinase ( CASK) Gene Polymorphisms in Pigeons. Animals (Basel) 2023; 13:2070. [PMID: 37443867 DOI: 10.3390/ani13132070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Calcium/calmodulin-dependent serine protein kinase (CASK) is an multidomain protein involved in tissue development and cell signalling. In skeletal muscle, it is involved in the development of neuromuscular junctions. The participation of a pigeon in racing is a great physical effort that causes many changes in the skeletal muscles. Thus, the purpose of the study was to detect the nucleotide sequence variability in the calcium/calmodulin-dependent serine kinase (CASK) gene in domestic pigeons (Columba livia domestica) and assess the potential impact of DNA polymorphisms on the flight performance of pigeons. The research included a total of 517 individuals. DNA was extracted from the blood. A DNA fragment from nucleotides 8689 to 9049 of the CASK (NW_004973256.1 sequence) of six unrelated pigeons were sequenced. One of the detected polymorphic sites (g.8893G > A), located a very close to the start codon, was selected for genotyping in all individuals. The association studies included a total of 311 young homing pigeons that participated in racing competitions. The homing pigeons showed higher frequencies of the AA genotype than non-homing ones (p < 0.05). In rock pigeons only the GG genotype was found. Further research could confirm the functionality of the CASK g.8893G > A SNP in shaping the racing phenotype of pigeons, and the AA genotype could be useful as a selection criterion in pigeon breeding.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Wilhelm Grzesiak
- Laboratory of Biostatistics, Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - Justyna Domke
- Department of Genetics, West Pomeranian University of Technology, Aleja Piastów 45, 70-311 Szczecin, Poland
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, No.1, Sec. 1, Shennong Rd., Yilan City 26047, Taiwan
| |
Collapse
|
42
|
Hitsumoto T, Tsukamoto O, Matsuoka K, Li J, Liu L, Kuramoto Y, Higo S, Ogawa S, Fujino N, Yoshida S, Kioka H, Kato H, Hakui H, Saito Y, Okamoto C, Inoue H, Hyejin J, Ueda K, Segawa T, Nishimura S, Asano Y, Asanuma H, Tani A, Imamura R, Komagawa S, Kanai T, Takamura M, Sakata Y, Kitakaze M, Haruta JI, Takashima S. Restoration of Cardiac Myosin Light Chain Kinase Ameliorates Systolic Dysfunction by Reducing Superrelaxed Myosin. Circulation 2023; 147:1902-1918. [PMID: 37128901 PMCID: PMC10270284 DOI: 10.1161/circulationaha.122.062885] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3, regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. METHODS We generated the knock-in mice (Mylk3+/fs and Mylk3fs/fs) with a familial dilated cardiomyopathy-associated MYLK3 frameshift mutation (MYLK3+/fs) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell-derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). RESULTS Both mice (Mylk3+/fs and Mylk3fs/fs) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose-dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_MYLK3 vector. Human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the Vmax for ventricular myosin regulatory light chain phosphorylation without affecting the Km. LEUO-1154 treatment of human induced pluripotent stem cell-derived cardiomyocytes with MYLK3+/fs mutation restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3/PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. CONCLUSIONS cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
Collapse
Affiliation(s)
- Tatsuro Hitsumoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Junjun Li
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery (J.L., L.L.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Kuramoto
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shuichiro Higo
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Shou Ogawa
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Hidetaka Kioka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hideyuki Hakui
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yuki Saito
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Chisato Okamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Hijiri Inoue
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Jo Hyejin
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Kyoko Ueda
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Takatsugu Segawa
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| | - Shunsuke Nishimura
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | - Yoshihiro Asano
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (Y.A.)
| | - Hiroshi Asanuma
- Department of Internal Medicine, Meiji University of Integrative Medicine, Nantan, Kyoto, Japan (H.A.)
| | - Akiyoshi Tani
- Compound Library Screening Center (A.T.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Riyo Imamura
- Drug Discovery Initiative, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan (R.I.)
| | - Shinsuke Komagawa
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshio Kanai
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University. Kanazawa, Ishikawa, Japan (N.F., S.Y., M.T.)
| | - Yasushi Sakata
- Department of Cardiology (Y.K., S.H., S.O., H. Kioka, HY.H., S.N., Y.A., Y.S.), Osaka University Graduate School of Medicine. Suita, Osaka, Japan
| | | | - Jun-ichi Haruta
- Lead Explorating Units (S.K., T.K., J.-i.H.), Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Suita, Osaka, Japan (T.H., O.T., K.M., H. Kioka, H. Kato, H.H., Y.S., C.O., H.I., J.H., K.U., T.S., S.N., S.T.)
| |
Collapse
|
43
|
Tolmacheva ER, Shubina J, Kochetkova TO, Ushakova LV, Bokerija EL, Vasiliev GS, Mikhaylovskaya GV, Atapina EE, Zaretskaya NV, Sukhikh GT, Rebrikov DV, Trofimov DY. CAMK2D De Novo Missense Variant in Patient with Syndromic Neurodevelopmental Disorder: A Case Report. Genes (Basel) 2023; 14:1177. [PMID: 37372357 DOI: 10.3390/genes14061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Intellectual disability with developmental delay is the most common developmental disorder. However, this diagnosis is rarely associated with congenital cardiomyopathy. In the current report, we present the case of a patient suffering from dilated cardiomyopathy and developmental delay. METHODS Neurological pathology in a newborn was diagnosed immediately after birth, and the acquisition of psychomotor skills lagged behind by 3-4 months during the first year of life. WES analysis of the proband did not reveal a causal variant, so the search was extended to trio. RESULTS Trio sequencing revealed a de novo missense variant in the CAMK2D gene (p.Arg275His), that is, according to the OMIM database and available literature, not currently associated with any specific inborn disease. The expression of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) protein is known to be increased in the heart tissues from patients with dilated cardiomyopathy. The functional effect of the CaMKIIδ Arg275His mutant was recently reported; however, no specific mechanism of its pathogenicity was proposed. A structural analysis and comparison of available three-dimensional structures of CaMKIIδ confirmed the probable pathogenicity of the observed missense variant. CONCLUSIONS We suggest that the CaMKIIδ Arg275His variant is highly likely the cause of dilated cardiomyopathy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ekaterina R Tolmacheva
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Jekaterina Shubina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Taisiya O Kochetkova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Lubov' V Ushakova
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Ekaterina L Bokerija
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Grigory S Vasiliev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Galina V Mikhaylovskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Ekaterina E Atapina
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Nadezhda V Zaretskaya
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Denis V Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| | - Dmitriy Yu Trofimov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, 117198 Moscow, Russia
| |
Collapse
|
44
|
Zhang H, Rodriguez-Hernandez LD, D'Souza AJ, He D, Zain M, Fung SW, Bennett LA, Bonin RP. Nociceptor activity induces nonionotropic NMDA receptor signaling to enable spinal reconsolidation and reverse pathological pain. SCIENCE ADVANCES 2023; 9:eadg2819. [PMID: 37205760 DOI: 10.1126/sciadv.adg2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Chronic, pathological pain is a highly debilitating condition that can arise and be maintained through central sensitization. Central sensitization shares mechanistic and phenotypic parallels with memory formation. In a sensory model of memory reconsolidation, plastic changes underlying pain hypersensitivity can be dynamically regulated and reversed following the reactivation of sensitized sensory pathways. However, the mechanisms by which synaptic reactivation induces destabilization of the spinal "pain engram" are unclear. We identified nonionotropic N-methyl-d-aspartate receptor (NI-NMDAR) signaling as necessary and sufficient for the reactive destabilization of dorsal horn long-term potentiation and the reversal of mechanical sensitization associated with central sensitization. NI-NMDAR signaling engaged directly or through the reactivation of sensitized sensory networks was associated with the degradation of excitatory postsynaptic proteins. Our findings identify NI-NMDAR signaling as a putative synaptic mechanism by which engrams are destabilized in reconsolidation and as a potential means of treating underlying causes of chronic pain.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luis D Rodriguez-Hernandez
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Abigail J D'Souza
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - David He
- Department of Anesthesia, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maham Zain
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Samuel W Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Essegian DJ, Chavez V, Khurshid R, Merchan JR, Schürer SC. AI-Assisted chemical probe discovery for the understudied Calcium-Calmodulin Dependent Kinase, PNCK. PLoS Comput Biol 2023; 19:e1010263. [PMID: 37235579 PMCID: PMC10249896 DOI: 10.1371/journal.pcbi.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/08/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
PNCK, or CAMK1b, is an understudied kinase of the calcium-calmodulin dependent kinase family which recently has been identified as a marker of cancer progression and survival in several large-scale multi-omics studies. The biology of PNCK and its relation to oncogenesis has also begun to be elucidated, with data suggesting various roles in DNA damage response, cell cycle control, apoptosis and HIF-1-alpha related pathways. To further explore PNCK as a clinical target, potent small-molecule molecular probes must be developed. Currently, there are no targeted small molecule inhibitors in pre-clinical or clinical studies for the CAMK family. Additionally, there exists no experimentally derived crystal structure for PNCK. We herein report a three-pronged chemical probe discovery campaign which utilized homology modeling, machine learning, virtual screening and molecular dynamics to identify small molecules with low-micromolar potency against PNCK activity from commercially available compound libraries. We report the discovery of a hit-series for the first targeted effort towards discovering PNCK inhibitors that will serve as the starting point for future medicinal chemistry efforts for hit-to-lead optimization of potent chemical probes.
Collapse
Affiliation(s)
- Derek J. Essegian
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Valery Chavez
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rabia Khurshid
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jaime R. Merchan
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
46
|
Purnell C, Heebner J, Swulius MT, Hylton R, Kabonick S, Grillo M, Grigoryev S, Heberle F, Waxham MN, Swulius MT. Rapid Synthesis of Cryo-ET Data for Training Deep Learning Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538636. [PMID: 37162972 PMCID: PMC10168359 DOI: 10.1101/2023.04.28.538636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Deep learning excels at cryo-tomographic image restoration and segmentation tasks but is hindered by a lack of training data. Here we introduce cryo-TomoSim (CTS), a MATLAB-based software package that builds coarse-grained models of macromolecular complexes embedded in vitreous ice and then simulates transmitted electron tilt series for tomographic reconstruction. We then demonstrate the effectiveness of these simulated datasets in training different deep learning models for use on real cryotomographic reconstructions. Computer-generated ground truth datasets provide the means for training models with voxel-level precision, allowing for unprecedented denoising and precise molecular segmentation of datasets. By modeling phenomena such as a three-dimensional contrast transfer function, probabilistic detection events, and radiation-induced damage, the simulated cryo-electron tomograms can cover a large range of imaging content and conditions to optimize training sets. When paired with small amounts of training data from real tomograms, networks become incredibly accurate at segmenting in situ macromolecular assemblies across a wide range of biological contexts.
Collapse
|
47
|
Piserchio A, Long K, Browning L, Bohanon A, Isiorho E, Dalby K, Ghose R. ADP enhances the allosteric activation of eukaryotic elongation factor 2 kinase by calmodulin. Proc Natl Acad Sci U S A 2023; 120:e2300902120. [PMID: 37068230 PMCID: PMC10151598 DOI: 10.1073/pnas.2300902120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 04/19/2023] Open
Abstract
Protein translation, one of the most energy-consumptive processes in a eukaryotic cell, requires robust regulation, especially under energy-deprived conditions. A critical component of this regulation is the suppression of translational elongation through reduced ribosome association of the GTPase eukaryotic elongation factor 2 (eEF-2) resulting from its specific phosphorylation by the calmodulin (CaM)-activated α-kinase eEF-2 kinase (eEF-2K). It has been suggested that the eEF-2K response to reduced cellular energy levels is indirect and mediated by the universal energy sensor AMP-activated protein kinase (AMPK) through direct stimulatory phosphorylation and/or downregulation of the eEF-2K-inhibitory nutrient-sensing mTOR pathway. Here, we provide structural, biochemical, and cell-biological evidence of a direct energy-sensing role of eEF-2K through its stimulation by ADP. A crystal structure of the nucleotide-bound complex between CaM and the functional core of eEF-2K phosphorylated at its primary stimulatory site (T348) reveals ADP bound at a unique pocket located on the face opposite that housing the kinase active site. Within this basic pocket (BP), created at the CaM/eEF-2K interface upon complex formation, ADP is stabilized through numerous interactions with both interacting partners. Biochemical analyses using wild-type eEF-2K and specific BP mutants indicate that ADP stabilizes CaM within the active complex, increasing the sensitivity of the kinase to CaM. Induction of energy stress through glycolysis inhibition results in significantly reduced enhancement of phosphorylated eEF-2 levels in cells expressing ADP-binding compromised BP mutants compared to cells expressing wild-type eEF-2K. These results suggest a direct energy-sensing role for eEF-2K through its cooperative interaction with CaM and ADP.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY10031
| | - Kimberly J. Long
- Division of Chemical Biology and Medicinal Chemistry, the University of Texas, Austin, TX78712
| | - Luke S. Browning
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Amanda L. Bohanon
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Eta A. Isiorho
- Macromolecular Crystallization Facility CUNY Advanced Science Research Center, New York, NY10031
| | - Kevin N. Dalby
- Division of Chemical Biology and Medicinal Chemistry, the University of Texas, Austin, TX78712
- Interdisciplinary Life Sciences Graduate Program, the University of Texas, Austin, TX78712
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY10031
- PhD Program in Biochemistry, The Graduate Center of CUNY, New York, NY10016
- PhD Program in Chemistry, The Graduate Center of CUNY, New York, NY10016
- PhD Program in Physics, The Graduate Center of CUNY, New York, NY10016
| |
Collapse
|
48
|
MacEwen MJ, Rusnac DV, Ermias H, Locke TM, Gizinski HE, Dexter JP, Sancak Y. Mathematical modeling and biochemical analysis support partially ordered calmodulin-myosin light chain kinase binding. iScience 2023; 26:106146. [PMID: 36968084 PMCID: PMC10031086 DOI: 10.1016/j.isci.2023.106146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/30/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Activation of myosin light chain kinase (MLCK) by calcium ions (Ca2+) and calmodulin (CaM) plays an important role in numerous cellular functions including vascular smooth muscle contraction and cellular motility. Despite extensive biochemical analysis, aspects of the mechanism of activation remain controversial, and competing theoretical models have been proposed for the binding of Ca2+ and CaM to MLCK. The models are analytically solvable for an equilibrium steady state and give rise to distinct predictions that hold regardless of the numerical values assigned to parameters. These predictions form the basis of a recently proposed, multi-part experimental strategy for model discrimination. Here we implement this strategy by measuring CaM-MLCK binding using an in vitro FRET system. Interpretation of binding data in light of the mathematical models suggests a partially ordered mechanism for binding CaM to MLCK. Complementary data collected using orthogonal approaches that assess CaM-MLCK binding further support this conclusion.
Collapse
Affiliation(s)
| | | | - Henok Ermias
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Timothy M. Locke
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hayden E. Gizinski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Joseph P. Dexter
- Data Science Initiative and Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
49
|
Alawneh I, Amburgey K, Gonorazky H, Gorodetsky C. CAMK4-related Case of Hyperkinetic Movement Disorder. Mov Disord Clin Pract 2023; 10:707-709. [PMID: 37070062 PMCID: PMC10105089 DOI: 10.1002/mdc3.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Issa Alawneh
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Kimberley Amburgey
- Division of Neurology, Department of Pediatrics, The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Hernan Gonorazky
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children. Program for Genetics and Genome Biology, The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Carolina Gorodetsky
- Division of NeurologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of pediatricsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
50
|
The role of CaMKK2 in Golgi-associated vesicle trafficking. Biochem Soc Trans 2023; 51:331-342. [PMID: 36815702 PMCID: PMC9987998 DOI: 10.1042/bst20220833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a serine/threonine-protein kinase, that is involved in maintaining various physiological and cellular processes within the cell that regulate energy homeostasis and cell growth. CaMKK2 regulates glucose metabolism by the activation of downstream kinases, AMP-activated protein kinase (AMPK) and other calcium/calmodulin-dependent protein kinases. Consequently, its deregulation has a role in multiple human metabolic diseases including obesity and cancer. Despite the importance of CaMKK2, its signalling pathways and pathological mechanisms are not completely understood. Recent work has been aimed at broadening our understanding of the biological functions of CaMKK2. These studies have uncovered new interaction partners that have led to the description of new functions that include lipogenesis and Golgi vesicle trafficking. Here, we review recent insights into the role of CaMKK2 in membrane trafficking mechanisms and discuss the functional implications in a cellular context and for disease.
Collapse
|